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ABSTRACT

Continual Learning (CL) with large-scale pre-trained models (PTMs) has recently
gained wide attention, shifting the focus from training from scratch to continu-
ally adapting PTMs. This has given rise to a promising paradigm: parameter-
efficient continual learning (PECL), where task interference is typically mitigated
by assigning a task-specific module during training, such as low-rank adapters.
However, weight regularization techniques, such as Elastic Weight Consolidation
(EWC)—a key strategy in CL—remain underexplored in this new paradigm. In
this paper, we revisit weight regularization in low-rank CL as a new perspective
for mitigating task interference in PECL. Unlike existing low-rank CL methods,
we mitigate task interference by regularizing a shared low-rank update through
EWC, thereby keeping the storage requirement constant regardless of the number
of tasks. Moreover, we provide the first systematic investigation of EWC in low-
rank CL, showing that it achieves a better stability–plasticity trade-off than other
low-rank methods and enables competitive performance across a wide range of
trade-off points. Building on these insights, we propose EWC-LoRA, which lever-
ages a low-rank representation to estimate parameter importance over the full-
dimensional space. This design offers a practical, computational- and memory-
efficient solution for CL with PTMs, and provides insights that may inform the
broader application of regularization techniques within PECL. Extensive experi-
ments on various benchmarks demonstrate the effectiveness of EWC-LoRA. On
average, EWC-LoRA improves over vanilla LoRA by 8.92% and achieves compa-
rable or even superior performance to other state-of-the-art low-rank CL methods.

1 INTRODUCTION

Continual Learning (CL) (Parisi et al., 2019) has emerged as a rapidly growing research area, aiming
to enable machine learning systems to acquire new knowledge without forgetting previously learned
concepts. This ability plays a crucial role in addressing real-world problems (Shaheen et al., 2022;
Wang et al., 2024a) where data distributions are constantly changing. Ideally, a CL model should
maintain stable performance across all previously encountered tasks. A significant decline in per-
formance on previous tasks after learning new ones is known as catastrophic forgetting (McCloskey
& Cohen, 1989; Ratcliff, 1990), which typically arises from task interference.

With the rise of large-scale pre-trained models (PTMs) (Bommasani, 2021; Awais et al., 2025), the
research focus in CL has shifted from training models from scratch to continually adapting these
powerful models (Ostapenko et al., 2022; Yang et al., 2025). This trend is driven by the impressive
transferability and robustness of PTMs, and a growing body of work has shown promising results in
PTM-based continual adaptation. A particularly popular paradigm is parameter-efficient continual
learning (PECL) (Qiao & Mahdavi, 2024), in which the PTM is typically kept frozen and augmented
with lightweight modules such as prompts (Wang et al., 2022c; Smith et al., 2023), adapters (Ermis
et al., 2022; Gao et al., 2024), or low-rank adaptations (LoRA) (Liang & Li, 2024; Wu et al., 2025).
The predominant strategy in these works is to prevent task interference by assigning task-specific
modules during training—either structurally isolated adapters or LoRA modules, or prompts that
provide task-specific conditioning at the feature level.

On the other hand, weight regularization as a key continual learning strategy remains underexplored
in the era of continual learning with PTMs. A canonical example is Elastic Weight Consolidation
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(EWC) (Kirkpatrick et al., 2017), which has played a central role in combating catastrophic forget-
ting in small-scale models (Schwarz et al., 2018; Ehret et al., 2020). Although effective for smaller
models, EWC is difficult to apply to PTMs, as estimating parameter importance via the Fisher In-
formation Matrix (FIM) is computationally expensive, requiring storage of a frozen copy of the old
model and a Fisher matrix of equal size, resulting in a memory overhead three times that of the
original model. Several studies have attempted to apply EWC to the fine-tuning of large language
models (Xiang et al., 2023; Šliogeris et al., 2025). However, they typically fine-tune the model with
a precomputed Fisher matrix that is fixed throughout training, making them impractical for CL.

In this paper, we adopt EWC as a canonical example to study weight regularization in low-rank CL,
systematically analyzing key considerations for applying EWC within low-rank adaptations and
proposing a feasible weight-regularization-based solution for low-rank CL. First, we revisit weight
regularization in low-rank CL as a new perspective to mitigating catastrophic forgetting. Existing
low-rank CL methods assign each task an independent LoRA module, constraining updates to sub-
spaces that reduce interference with prior tasks. While effective, the addition of LoRA modules
incurs storage overhead that scales linearly with the number of tasks. In contrast, we mitigate task
interference by regularizing a shared low-rank update through EWC, rather than structurally iso-
lating task-specific parameters, thereby keeping the storage requirement constant regardless of the
number of tasks. Moreover, we provide the first systematic investigation of EWC in low-rank CL
and propose a principled method to estimate the importance of parameters in the low-rank space.
The proposed method leverages the FIM to quantify each parameter’s contribution more reliably
while mitigating task interference. We empirically show that the regularization on low-rank matri-
ces achieves a better stability–plasticity trade-off than other low-rank methods. Furthermore, the
tunability of EWC enables competitive performance across a wide range of trade-off points.

Drawing on these insights, we propose EWC-LoRA, which updates the model via low-rank adap-
tation while leveraging the full-dimensional space FIM for weight regularization. EWC-LoRA does
not explicitly fine-tune the full model or store model components for all previous tasks, thereby sig-
nificantly reducing computational and memory overhead while enabling effective Fisher estimation,
making it a resource-efficient solution for CL with PTMs. The main contributions of this work are
as follows:

• We revisit weight regularization as a new perspective for mitigating catastrophic forgetting
in low-rank CL. By exploiting the low-rank structure, we develop an efficient realization of
EWC in PTMs. Specifically, by regularizing a shared LoRA module, EWC-LoRA main-
tains a constant memory footprint regardless of the number of tasks.

• We present the first systematic investigation of EWC in low-rank CL and propose estimat-
ing the FIM over the full-dimensional space to accurately capture parameter importance.
As a result, EWC-LoRA achieves effective regularization and demonstrates a superior sta-
bility–plasticity trade-off compared to existing low-rank CL methods.

• Extensive experiments across multiple benchmarks demonstrate that EWC-LoRA is effec-
tive, improving over vanilla LoRA by an average of 8.92%, while achieving comparable or
even superior performance to state-of-the-art low-rank CL methods, with better computa-
tional and storage efficiency.

2 RELATED WORKS

Continual Learning (CL). In contrast to standard supervised learning, which assumes that train-
ing data are independent and identically distributed (i.i.d.), CL focuses on training models on data
streams that exhibit non-stationary and often continuous distribution shifts (Lesort et al., 2021).
This departure from the i.i.d. assumption introduces the central challenge of catastrophic forgetting,
where the model experiences significant performance degradation on previously learned tasks as new
tasks are introduced (McCloskey & Cohen, 1989; Ratcliff, 1990). As summarized by Van de Ven &
Tolias (2019), CL can be categorized into three main scenarios: task-incremental (Gao et al., 2023),
domain-incremental (Wang et al., 2024b), and class-incremental learning (Hersche et al., 2022).
Among these, class-incremental learning can be considered the most challenging. In this work, we
adhere to the class-incremental learning setting, where the model must learn to distinguish between
all classes encountered across all tasks without explicit task boundaries (Masana et al., 2022).
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Parameter-Efficient Continual Learning (PECL). PECL (Qiao & Mahdavi, 2024) has recently
emerged as a promising paradigm in CL. It builds upon the idea of parameter-efficient fine-
tuning (Houlsby et al., 2019; Hu et al., 2022; Jia et al., 2022), where a pre-trained model is kept
frozen and a small number of learnable parameters are introduced to adapt to new tasks. To pre-
vent task interference, existing PECL methods can be categorized into two types: (1) prompt-based
methods, which typically provide each task with task-specific prompts to condition PTMs at fea-
ture level (Wang et al., 2022c;b; Smith et al., 2023), and (2) adapter- or low-rank adaptation-based
methods, which typically insert task-specific lightweight modules during training, thereby provid-
ing isolation at the structural level (Gao et al., 2024; Liang & Li, 2024; Wu et al., 2025). Existing
PECL works thus primarily focus on introducing task-specific modules to mitigate task interference,
which often leads to increased memory and computational costs as the number of tasks grows. In
contrast, weight regularization techniques have received little attention, and it remains unclear how
they can be effectively applied in PECL—a setting that presents unique structural and optimization
challenges compared to full-model tuning. Within the context of low-rank CL, we revisit weight reg-
ularization as a means to mitigate task interference, providing insights that may inform the broader
application of regularization techniques within PECL—an area that remains underexplored in the
current literature.

Elastic Weight Consolidation (EWC). EWC (Kirkpatrick et al., 2017) mitigates catastrophic for-
getting in CL by penalizing changes to parameters that are deemed important for previous tasks, as
quantified by the Fisher Information Matrix (FIM). As a canonical example of weight regularization
techniques, EWC has inspired a series of follow-up studies that aimed to address its limitations and
broaden its applicability. For example, Huszár (2018) analyzed its behavior beyond two tasks, while
van de Ven (2025) investigated strategies for estimating the FIM in the context of CL. In the era of
PTMs, Xiang et al. (2023) apply EWC during fine-tuning of a large language model (LLM), using a
precomputed FIM to protect the knowledge acquired by the original model. Similarly, Šliogeris et al.
(2025) employ EWC in the context of LLMs, estimating the FIM on a comprehensive benchmark to
preserve domain knowledge. However, both studies rely on a precomputed FIM, which is kept fixed
throughout training, making them unsuitable for our setting. Thede et al. (2024) briefly note the con-
tinued value of regularization in the context of PTMs, but they do not examine its detailed effect and
do not combine regularization with low-rank adaptation. Wei et al. (2025) do combine EWC with
low-rank adaptation, but they separately regularize each low-rank module, causing inaccurate Fisher
estimation and suboptimal performance. Unlike prior work, we conduct a focused investigation of
EWC in PTMs-based CL. By leveraging a low-rank structure, we propose a practical approach for
adapting EWC to PTM-based CL and demonstrate its effectiveness.

3 METHODOLOGY

In this section, we review the necessary preliminaries, then discuss the structural and optimization
challenges of applying EWC to low-rank adaptation, and finally present an overview of EWC-LoRA,
highlighting its learning procedure and differences from existing low-rank CL methods.

3.1 PRELIMINARIES

Notations. In this paper, bold lowercase letters represent vectors, while bold uppercase letters
denote matrices. The superscript ⊤ indicates the transpose of a matrix, and E[·] stands for the
expectation operator. Optimal values of variables are indicated with a superscript ∗.

Problem Formulation. We start with a pre-trained model parameterized by W0 and fine-tune
it sequentially on a series of new tasks {Tt}Tt=1 with corresponding datasets {Dt}Tt=1. For each
task Tt, the model receives a batch of samples {xt

k, y
t
k}

|Dt|
k=1 drawn from C classes, where xt

k and ytk
denote the input image and its corresponding label, respectively. After completing training on Tt, the
model is evaluated on all so-far encountered tasks T1:t. The objective is to learn parameters W that
generalize well across all tasks so far, without storing any past data. With the model parameterized
by W, the training loss function at task Tt is usually defined as:

Lt(W) = − 1

|Dt|

|Dt|∑
k=1

C∑
c=1

1[yt
k=c] log pW(y = c | xt

k) (1)
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Elastic Weight Consolidation. Following (Huszár, 2018), we maintain a single penalty term
that approximates the combined effect of all previous tasks, preventing the double-counting in-
herent in the multi-penalty approach. When learning on task Tt, we approximate the posterior
p(W|D1:t−1) using the Laplace approximation (MacKay, 1992), forming a Gaussian distribution
N (W;W∗

t−1, (F
cum
t−1)

−1), where W∗
t−1 denotes the optimal parameters on task T1:t−1, and the

accumulated Fisher matrix Fcum
t−1 serves as the precision matrix, reflecting the importance of each

parameter for retaining knowledge from all previous tasks. To improve computational efficiency,
EWC assumes parameter independence and retains only the diagonal elements of the Fisher matrix.
During training on Tt, the loss function in Eq. 1 is augmented with a quadratic penalty term that
constrains important parameters to remain close to their previously learned values:

L′
t(W) = Lt(W) +

λ

2
(W −W∗

t−1)
⊤ diag(Fcum

t−1)(W −W∗
t−1) (2)

where λ is a hyperparameter that controls the relative importance of the new task compared to
the old one(s). diag(Fcum

t−1) denotes the diagonal matrix formed from the diagonal elements of
the accumulated Fisher matrix. Hereafter, unless otherwise stated, F refers to the diagonal Fisher
matrix, with the diag(·) omitted for simplicity.

Low-rank Adaptation (LoRA). When fine-tuning a model, LoRA (Hu et al., 2022) restricts
changes to the parameters to lie in a low-rank subspace. Suppose W, W0 ∈ RdO×dI are the adapted
and pre-trained weight matrix, respectively. LoRA expresses the weight update ∆W = W −W0

as the product of two learnable matrices A ∈ RdO×r and B ∈ Rr×dI , with r ≪ min(dI , dO).
Thus, the adapted weight matrix can be represented as W = W0 + ∆W = W0 + AB. During
fine-tuning, the pre-trained weights W0 are frozen and only the parameters of A and B are trainable.

3.2 EWC WITH LOW-RANK ADAPTATION

The core idea of EWC in Eq. 2 lies in the second term, which measures how far the current pa-
rameters deviate from the previously learned ones. Directly applying EWC entails fine-tuning all
parameters, as well as preserving both a frozen copy of the old model and a Fisher matrix of the same
size. However, in the case of large PTMs, this is often not feasible. To reduce the number of trainable
parameters and improve efficiency, we represent the weight update as ∆W = W −W∗

t−1 = AB
via low-rank decomposition.

To regularize low-rank matrices, a straightforward way is to compute individual Fisher matrices for
A and B, and apply regularization to each accordingly (Wei et al., 2025). However, under low-
rank parameterization, focusing solely on the individual low-rank matrices ignores the interaction
between A and B, which is problematic because each element of the update ∆W depends on their
joint product, i.e., ∆Wij =

∑r
k=1 AikBkj . In Appendix A.1.1, we mathematically prove that

regularization performed separately in the low-rank space generally diverges from that performed
in the full-dimensional space. Another way to regularize low-rank matrices is to precompute the
Fisher matrix on the pre-trained model and then apply the regularization to the update ∆W = AB
using this fixed Fisher matrix (Xiang et al., 2023). However, this estimation also includes directions
associated with the frozen W0, which can introduce noise in measuring sensitivity to the loss. This
issue is further illustrated in Appendix A.1.2.

To address the above limitations, we propose updating parameters in the low-rank space while regu-
larizing over the full-dimensional subspace of W spanned by A and B, as illustrated in Figure 1 (b).
This ensures that the penalty captures the true sensitivity of the model output to low-rank updates,
rather than merely the local gradient magnitudes. Consequently, we reformulate Eq. 2 as:

L′
t(A,B) = Lt(A,B) +

λ

2
vec(AB)⊤Fcum

t−1 vec(AB) (3)

where vec(AB) is flattened AB. This formulation enables regularization in the full-dimensional
subspace ∆W, without requiring explicit storage of vec(AB). After training on Tt, we estimate Ft

and incorporate it into the previously accumulated Fisher matrix to obtain the updated Fisher Fcum
t .

To estimate the Fisher matrix Ft at the optimal parameters W∗
t for task Tt, we follow the definition

in (Martens, 2020). Specifically, the i-th diagonal element of Ft is defined as:

F i,i
t = Ex∼Dt

[
Ey∼pW∗

t

[(
∂ log pW(y|x)

∂wi

∣∣∣∣
W=W∗

t

)2]]
(4)
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Figure 1: Overview of learning task Tt at a specific layer of the ViT model. (a) Prior low-rank CL
methods structurally isolate task-specific LoRA parameters by adding a new LoRA branch for each
task. (b) The proposed EWC-LoRA employs a shared LoRA module that is learned across all tasks
and regularized according to parameter importance measured by a Fisher Information Matrix, which
is updated after learning each task.

The outer expectation in Eq. 4 is computed over the current task dataDt, while the inner expectation
is approximated using the empirical Fisher for computational efficiency. In practice, this inner
expectation can be estimated by taking the squared gradients of the log-likelihood with respect to
W, evaluated at W∗

t . Since only the low-rank update ∆W is trainable, the gradient with respect
to W and ∆W are identical. Consequently, the Fisher matrix is effectively computed in the ∆W-
space. The equivalence between estimating the Fisher information in the W-space and in the ∆W-
space is established in Appendix A.1.3.

3.3 OVERVIEW OF EWC-LORA

Figure 1 illustrates the difference between EWC-LoRA and existing state-of-the-art low-rank CL
methods, in the context of learning task Tt at a specific layer of the Vision Transformer (ViT).
For task Tt, we initialize the shared LoRA branch, and the forward computation is given by: f =
Wt−1x +ABx. Specifically, A is zero-initialized, while B is drawn from a uniform distribution.
During training on Tt, only A and B are updated, while the base weights Wt−1 keep frozen. After
completing task Tt, the learned parameters are integrated to the base weight as Wt = Wt−1+AB.
For any sample from a previous task, the forward computation becomes f = Wtx. During training,
the update of the low-rank matrices A and B are regularized using the accumulated Fisher matrix
Fcum

t−1 from step t − 1. Accordingly, EWC-LoRA maintains only two states after learning step t:
(1) the updated model parameters Wt obtained from the current task Tt, and (2) the accumulated
Fisher matrix Fcum

t , a diagonal matrix that aggregates information from all previous tasks T1:t. The
dataset Dt and the task-specific Fisher matrix Ft can then be discarded. For clarity, we outline the
learning procedure of EWC-LoRA in Algorithm 1, provided in Appendix A.2.1.

4 EXPERIMENTS

4.1 BENCHMARKS

Datasets. In line with existing continual learning methods (Liang & Li, 2024; Wu et al., 2025), we
evaluate the performance of EWC-LoRA across four widely used continual learning benchmarks.
They are CIFAR-100 (Krizhevsky et al., 2009), DomainNet (Peng et al., 2019; Wang et al., 2022a),
ImageNet-R (Hendrycks et al., 2021a; Wang et al., 2022b), and ImageNet-A (Hendrycks et al.,
2021b). CIFAR-100 consists of 100 natural image classes and is the most commonly used dataset
in continual learning. DomainNet includes 345 classes across six diverse visual domains, making it
a challenging multi-domain benchmark. ImageNet-R contains 200 ImageNet classes (Deng et al.,
2009) rendered with various artistic styles, introducing significant distribution shifts. ImageNet-A
consists of 200 natural adversarial examples that are frequently misclassified by standard ImageNet-
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trained models. We follow the mostly used task splits for continual learning benchmarks: CIFAR-
100 is divided into 10 tasks (10 classes per task); DomainNet into 5 tasks (69 classes per task);
ImageNet-A into 10 tasks (20 classes each); ImageNet-R into 5, 10, and 20 tasks (with 40, 20, and
10 classes per task, respectively).

Evaluation metrics. We adopt accuracy as our evaluation metric, in line with standard prac-
tice (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019). Let At,i denote the classification accuracy
on the i-th task after training on the t-th task. The average accuracy at learning step t is defined as:
At =

1
t

∑t
i=1 At,i. The overall average accuracy is then computed as the mean of all intermediate

averages: Avg. = 1
T

∑T
t=1 At, where T is the total number of tasks.

To further analyze a model’s stability and plasticity and to enable intuitive comparisons across tasks,
we propose measuring each metric on a normalized scale. Specifically, the stability score is defined
as one minus the normalized forgetting:

Stability = 1− F = 1− 1

T − 1

T−1∑
i=1

maxt<T At,i −AT,i

maxt<T At,i
(5)

where normalized forgetting F represents the relative drop in a task’s performance from its peak to
the end of continual learning. For each task i, plasticity is defined as the ratio between the model’s
performance on the task after learning it and the corresponding reference performance. The overall
plasticity is defined as:

Plasticity =
1

T

T∑
i=1

Ai,i

Aref
i,i

(6)

where Aref
i,i denotes the accuracy obtained by fine-tuning a model exclusively on task i. This normal-

ization facilitates intuitive comparison across tasks and methods.

Implementation details. Following prior works (Wang et al., 2022c; Smith et al., 2023; Liang &
Li, 2024), we adopt the ViT-B/16 backbone (Dosovitskiy et al., 2020) pretrained on ImageNet-21K
in a supervised manner as the initialization for all models. To facilitate comparison, all methods
are implemented within a unified framework. We align the experimental setup with that of In-
fLoRA (Liang & Li, 2024), fine-tuning the model with the Adam optimizer using hyperparameters
β1 = 0.9, β2 = 0.999. For each comparison method, we report the best results using the hyper-
parameters provided by the authors whenever available. In cases where such configurations are not
released, we apply a unified set of hyperparameters that has been validated to perform reliably across
all methods, ensuring consistency in our experimental setup. To better contextualize performance,
we report both an upper target (Joint Train) and a lower target (Finetune). The upper target jointly
trains on all tasks, while the lower target sequentially trains on tasks without any forgetting miti-
gation. For all experiments, we perform five runs with different seeds and report the average and
standard deviation of the results.

4.2 MAIN RESULTS

Comparison with Various CL Baselines. We benchmark EWC-LoRA against state-of-the-art
PTM-based continual learning methods, including the prompt-based methods L2P (Wang et al.,
2022c), DualPrompt (Wang et al., 2022b), and CODA-Prompt (Smith et al., 2023), as well as the
LoRA-based methods InfLoRA (Liang & Li, 2024) and SD-LoRA (Wu et al., 2025). We report
results on 10 sequential tasks for CIFAR-100, ImageNet-R, and ImageNet-A, and on 5 tasks for
DomainNet. The results are summarized in Table 1. We observe that EWC-LoRA achieves the
highest final accuracy on three out of four datasets. On average, across all four datasets, EWC-
LoRA outperforms vanilla LoRA by a substantial margin of +8.92%. EWC-LoRA even surpasses
other LoRA-based methods that use task-specific low-rank modules, highlighting its effectiveness.
Figure 2 illustrates the task-wise performance of LoRA-based methods. We observe that EWC-
LoRA consistently outperforms other methods throughout the entire task sequence on most datasets,
while also exhibiting lower standard deviations, indicating greater stability.

6
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Table 1: Comparison results on CIFAR-100, DomainNet, ImageNet-R, and ImageNet-A (in %).
Bold and underline indicate the highest and second-highest scores, respectively.

Tasks CIFAR-100 DomainNet ImageNet-R ImageNet-A

Methods A10 (↑) Avg. (↑) A5 (↑) Avg. (↑) A10 (↑) Avg. (↑) A10 (↑) Avg. (↑)
Joint Train 92.82(0.20) 95.41(0.05) 76.84(0.06) 81.25(0.05) 81.69(0.28) 86.25(0.09) 65.01(0.74) 74.10(0.44)
Finetune 79.09(1.53) 88.17(0.45) 65.57(0.20) 75.12(0.12) 60.42(1.64) 73.18(0.32) 32.85(1.53) 54.55(1.44)
L2P 83.18(1.20) 87.69(1.05) 70.26(0.25) 75.83(0.98) 71.26(0.44) 76.13(0.46) 42.94(1.27) 51.40(1.95)
DualPrompt 81.48(0.86) 86.41(0.66) 68.26(0.90) 73.84(0.45) 68.22(0.20) 73.81(0.39) 45.49(0.96) 54.68(1.24)
CODA-Prompt 86.31(0.12) 90.67(0.22) 70.58(0.53) 76.68(0.44) 74.05(0.41) 78.14(0.39) 45.36(0.78) 57.03(0.94)
InfLoRA 86.34(0.76) 91.33(0.48) 71.01(0.05) 77.75(0.03) 74.41(0.63) 80.31(0.60) 50.75(1.33) 64.36(1.01)
SD-LoRA 86.77(0.30) 90.96(0.30) 71.27(0.14) 77.70(0.07) 72.93(2.76) 79.80(0.15) 55.23(0.94) 66.10(0.54)

Vanilla LoRA 82.99(0.84) 89.74(0.58) 69.79(0.11) 77.44(0.08) 64.87(0.73) 75.57(0.23) 40.01(1.32) 58.28(0.85)
EWC-LoRA 87.91(0.57) 92.27(0.39) 73.46(0.16) 79.58(0.10) 72.86(0.79) 78.95(0.86) 59.89(0.26) 68.33(0.67)
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Figure 2: Task-wise performance comparison of different methods across various datasets.

Analysis on Stability and Plasticity. We evaluated both stability and plasticity for different low-
rank CL methods across the four datasets. Stability reflects the ability of the model to retain pre-
viously learned knowledge, while plasticity measures its ability to adapt to new tasks. The results
are reported in Table 2. As expected, Vanilla LoRA typically exhibits the highest plasticity but
the lowest stability, since it employs no strategy to mitigate catastrophic forgetting. We observe
that InfLoRA emphasizes stability, while SD-LoRA favors plasticity. On CIFAR-100, EWC-LoRA
matches InfLoRA in stability while achieving higher plasticity; on ImageNet-A, it matches SD-
LoRA in plasticity while providing greater stability. On DomainNet and ImageNet-R, while other
methods struggle to balance stability and plasticity, EWC-LoRA can achieve this trade-off effec-
tively by tuning the regularization strength λ.

Table 2: Stability (↑) and plasticity (↑) scores of different low-rank CL methods, reflecting how well
each model retains previous knowledge and adapts to new tasks. We report the normalized form of
the two metrics, which is independent of the absolute performance on the dataset.

Tasks CIFAR-100 DomainNet ImageNet-R ImageNet-A
Methods Stability Plasticity Stability Plasticity Stability Plasticity Stability Plasticity

Vanilla LoRA 87.56(0.09) 98.86(0.09) 81.29(0.34) 97.94(0.16) 78.63(1.38) 99.57(0.35) 85.56(1.82) 97.56(0.77)
InfLoRA 94.84(0.52) 95.80(1.00) 83.80(0.37) 97.34(0.29) 92.69(0.77) 97.33(0.46) 88.63(3.39) 72.69(3.13)
SD-LoRA 91.85(0.60) 98.24(0.25) 82.45(0.19) 98.69(0.15) 91.78(0.90) 95.61(0.32) 88.61(1.05) 92.13(2.77)
EWC-LoRA 94.45(0.59) 97.99(0.50) 91.51(0.36) 93.83(0.23) 95.62(0.42) 93.23(0.34) 89.52(1.14) 92.78(1.91)

Specifically, for the results in Table 1 and 2, a unified regularization strength is used across datasets.
With λ = 107, EWC-LoRA consistently achieves a favorable balance between stability and plas-
ticity, without requiring dataset-specific tuning. To explore the trade-off between the two metrics,
we show stability–plasticity curves for different values of the regularization strength, as illustrated
in Figure 3a. Unlike other methods that typically exhibit fixed performance, EWC-LoRA provides
a clear and controllable trade-off: smaller λ promotes plasticity at the cost of stability, while larger
values enhance stability but reduce plasticity. This tunability enables EWC-LoRA to achieve com-
petitive or superior performance across a wide range of trade-off points, demonstrating its robustness
and adaptability. We also note that even when different methods achieve similar average accuracy,
they can differ substantially in terms of stability and plasticity. This suggests that CL model evalua-
tion should place greater emphasis on explicitly reporting stability and plasticity metrics.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

80 84 88 92 96
Stability

90

92

94

96

98

100

Pl
as

tic
ity

CIFAR-100
DomainNet
ImageNet-R

Vanilla LoRA
InfLoRA
SDLoRA

(a) Stability–Plasticity curves.

101 104 107 1010

82

84

86

88

90

Ac
cu

ra
cy

 (%
)

CIFAR-100
Vanilla LoRA

101 104 107 1010

68

70

72

74

Ac
cu

ra
cy

 (%
)

DomainNet
Vanilla LoRA

(b) Performance across a range of regularization strengths λ.

Figure 3: (a) Stability–Plasticity curves illustrating the trade-off between retaining previous knowl-
edge and learning new tasks. (b) Performance across a range of regularization strengths λ on CIFAR-
100 and DomainNet, showing the effect of λ on accuracy.

Memory footprint and training time. The additional memory and computational cost of EWC-
LoRA compared to Vanilla LoRA comes only from the FIM. After each learning step, the LoRA
parameters are merged into the backbone, so the total parameter size matches that of the pre-trained
model. As a result, only one shared LoRA is required for new tasks, and the memory footprint
remains constant regardless of the number of tasks. In contrast, other low-rank CL methods require
either maintaining separate LoRA parameters for each task or performing more complex computa-
tions, leading to a linear increase in memory usage and training time, or to higher computational
cost as the number of tasks grows. EWC-LoRA incurs modest memory overhead during training
while improving computational efficiency, achieving comparable or even superior performance.

Table 3: Comparison of different methods in terms of memory cost and training time. Memory
usage is measured on the Quadro RTX 6000 GPU with a batch size of 128. Training time is reported
as the average time required to train a single task.

Methods Memory CIFAR-100 DomainNet ImageNet-R ImageNet-A

Vanilla LoRA ∼ 18 GB 10m22s ± 7s 32m8s ± 44s 13m32s ± 105s 0m55s ± 21s
InfLoRA ∼ 20 GB 11m9s ± 4s 42m25s ± 68s 14m33s ± 107s 1m16s ± 22s
SD-LoRA ∼ 37 GB 12m16s ± 86s 34m18s ± 160s 22m53s ± 232s 1m56s ± 36s
EWC-LoRA ∼ 24 GB 10m31s ± 3s 33m10s ± 50s 13m42s ± 104s 0m55s ± 21s

The memory cost and training time are reported in Table 3. Memory usage is measured on two
Quadro RTX 6000 GPUs with a batch size of 128. Training time is recorded as the average duration
to train a single task, presented along with the standard deviation. Notably, the training time of
EWC-LoRA is nearly identical to that of Vanilla LoRA, demonstrating that the additional computa-
tions introduced by Fisher estimation in the low-rank space incur only minimal overhead.

4.3 ABLATION STUDY

Results Across Varied Task Lengths. We further examine the performance of different low-rank
CL methods under varying task lengths. As a complementary study to Table 1, we split CIFAR-
100 and ImageNet-R into 5-task and 20-task sequences, respectively. As reported in Table 4, the
improvement is most evident on CIFAR-100, where EWC-LoRA achieves the highest overall accu-
racy among all methods. In contrast, the gains on ImageNet-R are more moderate, which may be
attributed to the domain shift in ImageNet-R, potentially limiting the effectiveness of regularization-
based approaches for continual adaptation. Additional results are provided in the Appendix A.3.

Ablation on Regularization Strength λ. We evaluate performance under varying values of the
regularization strength λ, ranging from 10 to 1010. The results are presented in Figures 3b. We
use empirical Fisher in all experiments. From the figures, we observe that setting λ to 107 allows
EWC-LoRA to consistently achieve favorable performance in terms of accuracy, stability, and plas-
ticity. This suggests that an appropriate balance between stability and plasticity can be effectively
maintained without fine-grained tuning. This finding facilitates the use of a unified regularization
strength across datasets, eliminating the need for dataset-specific tuning.
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Table 4: Final accuracy on CIFAR-100 and
ImageNet-R for task lengths of 5 and 20 tasks.

Tasks CIFAR-100 ImageNet-R

Methods A5 A20 A5 A20

Vanilla LoRA 87.15 74.78 70.15 56.17
InfLoRA 89.45 81.77 77.37 69.63
SD-LoRA 89.15 83.57 74.90 72.26
EWC-LoRA 89.98 85.46 76.36 70.18

Table 5: Best performance with Exact Fisher
(500 random samples) and Empirical Fisher.

Estimation Exact (n=500) Empirical

A10 88.28 87.91
Avg. 92.76 92.27
Best λ λ = 105 λ = 107

Training Time ∼ 14m ∼ 11m
Memory Cost ∼ 20 GB ∼ 24GB

Estimation of Fisher Information Matrix. In the context of low-rank adaptation, we examine
the trade-off between performance and the computational cost of estimating the Fisher Information
Matrix, as discussed by van de Ven (2025). In general, the Exact Fisher outperforms the Empirical
Fisher, requiring a smaller regularization strength. From a computational perspective, computing
the Exact Fisher on a small batch of data yields superior results compared to the Empirical Fisher
while significantly reducing computational overhead. We use 500 randomly selected samples to
estimate the Exact Fisher, and the comparison results are shown in Table 5. We report both the
training time for a single task and the corresponding memory usage. Additional results comparing
different strategies for estimating the Fisher matrix are provided in Appendix A.3.

Different Fisher Estimation Strategies. We compare three different Fisher estimation strategies,
based on the discussion in Section 3.2. “Precomputed FW” refers to using a precomputed FIM in
full parameter space W to preserve prior knowledge. Instead of estimating over a large-scale dataset,
we consider a dataset-based Fisher, computed using the entire dataset that will be learned sequen-
tially. “Separate FA,FB” denotes estimating the Fisher separately for the low-rank matrices and
regularizing them accordingly, while “F∆W” denotes estimating the Fisher in the full-dimensional
space as W. The results are shown in Table 6. We observe that the precomputed Fisher results in the
lowest plasticity, which may be caused by undesirable sensitivity arising from the frozen weights.
Moreover, applying separate regularization in the low-rank space also improves performance but has
noticeable drawbacks in terms of plasticity. This may be due to the joint contribution of the low-rank
factors, which imposes stronger constraints on the parameters.

Table 6: Comparison of different Fisher estimation strategies on CIFAR-100. “+ Mem.” indicates
the additional memory required for Fisher estimation and regularization during training.

Strategy A10 Avg. Stability Plasticity + Mem.

w/o F 82.99(0.84) 89.74(0.58) 87.56(0.09) 98.86(0.09) 0 GB
Precomputed FW 83.87(0.21) 89.36(0.49) 93.15(0.45) 94.74(0.56) 1 GB
Separate FA,FB 86.41(0.69) 91.33(0.50) 94.23(0.46) 96.47(0.21) 4 GB
F∆W (Ours) 87.91(0.57) 92.27(0.39) 94.45(0.59) 97.99(0.50) 6 GB

5 CONCLUSION AND DISCUSSION

In this work, we revisit weight regularization in low-rank continual learning (CL) as a means to
mitigate catastrophic forgetting. Using Elastic Weight Consolidation (EWC) as a canonical example,
we discuss the main considerations about applying regularization in the low-rank space and propose
EWC-LoRA, a computational- and memory-efficient solution for low-rank CL with large pre-trained
models. This work aims to offer insights that may guide the broader application of regularization
techniques in parameter-efficient continual learning.

A key limitation of regularization-based low-rank CL methods is their sensitivity to dataset com-
plexity. When combined with regularization techniques, it is important to carefully allocate the
low-rank learnable space for each task. This sensitivity also helps explain why, on ImageNet-R,
EWC-LoRA shows lower plasticity than methods based on task-specific modules. Consequently, a
promising direction for future work is to investigate the performance of regularization techniques in
domain-incremental settings and on more complex continual learning tasks.
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6 REPRODUCIBILITY STATEMENT

The theoretical analysis and complete proofs of the main results are provided in Appendix A.1.
The implementation details of our method, including model architecture, training procedures, and
hyperparameters, are described in Section 3 of the main paper and Appendix A.2. All datasets used
in our experiments are publicly available. The source code for reproducing results is available in the
supplementary materials.
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A APPENDIX

A.1 THEORETICAL ANALYSIS

Setup. In low-rank adaptation, the adapted weight matrix W ∈ RdO×dI is reparameterized as
W = W0 +∆W = W0 +AB, where W0 denotes the pre-trained weight, which remains frozen
during fine-tuning. The trainable parameters are the low-rank matrices A ∈ RdO×r and B ∈ Rr×dI ,
such that ∆W = AB is the only trainable update to the model. Note that the learned LoRA modules
on the previous task are merged back into the base weights before starting the new task. The optimal
weight matrix is indicated as W∗.

A.1.1 REGULARIZATION UNDER DIFFERENT PARAMETERIZATIONS

Proposition 1. Let ∆W ∈ RdO×dI be a model parameter matrix factorized as ∆W = AB, with
A ∈ RdO×r, B ∈ Rr×dO . Define the EWC regularization term in the full-space as RW, and in the
low-rank parameter space asRA,B. Under general conditions,R∆W ̸≡ RA,B.

Proof. Let vec(·) denote the vectorization operator, and ⊗ the Kronecker product. The following
identity holds:

vec(AB) = (B⊤ ⊗ IdO
) vec(A) = (IdI

⊗A) vec(B)

For simplicity, we define a = vec(A) ∈ RdOr, b = vec(B) ∈ RrdI . Define the Jacobians:

JA(B) := B⊤ ⊗ IdO
∈ RdOdI×dOr, JB(A) := IdI

⊗A ∈ RdOdI×rdI

By the standard vectorization identity:

vec(∆W) = JA(B)a = JB(A)b

The Fisher Information Matrix estimated in the full-dimensional space is defined as:

FW = Ex∼D
[
vec(∇WL) vec(∇WL)⊤

]
Although the full-space regularization RW can be expressed equivalently using either the A or
B Jacobian, the update directions for A and B remain coupled. Thus, we consider a first-order
approximation of vec(∆W) as a function of both a and b:

vec(∆W) ≈ JA(B)∆a+ JB(A)∆b

The EWC regularization term in the full-space is defined as:

RW =
1

2
(vec(W)− vec(W∗))⊤FW(vec(W)− vec(W∗))

=
1

2
vec(∆W)⊤FW vec(∆W)

=
1

2
∆a⊤JA(B)⊤FWJA(B)∆a+

1

2
∆b⊤JB(A)⊤FWJB(A)∆b

+ ∆a⊤JA(B)⊤FWJB(A)∆b

If Fisher regularization is applied separately to A and B, we have two Fisher matrices:

FA = Ex∼D
[
vec(∇AL) vec(∇AL)⊤

]
FB = Ex∼D

[
vec(∇BL) vec(∇BL)⊤

]
By the chain rule, the gradients in low-rank factor space are related to the full-space gradient by:

∇AL =
∂L
∂W

· ∂W
∂A

= ∇WLJA(B)⊤

∇BL =
∂L
∂W

· ∂W
∂B

= JB(A)⊤∇WL
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Hence, the Fisher Information Matrices can be expressed as:

FA ≈ JA(B)⊤FWJA(B), FB ≈ JB(A)⊤FWJB(A)

The EWC regularization term in the low-rank parameter space is defined as:

RA,B =
1

2
∆a⊤FA∆a+

1

2
∆b⊤FB∆b

The regularization term RA,B captures independent penalties in the factor space. Unless the cross-
covariance term FA,B is explicitly computed and retained, the interaction between A and B is
ignored. Consequently, the two regularizations cannot be equal, except in special cases such as
when only A or B is updated. In contrast, estimating FW in the full-dimensional space avoids this
issue and captures the true sensitivity of the model to perturbations. Therefore, regularization in
the full space better preserves the true geometry and parameter importance induced by the low-rank
update, providing a more faithful and effective constraint on A and B.

A.1.2 FISHER INFORMATION CONSISTENCY WITH THE TRAINABLE PARAMETER SPACE

Proposition 2. Consider a parameterization:

W = W0 +AB

where W0 is fixed and only A,B are trainable. Let

θ =

[
vec(A)
vec(B)

]
, w = vec(W).

Then, the Fisher Information Matrix with respect to θ satisfies

Fθ = J⊤FWJ,

where FW is the Fisher Information Matrix with respect to w, and J = ∂w/∂θ is the Jacobian of
the reparameterization.

Proof. Let L(W) denote the loss (negative log-likelihood). By the chain rule,

∇θL = J⊤∇WL

The Fisher Information Matrix with respect to θ is defined as:

Fθ = E
[
∇θ log p ∇θ log p

⊤ ]
Substituting the chain rule,

Fθ = E
[
(J⊤∇w log p)(J⊤∇w log p)⊤

]
= J⊤ E

[
∇w log p ∇w log p⊤

]
J.

The term inside the expectation is precisely the Fisher Information Matrix with respect to w, denoted
FW. Hence we have:

Fθ = J⊤FWJ (7)

The Jacobian structure has been illustrated in Proposition 1. The Fisher Information Matrix is
fundamentally an estimation of the curvature of the loss function with respect to the trainable pa-
rameters. Eq. 7 shows that the correct Fisher matrix for θ is obtained by projecting FW into the
subspace spanned by A and B via J. Computing FW directly in the full parameter space W in-
troduces directions corresponding to the frozen W0, which are irrelevant for training. Thus, Fisher
should be consistently defined in the trainable subspace.

14
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A.1.3 CONSTRAINING LOW-RANK UPDATES VIA FULL-SPACE FISHER REGULARIZATION

Proposition 3. Let the adapted weight matrix be: W = W0 + ∆W = W0 + AB, where W0

denotes the frozen pre-trained weights and ∆W = AB is the low-rank update. Then, the empirical
Fisher Information Matrix F∆W is estimated by the squared gradients of the log-likelihood with
respect to W. Consequently, the Fisher regularization on ∆W induces constraints on the update
directions of the low-rank factors A and B.

Proof. Since W0 is constant and only ∆W is trainable, the loss function L depends on W only
through ∆W. Therefore, the gradients satisfy ∇WL = ∇∆WL, because ∂∆W/∂W = I. Let
FW denote the empirical Fisher Information Matrix estimated over weight matrix W:

FW = Ex∼D
[
vec(∇WL) vec(∇WL)⊤

]
Using the gradient equivalence above, the Fisher matrix in the ∆W space is identical:

F∆W = Ex∼D
[
vec(∇∆WL) vec(∇∆WL)⊤

]
= FW

For notational simplicity, we omit the vec(·) operator and treat W as a vectorized parameter. The
Fisher regularization term can be defined as:

RW =
1

2
(W −W∗)⊤FW(W −W∗) =

1

2
∆W⊤F∆W∆W

The gradients ofRW with respect to A and B are:

∇ARW = ∇∆WRW ·B⊤ = F∆W∆W ·B⊤

∇BRW = A⊤ · ∇∆WRW = A⊤ · F∆W∆W

with:

∇∆WRW = F∆W∆W

Therefore, by propagating the gradient through the low-rank decomposition ∆W = AB, the Fisher
regularization over ∆W imposes a constraint on the update directions of the low-rank factors.

A.2 IMPLEMENTATION DETAILS

This section provides additional details on the method described in Section 3 and the experimental
setup in Section 4 of the main text. In particular, we present the algorithm of EWC-LoRA and
discuss the effects of hyperparameters, accompanied by additional ablation studies.

A.2.1 OPTIMIZATION ALGORITHMS

Algorithm 1 outlines the learning procedure of EWC-LoRA across tasks T1 to TT . At each task, the
model is updated via low-rank adaptation while incorporating EWC regularization computed from
the Fisher Information Matrix. Unlike prior methods that assign task-specific modules, EWC-LoRA
regularizes a shared LoRA, thereby maintaining constant memory cost. For clarity, the key equation
referenced in the main text is restated here.

L′
t(A,B) = Lt(A,B) +

λ

2
vec(AB)⊤Fcum

t−1 vec(AB) (3)

where vec(AB) is flattened AB. Fcum
t denotes the accumulated Fisher matrix obtained from task

Tt−1. λ is the regularization strength.

15
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Algorithm 1: The learning procedure of EWC-LoRA.

Input: A sequence of tasks {Tt}Tt=1 with datasets {Dt}Tt=1; A frozen pre-trained model with
parameters W0 ∈ RdO×dI ; Low-rank adaptation matrices A ∈ RdO×r and B ∈ Rr×dI , with
rank r; Task decay factor γt = 0.9, ∀t = 1, . . . , T .

Output: Adapted model parameters WT ∈ RdO×dI that generalize across all tasks {Tt}Tt=1.

Initialize accumulated Fisher Information Matrix: Fcum
0 ← γprior · I ; // 0 if no prior

for t = 1 to T do
Step 1: Initialize A← 0, B← U(a, b)
Step 2: Low-rank adaptation on current task Tt: A∗,B∗ ← Eq. 3 ;

Step 3: Fisher estimation for Tt;
1. Get gradient∇WL on the full-dimensional space ;

2. Compute diagonal entries of Fisher matrix: F i,i
t ≈ 1

|Dt|
∑

(x,y)∈Dt

(
∂ log pW∗

t
(y|x)

∂wi

)2

;

3. Update accumulated Fisher Information Matrix: Fcum
t ← γt · Fcum

t−1 + Ft;

Step 4: Integrate low-rank parameter: Wt = Wt−1 + A∗B∗;

Step 5: Discard task-specific dataset Dt and Fisher matrix Ft.

A.2.2 HYPERPARAMETERS

We follow the training configurations specified by the authors in the original papers. When such
configurations are not available, we adopt a unified set of hyperparameters that has been validated
to perform reliably across methods, thereby ensuring consistency in our experimental setup. In all
experiments, we use the Adam optimizer with β1 = 0.9 and β2 = 0.99. The number of training
epochs depends on the specific dataset, and the training batch size is set to 128. No shuffling is
applied during training; however, we verified that enabling shuffling generally leads to improved
results. Table 7 summarizes the hyperparameters used during training, with method-specific param-
eters highlighted for each respective approach.

Table 7: Hyperparameters for different benchmarks and methods. “lr” denotes learning rate. For
the parameter ϵ, we refer readers to Liang & Li (2024) for details.

Datasets Methods

CIFAR-100

optimizer: Adam; schedular: Cosine; batch size: 128; shuffle: False; epochs: 20; rank: 10
lr: 0.0005; classifier lr: 0.005; lr decay: 0.1
lr: 0.008; classifier lr: 0.008; lr decay: 0.1 (SD-LoRA)
ϵ : 0.95 (InfLoRA)

DomainNet

optimizer: Adam; schedular: Cosine; batch size: 128; shuffle: False; epochs: 5; rank: 30
lr: 0.0005; classifier lr: 0.005; lr decay: 0.1
lr: 0.02; classifier lr: 0.02; lr decay: 0.0 (SD-LoRA)
ϵ : 0.95 (InfLoRA)

ImageNet-R

optimizer: Adam; schedular: Cosine; batch size: 128; shuffle: False; epochs: 50; rank: 10
lr: 0.0005; classifier lr: 0.0005; lr decay: 0.1
lr: 0.01; classifier lr: 0.01; lr decay: 0.0; weight decay: 0.0005 (SD-LoRA)
weight decay: 0.005 (EWC-LoRA)
ϵ : 0.98 (InfLoRA)

ImageNet-A
optimizer: Adam; schedular: Cosine; batch size: 128; shuffle: False; epochs: 10; rank: 10
lr: 0.0005; classifier lr: 0.005; lr decay: 0.1
ϵ : 0.98 (InfLoRA)

For the regularization strength λ in Eq. 3, we evaluated a wide range from 101 to 1010. The trend
is illustrated in Figure 3b of the main text. We observe that across all datasets, when using the
empirical Fisher, the best overall performance is achieved around 107. Moreover, with relatively
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smaller values of λ (e.g., 101 to 104), performance tends to decrease initially. For all experiments,
the regularization strength λ is set to 107.

For the parameter γ in Algorithm 1, we set all tasks to be equally important to γ = 0.9. To further
assess its effect, we evaluated the impact of γ on performance using CIFAR-100. We use a single
seed for performance comparison. The results are presented in Table 8 and Figure 4. In the figure,
each row shows the performance on all previously encountered tasks (x-axis) after learning the
current task (y-axis).

Table 8: Performance comparison under different values of γ on CIFAR-100.

γ = 0.9 γ = 0.5 γ = 0

A10 87.47 88.14 86.63
Avg. 92.12 92.34 92.04
Stability 94.45 94.37 91.81
Plasticity 97.99 98.33 99.07

The parameter γ controls the accumulation of Fisher information across tasks in continual learning.
When γ = 0, no Fisher information is carried over from previous tasks, meaning that only the Fisher
matrix of the current task is used to regularize the subsequent task. As γ increases, past information
is accumulated more strongly, which can help preserve knowledge from earlier tasks. We evaluated
three settings: γ = 0, 0.5, and 0.9. As shown in Table 8, the final accuracy remains relatively similar
across these settings; however, the main differences are observed in stability and plasticity. Figure 4
further illustrates that setting γ to zero leads to a notable drop in stability, with earlier tasks suffering
more severe forgetting, whereas higher γ values help maintain performance on previous tasks while
still allowing effective learning of new tasks.
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(a) γ = 0.9
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(b) γ = 0.5

1 2 3 4 5 6 7 8 9 10
Performance

1
2
3
4
5
6
7
8
9

10Le
ar

ni
ng

 o
n 

Ta
sk

70

80

90

100

(c) γ = 0

Figure 4: Task-wise performance on CIFAR-100 under different γ settings.

A.3 ADDITIONAL EXPERIMENTS

Results Across Varied Task Length. Table 9 reports the full results of low-rank continual learning
methods under varying task lengths on ImageNet-R. For EWC-LoRA, the performance gains appear
relatively modest, likely due to the inherent domain shift in this benchmark, which may constrain
the effectiveness of regularization-based methods for continual adaptation. We further observe that
InfLoRA achieves better results on shorter sequences, whereas SD-LoRA performs more strongly
on longer sequences. Examining the accuracy matrix for longer sequences, we find that although
SD-LoRA exhibits lower stability, its higher plasticity often leads to superior final performance.
This observation suggests that model evaluation should go beyond reporting only the final accuracy.
It is also important to track performance throughout the task sequence and explicitly report both
stability and plasticity.

Task-wise Performance. Figure 5 and Figure 6 show the accuracy matrix of the LoRA-based
methods on CIFAR-100 and DomainNet. Each row corresponds to the performance on all previ-
ously encountered tasks after training on the current task. The diagonal entries correspond to the
most recently trained tasks. As expected, Finetune exhibits severe forgetting on previous tasks while
maintaining high performance on the current task, as shown in the matrix entries. On CIFAR-100,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Comparison results on ImageNet-R across different task lengths (in %).

Tasks ImageNet-R (N=5) ImageNet-R (N=20)

Methods A5 (↑) Avg. (↑) A20 (↑) Avg. (↑)
Joint Train 81.69(0.30) 85.57(0.13) 81.66(0.22) 86.41(0.10)
Finetune 69.26(0.74) 78.88(0.31) 47.06(2.05) 63.01(0.56)
InfLoRA 77.37(0.30) 82.19(0.24) 69.63(0.62) 76.95(0.54)
SD-LoRA 74.90(1.58) 79.93(0.29) 72.26(0.37) 77.81(0.21)

Vanilla LoRA 70.15(1.00) 79.16(0.37) 56.17(1.50) 69.51(0.37)
EWC-LoRA 76.36(0.21) 81.43(0.13) 70.18(1.06) 77.06(0.54)

we observe that InfLoRA better preserves performance on the earliest task (first column). On Do-
mainNet, SD-LoRA adapts more effectively to new tasks. On both datasets, EWC-LoRA achieves a
more balanced trade-off between stability and plasticity compared to the other two methods.

1 2 3 4 5 6 7 8 9 10
Performance

1
2
3
4
5
6
7
8
9

10Le
ar

ni
ng

 o
n 

Ta
sk

70

80

90

100

(a) Finetune
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(b) InfLoRA
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(c) SD-LoRA
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(d) EWC-LoRA

Figure 5: Task-wise performance of LoRA-based methods on CIFAR-100. Each row represents the
performance on all previously encountered tasks (x-axis) after learning the current task (y-axis).
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(a) Finetune
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(b) InfLoRA
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(c) SD-LoRA
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(d) EWC-LoRA

Figure 6: Task-wise performance of LoRA-based methods on DomainNet. Each row represents the
performance on all previously encountered tasks (x-axis) after learning the current task (y-axis).

Precomputed Fisher. As illustrated in Xiang et al. (2023) and Šliogeris et al. (2025), they use a
precomputed Fisher Information Matrix to preserve prior knowledge. Following this approach, we
evaluate performance when a Fisher Information Matrix is precomputed and used throughout the
continual learning process. Unlike these works, we do not rely on a large-scale dataset to compute
the Fisher matrix. We consider two settings: (1) Uniform parameter importance: All parameters are
assigned equal importance, i.e., γprior in Algorithm 1 is set to a constant, and the Fisher matrix is an
identity matrix. (2) Dataset-based Fisher: The Fisher Information Matrix is computed in advance
using the entire dataset. The results are shown in Table 10. We observe that the uniform Fisher
exhibits lower stability, while the plasticity of both methods is similar, but still much lower than ours.
This suggests that using a precomputed, fixed Fisher imposes stronger constraints on the weights,
thereby limiting plasticity. As expected, the dataset-based Fisher achieves higher stability than the
uniform Fisher, which is reasonable since it better captures the true importance of the parameters.
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Table 10: Regularization using precomputed Fisher on CIFAR-100.

Strategy A10 Avg. Stability Plasticity

Uniform F = I 83.02 88.85 92.26 94.63
Dataset-based F 83.87 89.36 93.15 94.74

Trade-off between Stability and Plasticity. To better understand how different methods balance
stability and plasticity, we introduce a trade-off metric that approximates this balance:

T =
2 · S · P
S + P

(8)

where S and P denote the Stability and Plasticity, respectively, as defined in Eq. 5 and Eq. 6.
Figure 7 illustrates the trade-off between stability and plasticity for different low-rank CL methods.
Vanilla LoRA generally achieves the highest plasticity, as it does not include mechanisms to prevent
forgetting. EWC-LoRA attains stability comparable to InfLoRA, while retaining more plasticity
than InfLoRA. Overall, EWC-LoRA achieves the best trade-off among the methods.
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Figure 7: Trade-off between stability and plasticity.

Computation on Fisher Information Matrix. As suggested by van de Ven (2025), we investigate
different methods for estimating the FIM. The results are presented in Table 11. Here, “Exact”
indicates that the inner expectation in Eq. 4 is computed exactly for each training sample. “Exact
(n=500)” denotes that the outer expectation is calculated using a subset of 500 samples from the old
training data. “Sample” indicates that the inner expectation is computed over a sampled class. The
results indicate that the optimal regularization strength varies according to the estimation method.
In general, the Exact Fisher outperforms the Empirical Fisher, requiring a smaller regularization
strength. The Sample method yields slightly better results than the Empirical Fisher.

Table 11: Different ways for estimating the Fisher matrix. Final accuracy of each variant using its
optimal strength λ on CIFAR-100.

Estimation A10 Avg. Best λ

Exact 88.32 92.77 λ = 105

Exact (n=500) 88.28 92.76 λ = 105

Sample 88.10 92.50 λ = 107

Empirical 87.91 92.27 λ = 107

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, the LLM was used to refine sentence structures, ensure clarity,
and improve the readability of the text.
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