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ABSTRACT

Uncertainty quantification (UQ) in graph neural networks (GNNs) is crucial in
high-stakes domains but remains a significant challenge. In graph settings, mes-
sage passing often relies on strong assumptions such as exchangeability, which
are rarely satisfied in practice. Moreover, achieving reliable UQ typically requires
costly resampling or post-hoc calibration. To address these issues, we introduce
Quantile-free Prediction Interval GNN (QpiGNN), a framework that builds on
quantile regression (QR) to enable GNN-based UQ by directly optimizing cov-
erage and interval width without requiring quantile inputs or post-processing.
QpiGNN employs a dual-head architecture that decouples prediction and uncer-
tainty, and is trained with label-only supervision through a quantile-free joint
loss. This design allows efficient training and yields robust prediction intervals,
with theoretical guarantees of asymptotic coverage and near-optimal width under
mild assumptions. Experiments on 19 synthetic and real-world benchmarks show
QpiGNN achieves average 22% higher coverage and 50% narrower intervals than
baselines, while ensuring efficiency and robustness to noise and structural shifts.

1 INTRODUCTION

Graph Neural Networks (GNNs) are increasingly applied to node regression, enabling accurate pre-
diction of values at graph nodes. They have also shown strong potential in high-stakes domains
such as healthcare (Li et al., 2020) and criminal justice (Zhou et al., 2024). Yet most GNNs rely
on deterministic architectures that produce point estimates without uncertainty, and their message-
passing mechanisms can propagate and amplify data biases (Jiang et al., 2024; Lin et al., 2024),
thereby heightening risks in real-world decision-making (Kwon et al., 2022). Although uncertainty-
aware modeling has gained attention, uncertainty quantification (UQ) in GNN regression remains
underexplored, hindering trustworthy applications. In regression, UQ typically takes the form of
prediction intervals that capture plausible ranges (Huang et al., 2023; Pouplin et al., 2024).

Recent works on UQ in GNNs have primarily taken two directions: Bayesian inference and frequen-
tist approaches (Chen et al., 2024; Wang et al., 2024a). Bayesian approaches (Zhao et al., 2020;
Stadler et al., 2021) estimate posterior distributions but suffer from scalability issues and sensitivity
to prior specification. Frequentist approaches are generally more efficient, but they often rely on
resampling or post-hoc calibration, which can be costly or unstable in graph settings. Resampling-
based methods (Kang et al., 2022; Liao et al., 2023) incur computational overhead due to repeated
inference, while post-hoc calibration methods (Huang et al., 2023) generally require calibration sets
and additional processing; in particular, some approaches rely on strong assumptions such as ex-
changeability, which are often violated in graphs with structural dependencies (Zhou et al., 2020b).

These limitations motivate the development of alternative frequentist approaches that reduce reliance
on strong assumptions or post-processing while remaining computationally practical. We propose
quantile regression (QR) (Koenker & Bassett Jr, 1978) as a promising alternative for graph settings,
due to its ability to handle non-Gaussian and heteroscedastic targets without restrictive distributional
assumptions. Unlike resampling- or post-hoc methods, QR directly estimates conditional quantiles,
avoiding repeated inference and reducing the need for post-hoc calibration. These properties make
QR suitable for UQ in GNNs, where relational dependencies and structural noise violate assump-
tions, and existing methods struggle with graph-specific challenges such as correlated observations,
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noise sensitivity, and heterophily (Angelopoulos & Bates, 2021; Ma et al., 2022). Therefore, to the
best of our knowledge, this work represents the first attempt to apply QR to UQ in GNNs.

However, standard QR assumes i.i.d. data and requires quantile-level inputs, where the model ei-
ther takes a quantile parameter τ (e.g., τ = 0.05, 0.95) as input or trains separate predictors for
each quantile to estimate the conditional quantile function f(X; τ). This design increases model
complexity and introduces issues such as quantile crossing (Zhou et al., 2020a). When combined
with graph message passing, quantile supervision entangles node representations and often yields
poorly calibrated, non-compact intervals (Rusch et al., 2023). Moreover, QR-based interval estima-
tion methods that have not been applied to GNNs still rely on explicit quantile-level inputs or fail
to distinguish predictions from uncertainty (Tagasovska & Lopez-Paz, 2019; Pouplin et al., 2024),
which limits their stability and expressiveness in graph settings.

These limitations highlight the need for a quantile-free, graph-aware approach that retains QR’s
flexibility while avoiding reliance on quantile-level inputs and strong assumptions such as exchange-
ability in GNNs. To this end, we propose Quantile-free Prediction Interval GNN (QpiGNN)1, a
framework for uncertainty quantification in GNNs through prediction interval estimation. QpiGNN
is built on two key ideas. First, a dual-head architecture that separates prediction from uncertainty
estimation, reducing oversmoothing and entanglement. Second, a quantile-free joint loss directly op-
timizes coverage and interval width from label-only supervision, eliminating the need for quantile-
level inputs and post-processing. Collectively, these components enable stable training and cali-
brated intervals, while ensuring coverage and near-optimal width under mild assumptions for UQ in
graphs. Our main contributions are summarized as follows:

1. Quantile-free UQ for GNNs: In Section 3, we discuss the structural limitations of apply-
ing QR-based interval estimation to GNNs and introduce QpiGNN, the first quantile-free
framework that enables calibrated and compact node-level uncertainty quantification.

2. Framework Design and Theory: We develop a dual-head architecture with a quantile-free
joint loss that decouples prediction from uncertainty, mitigates oversmoothing, and—under
mild assumptions—offers theoretical guarantees of coverage and near-optimal width.

3. Empirical Results: Across 19 diverse synthetic and real-world benchmarks, QpiGNN
achieves on average 22% higher coverage and 50% narrower intervals than competitive
baselines, while still remaining efficient and robust to noise and structural shifts.

2 RELATED WORK

Uncertainty Quantification (UQ) in GNNs UQ in GNNs has been studied through ensemble,
Bayesian, and frequentist approaches. Ensemble methods (Bazhenov et al., 2022; Wang et al.,
2024b) improve robustness via multiple predictions but are costly and sensitive to shifts, limiting
scalability in large graphs. Bayesian methods (Zhao et al., 2020; Stadler et al., 2021) provide prin-
cipled probabilistic estimates by modeling posterior uncertainty but often face scalability issues
and sensitivity to prior specification. Frequentist methods (Kang et al., 2022; Liao et al., 2023) are
more efficient but often depend on resampling or post-hoc calibration, causing significant overhead.
Among such post-hoc approaches, Conformal Prediction (CP) provides distribution-free coverage
guarantees but relies on exchangeability (often simplified as i.i.d.), an assumption that can be vi-
olated in graph data (Vovk et al., 2005). Although recent works attempt to relax these via partial
exchangeability (Huang et al., 2023; Zhao et al., 2024), CP remains sensitive to heterogeneity such
as hubs and heterophily, highlighting the need for alternative approaches.

Quantile Regression (QR) QR models asymmetric and heteroscedastic targets without strong dis-
tributional assumptions (Koenker & Bassett Jr, 1978). However, existing graph-based QR methods
such as GSL-QR (Zhang et al., 2023) and PE-GQNN (de Amorim et al., 2024) primarily target pre-
diction or representation learning rather than uncertainty estimation. Recent extensions of QR for
interval estimation, such as SQR (Tagasovska & Lopez-Paz, 2019) and RQR (Pouplin et al., 2024),
improve flexibility but are not designed for GNNs, often causing calibration failures or oversmooth-
ing when combined with message passing. In contrast, we integrate QR into GNNs in a quantile-free
manner, removing explicit quantile-level inputs and post-processing, and thereby achieving cali-
brated and robust interval prediction for graphs.

1Code available at https://anonymous.4open.science/r/QpiGNN-15366
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3 PRELIMINARIES AND BACKGROUND

3.1 NODE-WISE PREDICTION INTERVALS IN GRAPH NEURAL NETWORKS

Let G = (V, E) be a graph, where V is the set of nodes with n = |V|, and E ⊆ V × V is the set of
edges. Each node v ∈ V is associated with a feature vector xv ∈ Rd, where d is the dimensionality
of node features. The feature matrix is denoted by X ∈ Rn×d. Each node also has a scalar regression
target yv ∈ R, and the full target vector is y = [y1, y2, . . . , yn]

⊤ ∈ Rn. The goal is to predict, for
each node v, a prediction interval [ŷlow

v , ŷup
v ] such that ŷlow

v ≤ yv ≤ ŷup
v holds with high probability.

GNNs iteratively update node representations by aggregating information from their local neighbor-
hoods. The final representation of node v, denoted as hv , is used to estimate the target value yv . At
layer l, the representation is updated as follows:

h(l)
v = σ

(
W (l) · AGG

(
{h(l−1)

u | u ∈ N (v)}
))

, (1)

where AGG ∈ {MEAN, SUM,MAX} is an aggregation function and σ a non-linearity. Aggregation
varies by architecture, using mean, sum, or attention (e.g., GraphSAGE (Hamilton et al., 2017),
GCN (Kipf & Welling, 2017)). Here, N (v) denotes the neighbors of node v.

3.2 QUANTILE REGRESSION AND EXTENSIONS

QR estimates the conditional quantile function qτ (x) with P (y ≤ qτ (x)) = τ , where τ ∈ (0, 1)
is the quantile level. Prediction intervals are obtained by setting the bounds to τ low = α/2 and
τ up = 1− α/2, where α is the miscoverage rate and 1− α the target coverage (e.g., α = 0.1 yields
a 90% interval). A key limitation of QR is quantile crossing (Zhou et al., 2020a), where predictions
at different quantile levels violate monotonicity, causing lower quantiles to exceed higher ones. To
overcome this issue, several extensions of QR have been proposed.

Tagasovska & Lopez-Paz (2019) proposed Simultaneous Quantile Regression (SQR), which jointly
estimates multiple quantiles using a single model fθ(x, τ) conditioned on both input and quantile
level. Rather than training separate models for each quantile, SQR optimizes a unified objective.
The standard QR loss, known as the pinball loss, is defined as LQR(y, ŷ) = (τ − I(y < ŷ))(y − ŷ),
where τ ∈ (0, 1) is a fixed quantile level. In contrast, SQR minimizes the expected pinball loss over
a continuous range of quantiles τ ∼ U(0, 1):

LSQR = Eτ∼U(0,1)[LQR(y, fθ(x, τ))]. (2)
This formulation mitigates quantile crossing and improves parameter efficiency by sharing represen-
tations across quantile levels. However, our experiments show that SQR suffers from instability and
calibration failure when combined with the message passing of GNNs as defined in Equation (1).

Beyond quantile-based approaches, Pouplin et al. (2024) proposed Relaxed Quantile Regression
(RQR), originally developed for MLPs, which estimates prediction intervals by learning the condi-
tional center and spread without relying on pre-defined quantile-level inputs. RQR predicts input-
dependent bounds [ŷlow(x), ŷup(x)] and optimizes them for target coverage and minimal width using
a width-regularized objective:

LRQR-W =
(
α+ 2λ− I

[
ŷlow ≤ y ≤ ŷup]) (y − ŷlow)(y − ŷup) +

λ

2

(
ŷup − ŷlow)2 , (3)

where λ ≥ 0 controls the trade-off between coverage and compactness, and I(·) is the indicator
function. The first term enforces coverage of y, while the second penalizes excessive width.

While effective in tabular MLPs, our experiments reveal that directly extending RQR to GNNs
introduces significant challenges. Message passing tends to produce overly smooth and global inter-
vals (Rusch et al., 2023), limiting node-wise adaptivity. Moreover, the single-head design of RQR
entangles the learning of center and spread, reducing representation flexibility and degrading calibra-
tion performance under graph-structured data. To improve interval validity in graph-based tasks, we
further add an ordering penalty γorder, which also facilitates comparison with our proposed model:

LRQRadj. = LRQR-W + γorder · ReLU(ŷlow − ŷup), (4)
where γorder ≥ 0 is a hyperparameter. This penalty, absent in the original formulation, adapts
RQR—originally not designed for GNNs—to graph settings. It serves as a soft ordering constraint
that prevents interval crossing, stabilizes training, and improves calibration under GNNs.
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Figure 1: Overview of Quantile-free Prediction Interval Graph Neural Network. QpiGNN es-
timates node-wise prediction intervals using a dual-head GNN trained with a quantile-free joint
loss that trades off coverage and compactness. One head predicts the target value ŷ, while the other
predicts the interval width d̂. The loss includes a coverage term Lcoverage (�) encouraging wide
enough intervals to maintain coverage, and a width term Lwidth (�) promoting tighter intervals. As
illustrated, models trained with only the coverage term produce overly wide intervals, whereas the
full joint loss yields tighter, locally adaptive intervals that still satisfy the target coverage 1− α.

4 QUANTILE-FREE PREDICTION INTERVAL GRAPH NEURAL NETWORK

4.1 PROBLEM FORMULATION

We address node-wise uncertainty quantification in graph-structured data by learning calibrated pre-
diction intervals without relying on explicit quantile-level inputs, resampling, and post-processing.
Given a graph G = (V, E) with node features X, the objective is to learn a function f : V → R2

that assigns each node v ∈ V a prediction interval f(v) = [ŷlow
v , ŷup

v ], such that:

Pv∼V
(
ŷlow
v ≤ yv ≤ ŷup

v

)
≥ 1− α, and Ev∼V

[
ŷup
v − ŷlow

v

]
is minimized.

Here, 1− α denotes the target coverage, the probability that true values fall within the predicted in-
tervals. Thus, the learned intervals should be both calibrated—achieving the target coverage across
nodes—and compact—minimizing their average width. We propose QpiGNN, a GNN-based frame-
work for node-wise uncertainty quantification via calibrated prediction intervals.

4.2 DUAL-HEAD GNN FOR CALIBRATED PREDICTION INTERVALS

GNNs generate node representations by aggregating neighborhood information (Hamilton et al.,
2017; Kipf & Welling, 2017). While effective for prediction, single-head architectures that esti-
mate prediction bounds jointly can suffer from over-smoothing (Li et al., 2018), making it difficult
to capture node-wise uncertainty. To mitigate this, QpiGNN employs a dual-head architecture that
decouples the estimation of central prediction ŷ and interval width d̂, allowing each to be opti-
mized for a distinct objective—accuracy for ŷ, and coverage for d̂. Similar dual-head structures
have demonstrated strong performance in heteroscedastic and Bayesian regression (Kendall & Gal,
2017; Lakshminarayanan et al., 2017). As shown in Figure 1, this design enables expressive, node-
wise uncertainty modeling by structurally separating prediction and uncertainty components, with
the full training algorithm provided in Appendix A.

The effectiveness of this design is validated through an ablation study in Section 5.5. Across nine
synthetic datasets, the dual-head GNN with a learnable margin outperforms fixed-margin or single-
output variants, achieving better empirical trade-offs by maintaining high coverage with significantly
narrower intervals. QpiGNN uses a GNN encoder to compute node embeddings H = GNN(X, E),
followed by two linear heads ŷ = WpredH + bpred, d̂ = Softplus(WdiffH + bdiff). The softplus
activation ensures d̂ > 0, yielding half-widths. The final prediction interval for node v is given by:

ŷlow
v = ŷv − d̂v, ŷup

v = ŷv + d̂v.

This architecture allows QpiGNN to estimate calibrated and compact prediction intervals in an end-
to-end manner—without requiring quantile-level input, resampling, or post-processing.

4
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4.3 QUANTILE-FREE JOINT LOSS FOR COMPACT PREDICTION INTERVALS

To train QpiGNN to produce prediction intervals that are both calibrated and compact, we define a
loss function Ltotal consisting of a coverage term Lcoverage and a width regularization term Lwidth.

Ltotal = (ĉ− (1− α))
2
+ ℓ̂viol︸ ︷︷ ︸

Lcoverage

+λwidth · Ev∼V
[
ŷup
v − ŷlow

v

]︸ ︷︷ ︸
Lwidth

, (5)

where the empirical coverage is defined as ĉ := Pv∼V
(
ŷlow
v ≤ yv ≤ ŷup

v

)
, and the empirical viola-

tion loss is given by ℓ̂viol := Ev∼V
[
|yv − ŷlow

v | · I[yv < ŷlow
v ] + |yv − ŷup

v | · I[yv > ŷup
v ]

]
.2 The vio-

lation penalty provides fine-grained feedback when predicted intervals fail to capture true targets.3
The term λwidth balances calibration against interval compactness. Unlike RQR-W in Equation (3),
which entangles coverage and width into a single conditional loss—often resulting in oversmoothed
intervals in GNNs (Rusch et al., 2023)—our formulation separates these objectives. Specifically, it
penalizes deviations from the target coverage (1−α) via (ĉ−(1−α))2, while independently regular-
izing interval width via λwidth ·Ev∼V [ŷ

up
v −ŷlow

v ]. This disentangled design enables stable training and
fine-grained control over node-level uncertainty. As shown in Figure 1, jointly minimizing Lcoverage
and Lwidth yields sharp prediction intervals while maintaining the target coverage 1− α.

Asymptotic and Finite-sample Coverage A goal of QpiGNN is to ensure that predicted intervals
achieve the desired coverage level 1 − α at both finite and asymptotic sample sizes. We provide
justification for why the empirical coverage ĉ remains close to the target under mild conditions.
Proposition 1. Assume the following mild conditions: (i) the label noise εv = yv−f(xv) is bounded
and weakly dependent across nodes, (ii) the predicted mean ŷv and interval half-width d̂v converge
in probability to their targets, and (iii) node embeddings remain sufficiently diverse. Then, as N →
∞, the empirical coverage converges in probability to the target level 1− α:

ĉ
P−→ 1− α, equivalently, ∀ε > 0, lim

N→∞
P(|ĉ− (1− α)| > ε) = 0.

Sketch of Proof. Define each prediction interval as [ŷlow
v , ŷup

v ] and let Zv := I[ŷlow
v ≤ yv ≤ ŷup

v ].
Under assumptions (i)–(iii), the expected coverage satisfies E[Zv] → 1 − α. By the Weak Law of
Large Numbers (WLLN) (Penrose & Yukich, 2003; Gama & Ribeiro, 2019), the empirical coverage

ĉ =
1

N

N∑
v=1

Zv
P−→ 1− α.

Finite-sample Guarantees For finite samples, deviation of empirical coverage from the target
can be controlled using classical concentration inequalities. Under localized message passing, the
bounded-difference condition holds approximately, so the inequalities of McDiarmid (1989) and
Hoeffding (1994) still apply up to a graph-dependent constant. This yields |ĉ−(1−α)| = O(1/

√
N),

implying that even for moderate N , empirical coverage ĉ remains close to the target 1 − α with
high probability, consistent with the stability observed in our experiments. Moreover, our finite-
sample guarantees bound the deviation |ĉ− E[ĉ]| even in the absence of exact independence. As
detailed in Appendix B.5, perturbing a single node changes the output by at most (1/N + δG),
where δG is a small graph-dependent constant. This shows that the bounded-difference condition
holds approximately and thus preserves the validity of concentration arguments.
Remark 1. To build intuition, consider sparse Erdős–Rényi (ER) graphs with average degree
O(logN). In such graphs, the influence of a single node diminishes rapidly with distance. For
example, in GraphSAGE with mean aggregation, each neighbor contributes at most O(1/deg(v))
per layer, yielding an overall effect of O(1/N). Over k layers, the cumulative influence remains
bounded by O(k/N). This intuition aligns with prior work showing that the WLLN can hold under
weak dependence in graph processes (Gama & Ribeiro, 2019).
Empirically, QpiGNN maintains tight coverage and compact intervals under diverse perturbations,
confirming that these assumptions hold in practice (see Section 5).

2For notational compactness, an equivalent form is ℓ̂viol = Ev∼V [max(0, (yv − ŷlow
v )(yv − ŷup

v ))]; we
retain the decomposed form for interpretability and slightly more stable gradients.

3In finite samples, the violation loss provides a useful training signal; once the model is calibrated, its effect
diminishes and we omit it from the asymptotic analysis (Appendix B.4).
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Width Optimality under Coverage Constraints To encourage compact prediction intervals, we
introduce a width penalty term Lwidth, weighted by a regularization parameter λwidth ≥ 0, which
can be tuned via Bayesian optimization (Snoek et al., 2012) to balance calibration and compactness
(typically 0.2–0.5; see Appendix C). We adopt an L1-based mean width penalty for robustness and
interpretability, avoiding the instability of L2 losses under outliers (Pearce et al., 2018; Tagasovska
& Lopez-Paz, 2019). Theoretically, if the conditional distribution P (y | xv) is symmetric around
the predicted mean ŷv , the minimum-width interval satisfying the coverage constraint ĉ ≥ 1− α is
[ŷv−d∗v, ŷv+d∗v], where d∗v = F−1

v (1−α/2) is the conditional quantile of |yv− ŷv|. Since the true
distribution is unknown, QpiGNN instead minimizes the total loss Ltotal = Lcoverage + λwidth · Lwidth,
which can be interpreted as a Lagrangian relaxation (Franceschi et al., 2019) of the constrained
optimization problem. When ĉ approaches the target 1 − α, the model prioritizes width reduction,
yielding near-optimal intervals, as detailed in Appendix B.2.

Convergence Properties of the Joint Loss The joint loss
Ltotal is non-convex, but each component is continuous
and piecewise smooth, which allows the use of standard
stochastic approximation techniques. Following results from
stochastic non-convex optimization (Ghadimi & Lan, 2013),
we show that training with a diminishing learning rate en-
sures convergence to a stationary point. Specifically, under
the assumptions that (i) each component is continuous and
piecewise smooth, (ii) gradients are bounded, and (iii) the
step size decays appropriately, the training dynamics satisfy
limt→∞ E [∥∇θLtotal(θt)∥] = 0, implying that the model pa-
rameters converge to a point where the expected gradient
norm vanishes (Kingma & Ba, 2015; Reddi et al., 2018).

Figure 2: Loss convergence trajec-
tory on synthetic datasets.

This property is crucial given the hybrid nature of the loss, which balances interval width and cov-
erage. As shown in Figure 2, training first reduces sharp coverage-violation penalties and then pro-
gressively narrows intervals, following a natural trajectory toward minimizing the overall loss while
maintaining target coverage. A formal proof and empirical validation are provided in Appendix B.3.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Metrics We evaluate QpiGNN on 19 datasets. The top half of Table 1 presents syn-
thetic graphs, while the bottom half lists real-world node-level regression benchmarks (Rozember-
czki et al., 2021). Detailed descriptions of all datasets are provided in Appendix D. For evaluation,
we primarily report Prediction Interval Coverage Probability (PICP) (Rana et al., 2015) and Mean
Prediction Interval Width (MPIW) (Khosravi et al., 2010a), which together assess calibration and
compactness. Additional metrics are included in Appendix E.

Baselines We compare QpiGNN with six baselines: SQR-GNN, an extension of the MLP-based
SQR to GNNs; RQRadj.-GNN, which extends RQR to GNNs by enforcing interval ordering in
Equation (4); and CF-GNN (Huang et al., 2023). For CF-GNN, we report both our reimplementa-
tion4 and the original version with tuned hyperparameters5, denoted CF-GNNopt.. We also include
BayesianNN (Kendall & Gal, 2017) and MC Dropout (Gal & Ghahramani, 2016), which estimate
uncertainty via approximate Bayesian inference.

Implementation All models target 1−α = 0.90, and use GraphSAGE with two layers and hidden
size 64. We train with the Adam optimizer (learning rate and weight decay = 10−3) for 500 epochs,
averaging over 5 or 10 runs. MC Dropout uses 0.2 dropout rate and 100 stochastic passes. RQRadj.-
GNN is trained with fixed λ = 1.0 6 and order penalty γorder = 1.0. All baselines are trained with
standard MSE loss. Full details are in Appendix F and our codebase7.

4Same GNN architecture, layers, hidden size, and epochs.
5Including τ , learning rate, target interval size, loss weights, and architecture.
6Using λ = 0.5 or 0.1 yielded prediction intervals performance differences within 0.01 compared to λ = 1.
7https://anonymous.4open.science/r/QpiGNN-15366
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Table 1: Prediction intervals performance (PICP/MPIW) on 19 synthetic and real datasets. Models
are grouped by dataset and evaluated on test splits. Bold indicates coverage above the 90% target
(1−α), and underline marks the lowest MPIW among those. This highlights models achieving both
calibration and compactness. λopt. denotes the width penalty selected via Bayesian optimization.

Model Basic Gaussian Uniform Outlier Edge BA ER Grid Tree
PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW

SQR-GNN 0.85 0.33 0.88 0.50 0.88 0.51 0.90 0.10 0.91 0.32 0.81 0.72 0.75 0.60 0.78 0.53 0.80 0.26
RQRadj.-GNN 0.90 0.82 0.88 0.53 0.90 0.68 0.90 0.36 0.93 0.83 0.78 0.75 0.88 0.77 0.72 0.48 0.85 0.68
BayesianNN 1.00 3.01 1.00 2.98 1.00 3.00 1.00 2.95 1.00 3.06 1.00 3.08 1.00 3.01 1.00 3.01 1.00 3.00
MC Dropout 0.99 0.32 0.55 0.20 0.65 0.26 0.58 0.06 1.00 0.30 0.67 0.26 0.76 0.23 0.33 0.16 0.64 0.20

CF-GNN 0.92 1.90 0.91 2.90 0.90 3.04 0.93 1.92 0.92 1.78 0.90 68.27 0.90 17.15 0.94 3.18 0.93 0.97

QpiGNN (λ0.5) 0.89 0.30 0.92 0.55 0.88 0.43 0.89 0.47 0.94 0.39 0.98 0.49 0.98 0.63 0.98 0.87 0.96 0.39
QpiGNN (λ0.1) 0.98 0.93 0.99 0.84 0.99 0.89 0.99 0.75 1.00 0.97 0.98 1.01 0.99 0.92 0.98 0.98 1.00 0.59
QpiGNN (λopt.) 0.90 0.30 0.95 0.64 0.93 0.62 0.90 0.49 0.94 0.54 0.98 0.48 0.98 0.63 0.99 0.93 0.96 0.39

Model Education Election Income Unemploy. Twitch Chameleon Crocodile Squirrel Anaheim Chicago
PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW PCIP MPIW

SQR-GNN 0.88 0.32 0.89 0.47 0.86 0.22 0.87 0.33 0.30 0.03 0.37 0.01 0.44 0.01 0.22 0.01 0.88 0.32 0.87 0.21
RQRadj.-GNN 0.87 0.49 0.89 0.54 0.89 0.36 0.90 0.38 0.91 0.42 0.86 0.15 0.87 0.08 0.89 0.15 0.85 0.50 0.88 0.30
BayesianNN 1.00 2.96 1.00 2.98 1.00 2.97 1.00 2.98 1.00 3.07 1.00 2.95 1.00 3.07 1.00 2.97 1.00 2.94 1.00 2.99
MC Dropout 0.40 0.11 0.48 0.18 0.45 0.09 0.41 0.09 0.91 0.15 0.47 0.02 0.46 0.01 0.31 0.02 0.50 0.11 0.34 0.07

CF-GNN 0.88 2.78 0.89 1.08 0.92 3.48 0.90 3.16 0.92 3.53 - - - - - - 0.90 3.22 0.90 3.12
CF-GNNopt. 0.90 3.10 0.91 0.94 0.91 2.92 0.89 2.61 0.89 2.34 - - - - - - 0.90 2.82 0.91 2.26

QpiGNN (λ0.5) 0.99 0.57 0.98 0.77 0.99 0.41 1.00 0.74 0.59 0.08 0.51 0.03 0.92 0.08 0.73 0.07 0.92 0.39 0.97 0.36
QpiGNN (λ0.1) 0.99 0.90 1.00 0.97 1.00 0.72 1.00 0.93 0.98 0.54 0.98 0.40 1.00 0.54 0.99 0.47 0.99 0.74 0.99 0.60
QpiGNN (λopt.) 0.99 0.59 0.98 0.77 0.99 0.44 1.00 0.73 0.94 0.36 0.96 0.23 0.97 0.16 0.96 0.18 0.93 0.40 0.98 0.36

Figure 3: Impact of λwidth on PICP and MPIW across 1−α ∈
[0.8, 0.95], over 5 runs (500 epochs) on the ER graph.

Figure 4: PICP–MPIW trade-off un-
der λwidth at 1−α = 0.90 (ER graph).

5.2 MAIN RESULTS

Quantitative Evaluation Table 1 reports PICP and MPIW on 19 datasets under three width penal-
ties: default (λ0.5), conservative (λ0.1), and Bayesian-optimized (λopt.). On synthetic graphs, λopt.

reliably meets target coverage with the lowest MPIW in most cases, while λ0.5 yields tight but some-
times under-covering intervals and λ0.1 attains near-perfect coverage at the cost of wider widths. On
real graphs, λ0.5 provides the narrowest intervals, whereas λopt. balances coverage and compactness
(e.g., Chameleon, Squirrel). Against baselines, QpiGNN shows superior trade-off: BayesianNN en-
sures coverage with wide intervals, MC Dropout is narrow yet unreliable, and SQR-GNN, RQRadj.-
GNN, and CF-GNN often suffer poor calibration or unstable widths. QpiGNN with λopt. improves
coverage by 22% and reduces width by 50% on average, with further results in Appendix G.

Qualitative Evaluation Figure 9 and 10 in Appendix H illustrate prediction intervals on synthetic
and real-world graphs. For example, on Tree, SQR-GNN and MC Dropout yield narrow but under-
covering intervals, while BayesianNN and CF-GNN ensure coverage only with wide intervals. In
contrast, QpiGNN attains the target coverage with balanced width. More broadly, QpiGNN adapts
interval widths to data uncertainty across diverse graph settings. It adjusts to local variability in noisy
real-world graphs (e.g., Anaheim, Chicago), yields tighter calibrated intervals on sparse graphs (e.g.,
Twitch), and maintains strong coverage with compact widths on high-variance synthetic graphs (e.g.,
Tree). These results demonstrate QpiGNN’s adaptability and robustness.

5.3 ANALYSIS

Hyperparameter Sensitivity (1) Grid sensitivity: Figure 3 shows that small λ (e.g., 0.1) yields
near-perfect coverage but wide intervals. As λ increases to 0.5, intervals tighten (e.g., MPIW ≈
0.59 for 1−α = 0.80) with minimal loss in PICP. Beyond λ ≈ 0.57, coverage collapses (< 0.06),
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Table 2: Robustness analysis on ER graphs
with feature/target noise and edge dropout.
Results show PICP and MPIW over 5 runs.

Perturbation Type Level QpiGNN SQR-GNN RQRadj.-GNN
PICP MPIW PICP MPIW PICP MPIW

Feature Noise (σ)
0.1 0.89 0.66 0.76 0.78 0.85 0.78
0.2 0.90 0.80 0.65 0.69 0.85 0.78
0.3 0.92 0.83 0.71 0.81 0.84 0.76

Target Noise (σ)
0.1 0.96 0.44 0.49 0.52 0.95 0.87
0.2 0.99 0.71 0.95 0.84 0.97 1.05
0.3 1.00 1.05 0.98 0.99 0.98 1.32

Edge Dropout (p)
0.2 0.84 0.21 0.53 0.44 0.86 0.80
0.4 0.88 0.23 0.60 0.44 0.89 0.84
0.6 0.91 0.21 0.82 0.50 0.89 0.84

Table 3: Exchangeability analysis on real-world
datasets with Random, Degree, and Community splits.
Results report PICP and MPIW over 5 runs.

Split Type Education Election Income Unemploy. Twitch
PICP MPIW PICP MPIW PICP MPIW PICP MPIW PICP MPIW

Random 0.99 0.90 1.00 0.97 1.00 0.72 1.00 0.93 0.98 0.54
Degree 0.99 0.75 0.99 0.87 0.99 0.44 0.99 0.93 0.94 0.68
Community 0.99 0.54 0.99 0.86 1.00 0.46 0.97 0.84 0.99 0.49

Split Type Chameleon Crocodile Squirrel Anaheim Chicago
PICP MPIW PICP MPIW PICP MPIW PICP MPIW PICP MPIW

Random 0.98 0.40 1.00 0.54 0.99 0.47 0.99 0.74 0.99 0.60
Degree 0.97 0.57 1.00 0.72 0.97 0.45 0.95 0.58 0.96 0.46
Community 0.95 0.58 0.98 0.74 0.97 0.47 0.97 0.60 1.00 0.53

revealing a steep calibration–sharpness trade-off. (2) Trade-off curve: Figure 4 illustrates that at
1−α = 0.90, PICP remains stable (≥ 0.96) until λ ≈ 0.5, after which both PICP and MPIW degrade
rapidly, suggesting a critical tipping point. (3) Bayesian tuning: Bayesian optimization (Snoek et al.,
2012) can be applied to select λwidth for each dataset. As shown in Table 11 (Appendix C), optimal
λ values lie between 0.2 and 0.5, with synthetic datasets favoring stronger regularization. Overall,
this range consistently yields good calibration–compactness trade-offs.

Computational Efficiency Appendix I compares efficiency, runtime, and complexity across base-
lines. QpiGNN balances accuracy and efficiency, with training cost comparable to lightweight base-
lines (e.g., SQR-GNN). All models share complexityO(Ed+Nd2). MC Dropout and BayesianNN
add overhead from sampling, while CF-GNN incurs the highest cost from calibration.

5.4 ROBUSTNESS AND GENERALIZATION

Robustness to Perturbations We evaluate robustness under three types of perturbations—feature
noise, target noise, and edge dropout—on ER graphs in Table 2. Across all settings, QpiGNN con-
sistently maintains valid coverage and compact intervals, outperforming SQR-GNN and RQRadj.-
GNN. Under feature noise, QpiGNN maintains high coverage (PICP≈ 0.90) with moderate widths,
while SQR-GNN under-covers and RQRadj.-GNN is less stable. For target noise, QpiGNN expands
intervals to preserve near-perfect coverage (PICP = 1.00 at σ = 0.3, MPIW≈ 1.05), whereas SQR-
GNN collapses early and RQRadj.-GNN needs much wider intervals. With edge dropout, QpiGNN
raises coverage (0.84→0.91) while keeping MPIW compact (≈ 0.21), outperforming SQR-GNN’s
poor coverage and RQRadj.-GNN’s wide intervals.

Exchangeability under Splits Table 3 reports QpiGNN performance under three splits: Random,
assigning nodes uniformly; Degree, separating nodes by degree to test generalization across low- and
high-degree regions; and Community, splitting by graph communities to evaluate cross-community
transfer. Results show that while Random splits yield stable coverage and widths, Degree splits
often increase interval width (e.g., Twitch, MPIW = 0.68), and Community splits frequently produce
narrower yet valid intervals (e.g., Education, 0.90 → 0.54). QpiGNN maintains coverage and adapts
widths even under non-exchangeable splits, showing robustness to structural shifts.

Structural Shift Generalization We evaluate robust-
ness to structural shifts by training QpiGNN on one
graph type and testing on others. This setting reflects
realistic scenarios where graphs evolve, are partially ob-
served, or reconstructed over time, making robustness to
such changes critical for GNN-based uncertainty quan-
tification. As shown in Figure 5, models trained on ex-
pressive graphs like BA and ER generalize best, achiev-
ing PICP ≥ 0.89 on most targets. In contrast, models
trained on simpler sources (e.g., Tree, Basic) transfer
poorly, especially to irregular graphs (e.g., PICP < 0.2
on BA). We also observe a coverage–width trade-off:
Basic and Tree yield narrow but under-covering inter-
vals, while ER strikes a better balance (e.g., PICP = 0.93,
MPIW = 0.63). Full results appear in Appendix J.

Figure 5: Radar plot of QpiGNN PICP
on five synthetic graphs, showing robust-
ness under structural shifts.
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5.5 ABLATION STUDY

We examine the contributions of QpiGNN’s architec-
ture and loss design on nine synthetic datasets. Figure 6
presents the PICP–MPIW trade-off, with results re-
ported in Appendix K. (1) Architecture: The dual-head
model with a learnable margin (green points) consis-
tently outperforms fixed-margin and single-output vari-
ants, achieving superior calibration–compactness trade-
offs. (2) Loss: The complete objective delivers the best
overall performance (green dashed ellipse). Coverage-
only training yields overly wide intervals, width-only
training fails to calibrate, and pure MSE baseline col-
lapses to trivial outputs, underscoring the importance of
calibrated, uncertainty-aware losses.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
MPIW ( )

0.0

0.2

0.4

0.6

0.8

1.0

PI
CP

 (
)

Target Coverage 0.9
Best Configuration

(Dual Output / Full Loss)

Ablation Results (Architecture & Loss)

Target Coverage (0.9)
Dual Output / Full Loss
Fixed Margin (0.05)
Fixed Margin (0.10)
Single Output
Coverage Only
Width Only
MSE Baseline

Figure 6: PICP–MPIW trade-off on nine
synthetic datasets. Points show mean ±
std over 5 runs; target coverage 0.9.

6 DISCUSSION

Our findings show that QpiGNN’s design translates into superior empirical performance. By decou-
pling prediction and uncertainty through a dual-head, quantile-free loss, it avoids extra procedures
and achieves stable, calibrated estimation under noise and dependencies. Empirically, QpiGNN pro-
vides tighter yet reliable intervals than baselines, demonstrating efficiency and robustness.

Constraints and Empirical Robustness Theoretical guarantees of QpiGNN rely on mild assump-
tions that may be violated in real graphs due to heavy-tailed noise (Verma & Zhang, 2019; Jin et al.,
2020), model bias (Pouplin et al., 2024), and structural redundancy (Tagasovska & Lopez-Paz,
2019). These factors represent practical violations of independence and symmetry, often limiting
the reliability of uncertainty quantification in graph-structured data. Nevertheless, our results show
that QpiGNN maintains calibrated and compact intervals across diverse settings—including noisy,
sparse, and high-variance graphs—outperforming baselines on 7 of 10 real-world datasets (Table 1).
It further demonstrates resilience to feature and edge noise (Table 2) and sustains performance even
under splits violating exchangeability (Table 3), highlighting that our method does not rely on strong
assumptions. To further mitigate these constraints, QpiGNN could incorporate coverage loss terms
or post-hoc calibration to reduce model bias, and employ robust training strategies such as noise
injection or adversarial perturbations to address heavy-tailed noise and structural redundancy.

Task Extensions QpiGNN extends naturally beyond node regression. For graph-level regres-
sion, pooled embeddings hG = ρ(GNN(X, E)) are fed into two linear heads: ŷG = WpredhG +

bpred, d̂G = Softplus(WdiffhG + bdiff), yielding prediction intervals [ŷG − d̂G, ŷG + d̂G]. For
link prediction, edge embeddings (e.g., huv = ϕ([hu ∥ hv ∥ hu ⊙ hv])) are processed in the same
way, producing calibrated predictions ŷuv ± d̂uv . While classification is not directly supported, the
quantile-free dual-head design can be adapted via predictive sets or confidence margins.

7 CONCLUSION

We proposed QpiGNN, a GNN-based framework for uncertainty quantification that estimates cal-
ibrated and compact prediction intervals for node-level regression. By combining a dual-head ar-
chitecture with a quantile-free joint loss, QpiGNN disentangles prediction from uncertainty es-
timation in an end-to-end manner, eliminating the need for quantile-level inputs, resampling, or
post-processing. Experiments on 19 synthetic and real-world datasets show that QpiGNN outper-
forms baselines, delivering reliable calibration, robustness to noise, and precise control of the cov-
erage–width trade-off. It also remains effective without exchangeability and generalizes well under
structural shifts, particularly when trained on expressive graphs. Our ablation studies further confirm
the contribution of the dual-head design and quantile-free joint loss to these trade-offs. Future work
includes extending QpiGNN to underexplored graph applications such as anomaly detection, recom-
mender systems, and traffic forecasting, where reliable UQ is critical for high-stakes decisions. At
present, QpiGNN estimates only aggregate uncertainty; a key extension is to disentangle aleatoric
and epistemic components, particularly in domains like fraud detection, medical diagnosis, or au-
tonomous driving, where understanding the source of uncertainty directly affects decision-making.
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ETHICS STATEMENT

This work relies exclusively on publicly available synthetic and real-world benchmark datasets, con-
taining no sensitive or personally identifiable information. The proposed method aims to improve
uncertainty quantification in graph neural networks. However, misuse or misinterpretation of uncer-
tainty estimates could pose risks in high-stakes applications, and thus careful application is advised.

REPRODUCIBILITY STATEMENT

We provide implementation details, hyperparameter settings, and dataset descriptions in the main
text and appendix. All datasets are publicly accessible, and the code for reproducing our experiments
is already released. Results are reported as averages over multiple runs with fixed random seeds to
ensure reproducibility.

REFERENCES

Anastasios N. Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

Gleb Bazhenov, Sergei Ivanov, Maxim Panov, Alexey Zaytsev, and Evgeny Burnaev. Towards ood
detection in graph classification from uncertainty estimation perspective. In ICML PODS Work-
shop, 2022. arXiv preprint arXiv:2206.10691.

Chao Chen, Chenghua Guo, Rui Xu, Xiangwen Liao, Xi Zhang, Sihong Xie, Hui Xiong,
and Philip S. Yu. Uncertainty quantification on graph learning: A survey. arXiv preprint
arXiv:2404.14642, 2024.

William ER de Amorim, Scott A Sisson, T Rodrigues, David J Nott, and Guilherme S Ro-
drigues. Positional encoder graph quantile neural networks for geographic data. arXiv preprint
arXiv:2409.18865, 2024.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In ICML, pp. 1972–1982, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In ICML, pp. 1050–1059, 2016.

Fernando Gama and Alejandro Ribeiro. Ergodicity in stationary graph processes: A weak law of
large numbers. IEEE Transactions on Signal Processing, 67(10):2761–2774, 2019.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIOPT, 23(4):2341–2368, 2013.

Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378, 2007.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
NeurIPS, 30:1024–1034, 2017.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The Collected
Works of Wassily Hoeffding, pp. 409–426, 1994.

Kexin Huang, Ying Jin, Emmanuel Candes, and Jure Leskovec. Uncertainty quantification over
graph with conformalized graph neural networks. NeurIPS, 36:26699–26721, 2023.

Zhimeng Jiang, Xiaotian Han, Chao Fan, Zirui Liu, Na Zou, Ali Mostafavi, and Xia Hu. Chasing
fairness in graphs: A gnn architecture perspective. In AAAI, volume 38, pp. 21214–21222, 2024.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In KDD, pp. 66–74, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jian Kang, Qinghai Zhou, and Hanghang Tong. Jurygcn: quantifying jackknife uncertainty on graph
convolutional networks. In KDD, pp. 742–752, 2022.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? NeurIPS, 30:5574–5584, 2017.

Abbas Khosravi, Saeid Nahavandi, and Doug Creighton. A prediction interval-based approach to
determine optimal structures of neural network metamodels. Expert Systems with Applications,
37(3):2377–2387, 2010a.

Abbas Khosravi, Saeid Nahavandi, Doug Creighton, and Amir F Atiya. Lower upper bound estima-
tion method for construction of neural network-based prediction intervals. IEEE Transactions on
Neural Networks, 22(3):337–346, 2010b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
arXiv preprint arXiv:1412.6980.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017. arXiv preprint arXiv:1609.02907.

Roger Koenker and Gilbert Bassett Jr. Regression quantiles. Econometrica: Journal of the Econo-
metric Society, pp. 33–50, 1978.

Youngchun Kwon, Dongseon Lee, Youn-Suk Choi, and Seokho Kang. Uncertainty-aware prediction
of chemical reaction yields with graph neural networks. Journal of Cheminformatics, 14:2, 2022.
doi: 10.1186/s13321-021-00579-z.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. NeurIPS, 30:6402–6413, 2017.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In AAAI, volume 32, pp. 3538–3545, 2018.

Yang Li, Buyue Qian, Xianli Zhang, and Hui Liu. Graph neural network-based diagnosis prediction.
Big Data, 8(5):379–390, 2020.

Wenlong Liao, Shouxiang Wang, Birgitte Bak-Jensen, Jayakrishnan Radhakrishna Pillai, Zhe Yang,
and Kuangpu Liu. Ultra-short-term interval prediction of wind power based on graph neural
network and improved bootstrap technique. MPCE, 11(4):1100–1114, 2023.

Xiao Lin, Jian Kang, Weilin Cong, and Hanghang Tong. Bemap: Balanced message passing for fair
graph neural network. In LoG, pp. 37–1, 2024.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural net-
works? In ICLR, 2022. arXiv preprint arXiv:2106.06134.

Colin McDiarmid. On the method of bounded differences. Surveys in Combinatorics, 141(1):148–
188, 1989.

Tim Pearce, Alexandra Brintrup, Mohamed Zaki, and Andy Neely. High-quality prediction intervals
for deep learning: A distribution-free, ensembled approach. In ICML, pp. 4075–4084, 2018.

Mathew D Penrose and Joseph E Yukich. Weak laws of large numbers in geometric probability. The
Annals of Applied Probability, 13(1):277–303, 2003.

Thomas Pouplin, Alan Jeffares, Nabeel Seedat, and Mihaela Van Der Schaar. Relaxed quantile
regression: Prediction intervals for asymmetric noise. In ICML, pp. 40951–40981, 2024.

Mashud Rana, Irena Koprinska, and Vassilios G Agelidis. 2d-interval forecasts for solar power
production. Solar Energy, 122:191–203, 2015.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
ICLR, 2018. arXiv preprint arXiv:1904.09237.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. NeurIPS, 25:2960–2968, 2012.

Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, and Stephan Günnemann.
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