

000 001 002 003 004 005 REVISITING WEIGHT REGULARIZATION FOR LOW- 006 RANK CONTINUAL LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Continual Learning (CL) with large-scale pre-trained models (PTMs) has recently gained wide attention, shifting the focus from training from scratch to continually adapting PTMs. This has given rise to a promising paradigm: parameter-efficient continual learning (PECL), where task interference is typically mitigated by assigning a task-specific module during training, such as low-rank adapters. However, weight regularization techniques, such as Elastic Weight Consolidation (EWC)—a key strategy in CL—remain underexplored in this new paradigm. In this paper, we revisit weight regularization in low-rank CL as a new perspective for mitigating task interference in PECL. Unlike existing low-rank CL methods, we mitigate task interference by regularizing a shared low-rank update through EWC, thereby keeping the storage requirement constant regardless of the number of tasks. Moreover, we provide the first systematic investigation of EWC in low-rank CL, showing that it achieves a better stability–plasticity trade-off than other low-rank methods and enables competitive performance across a wide range of trade-off points. Building on these insights, we propose EWC-LoRA, which leverages a low-rank representation to estimate parameter importance over the full-dimensional space. This design offers a practical, computational- and memory-efficient solution for CL with PTMs, and provides insights that may inform the broader application of regularization techniques within PECL. Extensive experiments on various benchmarks demonstrate the effectiveness of EWC-LoRA. On average, EWC-LoRA improves over vanilla LoRA by 8.92% and achieves comparable or even superior performance to other state-of-the-art low-rank CL methods.

1 INTRODUCTION

Continual Learning (CL) (Parisi et al., 2019) has emerged as a rapidly growing research area, aiming to enable machine learning systems to acquire new knowledge without forgetting previously learned concepts. This ability plays a crucial role in addressing real-world problems (Shaheen et al., 2022; Wang et al., 2024a) where data distributions are constantly changing. Ideally, a CL model should maintain stable performance across all previously encountered tasks. A significant decline in performance on previous tasks after learning new ones is known as catastrophic forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990), which typically arises from task interference.

With the rise of large-scale pre-trained models (PTMs) (Bommasani, 2021; Awais et al., 2025), the research focus in CL has shifted from training models from scratch to continually adapting these powerful models (Ostapenko et al., 2022; Yang et al., 2025). This trend is driven by the impressive transferability and robustness of PTMs, and a growing body of work has shown promising results in PTM-based continual adaptation. A particularly popular paradigm is parameter-efficient continual learning (PECL) (Qiao & Mahdavi, 2024), in which the PTM is typically kept frozen and augmented with lightweight modules such as prompts (Wang et al., 2022c; Smith et al., 2023), adapters (Ermis et al., 2022; Gao et al., 2024), or low-rank adaptations (LoRA) (Liang & Li, 2024; Wu et al., 2025). The predominant strategy in these works is to prevent task interference by assigning task-specific modules during training—either structurally isolated adapters or LoRA modules, or prompts that provide task-specific conditioning at the feature level.

On the other hand, weight regularization as a key continual learning strategy remains underexplored in the era of continual learning with PTMs. A canonical example is Elastic Weight Consolidation

(EWC) (Kirkpatrick et al., 2017), which has played a central role in combating catastrophic forgetting in small-scale models (Schwarz et al., 2018; Ehret et al., 2020). Although effective for smaller models, EWC is difficult to apply to PTMs, as estimating parameter importance via the Fisher Information Matrix (FIM) is computationally expensive, requiring storage of a frozen copy of the old model and a Fisher matrix of equal size, resulting in a memory overhead three times that of the original model. Several studies have attempted to apply EWC to the fine-tuning of large language models (Xiang et al., 2023; Šliogeris et al., 2025). However, they typically fine-tune the model with a precomputed Fisher matrix that is fixed throughout training, making them impractical for CL.

In this paper, we adopt EWC as a canonical example to study weight regularization in low-rank CL, systematically analyzing key considerations for applying EWC within low-rank adaptations and proposing a feasible weight-regularization-based solution for low-rank CL. *First, we revisit weight regularization in low-rank CL as a new perspective to mitigating catastrophic forgetting.* Existing low-rank CL methods assign each task an independent LoRA module, constraining updates to subspaces that reduce interference with prior tasks. While effective, the addition of LoRA modules incurs storage overhead that scales linearly with the number of tasks. In contrast, we mitigate task interference by regularizing a shared low-rank update through EWC, rather than structurally isolating task-specific parameters, thereby keeping the storage requirement constant regardless of the number of tasks. *Moreover, we provide the first systematic investigation of EWC in low-rank CL, and we theoretically and empirically demonstrate that a naïve integration of EWC with low-rank adaptation is suboptimal.* To address this limitation, we propose a principled method to estimate parameter importance within the low-rank space. Our method leverages FIM to more reliably quantify each parameter’s contribution while mitigating task interference. We empirically show that the regularization on low-rank matrices achieves a better stability–plasticity trade-off than other low-rank methods. Furthermore, the tunability of EWC enables competitive performance across a wide range of trade-off points.

Drawing on these insights, we propose **EWC-LoRA**, which updates the model via low-rank adaptation while leveraging the full-dimensional space FIM for weight regularization. EWC-LoRA does not explicitly fine-tune the full model or store model components for all previous tasks, thereby significantly reducing computational and memory overhead while enabling effective Fisher estimation, making it a resource-efficient solution for CL with PTMs. The main contributions of this work are as follows:

- We revisit weight regularization as a new perspective for mitigating catastrophic forgetting in low-rank CL. By exploiting the low-rank structure, we develop an efficient realization of EWC in PTMs. Specifically, by regularizing a shared LoRA module, EWC-LoRA maintains a constant memory footprint regardless of the number of tasks.
- We present the first systematic investigation of EWC in low-rank CL and propose estimating the FIM over the full-dimensional space to accurately capture parameter importance. *Our analysis shows that naïvely integrating EWC with low-rank adaptation is suboptimal, while EWC-LoRA effectively regularizes learning and achieves a better stability–plasticity trade-off than existing low-rank CL methods.*
- Extensive experiments across multiple benchmarks demonstrate that EWC-LoRA is effective, improving over vanilla LoRA by an average of 8.92%, while achieving comparable or even superior performance to state-of-the-art low-rank CL methods, with better computational and storage efficiency.

2 RELATED WORKS

Continual Learning (CL). In contrast to standard supervised learning, which assumes that training data are independent and identically distributed (i.i.d.), CL focuses on training models on data streams that exhibit non-stationary and often continuous distribution shifts (Lesort et al., 2021). This departure from the i.i.d. assumption introduces the central challenge of catastrophic forgetting, where the model experiences significant performance degradation on previously learned tasks as new tasks are introduced (McCloskey & Cohen, 1989; Ratcliff, 1990). As summarized by Van de Ven & Tolias (2019), CL can be categorized into three main scenarios: task-incremental (Gao et al., 2023), domain-incremental (Wang et al., 2024b), and class-incremental learning (Hersche et al., 2022).

108 Among these, class-incremental learning can be considered the most challenging. *In this work, we*
 109 *adhere to the class-incremental learning setting, where the model must learn to distinguish between*
 110 *all classes encountered across all tasks without explicit task boundaries* (Masana et al., 2022).
 111

112 **Parameter-Efficient Continual Learning (PECL).** PECL (Qiao & Mahdavi, 2024) has recently
 113 emerged as a promising paradigm in CL. It builds upon the idea of parameter-efficient fine-
 114 tuning (Houlsby et al., 2019; Hu et al., 2022; Jia et al., 2022), where a pre-trained model is kept
 115 frozen and a small number of learnable parameters are introduced to adapt to new tasks. To pre-
 116 vent task interference, existing PECL methods can be categorized into two types: (1) prompt-based
 117 methods, which typically provide each task with task-specific prompts to condition PTMs at fea-
 118 ture level (Wang et al., 2022c;b; Smith et al., 2023), and (2) adapter- or low-rank adaptation-based
 119 methods, which typically insert task-specific lightweight modules during training, thereby providing
 120 isolation at the structural level (Gao et al., 2024; Liang & Li, 2024; Dou et al., 2024; Wu et al., 2025;
 121 Qian et al., 2025). Existing PECL works thus primarily focus on introducing task-specific modules
 122 to mitigate task interference, which often leads to increased memory and computational costs as the
 123 number of tasks grows. In contrast, weight regularization techniques have received little attention,
 124 and it remains unclear how they can be effectively applied in PECL—a setting that presents unique
 125 structural and optimization challenges compared to full-model tuning. *For regularization-based low-*
 126 *rank CL methods, O-LoRA Wang et al. (2023) mitigates task interference by enforcing geometric*
 127 *orthogonalization in the update subspace, thereby preserving the direction of parameter updates.*
 128 *Within the context of low-rank CL, we revisit weight regularization as a means to mitigate task*
 129 *interference. In contrast to O-LoRA, we preserve the magnitude of updates through Fisher-based*
 130 *penalties, providing insights that may inform the broader application of regularization techniques*
 131 *within PECL—an area that remains underexplored in the current literature.*

132 **Elastic Weight Consolidation (EWC).** EWC (Kirkpatrick et al., 2017) mitigates catastrophic for-
 133 getting in CL by penalizing changes to parameters that are deemed important for previous tasks, as
 134 quantified by the Fisher Information Matrix (FIM). As a canonical example of weight regularization
 135 techniques, EWC has inspired a series of follow-up studies that aimed to address its limitations and
 136 broaden its applicability. For example, Huszár (2018) analyzed its behavior beyond two tasks, while
 137 van de Ven (2025) investigated strategies for estimating the FIM in the context of CL. In the era of
 138 PTMs, Xiang et al. (2023) apply EWC during fine-tuning of a large language model (LLM), using a
 139 precomputed FIM to protect the knowledge acquired by the original model. Similarly, Šliogeris et al.
 140 (2025) employ EWC in the context of LLMs, estimating the FIM on a comprehensive benchmark to
 141 preserve domain knowledge. However, both studies rely on a precomputed FIM, which is kept fixed
 142 throughout training, making them unsuitable for our setting. Thede et al. (2024) briefly note the con-
 143 tinued value of regularization in the context of PTMs, but they do not examine its detailed effect and
 144 do not combine regularization with low-rank adaptation. Wei et al. (2025) do combine EWC with
 145 low-rank adaptation, but they separately regularize each low-rank module, causing inaccurate Fisher
 146 estimation and suboptimal performance. *Unlike prior work, we conduct a focused investigation of*
 147 *EWC in PTMs-based CL. By leveraging a low-rank structure, we propose a practical approach for*
 148 *adapting EWC to PTM-based CL and demonstrate its effectiveness.*

3 METHODOLOGY

151 In this section, we review the necessary preliminaries, then discuss the structural and optimization
 152 challenges of applying EWC to low-rank adaptation, and finally present an overview of EWC-LoRA,
 153 highlighting its learning procedure and differences from existing low-rank CL methods.

3.1 PRELIMINARIES

154 **Notations.** In this paper, bold lowercase letters represent vectors, while bold uppercase letters
 155 denote matrices. The superscript \top indicates the transpose of a matrix, and $\mathbb{E}[\cdot]$ stands for the
 156 expectation operator. Optimal values of variables are indicated with a superscript $*$.

157 **Problem Formulation.** We start with a pre-trained model parameterized by \mathbf{W}_0 and fine-tune
 158 it sequentially on a series of new tasks $\{\mathcal{T}_t\}_{t=1}^T$ with corresponding datasets $\{\mathcal{D}_t\}_{t=1}^T$. For each

task \mathcal{T}_t , the model receives a batch of samples $\{x_k^t, y_k^t\}_{k=1}^{|\mathcal{D}_t|}$ drawn from C classes, where x_k^t and y_k^t denote the input image and its corresponding label, respectively. After completing training on \mathcal{T}_t , the model is evaluated on all so-far encountered tasks $\mathcal{T}_{1:t}$. The objective is to learn parameters \mathbf{W} that generalize well across all tasks so far, without storing any past data. With the model parameterized by \mathbf{W} , the training loss function at task \mathcal{T}_t is usually defined as:

$$\mathcal{L}_t(\mathbf{W}) = -\frac{1}{|\mathcal{D}_t|} \sum_{k=1}^{|\mathcal{D}_t|} \sum_{c=1}^C \mathbb{1}_{[y_k^t=c]} \log p_{\mathbf{W}}(y=c \mid x_k^t) \quad (1)$$

Elastic Weight Consolidation. Following (Huszár, 2018), we maintain a single penalty term that approximates the combined effect of all previous tasks, preventing the double-counting inherent in the multi-penalty approach. When learning on task \mathcal{T}_t , we approximate the posterior $p(\mathbf{W} \mid \mathcal{D}_{1:t-1})$ using the Laplace approximation (MacKay, 1992), forming a Gaussian distribution $\mathcal{N}(\mathbf{W}; \mathbf{W}_{t-1}^*, (\mathbf{F}_{t-1}^{\text{cum}})^{-1})$, where \mathbf{W}_{t-1}^* denotes the optimal parameters on task $\mathcal{T}_{1:t-1}$, and the accumulated Fisher matrix $\mathbf{F}_{t-1}^{\text{cum}}$ serves as the precision matrix, reflecting the importance of each parameter for retaining knowledge from all previous tasks. To improve computational efficiency, EWC assumes parameter independence and retains only the diagonal elements of the Fisher matrix. During training on \mathcal{T}_t , the loss function in Eq. 1 is augmented with a quadratic penalty term that constrains important parameters to remain close to their previously learned values:

$$\mathcal{L}'_t(\mathbf{W}) = \mathcal{L}_t(\mathbf{W}) + \frac{\lambda}{2} (\mathbf{W} - \mathbf{W}_{t-1}^*)^\top \text{diag}(\mathbf{F}_{t-1}^{\text{cum}}) (\mathbf{W} - \mathbf{W}_{t-1}^*) \quad (2)$$

where λ is a hyperparameter that controls the relative importance of the new task compared to the old one(s). $\text{diag}(\mathbf{F}_{t-1}^{\text{cum}})$ denotes the diagonal matrix formed from the diagonal elements of the accumulated Fisher matrix. Hereafter, unless otherwise stated, \mathbf{F} refers to the diagonal Fisher matrix, with the $\text{diag}(\cdot)$ omitted for simplicity.

Low-rank Adaptation (LoRA). When fine-tuning a model, LoRA (Hu et al., 2022) restricts changes to the parameters to lie in a low-rank subspace. Suppose $\mathbf{W}, \mathbf{W}_0 \in \mathbb{R}^{d_O \times d_I}$ are the adapted and pre-trained weight matrix, respectively. LoRA expresses the weight update $\Delta \mathbf{W} = \mathbf{W} - \mathbf{W}_0$ as the product of two learnable matrices $\mathbf{A} \in \mathbb{R}^{d_O \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times d_I}$, with $r \ll \min(d_I, d_O)$. Thus, the adapted weight matrix can be represented as $\mathbf{W} = \mathbf{W}_0 + \Delta \mathbf{W} = \mathbf{W}_0 + \mathbf{AB}$. During fine-tuning, the pre-trained weights \mathbf{W}_0 are frozen and only the parameters of \mathbf{A} and \mathbf{B} are trainable.

3.2 EWC WITH LOW-RANK ADAPTATION

The core idea of EWC in Eq. 2 lies in the second term, which measures how far the current parameters deviate from the previously learned ones. Directly applying EWC entails fine-tuning all parameters, as well as preserving both a frozen copy of the old model and a Fisher matrix of the same size. However, in the case of large PTMs, this is often not feasible. To reduce the number of trainable parameters and improve efficiency, we represent the weight update as $\Delta \mathbf{W} = \mathbf{W} - \mathbf{W}_{t-1}^* = \mathbf{AB}$ via low-rank decomposition.

To regularize low-rank matrices, a straightforward way is to compute individual Fisher matrices for \mathbf{A} and \mathbf{B} , and apply regularization to each accordingly (Wei et al., 2025). However, under low-rank parameterization, focusing solely on the individual low-rank matrices ignores the interaction between \mathbf{A} and \mathbf{B} , which is problematic because each element of the update $\Delta \mathbf{W}$ depends on their joint product, i.e., $\Delta \mathbf{W}_{ij} = \sum_{k=1}^r \mathbf{A}_{ik} \mathbf{B}_{kj}$. In Appendix A.1.1, we mathematically prove that regularization performed separately in the low-rank space generally diverges from that performed in the full-dimensional space. Another way to regularize low-rank matrices is to precompute the Fisher matrix on the pre-trained model and then apply the regularization to the update $\Delta \mathbf{W} = \mathbf{AB}$ using this fixed Fisher matrix (Xiang et al., 2023). However, this estimation also includes directions associated with the frozen \mathbf{W}_0 , which can introduce noise in measuring sensitivity to the loss. This issue is further illustrated in Appendix A.1.2. **In Table 1, we can observe that the two naïve methods for regularizing low-rank matrices result in suboptimal performance.**

To address the above limitations, we propose updating parameters in the low-rank space while regularizing over the full-dimensional subspace of \mathbf{W} spanned by \mathbf{A} and \mathbf{B} , as illustrated in Figure 1 (b).

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 1: Overview of learning task \mathcal{T}_t at a specific layer of the ViT model. **(a)** Prior low-rank CL methods structurally isolate task-specific LoRA parameters by adding a new LoRA branch for each task. **(b)** The proposed EWC-LoRA employs a shared LoRA module that is learned across all tasks and regularized according to parameter importance measured by a Fisher Information Matrix, which is updated after learning each task.

This ensures that the penalty captures the true sensitivity of the model output to low-rank updates, rather than merely the local gradient magnitudes. Consequently, we reformulate Eq. 2 as:

$$\mathcal{L}'_t(\mathbf{A}, \mathbf{B}) = \mathcal{L}_t(\mathbf{A}, \mathbf{B}) + \frac{\lambda}{2} \text{vec}(\mathbf{AB})^\top \mathbf{F}_{t-1}^{\text{cum}} \text{vec}(\mathbf{AB}) \quad (3)$$

where $\text{vec}(\mathbf{AB})$ is flattened \mathbf{AB} . This formulation enables regularization in the full-dimensional subspace $\Delta \mathbf{W}$, without requiring explicit storage of $\text{vec}(\mathbf{AB})$. After training on \mathcal{T}_t , we estimate \mathbf{F}_t and incorporate it into the previously accumulated Fisher matrix to obtain the updated Fisher $\mathbf{F}_t^{\text{cum}}$.

To estimate the Fisher matrix \mathbf{F}_t at the optimal parameters \mathbf{W}_t^* for task \mathcal{T}_t , we follow the definition in (Martens, 2020). Specifically, the i -th diagonal element of \mathbf{F}_t is defined as:

$$F_t^{i,i} = \mathbb{E}_{x \sim \mathcal{D}_t} \left[\mathbb{E}_{y \sim p_{\mathbf{W}_t^*}} \left[\left(\frac{\partial \log p_{\mathbf{W}}(y|x)}{\partial w_i} \Big|_{\mathbf{W}=\mathbf{W}_t^*} \right)^2 \right] \right] \quad (4)$$

The outer expectation in Eq. 4 is computed over the current task data \mathcal{D}_t , while the inner expectation is approximated using the empirical Fisher for computational efficiency. In practice, this inner expectation can be estimated by taking the squared gradients of the log-likelihood with respect to \mathbf{W} , evaluated at \mathbf{W}_t^* . Since only the low-rank update $\Delta \mathbf{W}$ is trainable, the gradient with respect to \mathbf{W} and $\Delta \mathbf{W}$ are identical. Consequently, the Fisher matrix is effectively computed in the $\Delta \mathbf{W}$ -space. The equivalence between estimating the Fisher information in the \mathbf{W} -space and in the $\Delta \mathbf{W}$ -space is established in Appendix A.1.3.

3.3 OVERVIEW OF EWC-LoRA

Figure 1 illustrates the difference between EWC-LoRA and existing state-of-the-art low-rank CL methods, in the context of learning task \mathcal{T}_t at a specific layer of the Vision Transformer (ViT). For task \mathcal{T}_t , we initialize the shared LoRA branch, and the forward computation is given by: $\mathbf{f} = \mathbf{W}_{t-1}\mathbf{x} + \mathbf{AB}\mathbf{x}$. Specifically, \mathbf{A} is zero-initialized, while \mathbf{B} is drawn from a uniform distribution. During training on \mathcal{T}_t , only \mathbf{A} and \mathbf{B} are updated, while the base weights \mathbf{W}_{t-1} keep frozen. After completing task \mathcal{T}_t , the learned parameters are integrated to the base weight as $\mathbf{W}_t = \mathbf{W}_{t-1} + \mathbf{AB}$. For any sample from a previous task, the forward computation becomes $\mathbf{f} = \mathbf{W}_t\mathbf{x}$. During training, the update of the low-rank matrices \mathbf{A} and \mathbf{B} are regularized using the accumulated Fisher matrix $\mathbf{F}_{t-1}^{\text{cum}}$ from step $t-1$. Accordingly, EWC-LoRA maintains only two states after learning step t : (1) the updated model parameters \mathbf{W}_t obtained from the current task \mathcal{T}_t , and (2) the accumulated Fisher matrix $\mathbf{F}_t^{\text{cum}}$, a diagonal matrix that aggregates information from all previous tasks $\mathcal{T}_{1:t}$. The dataset \mathcal{D}_t and the task-specific Fisher matrix \mathbf{F}_t can then be discarded. For clarity, we outline the learning procedure of EWC-LoRA in Algorithm 1, provided in Appendix A.2.1.

270 Table 1: Comparison of different Fisher estimation strategies on CIFAR-100. “+ Mem.” indicates
 271 the additional memory required for Fisher estimation and regularization during training.
 272

273 Strategy	274 \bar{A}_{10}	275 Avg.	276 Stability	277 Plasticity	278 + Mem.
w/o F	82.99 _(0.84)	89.74 _(0.58)	87.56 _(0.09)	98.86 _(0.09)	0 GB
Precomputed \mathbf{F}_W	83.87 _(0.21)	89.36 _(0.49)	93.15 _(0.45)	94.74 _(0.56)	1 GB
Separate $\mathbf{F}_A, \mathbf{F}_B$	86.41 _(0.69)	91.33 _(0.50)	94.23 _(0.46)	96.47 _(0.21)	4 GB
$\mathbf{F}_{\Delta W}$ (Ours)	87.91 _(0.57)	92.27 _(0.39)	94.45 _(0.59)	97.99 _(0.50)	6 GB

279 4 EXPERIMENTS

280 4.1 BENCHMARKS

283 **Datasets.** In line with existing continual learning methods (Wang et al., 2023; Liang & Li, 2024;
 284 Wu et al., 2025), we evaluate the performance of EWC-LoRA under two settings: (1) Four widely
 285 used CL vision benchmarks, including CIFAR-100 (Krizhevsky et al., 2009), DomainNet (Peng
 286 et al., 2019; Wang et al., 2022a), ImageNet-R (Hendrycks et al., 2021a; Wang et al., 2022b), and
 287 ImageNet-A (Hendrycks et al., 2021b); and (2) A standard language CL benchmark with five text
 288 classification datasets: AG News, Amazon Reviews, Yelp Reviews, DBpedia, and Yahoo Answers.
 289 Following Wang et al. (2023), we evaluate the models under three different task orders. The detailed
 290 task order is provided in Appendix A.3. CIFAR-100 consists of 100 natural image classes and is the
 291 most commonly used dataset in continual learning. DomainNet includes 345 classes across six di-
 292 verse visual domains, making it a challenging multi-domain benchmark. ImageNet-R contains 200
 293 ImageNet classes (Deng et al., 2009) rendered with various artistic styles, introducing significant
 294 distribution shifts. ImageNet-A consists of 200 natural adversarial examples that are frequently mis-
 295 classified by standard ImageNet-trained models. We follow the mostly used task splits for continual
 296 learning benchmarks: CIFAR-100 is divided into 10 tasks (10 classes per task); DomainNet into 5
 297 tasks (69 classes per task); ImageNet-A into 10 tasks (20 classes each); ImageNet-R into 5, 10, and
 298 20 tasks (with 40, 20, and 10 classes per task, respectively).

299 **Evaluation metrics.** We adopt accuracy as our evaluation metric, in line with standard prac-
 300 tice (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019). Let $A_{t,i}$ denote the classification accuracy
 301 on the i -th task after training on the t -th task. The average accuracy at learning step t is defined as:
 302 $\bar{A}_t = \frac{1}{t} \sum_{i=1}^t A_{t,i}$. The overall average accuracy is then computed as the mean of all intermediate
 303 averages: Avg. = $\frac{1}{T} \sum_{t=1}^T \bar{A}_t$, where T is the total number of tasks.

305 To further analyze a model’s stability and plasticity and to enable intuitive comparisons across tasks,
 306 we propose measuring each metric on a normalized scale. Specifically, the stability score is defined
 307 as one minus the normalized forgetting:

$$308 \text{Stability} = 1 - \bar{F} = 1 - \frac{1}{T-1} \sum_{i=1}^{T-1} \frac{\max_{t < T} A_{t,i} - A_{T,i}}{\max_{t < T} A_{t,i}} \quad (5)$$

311 where normalized forgetting \bar{F} represents the relative drop in a task’s performance from its peak to
 312 the end of continual learning. For each task i , plasticity is defined as the ratio between the model’s
 313 performance on the task after learning it and the corresponding reference performance. The overall
 314 plasticity is defined as:

$$315 \text{Plasticity} = \frac{1}{T} \sum_{i=1}^T \frac{A_{i,i}}{A_{i,i}^{\text{ref}}} \quad (6)$$

318 where $A_{i,i}^{\text{ref}}$ denotes the accuracy obtained by fine-tuning a model exclusively on task i . This normal-
 319 ization facilitates intuitive comparison across tasks and methods.

321 **Implementation details.** Following prior works (Wang et al., 2022c; 2023; Smith et al., 2023;
 322 Liang & Li, 2024), we adopt the ViT-B/16 backbone (Dosovitskiy et al., 2020) pretrained on
 323 ImageNet-21K in a supervised manner as the initialization for vision models, and use the pre-trained
 encoder-decoder T5-large and LLaMA-3.2-1B-Instruct for language tasks. To facilitate comparison,

324 Table 2: Comparison results on CIFAR-100, DomainNet, ImageNet-R, and ImageNet-A (in %).
325 **Bold** and underline indicate the highest and second-highest scores, respectively.
326

327 Tasks	328 CIFAR-100		329 DomainNet		330 ImageNet-R		331 ImageNet-A	
	332 Methods	333 $\bar{A}_{10} (\uparrow)$	334 Avg. (\uparrow)	335 Methods	336 $\bar{A}_5 (\uparrow)$	337 Avg. (\uparrow)	338 Methods	339 $\bar{A}_{10} (\uparrow)$
Joint Train	92.82 _(0.20)	95.41 _(0.05)	76.84 _(0.06)	81.25 _(0.05)	81.69 _(0.28)	86.25 _(0.09)	65.01 _(0.74)	74.10 _(0.44)
Finetune	79.09 _(1.53)	88.17 _(0.45)	65.57 _(0.20)	75.12 _(0.12)	60.42 _(1.64)	73.18 _(0.32)	32.85 _(1.53)	54.55 _(1.44)
L2P	83.18 _(1.20)	87.69 _(1.05)	70.26 _(0.25)	75.83 _(0.98)	71.26 _(0.44)	76.13 _(0.46)	42.94 _(1.27)	51.40 _(1.95)
DualPrompt	81.48 _(0.86)	86.41 _(0.66)	68.26 _(0.90)	73.84 _(0.45)	68.22 _(0.20)	73.81 _(0.39)	45.49 _(0.96)	54.68 _(1.24)
CODA-Prompt	86.31 _(0.12)	90.67 _(0.22)	70.58 _(0.53)	76.68 _(0.44)	74.05 _(0.41)	78.14 _(0.39)	45.36 _(0.78)	57.03 _(0.94)
InfLoRA	86.34 _(0.76)	91.33 _(0.48)	71.01 _(0.05)	77.75 _(0.03)	74.41 _(0.63)	80.31 _(0.60)	50.75 _(1.33)	64.36 _(1.01)
SD-LoRA	86.77 _(0.30)	90.96 _(0.30)	71.27 _(0.14)	77.70 _(0.07)	72.93 _(2.76)	79.80 _(0.15)	55.23 _(0.94)	66.10 _(0.54)
CL-LoRA	<u>87.65</u> _(0.53)	<u>92.25</u> _(0.41)	71.06 _(0.31)	<u>77.76</u> _(0.29)	78.72 _(0.44)	85.20 _(0.45)	<u>57.62</u> _(0.89)	70.76 _(0.63)
BiLoRA	85.99 _(0.49)	90.62 _(0.42)	69.75 _(0.23)	73.86 _(0.21)	74.28 _(0.92)	77.38 _(0.88)	51.05 _(0.74)	62.82 _(0.65)
Vanilla LoRA	82.99 _(0.84)	89.74 _(0.58)	69.79 _(0.11)	77.44 _(0.08)	64.87 _(0.73)	75.57 _(0.23)	40.01 _(1.32)	58.28 _(0.85)
EWC-LoRA	87.91 _(0.57)	92.27 _(0.39)	73.46 _(0.16)	79.58 _(0.10)	72.86 _(0.79)	78.95 _(0.86)	59.89 _(0.26)	68.33 _(0.67)

346 Figure 2: Task-wise performance comparison of different methods across various datasets.
347

348
349 all methods are implemented within a unified framework. We align the experimental setup with that
350 of InfLoRA (Liang & Li, 2024), fine-tuning the model with the Adam optimizer using hyperpa-
351 rameters $\beta_1 = 0.9$, $\beta_2 = 0.999$. For each comparison method, we report the best results using the
352 hyperparameters provided by the authors whenever available. In cases where such configurations are
353 not released, we apply a unified set of hyperparameters that has been validated to perform reliably
354 across all methods, ensuring consistency in our experimental setup. To better contextualize perfor-
355 mance, we report both an upper target (*Joint Train*) and a lower target (*Finetune*). The upper target
356 jointly trains on all tasks, while the lower target sequentially trains on tasks without any forgetting
357 mitigation. For all experiments, we perform five runs with different seeds and report the average and
358 standard deviation of the results.

360 4.2 MAIN RESULTS

361
362 **Comparison with Various CL Baselines.** We benchmark EWC-LoRA against state-of-the-art
363 PTM-based continual learning methods, including the prompt-based methods L2P (Wang et al.,
364 2022c), DualPrompt (Wang et al., 2022b), and CODA-Prompt (Smith et al., 2023), as well as the
365 LoRA-based methods InfLoRA (Liang & Li, 2024), SD-LoRA (Wu et al., 2025), CL-LoRA (He
366 et al., 2025), and BiLoRA (Zhu et al., 2025). We report results on 10 sequential tasks for CIFAR-
367 100, ImageNet-R, and ImageNet-A, and on 5 tasks for DomainNet. The results are summarized
368 in Table 2. From the table, we observe that EWC-LoRA achieves the highest final accuracy on
369 three out of four datasets. On average, across all four datasets, EWC-LoRA outperforms vanilla
370 LoRA by a substantial margin of +8.92%. EWC-LoRA even surpasses other LoRA-based methods
371 that use task-specific low-rank modules, highlighting its effectiveness. On DomainNet, EWC-LoRA
372 reduces the gap with the upper bound Joint Training significantly from 5.57% of SD-LoRA to 3.38%
373 for EWC-LoRA. On the challenging ImageNet-A, it reduces the gap considerably from 7.39% for
374 CL-LoRA to only 5.12% for EWC-LoRA. Figure 2 illustrates the task-wise performance of LoRA-
375 based methods. We observe that EWC-LoRA consistently outperforms other methods throughout
376 the entire task sequence on most datasets, while also exhibiting lower standard deviations, indicating
377 greater stability. We further evaluate EWC-LoRA on LLMs for language CL tasks and compare it
378 with the LoRA-based methods O-LoRA Wang et al. (2023) and TreeLoRA Qian et al. (2025). The
379 average accuracy is reported in Table 3. From the table, EWC-LoRA achieves comparable or even

378 superior performance across the three task orders, demonstrating its effectiveness and applicability
 379 to LLMs.
 380

381 Table 3: Comparison results (reported as average accuracy (%)) on the standard language CL bench-
 382 mark with the two pretrained models. Details about the task order are provided in Appendix A.3.1.
 383

384 Backbone	385 Method	386 Order-1	387 Order-2	388 Order-3	389 Avg.
385 T5-large	O-LoRA	75.69	74.92	74.40	75.01
	EWC-LoRA	78.01	76.85	74.30	76.39
386 LLaMA-3.2-1B-Instruct	O-LoRA	56.96	55.74	67.32	60.01
	TreeLoRA	58.54	56.96	65.42	60.30
	EWC-LoRA	61.17	60.47	67.61	63.08

390
 391
 392 **Analysis on Stability and Plasticity.** We evaluated both stability and plasticity for different low-
 393 rank CL methods across the four datasets. Stability reflects the ability of the model to retain pre-
 394 viously learned knowledge, while plasticity measures its ability to adapt to new tasks. The results
 395 are reported in Table 4. As expected, Vanilla LoRA typically exhibits the highest plasticity but
 396 the lowest stability, since it employs no strategy to mitigate catastrophic forgetting. We observe
 397 that InfLoRA emphasizes stability, while SD-LoRA favors plasticity. On CIFAR-100, EWC-LoRA
 398 matches InfLoRA in stability while achieving higher plasticity; on ImageNet-A, it matches SD-
 399 LoRA in plasticity while providing greater stability. On DomainNet and ImageNet-R, while other
 400 methods struggle to balance stability and plasticity, EWC-LoRA can achieve this trade-off effec-
 401 tively by tuning the regularization strength λ .
 402

403 Table 4: Stability (\uparrow) and plasticity (\uparrow) scores of different low-rank CL methods, reflecting how well
 404 each model retains previous knowledge and adapts to new tasks. We report the normalized form of
 405 the two metrics, which is independent of the absolute performance on the dataset.
 406

407 Tasks	408 CIFAR-100		409 DomainNet		410 ImageNet-R		411 ImageNet-A	
408 Methods	409 Stability	410 Plasticity	411 Stability	412 Plasticity	413 Stability	414 Plasticity	415 Stability	416 Plasticity
Vanilla LoRA	87.56 _(0.09)	98.86 _(0.09)	81.29 _(0.34)	97.94 _(0.16)	78.63 _(1.38)	99.57 _(0.35)	85.56 _(1.82)	97.56 _(0.77)
InfLoRA	94.84 _(0.52)	95.80 _(1.00)	83.80 _(0.37)	97.34 _(0.29)	92.69 _(0.77)	97.33 _(0.46)	88.63 _(3.39)	72.69 _(3.13)
SD-LoRA	91.85 _(0.60)	98.24 _(0.25)	82.45 _(0.19)	98.69 _(0.15)	91.78 _(0.90)	95.61 _(0.32)	88.61 _(1.05)	92.13 _(2.77)
EWC-LoRA	94.45 _(0.59)	97.99 _(0.50)	91.51 _(0.36)	93.83 _(0.23)	95.62 _(0.42)	93.23 _(0.34)	89.52 _(1.14)	92.78 _(1.91)

417 Specifically, for the results in Table 2 and 4, a unified regularization strength is used across datasets.
 418 With $\lambda = 10^7$, EWC-LoRA consistently achieves a favorable balance between stability and plas-
 419 ticity, without requiring dataset-specific tuning. To explore the trade-off between the two metrics,
 420 we show stability–plasticity curves for different values of the regularization strength, as illustrated
 421 in Figure 3a. Unlike other methods that typically exhibit fixed performance, EWC-LoRA provides
 422 a clear and controllable trade-off: smaller λ promotes plasticity at the cost of stability, while larger
 423 values enhance stability but reduce plasticity. This tunability enables EWC-LoRA to achieve com-
 424 petitive or superior performance across a wide range of trade-off points, demonstrating its robustness
 425 and adaptability. We also note that even when different methods achieve similar average accuracy,
 426 they can differ substantially in terms of stability and plasticity. This suggests that CL model evalua-
 427 tion should place greater emphasis on explicitly reporting stability and plasticity metrics.
 428

429 **Memory footprint and training time.** The additional memory and computational cost of EWC-
 430 LoRA compared to Vanilla LoRA comes only from the FIM. After each learning step, the LoRA
 431 parameters are merged into the backbone, so the total parameter size matches that of the pre-trained
 432 model. As a result, only one shared LoRA is required for new tasks, and the memory footprint
 433 remains constant regardless of the number of tasks. In contrast, other low-rank CL methods require
 434 either maintaining separate LoRA parameters for each task or performing more complex computa-
 435 tions, leading to a linear increase in memory usage and training time, or to higher computational
 436 cost as the number of tasks grows. EWC-LoRA incurs modest memory overhead during training
 437 while improving computational efficiency, achieving comparable or even superior performance.
 438

Figure 3: (a) Stability–Plasticity curves illustrating the trade-off between retaining previous knowledge and learning new tasks. (b) Performance across a range of regularization strengths λ on CIFAR-100 and DomainNet, showing the effect of λ on accuracy.

Table 5: Comparison of different methods in terms of memory cost and training time. Memory usage is measured on the Quadro RTX 6000 GPU with a batch size of 128. Training time is reported as the average time required to train a single task.

Methods	Memory	CIFAR-100	DomainNet	ImageNet-R	ImageNet-A
Vanilla LoRA	~ 18 GB	10m22s \pm 7s	32m8s \pm 44s	13m32s \pm 105s	0m55s \pm 21s
InflLoRA	~ 20 GB	11m9s \pm 4s	42m25s \pm 68s	14m33s \pm 107s	1m16s \pm 22s
SD-LoRA	~ 37 GB	12m16s \pm 86s	34m18s \pm 160s	22m53s \pm 232s	1m56s \pm 36s
EWC-LoRA	~ 24 GB	10m31s \pm 3s	33m10s \pm 50s	13m42s \pm 104s	0m55s \pm 21s

Table 6: Final accuracy on CIFAR-100 and ImageNet-R for task lengths of 5 and 20 tasks.

Table 7: Best performance with Exact Fisher (500 random samples) and Empirical Fisher on CIFAR-100.

Tasks	CIFAR-100		ImageNet-R	
Methods	\bar{A}_5	\bar{A}_{20}	\bar{A}_5	\bar{A}_{20}
Vanilla LoRA	87.15	74.78	70.15	56.17
InflLoRA	89.45	81.77	77.37	69.63
SD-LoRA	89.15	83.57	74.90	72.26
EWC-LoRA	89.98	85.46	76.36	70.18

Estimation	Exact (n=500)	Empirical
\bar{A}_{10}	88.28	87.91
Avg.	92.76	92.27
Best λ	$\lambda = 10^5$	$\lambda = 10^7$
Training Time	$\sim 14m$	$\sim 11m$
Memory Cost	~ 20 GB	~ 24 GB

The memory cost and training time are reported in Table 5. Memory usage is measured on two Quadro RTX 6000 GPUs with a batch size of 128. Training time is recorded as the average duration to train a single task, presented along with the standard deviation. Notably, the training time of EWC-LoRA is nearly identical to that of Vanilla LoRA, demonstrating that the additional computations introduced by Fisher estimation in the low-rank space incur only minimal overhead.

4.3 ABLATION STUDY

Results Across Varied Task Lengths. We further examine the performance of different low-rank CL methods under varying task lengths. As a complementary study to Table 2, we split CIFAR-100 and ImageNet-R into 5-task and 20-task sequences, respectively. As reported in Table 6, the improvement is most evident on CIFAR-100, where EWC-LoRA achieves the highest overall accuracy among all methods. In contrast, the gains on ImageNet-R are more moderate, which may be attributed to the domain shift in ImageNet-R, potentially limiting the effectiveness of regularization-based approaches for continual adaptation. Additional results are provided in the Appendix A.3.

Ablation on Regularization Strength λ . We evaluate performance under varying values of the regularization strength λ , ranging from 10 to 10^{10} . The results are presented in Figures 3b. We use empirical Fisher in all experiments. From the figures, we observe that setting λ to 10^7 allows EWC-LoRA to consistently achieve favorable performance in terms of accuracy, stability, and plasticity. This suggests that an appropriate balance between stability and plasticity can be effectively

486 maintained without fine-grained tuning. This finding facilitates the use of a unified regularization
 487 strength across datasets, eliminating the need for dataset-specific tuning.
 488

489 **Estimation of Fisher Information Matrix.** In the context of low-rank adaptation, we examine
 490 the trade-off between performance and the computational cost of estimating the Fisher Information
 491 Matrix, as discussed by van de Ven (2025). In general, the Exact Fisher outperforms the Empirical
 492 Fisher, requiring a smaller regularization strength. From a computational perspective, computing
 493 the Exact Fisher on a small batch of data yields superior results compared to the Empirical Fisher
 494 while significantly reducing computational overhead. We use 500 randomly selected samples to
 495 estimate the Exact Fisher, and the comparison results are shown in Table 7. We report both the
 496 training time for a single task and the corresponding memory usage. Additional results comparing
 497 different strategies for estimating the Fisher matrix are provided in Appendix A.3.
 498

499 **Different Fisher Estimation Strategies.** We compare three different Fisher estimation strategies,
 500 based on the discussion in Section 3.2. “Precomputed \mathbf{F}_W ” refers to using a precomputed FIM in
 501 full parameter space \mathbf{W} to preserve prior knowledge. Instead of estimating over a large-scale dataset,
 502 we consider a dataset-based Fisher, computed using the entire dataset that will be learned sequen-
 503 tially. “Separate $\mathbf{F}_A, \mathbf{F}_B$ ” denotes estimating the Fisher separately for the low-rank matrices and
 504 regularizing them accordingly, while “ $\mathbf{F}_{\Delta W}$ ” denotes estimating the Fisher in the full-dimensional
 505 space as \mathbf{W} . The results are shown in Table 1. We observe that the precomputed Fisher results in the
 506 lowest plasticity, which may be caused by undesirable sensitivity arising from the frozen weights.
 507 Moreover, applying separate regularization in the low-rank space also improves performance but has
 508 noticeable drawbacks in terms of plasticity. This may be due to the joint contribution of the low-rank
 509 factors, which imposes stronger constraints on the parameters.
 510

5 CONCLUSION AND DISCUSSION

511 In this work, we revisit weight regularization in low-rank continual learning (CL) as a means to
 512 mitigate catastrophic forgetting. Using Elastic Weight Consolidation (EWC) as a canonical example,
 513 we discuss the main considerations about applying regularization in the low-rank space and propose
 514 EWC-LoRA, a computational- and memory-efficient solution for low-rank CL with large pre-trained
 515 models. This work aims to offer insights that may guide the broader application of regularization
 516 techniques in parameter-efficient continual learning.
 517

518 A key limitation of regularization-based low-rank CL methods lies in two aspects. The first is the
 519 degradation in the accuracy of Fisher estimation as the task sequence grows longer. This can be
 520 alleviated by rehearsal-based Fisher estimation, as discussed in Wu et al. (2024) and our Appendix.
 521 The second is their sensitivity to dataset complexity. When combined with regularization techniques,
 522 it is important to carefully allocate the low-rank learnable space for each task. This sensitivity
 523 also helps explain why, on ImageNet-R, EWC-LoRA shows lower plasticity than methods based
 524 on task-specific modules. Consequently, a promising direction for future work is to investigate
 525 the performance of regularization techniques in domain-incremental settings and on more complex
 526 continual learning tasks.
 527

6 REPRODUCIBILITY STATEMENT

529 The theoretical analysis and complete proofs of the main results are provided in Appendix A.1.
 530 The implementation details of our method, including model architecture, training procedures, and
 531 hyperparameters, are described in Section 3 of the main paper and Appendix A.2. All datasets used
 532 in our experiments are publicly available. The source code for reproducing results is available in the
 533 supplementary materials.
 534

535 REFERENCES

536 Muhammad Awais, Muzammal Naseer, Salman Khan, Rao Muhammad Anwer, Hisham Cholakkal,
 537 Mubarak Shah, Ming-Hsuan Yang, and Fahad Shahbaz Khan. Foundation models defining a
 538 new era in vision: a survey and outlook. *IEEE Transactions on Pattern Analysis and Machine
 539 Intelligence*, 2025.

540 Rishi Bommasani. On the opportunities and risks of foundation models. [arXiv preprint](#)
 541 [arXiv:2108.07258](#), 2021.

542

543 Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
 544 Dokania, Philip HS Torr, and Marc'Aurelio Ranzato. On tiny episodic memories in continual
 545 learning. [arXiv preprint arXiv:1902.10486](#), 2019.

546 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 547 erarchical image database. In [2009 IEEE conference on computer vision and pattern recognition](#),
 548 pp. 248–255. Ieee, 2009.

549

550 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 551 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 552 image is worth 16x16 words: Transformers for image recognition at scale. [arXiv preprint](#)
 553 [arXiv:2010.11929](#), 2020.

554 Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei Shen, Limao Xiong, Yuhao Zhou, Xiao
 555 Wang, Zhiheng Xi, Xiaoran Fan, et al. Loramoe: Alleviating world knowledge forgetting in
 556 large language models via moe-style plugin. In [Proceedings of the 62nd Annual Meeting of the](#)
 557 [Association for Computational Linguistics \(Volume 1: Long Papers\)](#), pp. 1932–1945, 2024.

558

559 Benjamin Ehret, Christian Henning, Maria R Cervera, Alexander Meulemans, Johannes Von Os-
 560 wald, and Benjamin F Grewe. Continual learning in recurrent neural networks. [arXiv preprint](#)
 561 [arXiv:2006.12109](#), 2020.

562 Beyza Ermis, Giovanni Zappella, Martin Wistuba, Aditya Rawal, and Cédric Archambeau. Con-
 563 tinual learning with transformers for image classification. In [Proceedings of the IEEE/CVF](#)
 564 [Conference on Computer Vision and Pattern Recognition](#), pp. 3774–3781, 2022.

565

566 Qiang Gao, Xiaojun Shan, Yuchen Zhang, and Fan Zhou. Enhancing knowledge transfer for task
 567 incremental learning with data-free subnetwork. [Advances in Neural Information Processing](#)
 568 [Systems](#), 36:68471–68484, 2023.

569 Xinyuan Gao, Songlin Dong, Yuhang He, Qiang Wang, and Yihong Gong. Beyond prompt learning:
 570 Continual adapter for efficient rehearsal-free continual learning. In [European Conference on](#)
 571 [Computer Vision](#), pp. 89–106. Springer, 2024.

572

573 Jiangpeng He, Zhihao Duan, and Fengqing Zhu. Cl-lora: Continual low-rank adaptation for
 574 rehearsal-free class-incremental learning. In [Proceedings of the Computer Vision and Pattern](#)
 575 [Recognition Conference](#), pp. 30534–30544, 2025.

576

577 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 578 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A criti-
 579 cal analysis of out-of-distribution generalization. In [Proceedings of the IEEE/CVF international](#)
 580 [conference on computer vision](#), pp. 8340–8349, 2021a.

581

582 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 583 examples. [CVPR](#), 2021b.

584

585 Michael Hersche, Geethan Karunaratne, Giovanni Cherubini, Luca Benini, Abu Sebastian, and Ab-
 586 bas Rahimi. Constrained few-shot class-incremental learning. In [Proceedings of the IEEE/CVF](#)
 587 [conference on computer vision and pattern recognition](#), pp. 9057–9067, 2022.

588

589 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 590 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 591 In [International conference on machine learning](#), pp. 2790–2799. PMLR, 2019.

592

593 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 594 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. [ICLR](#), 1(2):3, 2022.

595

596 Ferenc Huszár. Note on the quadratic penalties in elastic weight consolidation. [Proceedings of the](#)
 597 [National Academy of Sciences](#), 115(11):E2496–E2497, 2018.

594 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 595 Ser-Nam Lim. Visual prompt tuning. In *European conference on computer vision*, pp. 709–727.
 596 Springer, 2022.

597 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 598 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
 599 ing catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*,
 600 114(13):3521–3526, 2017.

601 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 602 2009.

603 Timothée Lesort, Massimo Caccia, and Irina Rish. Understanding continual learning settings with
 604 data distribution drift analysis. *arXiv preprint arXiv:2104.01678*, 2021.

605 Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learn-
 606 ing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 607 pp. 23638–23647, 2024.

608 David Lopez-Paz and Marc'Aurelio Ranzato. Gradient episodic memory for continual learning.
 609 *Advances in neural information processing systems*, 30, 2017.

610 David JC MacKay. A practical bayesian framework for backpropagation networks. *Neural
 611 computation*, 4(3):448–472, 1992.

612 James Martens. New insights and perspectives on the natural gradient method. *Journal of Machine
 613 Learning Research*, 21(146):1–76, 2020.

614 Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost
 615 Van De Weijer. Class-incremental learning: survey and performance evaluation on image clas-
 616 sification. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):5513–5533,
 617 2022.

618 Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
 619 sequential learning problem. In *Psychology of learning and motivation*, volume 24, pp. 109–165.
 620 Elsevier, 1989.

621 Oleksiy Ostapenko, Timothee Lesort, Pau Rodriguez, Md Rifat Arefin, Arthur Douillard, Irina Rish,
 622 and Laurent Charlin. Continual learning with foundation models: An empirical study of latent
 623 replay. In *Conference on lifelong learning agents*, pp. 60–91. PMLR, 2022.

624 German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
 625 lifelong learning with neural networks: A review. *Neural networks*, 113:54–71, 2019.

626 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 627 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF international conference on
 628 computer vision*, pp. 1406–1415, 2019.

629 Yu-Yang Qian, Yuan-Ze Xu, Zhen-Yu Zhang, Peng Zhao, and Zhi-Hua Zhou. Treelora: Efficient
 630 continual learning via layer-wise loras guided by a hierarchical gradient-similarity tree. *arXiv
 631 preprint arXiv:2506.10355*, 2025.

632 Fuli Qiao and Mehrdad Mahdavi. Learn more, but bother less: parameter efficient continual learning.
 633 *Advances in Neural Information Processing Systems*, 37:97476–97498, 2024.

634 Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
 635 forgetting functions. *Psychological review*, 97(2):285, 1990.

636 Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
 637 Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
 638 ual learning. In *International conference on machine learning*, pp. 4528–4537. PMLR, 2018.

639 Khadija Shaheen, Muhammad Abdullah Hanif, Osman Hasan, and Muhammad Shafique. Continual
 640 learning for real-world autonomous systems: Algorithms, challenges and frameworks. *Journal of
 641 Intelligent & Robotic Systems*, 105(1):9, 2022.

648 Vytenis Šliogeris, Povilas Daniušis, and Artūras Nakvosas. Full-parameter continual pretraining of
 649 gemma2: Insights into fluency and domain knowledge. [arXiv preprint arXiv:2505.05946](#), 2025.
 650

651 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
 652 Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual de-
 653 composed attention-based prompting for rehearsal-free continual learning. In [Proceedings of the](#)
 654 [IEEE/CVF conference on computer vision and pattern recognition](#), pp. 11909–11919, 2023.

655 Lukas Thede, Karsten Roth, Olivier J Hénaff, Matthias Bethge, and Zeynep Akata. Reflect-
 656 ing on the state of rehearsal-free continual learning with pretrained models. [arXiv preprint](#)
 657 [arXiv:2406.09384](#), 2024.

658 Gido M van de Ven. On the computation of the fisher information in continual learning. [arXiv](#)
 659 [preprint arXiv:2502.11756](#), 2025.
 660

661 Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. [arXiv preprint](#)
 662 [arXiv:1904.07734](#), 2019.

663 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
 664 learning: Theory, method and application. [IEEE transactions on pattern analysis and machine](#)
 665 [intelligence](#), 46(8):5362–5383, 2024a.

666 Qiang Wang, Yuhang He, Songlin Dong, Xinyuan Gao, Shaokun Wang, and Yihong Gong. Non-
 667 exemplar domain incremental learning via cross-domain concept integration. In [European](#)
 668 [Conference on Computer Vision](#), pp. 144–162. Springer, 2024b.

669 Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
 670 Xuan-Jing Huang. Orthogonal subspace learning for language model continual learning. In
 671 [Findings of the Association for Computational Linguistics: EMNLP 2023](#), pp. 10658–10671,
 672 2023.

673 Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
 674 An occam’s razor for domain incremental learning. [Advances in Neural Information Processing](#)
 675 [Systems](#), 35:5682–5695, 2022a.
 676

677 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
 678 Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
 679 rehearsal-free continual learning. In [European conference on computer vision](#), pp. 631–648.
 680 Springer, 2022b.

681 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su,
 682 Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In
 683 [Proceedings of the IEEE/CVF conference on computer vision and pattern recognition](#), pp. 139–
 684 149, 2022c.

685 Xiwen Wei, Guihong Li, and Radu Marculescu. Online-lora: Task-free online continual learning via
 686 low rank adaptation. In [2025 IEEE/CVF Winter Conference on Applications of Computer Vision](#)
 687 ([WACV](#)), pp. 6634–6645. IEEE, 2025.

688 Yichen Wu, Long-Kai Huang, Renzhen Wang, Deyu Meng, and Ying Wei. Meta continual learning
 689 revisited: Implicitly enhancing online hessian approximation via variance reduction. In [The](#)
 690 [Twelfth international conference on learning representations](#), volume 2, 2024.

691 Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhu Li, Hanspeter Pfister, Deyu
 692 Meng, Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class incre-
 693 mental learning. [arXiv preprint arXiv:2501.13198](#), 2025.

694 Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting Hu. Lan-
 695 guage models meet world models: Embodied experiences enhance language models. [Advances](#)
 696 [in neural information processing systems](#), 36:75392–75412, 2023.

697 Yutao Yang, Jie Zhou, Xuanwen Ding, Tianyu Huai, Shunyu Liu, Qin Chen, Yuan Xie, and Liang
 698 He. Recent advances of foundation language models-based continual learning: A survey. [ACM](#)
 699 [Computing Surveys](#), 57(5):1–38, 2025.

702 Hao Zhu, Yifei Zhang, Junhao Dong, and Piotr Koniusz. Bilora: Almost-orthogonal parameter
703 spaces for continual learning. In Proceedings of the Computer Vision and Pattern Recognition
704 Conference, pp. 25613–25622, 2025.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A APPENDIX
757758 A.1 THEORETICAL ANALYSIS
759760 **Setup.** In low-rank adaptation, the adapted weight matrix $\mathbf{W} \in \mathbb{R}^{d_O \times d_I}$ is reparameterized as
761 $\mathbf{W} = \mathbf{W}_0 + \Delta\mathbf{W} = \mathbf{W}_0 + \mathbf{AB}$, where \mathbf{W}_0 denotes the pre-trained weight, which remains frozen
762 during fine-tuning. The trainable parameters are the low-rank matrices $\mathbf{A} \in \mathbb{R}^{d_O \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times d_I}$,
763 such that $\Delta\mathbf{W} = \mathbf{AB}$ is the only trainable update to the model. Note that the learned LoRA modules
764 on the previous task are merged back into the base weights before starting the new task. The optimal
765 weight matrix is indicated as \mathbf{W}^* .
766767 A.1.1 REGULARIZATION UNDER DIFFERENT PARAMETERIZATIONS
768769 **Proposition 1.** Let $\Delta\mathbf{W} \in \mathbb{R}^{d_O \times d_I}$ be a model parameter matrix factorized as $\Delta\mathbf{W} = \mathbf{AB}$, with
770 $\mathbf{A} \in \mathbb{R}^{d_O \times r}$, $\mathbf{B} \in \mathbb{R}^{r \times d_O}$. Define the EWC regularization term in the full-space as $\mathcal{R}_{\mathbf{W}}$, and in the
771 low-rank parameter space as $\mathcal{R}_{\mathbf{A}, \mathbf{B}}$. Under general conditions, $\mathcal{R}_{\Delta\mathbf{W}} \neq \mathcal{R}_{\mathbf{A}, \mathbf{B}}$.
772773 **Proof.** Let $\text{vec}(\cdot)$ denote the vectorization operator, and \otimes the Kronecker product. The following
774 identity holds:
775

$$\text{vec}(\mathbf{AB}) = (\mathbf{B}^\top \otimes \mathbf{I}_{d_O}) \text{vec}(\mathbf{A}) = (\mathbf{I}_{d_I} \otimes \mathbf{A}) \text{vec}(\mathbf{B})$$

776 For simplicity, we define $\mathbf{a} = \text{vec}(\mathbf{A}) \in \mathbb{R}^{d_O r}$, $\mathbf{b} = \text{vec}(\mathbf{B}) \in \mathbb{R}^{r d_I}$. Define the Jacobians:
777

$$J_A(\mathbf{B}) := \mathbf{B}^\top \otimes \mathbf{I}_{d_O} \in \mathbb{R}^{d_O d_I \times d_O r}, \quad J_B(\mathbf{A}) := \mathbf{I}_{d_I} \otimes \mathbf{A} \in \mathbb{R}^{d_O d_I \times r d_I}$$

778 By the standard vectorization identity:
779

$$\text{vec}(\Delta\mathbf{W}) = J_A(\mathbf{B})\mathbf{a} = J_B(\mathbf{A})\mathbf{b}$$

780 The Fisher Information Matrix estimated in the full-dimensional space is defined as:
781

$$\mathbf{F}_{\mathbf{W}} = \mathbb{E}_{x \sim \mathcal{D}} [\text{vec}(\nabla_{\mathbf{W}} \mathcal{L}) \text{vec}(\nabla_{\mathbf{W}} \mathcal{L})^\top]$$

782 Although the full-space regularization $\mathcal{R}_{\mathbf{W}}$ can be expressed equivalently using either the \mathbf{A} or
783 \mathbf{B} Jacobian, the update directions for \mathbf{A} and \mathbf{B} remain coupled. Thus, we consider a first-order
784 approximation of $\text{vec}(\Delta\mathbf{W})$ as a function of both \mathbf{a} and \mathbf{b} :
785

$$\text{vec}(\Delta\mathbf{W}) \approx J_A(\mathbf{B})\Delta\mathbf{a} + J_B(\mathbf{A})\Delta\mathbf{b}$$

786 The EWC regularization term in the full-space is defined as:
787

$$\begin{aligned} \mathcal{R}_{\mathbf{W}} &= \frac{1}{2} (\text{vec}(\mathbf{W}) - \text{vec}(\mathbf{W}^*))^\top \mathbf{F}_{\mathbf{W}} (\text{vec}(\mathbf{W}) - \text{vec}(\mathbf{W}^*)) \\ &= \frac{1}{2} \text{vec}(\Delta\mathbf{W})^\top \mathbf{F}_{\mathbf{W}} \text{vec}(\Delta\mathbf{W}) \\ &= \frac{1}{2} \Delta\mathbf{a}^\top J_A(\mathbf{B})^\top \mathbf{F}_{\mathbf{W}} J_A(\mathbf{B}) \Delta\mathbf{a} + \frac{1}{2} \Delta\mathbf{b}^\top J_B(\mathbf{A})^\top \mathbf{F}_{\mathbf{W}} J_B(\mathbf{A}) \Delta\mathbf{b} \\ &\quad + \Delta\mathbf{a}^\top J_A(\mathbf{B})^\top \mathbf{F}_{\mathbf{W}} J_B(\mathbf{A}) \Delta\mathbf{b} \end{aligned}$$

801 If Fisher regularization is applied separately to \mathbf{A} and \mathbf{B} , we have two Fisher matrices:
802

$$\begin{aligned} \mathbf{F}_{\mathbf{A}} &= \mathbb{E}_{x \sim \mathcal{D}} [\text{vec}(\nabla_{\mathbf{A}} \mathcal{L}) \text{vec}(\nabla_{\mathbf{A}} \mathcal{L})^\top] \\ \mathbf{F}_{\mathbf{B}} &= \mathbb{E}_{x \sim \mathcal{D}} [\text{vec}(\nabla_{\mathbf{B}} \mathcal{L}) \text{vec}(\nabla_{\mathbf{B}} \mathcal{L})^\top] \end{aligned}$$

803 By the chain rule, the gradients in low-rank factor space are related to the full-space gradient by:
804

$$\begin{aligned} \nabla_{\mathbf{A}} \mathcal{L} &= \frac{\partial \mathcal{L}}{\partial \mathbf{W}} \cdot \frac{\partial \mathbf{W}}{\partial \mathbf{A}} = \nabla_{\mathbf{W}} \mathcal{L} J_A(\mathbf{B})^\top \\ \nabla_{\mathbf{B}} \mathcal{L} &= \frac{\partial \mathcal{L}}{\partial \mathbf{W}} \cdot \frac{\partial \mathbf{W}}{\partial \mathbf{B}} = J_B(\mathbf{A})^\top \nabla_{\mathbf{W}} \mathcal{L} \end{aligned}$$

810 Hence, the Fisher Information Matrices can be expressed as:
 811

$$812 \quad \mathbf{F}_A \approx J_A(\mathbf{B})^\top \mathbf{F}_W J_A(\mathbf{B}), \quad \mathbf{F}_B \approx J_B(\mathbf{A})^\top \mathbf{F}_W J_B(\mathbf{A})$$

813
 814 The EWC regularization term in the low-rank parameter space is defined as:
 815

$$816 \quad \mathcal{R}_{A,B} = \frac{1}{2} \Delta \mathbf{a}^\top \mathbf{F}_A \Delta \mathbf{a} + \frac{1}{2} \Delta \mathbf{b}^\top \mathbf{F}_B \Delta \mathbf{b}$$

817
 818
 819 The regularization term $\mathcal{R}_{A,B}$ captures independent penalties in the factor space. Unless the cross-
 820 covariance term $\mathbf{F}_{A,B}$ is explicitly computed and retained, the interaction between \mathbf{A} and \mathbf{B} is
 821 ignored. Consequently, the two regularizations cannot be equal, except in special cases such as
 822 when only \mathbf{A} or \mathbf{B} is updated. In contrast, estimating \mathbf{F}_W in the full-dimensional space avoids this
 823 issue and captures the true sensitivity of the model to perturbations. Therefore, regularization in
 824 the full space better preserves the true geometry and parameter importance induced by the low-rank
 825 update, providing a more faithful and effective constraint on \mathbf{A} and \mathbf{B} .
 826

827 A.1.2 FISHER INFORMATION CONSISTENCY WITH THE TRAINABLE PARAMETER SPACE

828
 829 **Proposition 2.** *Consider a parameterization:*

$$830 \quad \mathbf{W} = \mathbf{W}_0 + \mathbf{A}\mathbf{B}$$

831 where \mathbf{W}_0 is fixed and only \mathbf{A}, \mathbf{B} are trainable. Let

$$832 \quad \theta = \begin{bmatrix} \text{vec}(\mathbf{A}) \\ \text{vec}(\mathbf{B}) \end{bmatrix}, \quad \mathbf{w} = \text{vec}(\mathbf{W}).$$

833 Then, the Fisher Information Matrix with respect to θ satisfies

$$834 \quad \mathbf{F}_\theta = \mathbf{J}^\top \mathbf{F}_W \mathbf{J},$$

835 where \mathbf{F}_W is the Fisher Information Matrix with respect to \mathbf{w} , and $\mathbf{J} = \partial \mathbf{w} / \partial \theta$ is the Jacobian of
 836 the reparameterization.
 837

838
 839 **Proof.** Let $\mathcal{L}(\mathbf{W})$ denote the loss (negative log-likelihood). By the chain rule,
 840

$$841 \quad \nabla_\theta \mathcal{L} = \mathbf{J}^\top \nabla_{\mathbf{W}} \mathcal{L}$$

842 The Fisher Information Matrix with respect to θ is defined as:
 843

$$844 \quad \mathbf{F}_\theta = \mathbb{E} \left[\nabla_\theta \log p \nabla_\theta \log p^\top \right]$$

845 Substituting the chain rule,
 846

$$847 \quad \mathbf{F}_\theta = \mathbb{E} \left[(\mathbf{J}^\top \nabla_{\mathbf{w}} \log p)(\mathbf{J}^\top \nabla_{\mathbf{w}} \log p)^\top \right] \\ 848 \quad = \mathbf{J}^\top \mathbb{E} \left[\nabla_{\mathbf{w}} \log p \nabla_{\mathbf{w}} \log p^\top \right] \mathbf{J}.$$

849 The term inside the expectation is precisely the Fisher Information Matrix with respect to \mathbf{w} , denoted
 850 \mathbf{F}_W . Hence we have:
 851

$$852 \quad \mathbf{F}_\theta = \mathbf{J}^\top \mathbf{F}_W \mathbf{J} \tag{7}$$

853 The Jacobian structure has been illustrated in Proposition 1. The Fisher Information Matrix is
 854 fundamentally an estimation of the curvature of the loss function with respect to the trainable
 855 parameters. Eq. 7 shows that the correct Fisher matrix for θ is obtained by projecting \mathbf{F}_W into the
 856 subspace spanned by \mathbf{A} and \mathbf{B} via \mathbf{J} . Computing \mathbf{F}_W directly in the full parameter space \mathbf{W} in-
 857 troduces directions corresponding to the frozen \mathbf{W}_0 , which are irrelevant for training. Thus, Fisher
 858 should be consistently defined in the trainable subspace.
 859

864 A.1.3 CONSTRAINING LOW-RANK UPDATES VIA FULL-SPACE FISHER REGULARIZATION
865

866 **Proposition 3.** Let the adapted weight matrix be: $\mathbf{W} = \mathbf{W}_0 + \Delta\mathbf{W} = \mathbf{W}_0 + \mathbf{AB}$, where \mathbf{W}_0
867 denotes the frozen pre-trained weights and $\Delta\mathbf{W} = \mathbf{AB}$ is the low-rank update. Then, the empirical
868 Fisher Information Matrix $\mathbf{F}_{\Delta\mathbf{W}}$ is estimated by the squared gradients of the log-likelihood with
869 respect to \mathbf{W} . Consequently, the Fisher regularization on $\Delta\mathbf{W}$ induces constraints on the update
870 directions of the low-rank factors \mathbf{A} and \mathbf{B} .

871
872
873 **Proof.** Since \mathbf{W}_0 is constant and only $\Delta\mathbf{W}$ is trainable, the loss function \mathcal{L} depends on \mathbf{W} only
874 through $\Delta\mathbf{W}$. Therefore, the gradients satisfy $\nabla_{\mathbf{W}}\mathcal{L} = \nabla_{\Delta\mathbf{W}}\mathcal{L}$, because $\partial\Delta\mathbf{W}/\partial\mathbf{W} = \mathbf{I}$. Let
875 $\mathbf{F}_{\mathbf{W}}$ denote the empirical Fisher Information Matrix estimated over weight matrix \mathbf{W} :

$$877 \mathbf{F}_{\mathbf{W}} = \mathbb{E}_{x \sim \mathcal{D}} [\text{vec}(\nabla_{\mathbf{W}}\mathcal{L}) \text{vec}(\nabla_{\mathbf{W}}\mathcal{L})^\top]$$

879 Using the gradient equivalence above, the Fisher matrix in the $\Delta\mathbf{W}$ space is identical:
880

$$881 \mathbf{F}_{\Delta\mathbf{W}} = \mathbb{E}_{x \sim \mathcal{D}} [\text{vec}(\nabla_{\Delta\mathbf{W}}\mathcal{L}) \text{vec}(\nabla_{\Delta\mathbf{W}}\mathcal{L})^\top] = \mathbf{F}_{\mathbf{W}}$$

883 For notational simplicity, we omit the $\text{vec}(\cdot)$ operator and treat \mathbf{W} as a vectorized parameter. The
884 Fisher regularization term can be defined as:
885

$$886 \mathcal{R}_{\mathbf{W}} = \frac{1}{2}(\mathbf{W} - \mathbf{W}^*)^\top \mathbf{F}_{\mathbf{W}} (\mathbf{W} - \mathbf{W}^*) = \frac{1}{2}\Delta\mathbf{W}^\top \mathbf{F}_{\Delta\mathbf{W}} \Delta\mathbf{W}$$

888 The gradients of $\mathcal{R}_{\mathbf{W}}$ with respect to \mathbf{A} and \mathbf{B} are:
889

$$891 \nabla_{\mathbf{A}} \mathcal{R}_{\mathbf{W}} = \nabla_{\Delta\mathbf{W}} \mathcal{R}_{\mathbf{W}} \cdot \mathbf{B}^\top = \mathbf{F}_{\Delta\mathbf{W}} \Delta\mathbf{W} \cdot \mathbf{B}^\top$$

$$892 \nabla_{\mathbf{B}} \mathcal{R}_{\mathbf{W}} = \mathbf{A}^\top \cdot \nabla_{\Delta\mathbf{W}} \mathcal{R}_{\mathbf{W}} = \mathbf{A}^\top \cdot \mathbf{F}_{\Delta\mathbf{W}} \Delta\mathbf{W}$$

894 with:
895

$$896 \nabla_{\Delta\mathbf{W}} \mathcal{R}_{\mathbf{W}} = \mathbf{F}_{\Delta\mathbf{W}} \Delta\mathbf{W}$$

897 Therefore, by propagating the gradient through the low-rank decomposition $\Delta\mathbf{W} = \mathbf{AB}$, the Fisher
898 regularization over $\Delta\mathbf{W}$ imposes a constraint on the update directions of the low-rank factors.
899

900 A.2 IMPLEMENTATION DETAILS
901

902 This section provides additional details on the method described in Section 3 and the experimental
903 setup in Section 4 of the main text. In particular, we present the algorithm of EWC-LoRA and
904 discuss the effects of hyperparameters, accompanied by additional ablation studies.
905

906 A.2.1 OPTIMIZATION ALGORITHMS
907

908 Algorithm 1 outlines the learning procedure of EWC-LoRA across tasks \mathcal{T}_1 to \mathcal{T}_T . At each task, the
909 model is updated via low-rank adaptation while incorporating EWC regularization computed from
910 the Fisher Information Matrix. Unlike prior methods that assign task-specific modules, EWC-LoRA
911 regularizes a shared LoRA, thereby maintaining constant memory cost. For clarity, the key equation
912 referenced in the main text is restated here.
913

$$914 \mathcal{L}'_t(\mathbf{A}, \mathbf{B}) = \mathcal{L}_t(\mathbf{A}, \mathbf{B}) + \frac{\lambda}{2} \text{vec}(\mathbf{AB})^\top \mathbf{F}_{t-1}^{\text{cum}} \text{vec}(\mathbf{AB}) \quad (3)$$

915 where $\text{vec}(\mathbf{AB})$ is flattened \mathbf{AB} . $\mathbf{F}_t^{\text{cum}}$ denotes the accumulated Fisher matrix obtained from task
916 \mathcal{T}_{t-1} . λ is the regularization strength.
917

918 **Algorithm 1:** The learning procedure of EWC-LoRA.
919
920 **Input:** A sequence of tasks $\{\mathcal{T}_t\}_{t=1}^T$ with datasets $\{\mathcal{D}_t\}_{t=1}^T$; A frozen pre-trained model with
921 parameters $\mathbf{W}_0 \in \mathbb{R}^{d_O \times d_I}$; Low-rank adaptation matrices $\mathbf{A} \in \mathbb{R}^{d_O \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times d_I}$, with
922 rank r ; Task decay factor $\gamma_t = 0.9$, $\forall t = 1, \dots, T$.
923 **Output:** Adapted model parameters $\mathbf{W}_T \in \mathbb{R}^{d_O \times d_I}$ that generalize across all tasks $\{\mathcal{T}_t\}_{t=1}^T$.
924 Initialize accumulated Fisher Information Matrix: $\mathbf{F}_0^{\text{cum}} \leftarrow \gamma_{\text{prior}} \cdot \mathbf{I}$; // $\mathbf{0}$ if no prior
925 **for** $t = 1$ **to** T **do**
926 **Step 1:** Initialize $\mathbf{A} \leftarrow \mathbf{0}$, $\mathbf{B} \leftarrow \mathcal{U}(a, b)$
927 **Step 2:** Low-rank adaptation on current task \mathcal{T}_t : $\mathbf{A}^*, \mathbf{B}^* \leftarrow \text{Eq. 3}$;
928 **Step 3:** Fisher estimation for \mathcal{T}_t ;
929 1. Get gradient $\nabla_{\mathbf{W}} \mathcal{L}$ on the full-dimensional space ;
930 2. Compute diagonal entries of Fisher matrix: $F_t^{i,i} \approx \frac{1}{|\mathcal{D}_t|} \sum_{(x,y) \in \mathcal{D}_t} \left(\frac{\partial \log p_{\mathbf{W}_t^*}(y|x)}{\partial w_i} \right)^2$;
931 3. Update accumulated Fisher Information Matrix: $\mathbf{F}_t^{\text{cum}} \leftarrow \gamma_t \cdot \mathbf{F}_{t-1}^{\text{cum}} + \mathbf{F}_t$;
932 **Step 4:** Integrate low-rank parameter: $\mathbf{W}_t = \mathbf{W}_{t-1} + \mathbf{A}^* \mathbf{B}^*$;
933 **Step 5:** Discard task-specific dataset \mathcal{D}_t and Fisher matrix \mathbf{F}_t .
934
935
936
937

A.2.2 HYPERPARAMETERS

941 We follow the training configurations specified by the authors in the original papers. When such
942 configurations are not available, we adopt a unified set of hyperparameters that has been validated
943 to perform reliably across methods, thereby ensuring consistency in our experimental setup. In all
944 experiments, we use the Adam optimizer with $\beta_1 = 0.9$ and $\beta_2 = 0.99$. The number of training
945 epochs depends on the specific dataset, and the training batch size is set to 128. No shuffling is
946 applied during training; however, we verified that enabling shuffling generally leads to improved
947 results. Table 8 summarizes the hyperparameters used during training, with method-specific param-
948 eters highlighted for each respective approach.

950 Table 8: Hyperparameters for different benchmarks and methods. “lr” denotes learning rate. For
951 the parameter ϵ , we refer readers to Liang & Li (2024) for details.

	Datasets	Methods
		optimizer: Adam; scheduler: Cosine; batch size: 128; shuffle: False; epochs: 20; rank: 10 CIFAR-100 lr: 0.0005; classifier lr: 0.005; lr decay: 0.1 lr: 0.008; classifier lr: 0.008; lr decay: 0.1 (SD-LoRA) ϵ : 0.95 (InLoRA)
		optimizer: Adam; scheduler: Cosine; batch size: 128; shuffle: False; epochs: 5; rank: 30 DomainNet lr: 0.0005; classifier lr: 0.005; lr decay: 0.1 lr: 0.02; classifier lr: 0.02; lr decay: 0.0 (SD-LoRA) ϵ : 0.95 (InLoRA)
		optimizer: Adam; scheduler: Cosine; batch size: 128; shuffle: False; epochs: 50; rank: 10 ImageNet-R lr: 0.0005; classifier lr: 0.0005; lr decay: 0.1 lr: 0.01; classifier lr: 0.01; lr decay: 0.0; weight decay: 0.0005 (SD-LoRA) weight decay: 0.005 (EWC-LoRA) ϵ : 0.98 (InLoRA)
		optimizer: Adam; scheduler: Cosine; batch size: 128; shuffle: False; epochs: 10; rank: 10 ImageNet-A lr: 0.0005; classifier lr: 0.005; lr decay: 0.1 ϵ : 0.98 (InLoRA)

970 For the regularization strength λ in Eq. 3, we evaluated a wide range from 10^1 to 10^{10} . The trend
971 is illustrated in Figure 3b of the main text. We observe that across all datasets, when using the
972 empirical Fisher, the best overall performance is achieved around 10^7 . Moreover, with relatively

smaller values of λ (e.g., 10^1 to 10^4), performance tends to decrease initially. For all experiments, the regularization strength λ is set to 10^7 .

For the parameter γ in Algorithm 1, we set all tasks to be equally important to $\gamma = 0.9$. To further assess its effect, we evaluate the effect of varying γ using a single seed for performance comparison. The results are presented in Table 9 and Figure 4. The parameter γ controls the accumulation of Fisher information across tasks in continual learning. When $\gamma = 0$, no Fisher information is carried over from previous tasks, meaning that only the Fisher matrix of the current task is used to regularize the subsequent task. As γ increases, past information is accumulated more strongly, which can help preserve knowledge from earlier tasks.

As shown in Table 9, the final accuracy \bar{A} remains relatively similar across different γ settings. However, notable differences are observed in terms of stability and plasticity. From Figure 4, the trends associated with different γ values are clearly visible. We find that there exists a broad range of γ values that achieve a similar stability–plasticity trade-off. As indicated by the green-shaded region, the method is not overly sensitive to the exact choice of γ .

Table 9: Performance comparison under different values of γ on CIFAR-100.

	$\gamma = 1.0$	$\gamma = 0.9$	$\gamma = 0.7$	$\gamma = 0.5$	$\gamma = 0.3$	$\gamma = 0$
\bar{A}_{10}	87.64	87.47	88.07	<u>88.14</u>	88.22	86.63
Avg.	91.96	92.12	<u>92.42</u>	92.34	92.46	92.04
Stability	94.46	94.45	94.28	94.37	94.51	91.81
Plasticity	97.66	97.99	<u>98.35</u>	98.33	98.29	99.07

Figure 4: Stability-Plasticity trade-off with various task decay factor γ . A broad range of γ (0.3–0.9) yields a similar trade-off, indicating that the method is not sensitive to the precise choice of γ .

We further illustrate the effect of γ using a per-task accuracy matrix. In Figure 5, each row represents the performance on all previously encountered tasks (x-axis) after learning the current task (y-axis). The results show that setting γ to zero causes a significant drop in stability, with earlier tasks experiencing more severe forgetting. In contrast, higher γ values help preserve performance on previous tasks while still enabling effective learning of new tasks.

Figure 5: Task-wise performance on CIFAR-100 under different γ settings.

Table 10: Task order of the standard CL benchmark for language tasks.

	Task 1	Task 2	Task 3	Task 4
Order 1	dbpedia	amazon	yahoo	ag
Order 2	dbpedia	amazon	ag	yahoo
Order 3	yahoo	amazon	ag	dbpedia

A.3 ADDITIONAL EXPERIMENTS

A.3.1 COMPARISON RESULTS

Results on standard CL benchmark for language tasks. To further evaluate the applicability of EWC-LoRA beyond vision tasks, we extend our experiments to natural language processing scenarios using the T5-large and LLaMA-3.2-1B-Instruct pretrained models. Following the standard language CL benchmark and previous work (Wang et al., 2023), we use three task orders composed of four text classification datasets, as summarized in Table 10. We compare EWC-LoRA with O-LoRA and TreeLoRA under identical training settings. The task-wise performance is evaluated using average accuracy, and the results are shown in Figures 6 and 7. For the larger model T5-large, the effectiveness of EWC-LoRA is more pronounced, as it mitigates forgetting on most tasks across all three orders. For the smaller model LLaMA-3.2-1B-Instruct, EWC-LoRA also exhibits less forgetting compared with the other two methods.

Figure 6: Task-wise performance across the three task orders using the T5-large model.

Figure 7: Task-wise performance across the three task orders using the LLaMA-3.2-1B-Instruct model.

Results Across Varied Task Length. Table 11 reports the full results of low-rank continual learning methods under varying task lengths on ImageNet-R. For EWC-LoRA, the performance gains

1080 appear relatively modest, likely due to the inherent domain shift in this benchmark, which may
 1081 constrain the effectiveness of regularization-based methods for continual adaptation. We further ob-
 1082 serve that InfLoRA achieves better results on shorter sequences, whereas SD-LoRA performs more
 1083 strongly on longer sequences. Examining the accuracy matrix for longer sequences, we find that
 1084 although SD-LoRA exhibits lower stability, its higher plasticity often leads to superior final per-
 1085 formance. This observation suggests that model evaluation should go beyond reporting only the final
 1086 accuracy. It is also important to track performance throughout the task sequence and explicitly report
 1087 both stability and plasticity.

Table 11: Comparison results on ImageNet-R across different task lengths (in %).

Tasks	ImageNet-R (N=5)		ImageNet-R (N=20)	
	Methods	$\bar{A}_5 (\uparrow)$	Avg. (\uparrow)	$\bar{A}_{20} (\uparrow)$
Joint Train	81.69 _(0.30)	85.57 _(0.13)	81.66 _(0.22)	86.41 _(0.10)
Finetune	69.26 _(0.74)	78.88 _(0.31)	47.06 _(2.05)	63.01 _(0.56)
InfLoRA	77.37 _(0.30)	82.19 _(0.24)	69.63 _(0.62)	76.95 _(0.54)
SD-LoRA	74.90 _(1.58)	79.93 _(0.29)	72.26 _(0.37)	77.81 _(0.21)
Vanilla LoRA	70.15 _(1.00)	79.16 _(0.37)	56.17 _(1.50)	69.51 _(0.37)
EWC-LoRA	76.36 _(0.21)	81.43 _(0.13)	70.18 _(1.06)	77.06 _(0.54)

1102 **Task-wise Performance.** Figure 8 and Figure 9 show the accuracy matrix of the LoRA-based
 1103 methods on CIFAR-100 and DomainNet. Each row corresponds to the performance on all previ-
 1104 ously encountered tasks after training on the current task. The diagonal entries correspond to the
 1105 most recently trained tasks. As expected, Finetune exhibits severe forgetting on previous tasks while
 1106 maintaining high performance on the current task, as shown in the matrix entries. On CIFAR-100,
 1107 we observe that InfLoRA better preserves performance on the earliest task (first column). On Do-
 1108 mainNet, SD-LoRA adapts more effectively to new tasks. On both datasets, EWC-LoRA achieves a
 1109 more balanced trade-off between stability and plasticity compared to the other two methods.

Figure 8: Task-wise performance of LoRA-based methods on CIFAR-100. Each row represents the performance on all previously encountered tasks (x-axis) after learning the current task (y-axis).

Figure 9: Task-wise performance of LoRA-based methods on DomainNet. Each row represents the performance on all previously encountered tasks (x-axis) after learning the current task (y-axis).

1134
1135 **Trade-off between Stability and Plasticity.** To better understand how different methods balance
1136 stability and plasticity, we introduce a trade-off metric that approximates this balance:
1137
1138

$$T = \frac{2 \cdot S \cdot P}{S + P} \quad (8)$$

1139 where S and P denote the Stability and Plasticity, respectively, as defined in Eq. 5 and Eq. 6.
1140 Figure 10 illustrates the trade-off between stability and plasticity for different low-rank CL methods.
1141 Vanilla LoRA generally achieves the highest plasticity, as it does not include mechanisms to prevent
1142 forgetting. EWC-LoRA attains stability comparable to InfLoRA, while retaining more plasticity
1143 than InfLoRA. Overall, EWC-LoRA achieves the best trade-off among the methods.
1144

1145
1146 Figure 10: Trade-off between stability and plasticity.
1147
1148
1149
1150
1151
1152
1153

1154 **Ablation on LoRA Ranks.** In our main experiments, we used a fixed LoRA rank across all tasks
1155 to ensure a fair comparison. Here, we explore whether more complex datasets benefit from different
1156 rank settings. Specifically, we conducted an ablation study with different rank (r) values on two
1157 benchmarks of varying difficulty, and the results are summarized in 12. We find that increasing
1158 or decreasing the rank r does lead to some variation in performance. However, the difference is
1159 relatively small, which indicates that the effective parameter space of the model is inherently low-
1160 rank, and that the regularization applied within this low-rank space follows the same principle.
1161
1162

1163 Table 12: Ablation study on LoRA ranks r across two benchmarks of varying difficulty.
1164
1165

r	CIFAR-100		ImageNet-R	
	\bar{A}_{10}	Avg.	\bar{A}_{10}	Avg.
16	88.31	92.59	72.10	79.18
10	87.91	92.27	72.86	78.95
4	87.79	92.12	72.42	78.78
1	86.77	91.61	70.37	77.27

1174 To exclude the effect of additional regularization, we examine the stability–plasticity trade-off using
1175 vanilla LoRA. We observe that a vanilla LoRA with a lower rank (e.g., $r = 1$) even outperforms
1176 higher-rank settings in terms of final average accuracy. The corresponding results are presented in
1177 Table 13. The reason is that a smaller rank naturally provides the model with stronger stability, but at
1178 the cost of reduced plasticity. For CIFAR-100, this cost of plasticity is relatively minor, whereas for
1179 ImageNet-R, it becomes much more pronounced. This indicates that for more challenging bench-
1180 marks, the model should adopt a larger rank to ensure sufficient plasticity.
1181

A.3.2 FISHER ESTIMATION ANALYSIS

1182 **Precomputed Fisher.** As illustrated in Xiang et al. (2023) and Šliogeris et al. (2025), they use a
1183 precomputed Fisher Information Matrix to preserve prior knowledge. Following this approach, we
1184 evaluate performance when a Fisher Information Matrix is precomputed and used throughout the
1185 continual learning process. Unlike these works, we do not rely on a large-scale dataset to compute
1186 the Fisher matrix. We consider two settings: (1) Uniform parameter importance: All parameters are
1187 assigned equal importance, i.e., γ_{prior} in Algorithm 1 is set to a constant, and the Fisher matrix is an

1188 Table 13: Ablation study on LoRA ranks (r) in the Vanilla LoRA setting for CIFAR-100 and
 1189 ImageNet-R. Note that the plasticity is computed based on the upper bound at rank 10. When
 1190 the rank is 16, the plasticity can exceed 100%.

r	CIFAR-100				ImageNet-R			
	\bar{A}_{10}	Avg.	Stability	Plasticity	\bar{A}_{10}	Avg.	Stability	Plasticity
16	83.05	89.71	86.25	100.42	66.05	76.26	74.17	101.41
10	82.99	89.74	87.56	98.86	66.32	76.35	75.69	99.86
4	83.35	90.10	88.70	98.24	67.52	76.33	77.27	97.30
1	83.72	89.94	89.95	97.36	68.43	77.09	81.95	96.75

1200 identity matrix. (2) Dataset-based Fisher: The Fisher Information Matrix is computed in advance
 1201 using the entire dataset. The results are shown in Table 14. We observe that the uniform Fisher
 1202 exhibits lower stability, while the plasticity of both methods is similar, but still much lower than ours.
 1203 This suggests that using a precomputed, fixed Fisher imposes stronger constraints on the weights,
 1204 thereby limiting plasticity. As expected, the dataset-based Fisher achieves higher stability than the
 1205 uniform Fisher, which is reasonable since it better captures the true importance of the parameters.

Table 14: Regularization using precomputed Fisher on CIFAR-100.

Strategy	\bar{A}_{10}	Avg.	Stability	Plasticity
Uniform $\mathbf{F} = \mathbf{I}$	83.02	88.85	92.26	94.63
Dataset-based \mathbf{F}	83.87	89.36	93.15	94.74

1214 **Computation on Fisher Information Matrix.** As suggested by van de Ven (2025), we investigate
 1215 different methods for estimating the FIM. The results are presented in Table 15. Here, “Exact”
 1216 indicates that the inner expectation in Eq. 4 is computed exactly for each training sample. “Exact
 1217 ($n=500$)” denotes that the outer expectation is calculated using a subset of 500 samples from the old
 1218 training data. “Sample” indicates that the inner expectation is computed over a sampled class. The
 1219 results indicate that the optimal regularization strength varies according to the estimation method.
 1220 In general, the Exact Fisher outperforms the Empirical Fisher, requiring a smaller regularization
 1221 strength. The Sample method yields slightly better results than the Empirical Fisher.

Table 15: Different ways for estimating the Fisher matrix. Final accuracy of each variant using its
 1224 optimal strength λ on CIFAR-100.

Estimation	\bar{A}_{10}	Avg.	Best λ
Exact	88.32	92.77	$\lambda = 10^5$
Exact ($n=500$)	88.28	92.76	$\lambda = 10^5$
Sample	88.10	92.50	$\lambda = 10^7$
Empirical	87.91	92.27	$\lambda = 10^7$

1233 **Accuracy of the Fisher Estimation.** In rehearsal-free EWC, the Fisher matrix for the current task
 1234 is computed only once at the end of training and is not updated thereafter, which may result in a stale
 1235 Fisher estimate when the parameters drift substantially from the task-specific optimum (Wu et al.,
 1236 2024). We further investigate whether a similar issue exists in low-rank CL methods. To this end, we
 1237 track the evolution of the Fisher matrix for each task throughout the learning process. Specifically,
 1238 for a given task i , we first compute its Fisher matrix $\mathbf{F}_i^{(i)}$. The model is then sequentially trained on
 1239 subsequent tasks $i+1, i+2, \dots, t$. We evaluate the accuracy of the Fisher Information Matrix from
 1240 two perspectives: (1) **Scale sensitivity**, which indicates whether the parameter importance encoded
 1241 by the Fisher matrix becomes degraded or inflated. (2) **Structural pattern**, which reflects whether
 the set of parameters that EWC aims to protect changes over time.

Figure 11: Evaluation of Fisher accuracy as the task index increases on CIFAR-100 with 10 tasks.

Figure 12: Evaluation of Fisher accuracy as the task index increases on CIFAR-100 with 20 tasks.

To evaluate scale sensitivity, we recompute the Fisher matrices $\mathbf{F}_t^{(i)}$ using the current model (subscript t) and the data from task i (superscript (i)) after learning each new task. We use the Norm Ratio to quantify the numerical changes in the Fisher matrix. The Norm Ratio is defined as:

$$NR = \frac{\|\mathbf{F}_t^{(i)}\|}{\|\mathbf{F}_i^{(i)}\|} \quad (9)$$

where $NR > 1$ indicates that the Fisher matrix has become inflated, and $NR < 1$ indicates that it has degraded.

To quantify changes in the structural patterns of the Fisher matrix, we measure the similarity between the Fisher matrix estimated at task t and the original Fisher matrix. We consider two settings: (1) Rehearsal-free: we compare the accumulated Fisher matrix $\mathbf{F}_t^{\text{cum}}$ with the original optimal Fisher matrix $\mathbf{F}_i^{(i)}$, and (2) Rehearsal-based, we compute the optimal Fisher matrix $\mathbf{F}_t^{(1\dots t)}$ for the current task by incorporating data from previous tasks, and compare $\mathbf{F}_t^{(1\dots t)}$ with $\mathbf{F}_i^{(i)}$. We employ Spearman Rank Correlation to capture the overall consistency and Cosine Similarity to assess shifts in the most critical task parameters. The Spearman Rank Correlation evaluates the agreement in rank ordering between two vectors. Given two vectors \mathbf{v}_1 and \mathbf{v}_2 , each element is first converted to its rank, denoted as $r_{1,i} = \text{rank}(v_{1,i})$ and $r_{2,i} = \text{rank}(v_{2,i})$. The Spearman correlation coefficient is then computed as:

$$\rho = 1 - \frac{6 \sum_{i=1}^n (r_{1,i} - r_{2,i})^2}{n(n^2 - 1)} \quad (10)$$

where n represents the number of elements in the vectors. The Spearman correlation coefficient $\rho \in [-1, 1]$, where $\rho = 1$ indicates identical rank ordering, 0 indicates no correlation, and -1 indicates complete inverse ordering. Spearman correlation captures the overall pattern similarity between two vectors regardless of their scale.

Cosine Similarity focuses on the directional alignment between two vectors. A high cosine similarity indicates that the important parameters in one model are largely aligned with those in the other, capturing the consistency of parameter sensitivity patterns across models. The cosine similarity between $\mathbf{F}_t^{\text{cum}}$ and $\mathbf{F}_i^{(i)}$ is defined as:

$$\text{CosSim}(\mathbf{F}_t^{\text{cum}}, \mathbf{F}_i^{(i)}) = \frac{\mathbf{F}_t^{\text{cum}} \cdot \mathbf{F}_i^{(i)}}{\|\mathbf{F}_t^{\text{cum}}\| \|\mathbf{F}_i^{(i)}\|} \quad (11)$$

We report the above metrics for the three oldest tasks throughout the learning process, and the results are shown in Figure 11, 12 and 13. We observe that the Norm Ratio fluctuates around 1, indicating

Figure 13: Cosine similarity between two optimal Fisher matrices under the rehearsal-based setting.

that the strength of the constraint imposed on old tasks changes as the model learns new ones. As for the structural pattern of the Fisher Information Matrix, we observe that as the model learns more tasks, the Cosine Similarity gradually decreases, whereas the Spearman Rank Correlation shows a much milder decline. This indicates that although the absolute directions of parameter importance shift with new tasks, the relative ordering of important parameters remains largely stable.

Wu et al. (2024) has demonstrated the staleness of Fisher estimates in full-parameter EWC. In low-rank continual learning, a similar issue also exists for EWC. Under the rehearsal-based setting, however, the Fisher matrix remains relatively stable compared to the rehearsal-free setting. As the model learns more tasks, the key parameters identified by the Fisher matrix remain largely consistent, and the observed inaccuracies arise primarily from changes in magnitude and directional scaling, rather than from a fundamental reordering of parameter importance.

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMs)

In the preparation of this manuscript, the LLM was used to refine sentence structures, ensure clarity, and improve the readability of the text.