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ABSTRACT

Continual Learning (CL) with large-scale pre-trained models (PTMs) has recently
gained wide attention, shifting the focus from training from scratch to continu-
ally adapting PTMs. This has given rise to a promising paradigm: parameter-
efficient continual learning (PECL), where task interference is typically mitigated
by assigning a task-specific module during training, such as low-rank adapters.
However, weight regularization techniques, such as Elastic Weight Consolidation
(EWC)—a key strategy in CL—remain underexplored in this new paradigm. In
this paper, we revisit weight regularization in low-rank CL as a new perspective
for mitigating task interference in PECL. Unlike existing low-rank CL methods,
we mitigate task interference by regularizing a shared low-rank update through
EWC, thereby keeping the storage requirement constant regardless of the number
of tasks. Moreover, we provide the first systematic investigation of EWC in low-
rank CL, showing that it achieves a better stability—plasticity trade-off than other
low-rank methods and enables competitive performance across a wide range of
trade-off points. Building on these insights, we propose EWC-LoRA, which lever-
ages a low-rank representation to estimate parameter importance over the full-
dimensional space. This design offers a practical, computational- and memory-
efficient solution for CL with PTMs, and provides insights that may inform the
broader application of regularization techniques within PECL. Extensive experi-
ments on various benchmarks demonstrate the effectiveness of EWC-LoRA. On
average, EWC-LoRA improves over vanilla LoRA by 8.92% and achieves compa-
rable or even superior performance to other state-of-the-art low-rank CL methods.

1 INTRODUCTION

Continual Learning (CL) (Parisi et al.,[2019) has emerged as a rapidly growing research area, aiming
to enable machine learning systems to acquire new knowledge without forgetting previously learned
concepts. This ability plays a crucial role in addressing real-world problems (Shaheen et al.| 2022
Wang et al 2024a) where data distributions are constantly changing. Ideally, a CL model should
maintain stable performance across all previously encountered tasks. A significant decline in per-
formance on previous tasks after learning new ones is known as catastrophic forgetting (McCloskey
& Cohenl [1989; Ratcliff, [1990), which typically arises from task interference.

With the rise of large-scale pre-trained models (PTMs) (Bommasani, 2021; | Awais et al., [2025)), the
research focus in CL has shifted from training models from scratch to continually adapting these
powerful models (Ostapenko et al.| 2022} [Yang et al., [2025). This trend is driven by the impressive
transferability and robustness of PTMs, and a growing body of work has shown promising results in
PTM-based continual adaptation. A particularly popular paradigm is parameter-efficient continual
learning (PECL) (Qiao & Mahdavi,2024)), in which the PTM is typically kept frozen and augmented
with lightweight modules such as prompts (Wang et al., [2022c}; |Smith et al., 2023), adapters (Ermis
et al., 2022} |Gao et al., |2024)), or low-rank adaptations (LoRA) (Liang & Li, [2024;|Wu et al.| [2025)).
The predominant strategy in these works is to prevent task interference by assigning task-specific
modules during training—either structurally isolated adapters or LoORA modules, or prompts that
provide task-specific conditioning at the feature level.

On the other hand, weight regularization as a key continual learning strategy remains underexplored
in the era of continual learning with PTMs. A canonical example is Elastic Weight Consolidation
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(EWC) (Kirkpatrick et al., |2017), which has played a central role in combating catastrophic forget-
ting in small-scale models (Schwarz et al., [2018}; [Ehret et al., 2020). Although effective for smaller
models, EWC is difficult to apply to PTMs, as estimating parameter importance via the Fisher In-
formation Matrix (FIM) is computationally expensive, requiring storage of a frozen copy of the old
model and a Fisher matrix of equal size, resulting in a memory overhead three times that of the
original model. Several studies have attempted to apply EWC to the fine-tuning of large language
models (Xiang et al., 2023} [Sliogeris et al.l 2025). However, they typically fine-tune the model with
a precomputed Fisher matrix that is fixed throughout training, making them impractical for CL.

In this paper, we adopt EWC as a canonical example to study weight regularization in low-rank CL,
systematically analyzing key considerations for applying EWC within low-rank adaptations and
proposing a feasible weight-regularization-based solution for low-rank CL. First, we revisit weight
regularization in low-rank CL as a new perspective to mitigating catastrophic forgetting. Existing
low-rank CL methods assign each task an independent LoORA module, constraining updates to sub-
spaces that reduce interference with prior tasks. While effective, the addition of LoRA modules
incurs storage overhead that scales linearly with the number of tasks. In contrast, we mitigate task
interference by regularizing a shared low-rank update through EWC, rather than structurally iso-
lating task-specific parameters, thereby keeping the storage requirement constant regardless of the
number of tasks. Moreover, we provide the first systematic investigation of EWC in low-rank CL
and propose a principled method to estimate the importance of parameters in the low-rank space.
The proposed method leverages the FIM to quantify each parameter’s contribution more reliably
while mitigating task interference. We empirically show that the regularization on low-rank matri-
ces achieves a better stability—plasticity trade-off than other low-rank methods. Furthermore, the
tunability of EWC enables competitive performance across a wide range of trade-off points.

Drawing on these insights, we propose EWC-LoRA, which updates the model via low-rank adap-
tation while leveraging the full-dimensional space FIM for weight regularization. EWC-LoRA does
not explicitly fine-tune the full model or store model components for all previous tasks, thereby sig-
nificantly reducing computational and memory overhead while enabling effective Fisher estimation,
making it a resource-efficient solution for CL with PTMs. The main contributions of this work are
as follows:

* We revisit weight regularization as a new perspective for mitigating catastrophic forgetting
in low-rank CL. By exploiting the low-rank structure, we develop an efficient realization of
EWC in PTMs. Specifically, by regularizing a shared LoRA module, EWC-LoRA main-
tains a constant memory footprint regardless of the number of tasks.

* We present the first systematic investigation of EWC in low-rank CL and propose estimat-
ing the FIM over the full-dimensional space to accurately capture parameter importance.
As aresult, EWC-LoRA achieves effective regularization and demonstrates a superior sta-
bility—plasticity trade-off compared to existing low-rank CL methods.

» Extensive experiments across multiple benchmarks demonstrate that EWC-LoRA is effec-
tive, improving over vanilla LoRA by an average of 8.92%, while achieving comparable or
even superior performance to state-of-the-art low-rank CL methods, with better computa-
tional and storage efficiency.

2 RELATED WORKS

Continual Learning (CL). In contrast to standard supervised learning, which assumes that train-
ing data are independent and identically distributed (i.i.d.), CL focuses on training models on data
streams that exhibit non-stationary and often continuous distribution shifts (Lesort et al., [2021).
This departure from the i.i.d. assumption introduces the central challenge of catastrophic forgetting,
where the model experiences significant performance degradation on previously learned tasks as new
tasks are introduced (McCloskey & Cohenl 1989} Ratcliff, [1990). As summarized by [Van de Ven &
Tolias|(2019), CL can be categorized into three main scenarios: task-incremental (Gao et al.||2023),
domain-incremental (Wang et al., 2024b)), and class-incremental learning (Hersche et al., [2022).
Among these, class-incremental learning can be considered the most challenging. In this work, we
adhere to the class-incremental learning setting, where the model must learn to distinguish between
all classes encountered across all tasks without explicit task boundaries (Masana et al., |[2022)).
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Parameter-Efficient Continual Learning (PECL). PECL (Qiao & Mahdavi, [2024) has recently
emerged as a promising paradigm in CL. It builds upon the idea of parameter-efficient fine-
tuning (Houlsby et al., 2019; Hu et al.| 2022; Jia et al., 2022), where a pre-trained model is kept
frozen and a small number of learnable parameters are introduced to adapt to new tasks. To pre-
vent task interference, existing PECL methods can be categorized into two types: (1) prompt-based
methods, which typically provide each task with task-specific prompts to condition PTMs at fea-
ture level (Wang et al., |2022c;bj |Smith et al., 2023), and (2) adapter- or low-rank adaptation-based
methods, which typically insert task-specific lightweight modules during training, thereby provid-
ing isolation at the structural level (Gao et al., 2024; Liang & Li, 2024; [Wu et al., 2025). Existing
PECL works thus primarily focus on introducing task-specific modules to mitigate task interference,
which often leads to increased memory and computational costs as the number of tasks grows. In
contrast, weight regularization techniques have received little attention, and it remains unclear how
they can be effectively applied in PECL—a setting that presents unique structural and optimization
challenges compared to full-model tuning. Within the context of low-rank CL, we revisit weight reg-
ularization as a means to mitigate task interference, providing insights that may inform the broader
application of regularization techniques within PECL—an area that remains underexplored in the
current literature.

Elastic Weight Consolidation (EWC). EWC (Kirkpatrick et al.l[2017)) mitigates catastrophic for-
getting in CL by penalizing changes to parameters that are deemed important for previous tasks, as
quantified by the Fisher Information Matrix (FIM). As a canonical example of weight regularization
techniques, EWC has inspired a series of follow-up studies that aimed to address its limitations and
broaden its applicability. For example, Huszar (2018)) analyzed its behavior beyond two tasks, while
van de Ven|(20235)) investigated strategies for estimating the FIM in the context of CL. In the era of
PTMs, Xiang et al.|(2023)) apply EWC during fine-tuning of a large language model (LLM), using a
precomputed FIM to protect the knowledge acquired by the original model. Similarly, Sliogeris et al.
(2025)) employ EWC in the context of LLMs, estimating the FIM on a comprehensive benchmark to
preserve domain knowledge. However, both studies rely on a precomputed FIM, which is kept fixed
throughout training, making them unsuitable for our setting. Thede et al.| (2024)) briefly note the con-
tinued value of regularization in the context of PTMs, but they do not examine its detailed effect and
do not combine regularization with low-rank adaptation. [Wei et al.| (2025) do combine EWC with
low-rank adaptation, but they separately regularize each low-rank module, causing inaccurate Fisher
estimation and suboptimal performance. Unlike prior work, we conduct a focused investigation of
EWC in PTMs-based CL. By leveraging a low-rank structure, we propose a practical approach for
adapting EWC to PTM-based CL and demonstrate its effectiveness.

3 METHODOLOGY

In this section, we review the necessary preliminaries, then discuss the structural and optimization
challenges of applying EWC to low-rank adaptation, and finally present an overview of EWC-LoRA,
highlighting its learning procedure and differences from existing low-rank CL methods.

3.1 PRELIMINARIES

Notations. In this paper, bold lowercase letters represent vectors, while bold uppercase letters
denote matrices. The superscript T indicates the transpose of a matrix, and E[-] stands for the
expectation operator. Optimal values of variables are indicated with a superscript *.

Problem Formulation. We start with a pre-trained model parameterized by Wy and fine-tune

it sequentially on a series of new tasks {7;}7_; with corresponding datasets {D;}Z_;. For each

task 7, the model receives a batch of samples {z%, y%}/2*] drawn from C classes, where %, and !

denote the input image and its corresponding label, respectively. After completing training on 7, the
model is evaluated on all so-far encountered tasks 77.;. The objective is to learn parameters W that
generalize well across all tasks so far, without storing any past data. With the model parameterized
by W, the training loss function at task 7; is usually defined as:
Dl C
1 t
L(W) = —@Zzl[y;=c] logpw (y = ¢ | z},) ey

k=1c=1
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Elastic Weight Consolidation. Following (Huszar, 2018)), we maintain a single penalty term
that approximates the combined effect of all previous tasks, preventing the double-counting in-
herent in the multi-penalty approach. When learning on task 7;, we approximate the posterior
p(W|D1.4—1) using the Laplace approximation (MacKay, 1992), forming a Gaussian distribution
N(W; W7 (F&m)~1), where W;_; denotes the optimal parameters on task 77.;—1, and the
accumulated Fisher matrix F{"" serves as the precision matrix, reflecting the importance of each
parameter for retaining knowledge from all previous tasks. To improve computational efficiency,
EWC assumes parameter independence and retains only the diagonal elements of the Fisher matrix.
During training on 7;, the loss function in Eq. [I] is augmented with a quadratic penalty term that
constrains important parameters to remain close to their previously learned values:

! /\ * s cum *
Li(W) = L{(W) + §(W —W;_)) " diag(F{™) (W — W;_,) 2

where A is a hyperparameter that controls the relative importance of the new task compared to
the old one(s). diag(F$""%) denotes the diagonal matrix formed from the diagonal elements of
the accumulated Fisher matrix. Hereafter, unless otherwise stated, F refers to the diagonal Fisher
matrix, with the diag(-) omitted for simplicity.

Low-rank Adaptation (LoRA). When fine-tuning a model, LoRA (Hu et al.| |2022) restricts
changes to the parameters to lie in a low-rank subspace. Suppose W, W, € R0 ¥4I are the adapted
and pre-trained weight matrix, respectively. LoRA expresses the weight update AW = W — W,
as the product of two learnable matrices A € R*" and B € R™% with r < min(dy,do).
Thus, the adapted weight matrix can be represented as W = Wy + AW = W, + AB. During
fine-tuning, the pre-trained weights Wy are frozen and only the parameters of A and B are trainable.

3.2 EWC WITH LOW-RANK ADAPTATION

The core idea of EWC in Eq. [2]lies in the second term, which measures how far the current pa-
rameters deviate from the previously learned ones. Directly applying EWC entails fine-tuning all
parameters, as well as preserving both a frozen copy of the old model and a Fisher matrix of the same
size. However, in the case of large PTMs, this is often not feasible. To reduce the number of trainable
parameters and improve efficiency, we represent the weight update as AW =W — W;_;, = AB
via low-rank decomposition.

To regularize low-rank matrices, a straightforward way is to compute individual Fisher matrices for
A and B, and apply regularization to each accordingly (Wei et al., [2025). However, under low-
rank parameterization, focusing solely on the individual low-rank matrices ignores the interaction
between A and B, which is problematic because each element of the update AW depends on their
joint product, i.e., AW;; = 22:1 A;;;By;. In Appendix we mathematically prove that
regularization performed separately in the low-rank space generally diverges from that performed
in the full-dimensional space. Another way to regularize low-rank matrices is to precompute the
Fisher matrix on the pre-trained model and then apply the regularization to the update AW = AB
using this fixed Fisher matrix (Xiang et al.,2023)). However, this estimation also includes directions
associated with the frozen W, which can introduce noise in measuring sensitivity to the loss. This
issue is further illustrated in Appendix[A.1.2]

To address the above limitations, we propose updating parameters in the low-rank space while regu-
larizing over the full-dimensional subspace of W spanned by A and B, as illustrated in Figure[T|(b).
This ensures that the penalty captures the true sensitivity of the model output to low-rank updates,
rather than merely the local gradient magnitudes. Consequently, we reformulate Eq. [2]as:

LL(A,B) = Li(A,B) + %vec(AB)Tngfq vec(AB) 3)

where vec(AB) is flattened AB. This formulation enables regularization in the full-dimensional
subspace AW, without requiring explicit storage of vec(AB). After training on 7y, we estimate F;
and incorporate it into the previously accumulated Fisher matrix to obtain the updated Fisher F{"™.

To estimate the Fisher matrix F, at the optimal parameters W for task 7T;, we follow the definition
in (Martens} [2020). Specifically, the i-th diagonal element of F'; is defined as:

dlog pw (y|x) >2” @
W=W;

Fti,i — ]ExNDt |:]EprWf |:( Jw-
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Figure 1: Overview of learning task 7; at a specific layer of the ViT model. (a) Prior low-rank CL
methods structurally isolate task-specific LoORA parameters by adding a new LoRA branch for each
task. (b) The proposed EWC-LoRA employs a shared LoRA module that is learned across all tasks
and regularized according to parameter importance measured by a Fisher Information Matrix, which
is updated after learning each task.

The outer expectation in Eq. d]is computed over the current task data D;, while the inner expectation
is approximated using the empirical Fisher for computational efficiency. In practice, this inner
expectation can be estimated by taking the squared gradients of the log-likelihood with respect to
W, evaluated at W;. Since only the low-rank update AW is trainable, the gradient with respect
to W and AW are identical. Consequently, the Fisher matrix is effectively computed in the AW-
space. The equivalence between estimating the Fisher information in the W-space and in the AW-
space is established in Appendix

3.3 OVERVIEW OF EWC-LORA

Figure [I] illustrates the difference between EWC-LoRA and existing state-of-the-art low-rank CL
methods, in the context of learning task 7; at a specific layer of the Vision Transformer (ViT).
For task 7;, we initialize the shared LoRA branch, and the forward computation is given by: f =
W,_1x + ABx. Specifically, A is zero-initialized, while B is drawn from a uniform distribution.
During training on 7z, only A and B are updated, while the base weights W;_; keep frozen. After
completing task 7, the learned parameters are integrated to the base weight as W; = W;_; + AB.
For any sample from a previous task, the forward computation becomes f = W,;x. During training,
the update of the low-rank matrices A and B are regularized using the accumulated Fisher matrix
F{" from step ¢ — 1. Accordingly, EWC-LoRA maintains only two states after learning step t:
(1) the updated model parameters W obtained from the current task 7;, and (2) the accumulated
Fisher matrix F{"™, a diagonal matrix that aggregates information from all previous tasks 77.;. The
dataset D; and the task-specific Fisher matrix F; can then be discarded. For clarity, we outline the
learning procedure of EWC-LoRA in Algorithm|[I] provided in Appendix[A.2.1]

4 EXPERIMENTS

4.1 BENCHMARKS

Datasets. In line with existing continual learning methods (Liang & Lil [2024; [Wu et al.,[2025)), we
evaluate the performance of EWC-LoRA across four widely used continual learning benchmarks.
They are CIFAR-100 (Krizhevsky et al.,|2009), DomainNet (Peng et al.,2019; Wang et al.| 2022a)),
ImageNet-R (Hendrycks et al., [2021a; Wang et al., 2022b)), and ImageNet-A (Hendrycks et al.
2021b). CIFAR-100 consists of 100 natural image classes and is the most commonly used dataset
in continual learning. DomainNet includes 345 classes across six diverse visual domains, making it
a challenging multi-domain benchmark. ImageNet-R contains 200 ImageNet classes (Deng et al.,
2009) rendered with various artistic styles, introducing significant distribution shifts. ImageNet-A
consists of 200 natural adversarial examples that are frequently misclassified by standard ImageNet-



Under review as a conference paper at ICLR 2026

trained models. We follow the mostly used task splits for continual learning benchmarks: CIFAR-
100 is divided into 10 tasks (10 classes per task); DomainNet into 5 tasks (69 classes per task);
ImageNet-A into 10 tasks (20 classes each); ImageNet-R into 5, 10, and 20 tasks (with 40, 20, and
10 classes per task, respectively).

Evaluation metrics. We adopt accuracy as our evaluation metric, in line with standard prac-
tice (Lopez-Paz & Ranzato|[2017;|Chaudhry et al.,[2019). Let A, ; denote the classification accuracy

on the ¢-th task after training on the ¢-th task. The average accuracy at learning step ¢ is defined as:

A, = % Z:Zl Ay ;. The overall average accuracy is then computed as the mean of all intermediate

averages: Avg. = % Zthl Ay, where T is the total number of tasks.

To further analyze a model’s stability and plasticity and to enable intuitive comparisons across tasks,
we propose measuring each metric on a normalized scale. Specifically, the stability score is defined
as one minus the normalized forgetting:

3 o 1 — maxier At ; — A
ability T_1 Z maxs<r At

(&)

i=1

where normalized forgetting F' represents the relative drop in a task’s performance from its peak to
the end of continual learning. For each task 4, plasticity is defined as the ratio between the model’s
performance on the task after learning it and the corresponding reference performance. The overall
plasticity is defined as:
T
Aii

.. 1
Plasticity = T Z e (6)
i=1 “tiji

where A™! denotes the accuracy obtained by fine-tuning a model exclusively on task i. This normal-

%

ization facilitates intuitive comparison across tasks and methods.

Implementation details. Following prior works (Wang et al.| 2022c; Smith et al.| |2023; Liang &
L1, 2024), we adopt the ViT-B/16 backbone (Dosovitskiy et al., 2020) pretrained on ImageNet-21K
in a supervised manner as the initialization for all models. To facilitate comparison, all methods
are implemented within a unified framework. We align the experimental setup with that of In-
fLoRA (Liang & Li} [2024)), fine-tuning the model with the Adam optimizer using hyperparameters
B1 = 0.9, B2 = 0.999. For each comparison method, we report the best results using the hyper-
parameters provided by the authors whenever available. In cases where such configurations are not
released, we apply a unified set of hyperparameters that has been validated to perform reliably across
all methods, ensuring consistency in our experimental setup. To better contextualize performance,
we report both an upper target (Joint Train) and a lower target (Finetune). The upper target jointly
trains on all tasks, while the lower target sequentially trains on tasks without any forgetting miti-
gation. For all experiments, we perform five runs with different seeds and report the average and
standard deviation of the results.

4.2 MAIN RESULTS

Comparison with Various CL Baselines. We benchmark EWC-LoRA against state-of-the-art
PTM-based continual learning methods, including the prompt-based methods L2P (Wang et al.,
2022c)), DualPrompt (Wang et al., [2022b), and CODA-Prompt (Smith et al., [2023), as well as the
LoRA-based methods InfLoRA (Liang & Li, [2024) and SD-LoRA (Wu et al., [2025). We report
results on 10 sequential tasks for CIFAR-100, ImageNet-R, and ImageNet-A, and on 5 tasks for
DomainNet. The results are summarized in Table [l We observe that EWC-LoRA achieves the
highest final accuracy on three out of four datasets. On average, across all four datasets, EWC-
LoRA outperforms vanilla LoRA by a substantial margin of +8.92%. EWC-LoRA even surpasses
other LoRA-based methods that use task-specific low-rank modules, highlighting its effectiveness.
Figure [2] illustrates the task-wise performance of LoRA-based methods. We observe that EWC-
LoRA consistently outperforms other methods throughout the entire task sequence on most datasets,
while also exhibiting lower standard deviations, indicating greater stability.
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Table 1: Comparison results on CIFAR-100, DomainNet, ImageNet-R, and ImageNet-A (in %).
Bold and underline indicate the highest and second-highest scores, respectively.

Tasks | CIFAR-100 | DomainNet | ImageNet-R | ImageNet-A
Methods | Ao Ave® | A@® Ave® | Ao Ave® | Ap®  Ave ()
Joint Train 92482(0_2()) 95441(0_05) 76.84((].(]6) 81. 20((] 05) 81.69(()_28) 86.25(()_09) 65.01(0_74) 74.10(0_44)
Finetune 79.09(1.53) 88.17(0.45) | 65.570.20) 75.120.12) | 60.42(1.64) 73.18(0.32) | 32.85(1.53) 54.55(1.44)
L2P 83.18(120) 87.69(105) | 70.26025) 75.83(0.08) | 7T1.260.41) 76.13(046) | 42.94107) 5140 o)
DualPrompt | 81.48(0.56) 86.41(0.65) | 68.260.00) 73-84(0.45) | 68.22(0.20) T73-81(0.50) | 45.49(0.06) 54.68(1 24)
CODA—Prompt 86.31(0_12) 90.67(0_22) 70.58(0‘53) 76. 68(0 44) 74.05(()41) 78.14(()‘39) 45.36(0_78) 57.03(0_94)
InfLoRA 86.34(0_76) 91'33(0.48) 71‘01(005) 77. 70(0 03) 74'41(0.63) 80'31(0.60) 50.75(1_33) 64.36(1_01)
SD-LoRA 86.77(050) 90.96(0.30) | TL2T(014) T7.T00.07) | 12932 75) T9.80(015) | 55.23(004) 66.100 5
Vanilla LoRA 82.990.84) 89.74(0.58) ‘ 69.790.11)  77-44(0.08) ‘ 64.870.73) 75.57(0.23) | 40.01(1.32) 58.28(¢.85)

EWC-LoRA 8791057y 92.27(0.39) | 73.46(0.16) 79.58 72.86(0.79)  78.95(0.86) | 59-89(0.26) 68.33(0.67)
CIFAR-100 DomainNet ImageNet-R ImageNet-A
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—_ 98 ~g5 Vanilla LoRA 92 '\\ —_ b
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Figure 2: Task-wise performance comparison of different methods across various datasets.

Analysis on Stability and Plasticity. We evaluated both stability and plasticity for different low-
rank CL methods across the four datasets. Stability reflects the ability of the model to retain pre-
viously learned knowledge, while plasticity measures its ability to adapt to new tasks. The results
are reported in Table 2] As expected, Vanilla LoRA typically exhibits the highest plasticity but
the lowest stability, since it employs no strategy to mitigate catastrophic forgetting. We observe
that InfLoRA emphasizes stability, while SD-LoRA favors plasticity. On CIFAR-100, EWC-LoRA
matches InfLoRA in stability while achieving higher plasticity; on ImageNet-A, it matches SD-
LoRA in plasticity while providing greater stability. On DomainNet and ImageNet-R, while other
methods struggle to balance stability and plasticity, EWC-LoRA can achieve this trade-off effec-
tively by tuning the regularization strength .

Table 2: Stability (1) and plasticity (1) scores of different low-rank CL methods, reflecting how well
each model retains previous knowledge and adapts to new tasks. We report the normalized form of
the two metrics, which is independent of the absolute performance on the dataset.

Tasks | CIFAR-100 | DomainNet | ImageNet-R | ImageNet-A

Methods | Stability Plasticity | Stability Plasticity | Stability Plasticity | Stability Plasticity
Vanilla LoRA 87.56(0_09) 98.86(0 09) 81.29(0_34) 9794(0.16) 78.63(1_38> 99.57(0_35) 85.56(1_82) 97.56(0_77)
InfLoRA 9484055 95800100 | 8380057 97-34(020) | 9269077 97.33(046) | 88.63350) 72.69313)
SD-LoRA | 91.85(060) 98.24(025) | 82450019y 98.690.15) | 91.78(0m0) 95.61(0.52) | 88.61(105) 92.13(27m)
EWC-LoRA | 94.45050) 97.99050) | 91.51(036 93.83(023) | 95.62(042) 93231050 | 89.52(114) 92.78(1.01)

Specifically, for the results in Table[I|and [2] a unified regularization strength is used across datasets.
With A\ = 107, EWC-LoRA consistently achieves a favorable balance between stability and plas-
ticity, without requiring dataset-specific tuning. To explore the trade-off between the two metrics,
we show stability—plasticity curves for different values of the regularization strength, as illustrated
in Figure[3a] Unlike other methods that typically exhibit fixed performance, EWC-LoRA provides
a clear and controllable trade-off: smaller \ promotes plasticity at the cost of stability, while larger
values enhance stability but reduce plasticity. This tunability enables EWC-LoRA to achieve com-
petitive or superior performance across a wide range of trade-off points, demonstrating its robustness
and adaptability. We also note that even when different methods achieve similar average accuracy,
they can differ substantially in terms of stability and plasticity. This suggests that CL model evalua-
tion should place greater emphasis on explicitly reporting stability and plasticity metrics.
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Figure 3: (a) Stability—Plasticity curves illustrating the trade-off between retaining previous knowl-
edge and learning new tasks. (b) Performance across a range of regularization strengths A on CIFAR-
100 and DomainNet, showing the effect of A on accuracy.

Memory footprint and training time. The additional memory and computational cost of EWC-
LoRA compared to Vanilla LoRA comes only from the FIM. After each learning step, the LoRA
parameters are merged into the backbone, so the total parameter size matches that of the pre-trained
model. As a result, only one shared LoRA is required for new tasks, and the memory footprint
remains constant regardless of the number of tasks. In contrast, other low-rank CL methods require
either maintaining separate LoRA parameters for each task or performing more complex computa-
tions, leading to a linear increase in memory usage and training time, or to higher computational
cost as the number of tasks grows. EWC-LoRA incurs modest memory overhead during training
while improving computational efficiency, achieving comparable or even superior performance.

Table 3: Comparison of different methods in terms of memory cost and training time. Memory
usage is measured on the Quadro RTX 6000 GPU with a batch size of 128. Training time is reported
as the average time required to train a single task.

Methods | Memory | CIFAR-100 | DomainNet | ImageNet-R | ImageNet-A
Vanilla LoORA | ~ 18 GB | 10m22s 4 7s 32m8s & 44s 13m32s £ 105s | Om55s & 21s
InfLoRA ~20GB | 11m9s =+ 4s 42m25s + 68s 14m33s £+ 107s | 1ml6s £ 22s
SD-LoRA ~37GB | 12ml16s 4+ 86s | 34ml18s 4+ 160s | 22m53s &+ 232s | 1m56s =+ 36s

EWC-LoRA ~24GB | 10m31s + 3s 33m10s =+ 50s 13m42s £+ 104s | Om55s & 21s

The memory cost and training time are reported in Table [3] Memory usage is measured on two
Quadro RTX 6000 GPUs with a batch size of 128. Training time is recorded as the average duration
to train a single task, presented along with the standard deviation. Notably, the training time of
EWC-LoRA is nearly identical to that of Vanilla LoRA, demonstrating that the additional computa-
tions introduced by Fisher estimation in the low-rank space incur only minimal overhead.

4.3 ABLATION STUDY

Results Across Varied Task Lengths. We further examine the performance of different low-rank
CL methods under varying task lengths. As a complementary study to Table [I} we split CIFAR-
100 and ImageNet-R into 5-task and 20-task sequences, respectively. As reported in Table [} the
improvement is most evident on CIFAR-100, where EWC-LoRA achieves the highest overall accu-
racy among all methods. In contrast, the gains on ImageNet-R are more moderate, which may be
attributed to the domain shift in ImageNet-R, potentially limiting the effectiveness of regularization-
based approaches for continual adaptation. Additional results are provided in the Appendix[A.3]

Ablation on Regularization Strength \. We evaluate performance under varying values of the
regularization strength ), ranging from 10 to 10'°. The results are presented in Figures We
use empirical Fisher in all experiments. From the figures, we observe that setting A to 10* allows
EWC-LoRA to consistently achieve favorable performance in terms of accuracy, stability, and plas-
ticity. This suggests that an appropriate balance between stability and plasticity can be effectively
maintained without fine-grained tuning. This finding facilitates the use of a unified regularization
strength across datasets, eliminating the need for dataset-specific tuning.
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Table 4: Final accuracy on CIFAR-100 and  Table 5: Best performance with Exact Fisher
ImageNet-R for task lengths of 5 and 20 tasks. (500 random samples) and Empirical Fisher.

Tasks | CIFAR-100 | ImageNet-R Estimation | Exact (n=500) | Empirical
Methods | A5 A | A5 Ax Ao 88.28 87.91
Vanilla LoRA | 87.15 74.78 | 70.15 56.17 g"g- \ A9E-7125 A93~2lg7
InfLoRA 89.45 81.77 | 77.37 69.63 TeSF A o -
SD-LoRA 89.15 83.57 | 74.90 72.26 raining Time ~ 14m ~11m

EWC-LoRA | 89.98 8546 | 76.36 70.18 Memory Cost ~20GB ~ 24GB

Estimation of Fisher Information Matrix. In the context of low-rank adaptation, we examine
the trade-off between performance and the computational cost of estimating the Fisher Information
Matrix, as discussed by [van de Ven| (2025). In general, the Exact Fisher outperforms the Empirical
Fisher, requiring a smaller regularization strength. From a computational perspective, computing
the Exact Fisher on a small batch of data yields superior results compared to the Empirical Fisher
while significantly reducing computational overhead. We use 500 randomly selected samples to
estimate the Exact Fisher, and the comparison results are shown in Table E} We report both the
training time for a single task and the corresponding memory usage. Additional results comparing
different strategies for estimating the Fisher matrix are provided in Appendix[A.3]

Different Fisher Estimation Strategies. We compare three different Fisher estimation strategies,
based on the discussion in Section[3.2] “Precomputed F” refers to using a precomputed FIM in
full parameter space W to preserve prior knowledge. Instead of estimating over a large-scale dataset,
we consider a dataset-based Fisher, computed using the entire dataset that will be learned sequen-
tially. “Separate F o, Fp” denotes estimating the Fisher separately for the low-rank matrices and
regularizing them accordingly, while “F aAw " denotes estimating the Fisher in the full-dimensional
space as W. The results are shown in Table[6] We observe that the precomputed Fisher results in the
lowest plasticity, which may be caused by undesirable sensitivity arising from the frozen weights.
Moreover, applying separate regularization in the low-rank space also improves performance but has
noticeable drawbacks in terms of plasticity. This may be due to the joint contribution of the low-rank
factors, which imposes stronger constraints on the parameters.

Table 6: Comparison of different Fisher estimation strategies on CIFAR-100. “+ Mem.” indicates
the additional memory required for Fisher estimation and regularization during training.

Ao Avg. Stability Plasticity | +Mem.

wlo F 8299051 89.740s55 87.56(0.00) 98.8600.00) | 0GB
Precomputed FW 8387(021) 8936(049) 9315(045) 9474(056) 1GB
Separate FA, Fp 8641(069) 9133(050) 9423(046) 9647(021) 4GB
FAW (Ours) 87.91(057) 92.27(0‘39) 94.45(0'59) 9799(050) 6 GB

Strategy

5 CONCLUSION AND DISCUSSION

In this work, we revisit weight regularization in low-rank continual learning (CL) as a means to
mitigate catastrophic forgetting. Using Elastic Weight Consolidation (EWC) as a canonical example,
we discuss the main considerations about applying regularization in the low-rank space and propose
EWC-LoRA, a computational- and memory-efficient solution for low-rank CL with large pre-trained
models. This work aims to offer insights that may guide the broader application of regularization
techniques in parameter-efficient continual learning.

A key limitation of regularization-based low-rank CL methods is their sensitivity to dataset com-
plexity. When combined with regularization techniques, it is important to carefully allocate the
low-rank learnable space for each task. This sensitivity also helps explain why, on ImageNet-R,
EWC-LoRA shows lower plasticity than methods based on task-specific modules. Consequently, a
promising direction for future work is to investigate the performance of regularization techniques in
domain-incremental settings and on more complex continual learning tasks.
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6 REPRODUCIBILITY STATEMENT

The theoretical analysis and complete proofs of the main results are provided in Appendix
The implementation details of our method, including model architecture, training procedures, and
hyperparameters, are described in Section 3] of the main paper and Appendix [A.2] All datasets used
in our experiments are publicly available. The source code for reproducing results is available in the
supplementary materials.
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A APPENDIX

A.1 THEORETICAL ANALYSIS

Setup. In low-rank adaptation, the adapted weight matrix W € R90*91 s reparameterized as
W =W, + AW = Wy + AB, where W denotes the pre-trained weight, which remains frozen
during fine-tuning. The trainable parameters are the low-rank matrices A € R%*" and B € R™*%1,
such that AW = AB is the only trainable update to the model. Note that the learned LoRA modules
on the previous task are merged back into the base weights before starting the new task. The optimal
weight matrix is indicated as W*.

A.1.1 REGULARIZATION UNDER DIFFERENT PARAMETERIZATIONS

Proposition 1. Let AW € R0X% be g model parameter matrix factorized as AW = AB, with
A c Rioxr B ¢ R"™9. Define the EWC regularization term in the full-space as Ry, and in the
low-rank parameter space as R o . Under general conditions, Raw # Ra B-

Proof. Let vec(-) denote the vectorization operator, and ® the Kronecker product. The following
identity holds:

vec(AB) = (B ®1,,) vec(A) = (I, ® A) vec(B)
For simplicity, we define a = vec(A) € R%", b = vec(B) € R"%. Define the Jacobians:

Ja(B) :=B' @1, € RIoUxdor  Jp(A) =14 @ A € Rlodrxrh

By the standard vectorization identity:
vec(AW) = Ju(B)a= Jg(A)b

The Fisher Information Matrix estimated in the full-dimensional space is defined as:
Fw=E,.p [Vec(VWE) Vec(Vwﬁ)T]
Although the full-space regularization Ry can be expressed equivalently using either the A or

B Jacobian, the update directions for A and B remain coupled. Thus, we consider a first-order
approximation of vec(AW) as a function of both a and b:

vec(AW) ~ J4(B)Aa+ Jp(A)Ab
The EWC regularization term in the full-space is defined as:

R = 5 (vec(W) — vee(W*)) T Fyw (vec(W) — vee(W*))

1
=3 vec(AW) " Fyy vec(AW)

1 1
= 5AaTJA(B)TFWJA(B)Aa + §AIOTJB(A)TFWJB(A)AIO

+ Aa'J4(B) FwJp(A)Ab

If Fisher regularization is applied separately to A and B, we have two Fisher matrices:
Fa = Eyop [vec(VAL) Vec(VAE)T]
Fg = E,up [vec(VBL) vec(VL)']

By the chain rule, the gradients in low-rank factor space are related to the full-space gradient by:

oL OW .

Val = 5w A — VWEJa(B)
oL OW .

VBL = Gw o~ JBA) VwL

13
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Hence, the Fisher Information Matrices can be expressed as:

Fa ~ J4(B)"FwJa(B), Fp=Jg(A) FwJp(A)
The EWC regularization term in the low-rank parameter space is defined as:

1 1
RA,B = §AaTFAAa—|— iAbTFBAb

The regularization term ‘R o g captures independent penalties in the factor space. Unless the cross-
covariance term F 5 g is explicitly computed and retained, the interaction between A and B is
ignored. Consequently, the two regularizations cannot be equal, except in special cases such as
when only A or B is updated. In contrast, estimating Fw in the full-dimensional space avoids this
issue and captures the true sensitivity of the model to perturbations. Therefore, regularization in
the full space better preserves the true geometry and parameter importance induced by the low-rank
update, providing a more faithful and effective constraint on A and B.

A.1.2 FISHER INFORMATION CONSISTENCY WITH THE TRAINABLE PARAMETER SPACE
Proposition 2. Consider a parameterization:

W =W,+ AB
where Wy is fixed and only A, B are trainable. Let

_ {VeC(A)

VeC(B)} . w = vec(W).

Then, the Fisher Information Matrix with respect to 0 satisfies
Fy = J FwlJ,

where ¥y is the Fisher Information Matrix with respect to w, and J = 0w /00 is the Jacobian of
the reparameterization.

Proof. Let L(W) denote the loss (negative log-likelihood). By the chain rule,
Vol = J'VwL

The Fisher Information Matrix with respect to 6 is defined as:

Fy :E[Vglogp Vglong]

Substituting the chain rule,

Fy=E[(J"Vylogp)(J Vylogp)']
=J " E[Vwlogp Vwlogp' | J.

The term inside the expectation is precisely the Fisher Information Matrix with respect to w, denoted
Fw. Hence we have:

Fy=J FwJ (7

The Jacobian structure has been illustrated in Proposition [I] The Fisher Information Matrix is
fundamentally an estimation of the curvature of the loss function with respect to the trainable pa-
rameters. Eq. [7] shows that the correct Fisher matrix for § is obtained by projecting Fyy into the
subspace spanned by A and B via J. Computing Fw directly in the full parameter space W in-
troduces directions corresponding to the frozen Wy, which are irrelevant for training. Thus, Fisher
should be consistently defined in the trainable subspace.

14
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A.1.3 CONSTRAINING LOW-RANK UPDATES VIA FULL-SPACE FISHER REGULARIZATION

Proposition 3. Let the adapted weight matrix be: W = W + AW = W, + AB, where Wy
denotes the frozen pre-trained weights and AW = AB is the low-rank update. Then, the empirical
Fisher Information Matrix F aw is estimated by the squared gradients of the log-likelihood with
respect to W. Consequently, the Fisher regularization on AW induces constraints on the update
directions of the low-rank factors A and B.

Proof. Since Wy, is constant and only AW is trainable, the loss function £ depends on W only
through AW. Therefore, the gradients satisfy Vw£ = VawZL, because IAW /OW = 1. Let
F'w denote the empirical Fisher Information Matrix estimated over weight matrix W:

Fw = EI,\,D [VeC(Vwﬁ) VeC(Vwﬁ)T]

Using the gradient equivalence above, the Fisher matrix in the AW space is identical:

Faw = Esp [vee(VawL) vec(VAwﬁ)T] =Fw

For notational simplicity, we omit the vec(-) operator and treat W as a vectorized parameter. The
Fisher regularization term can be defined as:

1 1
Rw = 5(W ~ WY Fw(W - W*) = 5AWTFMVAW

The gradients of Rw with respect to A and B are:
VaARw = VawRw BT = FAwAW - BT
VeRw = AT - VawRw = AT - FAwAW
with:

VawRw = FAwAW

Therefore, by propagating the gradient through the low-rank decomposition AW = AB, the Fisher
regularization over AW imposes a constraint on the update directions of the low-rank factors.

A.2 IMPLEMENTATION DETAILS

This section provides additional details on the method described in Section [3]and the experimental
setup in Section [ of the main text. In particular, we present the algorithm of EWC-LoRA and
discuss the effects of hyperparameters, accompanied by additional ablation studies.

A.2.1 OPTIMIZATION ALGORITHMS

Algorithm T| outlines the learning procedure of EWC-LoRA across tasks 77 to 77. At each task, the
model is updated via low-rank adaptation while incorporating EWC regularization computed from
the Fisher Information Matrix. Unlike prior methods that assign task-specific modules, EWC-LoRA
regularizes a shared LoRA, thereby maintaining constant memory cost. For clarity, the key equation
referenced in the main text is restated here.

L)(A,B) =L,(A,B) + % vec(AB)TFS'™ vec(AB) 3)

where vec(AB) is flattened AB. F$"™ denotes the accumulated Fisher matrix obtained from task
Ti—1. A is the regularization strength.
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Algorithm 1: The learning procedure of EWC-LoRA.

Input: A sequence of tasks {7;}7_, with datasets {D;}7_;; A frozen pre-trained model with
parameters W € R% X41; L ow-rank adaptation matrices A € R% X" and B € R" %% with
rank r; Task decay factor v = 0.9, Vt =1,...,T.

Output: Adapted model parameters Wz € R %41 that generalize across all tasks {7; }7_;.

Initialize accumulated Fisher Information Matrix: Fg'™ <= Yo - I3 // 0 if no prior
fort =1to 7T do

Step 1: Initialize A < 0, B < U(a,b)

Step 2: Low-rank adaptation on current task 7;: A*, B* < Eq. ;

Step 3: Fisher estimation for 7y;

1. Get gradient Vw £ on the full-dimensional space ;

. . . . i i 9log pw (yl2) ) 2
2. Compute diagonal entries of Fisher matrix: F}"* ~ ﬁ > (z.)eDs (+(l)) ;

3. Update accumulated Fisher Information Matrix: F{*™ < v, - F{" + Fy;

Step 4: Integrate low-rank parameter: W; = W;_; + A*B*;

| Step 5: Discard task-specific dataset D, and Fisher matrix F;.

A.2.2 HYPERPARAMETERS

We follow the training configurations specified by the authors in the original papers. When such
configurations are not available, we adopt a unified set of hyperparameters that has been validated
to perform reliably across methods, thereby ensuring consistency in our experimental setup. In all
experiments, we use the Adam optimizer with 1 = 0.9 and 82 = 0.99. The number of training
epochs depends on the specific dataset, and the training batch size is set to 128. No shuffling is
applied during training; however, we verified that enabling shuffling generally leads to improved
results. Table[7]summarizes the hyperparameters used during training, with method-specific param-
eters highlighted for each respective approach.

Table 7: Hyperparameters for different benchmarks and methods. “Ir” denotes learning rate. For
the parameter €, we refer readers to Liang & Li (2024) for details.

Datasets Methods

optimizer: Adam; schedular: Cosine; batch size: 128; shuffle: False; epochs: 20; rank: 10
Ir: 0.0005; classifier Ir: 0.005; Ir decay: 0.1

CIFAR-100 . 6 008; classifier Ir: 0.008: Ir decay: 0.1 (SD-LoRA)
€:0.95 (InfLoRA)
optimizer: Adam; schedular: Cosine; batch size: 128; shuffle: False; epochs: 5; rank: 30
. Ir: 0.0005; classifier Ir: 0.005; Ir decay: 0.1
DomainNet

Ir: 0.02; classifier Ir: 0.02; Ir decay: 0.0 (SD-LoRA)
€ :0.95 (InfLoRA)

optimizer: Adam; schedular: Cosine; batch size: 128; shuffle: False; epochs: 50; rank: 10
Ir: 0.0005; classifier Ir: 0.0005; Ir decay: 0.1
ImageNet-R  Ir: 0.01; classifier Ir: 0.01; Ir decay: 0.0; weight decay: 0.0005 (SD-LoRA)
weight decay: 0.005 (EWC-LoRA)
€ : 0.98 (InfLoRA)

optimizer: Adam; schedular: Cosine; batch size: 128; shuffle: False; epochs: 10; rank: 10
ImageNet-A  Ir: 0.0005; classifier Ir: 0.005; Ir decay: 0.1
€ : 0.98 (InfLoRA)

For the regularization strength ) in Eq.[3} we evaluated a wide range from 10* to 10'°. The trend
is illustrated in Figure [3b] of the main text. We observe that across all datasets, when using the
empirical Fisher, the best overall performance is achieved around 107. Moreover, with relatively
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smaller values of \ (e.g., 10! to 10*), performance tends to decrease initially. For all experiments,
the regularization strength )\ is set to 10”.

For the parameter -y in Algorithm [T} we set all tasks to be equally important to v = 0.9. To further
assess its effect, we evaluated the impact of « on performance using CIFAR-100. We use a single
seed for performance comparison. The results are presented in Table [8|and Figure[d In the figure,
each row shows the performance on all previously encountered tasks (x-axis) after learning the
current task (y-axis).

Table 8: Performance comparison under different values of v on CIFAR-100.

vy=09 =05 ~v=0

Ajg 87.47 88.14  86.63
Avg. 92.12 92.34  92.04
Stability 94.45 94.37  91.81
Plasticity ~ 97.99 98.33  99.07

The parameter v controls the accumulation of Fisher information across tasks in continual learning.
When v = 0, no Fisher information is carried over from previous tasks, meaning that only the Fisher
matrix of the current task is used to regularize the subsequent task. As v increases, past information
is accumulated more strongly, which can help preserve knowledge from earlier tasks. We evaluated
three settings: v = 0, 0.5, and 0.9. As shown in Table[§] the final accuracy remains relatively similar
across these settings; however, the main differences are observed in stability and plasticity. Figure[d]
further illustrates that setting -y to zero leads to a notable drop in stability, with earlier tasks suffering
more severe forgetting, whereas higher  values help maintain performance on previous tasks while
still allowing effective learning of new tasks.

100

100 100

1 1 1
W 2 % 2 g2
e 3 © 3 e 3
c 4 90 c 4 90 c 4 90
> 3 o 3 > 3
68 £68 £68
c7 80 g’ 80 c7 80
g6 2 g8
—10 —10 —10

70 70

12345678910
Performance

12345678910
Performance

12345678910
Performance

(a)y=20.9 (b)y=10.5 ©)y=0

Figure 4: Task-wise performance on CIFAR-100 under different +y settings.

A.3 ADDITIONAL EXPERIMENTS

Results Across Varied Task Length. Table[9]reports the full results of low-rank continual learning
methods under varying task lengths on ImageNet-R. For EWC-LoRA, the performance gains appear
relatively modest, likely due to the inherent domain shift in this benchmark, which may constrain
the effectiveness of regularization-based methods for continual adaptation. We further observe that
InfLoRA achieves better results on shorter sequences, whereas SD-LoRA performs more strongly
on longer sequences. Examining the accuracy matrix for longer sequences, we find that although
SD-LoRA exhibits lower stability, its higher plasticity often leads to superior final performance.
This observation suggests that model evaluation should go beyond reporting only the final accuracy.
It is also important to track performance throughout the task sequence and explicitly report both
stability and plasticity.

Task-wise Performance. Figure [5] and Figure [6] show the accuracy matrix of the LoRA-based
methods on CIFAR-100 and DomainNet. Each row corresponds to the performance on all previ-
ously encountered tasks after training on the current task. The diagonal entries correspond to the
most recently trained tasks. As expected, Finetune exhibits severe forgetting on previous tasks while
maintaining high performance on the current task, as shown in the matrix entries. On CIFAR-100,
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Table 9: Comparison results on ImageNet-R across different task lengths (in %).

Tasks | ImageNet-R (N=5) | ImageNet-R (N=20)

Methods | A Avg. (D) | A Avg. (D

Joint Train 8169(030) 8557(013) 8166(022) 8641(010)
Finetune 6926(074) 7888(031) 4706(205) 6301(056)
InfLoRA 77.37(0.30) 82.19(0.24) 6963(062) 7695(054)
SD-LoRA 7490(158) 7993(029) 72.26(0'37) 77.81(0'21)
Vanilla LoRA 7015(100) 7916(037) 5617(150) 6951(037)
EWC-LoRA | 76.3605;) 81435 | 7018, 65 77.06(0 54)

we observe that InfLoRA better preserves performance on the earliest task (first column). On Do-
mainNet, SD-LoRA adapts more effectively to new tasks. On both datasets, EWC-LoRA achieves a
more balanced trade-off between stability and plasticity compared to the other two methods.
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(a) Finetune (b) InfLoRA (c) SD-LoRA (d) EWC-LoRA

Figure 5: Task-wise performance of LoRA-based methods on CIFAR-100. Each row represents the
performance on all previously encountered tasks (x-axis) after learning the current task (y-axis).
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Figure 6: Task-wise performance of LoRA-based methods on DomainNet. Each row represents the
performance on all previously encountered tasks (x-axis) after learning the current task (y-axis).

Precomputed Fisher. As illustrated in Xiang et al|(2023) and Sliogeris et al|(2025), they use a
precomputed Fisher Information Matrix to preserve prior knowledge. Following this approach, we
evaluate performance when a Fisher Information Matrix is precomputed and used throughout the
continual learning process. Unlike these works, we do not rely on a large-scale dataset to compute
the Fisher matrix. We consider two settings: (1) Uniform parameter importance: All parameters are
assigned equal importance, i.€., Yprior in Algorithm|l|is set to a constant, and the Fisher matrix is an
identity matrix. (2) Dataset-based Fisher: The Fisher Information Matrix is computed in advance
using the entire dataset. The results are shown in Table [I[0] We observe that the uniform Fisher
exhibits lower stability, while the plasticity of both methods is similar, but still much lower than ours.
This suggests that using a precomputed, fixed Fisher imposes stronger constraints on the weights,
thereby limiting plasticity. As expected, the dataset-based Fisher achieves higher stability than the
uniform Fisher, which is reasonable since it better captures the true importance of the parameters.
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Table 10: Regularization using precomputed Fisher on CIFAR-100.

Strategy | Ao Avg.  Stability Plasticity

Uniform F =1 83.02 88.85 92.26 94.63
Dataset-based F | 83.87 89.36 93.15 94.74

Trade-off between Stability and Plasticity. To better understand how different methods balance
stability and plasticity, we introduce a trade-off metric that approximates this balance:

_2-5-P

-~ S+P
where S and P denote the Stability and Plasticity, respectively, as defined in Eq. 5] and Eq. [6}
Figure[7]illustrates the trade-off between stability and plasticity for different low-rank CL methods.
Vanilla LoRA generally achieves the highest plasticity, as it does not include mechanisms to prevent

forgetting. EWC-LoRA attains stability comparable to InfLoRA, while retaining more plasticity
than InfLoRA. Overall, EWC-LoRA achieves the best trade-off among the methods.

®)

100
[ VanillaLoRA  EEE SD-LoRA
[ InfLoRA B EWC-LoRA
95
90
85
80
75

Stability  Plasticity Trade-off

Figure 7: Trade-off between stability and plasticity.

Computation on Fisher Information Matrix. As suggested by[van de Ven|(2025)), we investigate
different methods for estimating the FIM. The results are presented in Table [I1} Here, “Exact”
indicates that the inner expectation in Eq. ] is computed exactly for each training sample. “Exact
(n=500)" denotes that the outer expectation is calculated using a subset of 500 samples from the old
training data. “Sample” indicates that the inner expectation is computed over a sampled class. The
results indicate that the optimal regularization strength varies according to the estimation method.
In general, the Exact Fisher outperforms the Empirical Fisher, requiring a smaller regularization
strength. The Sample method yields slightly better results than the Empirical Fisher.

Table 11: Different ways for estimating the Fisher matrix. Final accuracy of each variant using its
optimal strength A on CIFAR-100.

Estimation | Ao | Avg. | Best)
Exact 88.32 | 92.77 | A=10°
Exact (n=500) | 88.28 | 92.76 | A = 10°
Sample 88.10 | 92.50 | A =107
Empirical 87.91 | 92.27 | A= 107

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, the LLM was used to refine sentence structures, ensure clarity,
and improve the readability of the text.
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