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ABSTRACT

We introduce FedDES, a performance simulator for Federated Learning (FL) that
leverages Discrete Event Simulation (DES) techniques to model key events—such
as client updates, communication delays, and aggregation operations—as discrete
occurrences in time. This approach accurately captures the runtime features of
FL systems, providing a high-fidelity simulation environment that closely mirrors
real-world deployments. FedDES incorporates all three known aggregation set-
tings: Synchronous (e.g., FedAvg and FedProx), Asynchronous (e.g., FedAsync
and FedFa), and Semi-Asynchronous (e.g., FedBuff and FedCompass). Designed
to be framework-, dataset-, and model-agnostic, FedDES allows researchers and
developers to explore various configurations without restrictions. Our evaluations
involving over 1,000 clients with heterogeneous computation and communica-
tion characteristics demonstrate that FedDES accurately models event distribution
and delivers performance estimates within 2% error of real-world measurements.
While real-world workloads often take hours to evaluate, FedDES generates de-
tailed, timestamped event logs in just few seconds. As a result, FedDES can
significantly accelerate FL developing and debugging cycles, enabling develop-
ers to rapidly prototype and evaluate algorithms and system designs, bypassing
the need for costly, time-consuming real-world deployments. It offers valuable
performance insights—such as identifying bottlenecks, stragglers, fault-tolerance
mechanisms, and edge-case scenarios—facilitating the optimization of FL sys-
tems for efficiency, scalability, and resilience.

1 INTRODUCTION

Federated Learning (FL) has emerged as a key paradigm in machine learning, primarily driven by
growing concerns over privacy and the dwindling availability of publicly accessible datasets McMa-
han et al. (2017); Kairouz et al. (2021). Unlike traditional centralized learning approaches, FL
allows multiple clients to collaboratively train a shared model while keeping their local data decen-
tralized, addressing critical issues related to privacy and data sovereignty Yang et al. (2019). This
decentralized learning approach is gaining widespread adoption across various domains, including
healthcare, finance, and mobile applications, where data privacy and security are of paramount im-
portance Bonawitz et al. (2019).

The field of FL is evolving rapidly, particularly in aggregation strategies. Aggregation strategies
are being developed to tackle challenges such as data heterogeneity, fairness, privacy, and robust-
ness, creating specialized aggregation techniques Li et al. (2020; 2021a). For instance, algorithms
like FedAvg Karimireddy et al. (2020) and FedProx Li et al. (2020) have been introduced to ad-
dress issues arising from non-IID data distributions and to improve robustness against stragglers and
malicious clients. At the same time, scheduling algorithms are evolving toward semi-synchronous
paradigms, which strike a balance between synchronous and asynchronous aggregations Li et al.
(2023b); Chen et al. (2020). These semi-synchronous approaches optimize training speed and model
accuracy while maintaining system stability. However, integrating such sophisticated scheduling
mechanisms can fundamentally alter an FL framework’s workflow, making it challenging to assess
the effectiveness of new designs without comprehensive real-world evaluations.

In response to the rapidly changing landscape of FL, researchers are increasingly adopting fast-
prototyping methodologies to iterate and refine their algorithms Li et al. (2019; 2020; 2021b).
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Therefore, there is a growing recognition of the need for efficient and extensive simulation tools
that can rigorously evaluate the robustness and efficacy of FL algorithms, particularly in areas such
as fault tolerance and scalability in large-scale deployments Zhao et al. (2018). To meet this need,
we propose FedDES: A Discrete-Event Simulator for Federated Learning, which applies Dis-
crete Event Simulation (DES) principles to accurately model and analyze the intricate dynamics of
FL systems Banks et al. (2010). FedDES captures the temporal evolution of FL processes by model-
ing client selection, local training, communication delays, and model aggregation as discrete events
within a simulated timeline. This event-driven approach allows for precise temporal coordination
and resource allocation, providing a detailed understanding of system behavior under various condi-
tions. FedDES offers significant performance advantages inherent to DES, including high efficiency
and scalability, enabling rapid simulation of FL workflows with thousands of clients exhibiting het-
erogeneous computational and communication capabilities. The simulator is framework-agnostic,
allowing modeling and simulating distinct aggregation strategies across all known settings.

Moreover, FedDES is designed to be independent of specific datasets and models, allowing re-
searchers to integrate their own data distributions and model architectures seamlessly without mod-
ifying the core simulation framework. We extensively evaluated FedDES on the NCSA Delta super-
computer, scaling real-world experimental events to over 1,000 clients with heterogeneous compu-
tational and communication settings. By comparing these results with our simulations, we demon-
strated that FedDES achieves highly accurate event distribution and performance estimates, with
an error margin of less than 2%. This underscores FedDES’s ability to provide precise, large-scale
event logs, facilitating debugging, bottleneck analysis, and rapid prototyping of new FL algorithms
and system designs.

2 RELATED WORK

2.1 FL AGGREGATION STRATEGIES

Aggregation mechanisms critically influence the performance of FL systems. These mechanisms
are typically classified into three categories:

Synchronous Aggregation: requires the server to wait for updates from all selected clients before
aggregating and updating the global model. This ensures consistency but often leads to delays, es-
pecially when slow clients (stragglers) are involved. The most prominent synchronous algorithm,
FedAvg McMahan et al. (2017); Karimireddy et al. (2020), aggregates client updates by computing
a weighted average based on the number of samples each client holds. While effective for homoge-
neous training environments where each client’s communication and communication resources are
similar, FedAvg suffers from inefficiencies in environments with heterogeneous client resources,
as the slowest client limits the overall training time.

Asynchronous Aggregation: update the global model without waiting for all clients, allowing
faster updates but risking using stale client models. FedAsync Xie et al. (2019) addresses this
by applying a staleness factor to penalize outdated client updates during aggregation. This method
reduces waiting time, improving resource utilization. However, staleness penalties can cause the
global model to drift away from the local data of slower clients, particularly in non-IID settings,
affecting accuracy. FedFa Xu et al. (2024) takes asynchronous updates further by using immediate
global updates without waiting for any client group. It mitigates the effects of stale updates with a
sliding window aggregation technique, allowing the most recent updates to carry more weight. This
approach boosts training speed significantly in heterogeneous environments but requires careful
handling of staleness to maintain accuracy in non-IID settings.

Semi-Asynchronous Aggregation: combine aspects of both synchronous and asynchronous meth-
ods by grouping clients based on their computational capacity and scheduling updates within these
groups. FedBuffNguyen et al. (2022) introduces a buffering mechanism to temporarily store client
updates and aggregate them once conditions are met, balancing update frequency and reducing the
staleness of updates. However, managing the buffer requires heuristic tuning of the buffer size. On
the other hand, FedCompass Li et al. (2023b) uses a computing power-aware scheduler to dynam-
ically assign local steps to clients so that updates are received near synchrony within each group.
This approach mitigates model staleness while maintaining efficiency, allowing FedCompass to
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achieve faster convergence and higher accuracy in heterogeneous and non-IID settings than fully
asynchronous methods.

2.2 FL SIMULATORS

FL simulators Beutel et al. (2020); Ryu et al. (2022); fls; flm; Li et al. (2023a); He et al. (2020);
Sun et al. (2019); Ekaireb et al. (2022); Ro et al. (2021); Mugunthan et al. (2020) facilitate the
validation of theoretical FL research. For example, Flower Beutel et al. (2020) integrates Apache
Ray Moritz et al. (2018) to generate virtual clients, allowing for straightforward configuration of
client resources like GPU memory ratios and CPU core allocations. Researchers can deploy cus-
tom aggregation strategies using selected models and datasets to evaluate statistical metrics such
as convergence and accuracy. Furthermore, ns3-fl Ekaireb et al. (2022) combines FLsim with ns3,
providing network configuration options that enable researchers to explore how network conditions
affect FL performance. Our work complements existing FL simulators; FedDES is particularly ef-
fective for evaluating scheduling algorithms and delivering detailed performance metrics, including
latency and straggler effects in dynamic environments.

2.3 DISCRETE EVENT-DRIVEN SIMULATION (DES)

DES models a system as a series of discrete events, each triggering state changes at specific
times Banks (2005); Banks et al. (2010). DES has been widely applied in network simulations
and distributed systems, where the timing and order of events are critical. Tools like ROSS Pearce
(2002) and SimGrid Casanova (2001) demonstrate how DES can scale to millions of events and en-
tities, providing insights into system performance in large-scale distributed environments. Our Fed-
DES offers a significantly more scalable alternative by modeling FL workflows as discrete events.
By simulating client-server activities and communication as state changes between events, FedDES
scales efficiently to tens of thousands of clients while capturing key performance metrics, making it
a robust tool for large-scale FL simulations.

3 PROPOSED FEDDES

3.1 COMMUNICATION-CENTRIC STATE MACHINE FOR FL EVENT MANAGEMENT

As illustrated in Figure 1, FedDES models the FL system as a state machine, where states are de-
fined by computational workloads (e.g., local training, aggregation) and communication workloads
(e.g., model parameter transmission). Client states track local models, computational capacity, and
training progress, while the server maintains the global model and monitors client updates. Network
states reflect link bandwidth, latency, and system topology, simulating real-world communication
delays. State transitions are primarily driven by communication events (i.e., red actions in Figure 1,
there are other transition events like the blue action, which depends on aggregation strategies), which
act as synchronization points between clients and the server. For instance, after receiving the global
model, a client transitions into the training state and, upon completion, triggers a communication
event to send the updated model back to the server. Once sufficient updates are received upon
criteria of different aggregation paradigms, the server transitions into the aggregation state. This
communication-centric approach captures FL’s asynchronous, distributed nature, where model ex-
changes rather than client computations govern state changes.

In FedDES, clients and servers transition between states such as idle, training, communicating, and
aggregating, with communication events marking key interactions. This communication-driven de-
sign is well-suited for distributed asynchronous environments like FL for several reasons. First, it
optimizes computational efficiency by focusing on client-server interactions, bypassing idle times.
Second, communication is a natural trigger for state transitions, eliminating the need for global
synchronization. Finally, it enables accurate simulation of network effects, such as bandwidth con-
straints and delays, which are critical to FL performance.

Event execution in FedDES is managed using a priority queue, advancing the simulation clock based
on communication events. Key event types include Client-Server Communication, which simulates
model transmission and accounts for network delays; Aggregation, where the server updates the
global model; and Client Computation, which indirectly triggers communication events. By struc-
turing the simulation around communication, FedDES efficiently captures the dynamics of large-
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Figure 1: FedDES’s State Machine Abstraction For FL

scale distributed FL systems, providing detailed performance metrics such as latency, throughput,
and model convergence.

3.2 FEDDES FOR SYNCHRONOUS, ASYNCHRONOUS, AND SEMI-ASYNCHRONOUS FL

In FedDES, the server and the set of clients are implemented as discrete event-driven actors, where
the server initiates the global model broadcast and manages client updates. Each client executes
local training and communicates with the server. These actors are instantiated on separate virtual
nodes to simulate distributed environments and communicate through a simulated network. The
simulation is launched by creating the server actor on a central node and distributing the client
actors across multiple nodes, reflecting real-world deployment. FedDES’s simulation engine then
handles the scheduling and execution of events for each actor.

Once the server and clients are launched, FedDES tracks each actor’s state and manages their
interactions using events. Each actor is responsible for processing its assigned tasks, such as
communication, computation, and aggregation, based on the type of FL algorithm being simu-
lated—synchronous, asynchronous, or semi-asynchronous. The following algorithms illustrate how
these paradigms are modeled in FedDES.

FedDES-Avg (Synchronous): FedAvg is a standard synchronous algorithm where the server waits
for all clients to complete training before aggregation. In FedDES-Avg (Algorithm 1), the server
distributes the global model (Event 1), clients perform local training (Event 2), and send updates
back to the server (Event 3). Aggregation occurs once all updates are received (Event 4). Fed-
DES introduces jitter and stragglers by introducing Gaussian (or can be any, depending on system
characteristics) probability distribution for client computation and communication times, simulating
real-world conditions.

FedDES-Async (Asynchronous): In FedAsync, the server aggregates updates as soon as they
arrive, without waiting for all clients. FedDES-Async (Algorithm 2) models this by having the
server send the global model individually (Event 1). Clients perform training (Event 2), send updates
(Event 3), and the server aggregates them on receipt (Event 4). Termination signals are sent when the
simulation completes (Event 5). FedDES captures the impact of stale updates by modeling delays
and jitters, revealing how asynchrony affects convergence and performance.

FedDES-Compass (Semi-Asynchronous): FedCompass groups clients dynamically based on
computational capacities, synchronizing updates within each group. FedDES-Compass (Algo-
rithm 3) starts with the server broadcasting the global model to all clients (Event 1). Once a group
completes training and sends updates (Event 3), the server aggregates the updates for that group
(Event 4). Groups operate asynchronously relative to one another, balancing the efficiency of asyn-
chronous updates with the consistency of synchronous aggregation. FedDES introduces varied de-
lays across groups based on the compass scheduler’s logic, simulating differences in computational
speeds and network conditions. Although specific grouping and scheduling strategies may differ
across semi-asynchronous algorithms, FedDES’s flexible semi-async design abstracts the high-level
grouping concept and can be easily adapted to other semi-asynchronous strategies.
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Algorithm 1: FedDES-Avg (Exemplifies Synchronous FL)
Input: Global model Wt, Number of clients n, Number of rounds T , Communication cost comm cost,

Training cost train cost, Aggregation cost agg cost
Output: Final global model after T rounds

1 Function Server(Wt, n, T , dataloader cost, agg cost, comm cost):

2 for t = 1 to T do

3 for client set ci from 0 to n→ 1 do

4 time+ = CommTime(Wt, ci, comm cost) (Simulate sending global model)

5 Event 1: Distribute the global model to ci
6 end for

7 for ci from 0 to n→ 1 do

8 time+ = CommTime(W (i)
t+1, server, comm cost) (Simulate receiving local model)

9 Event 4: Collect the local model from ci
10 end for

11 time+ = AggregateTime(n, agg cost) (Simulate aggregation)

12 end for

13 Function Client(ci, n, T , dataloader cost, train cost, comm cost):

14 for each epoch t = 1 to T do

15 time+ = CommTime(Wt, client, comm cost) (Simulate receive global model)

16 Event 2: ci receives the global model from the server.
17 time+ = ComputeTime(Wt, train cost) (Simulate local training)

18 time+ = CommTime(W (i)
t+1, server, comm cost) (Simulate send local model)

19 Event 3: ci sends the updated local model back to the server.
20 end for

Algorithm 2: FedDES-Async (Exemplifies Asynchronous FL)
Input: Global model Wt, Number of clients n, Communication cost comm cost, Training cost

train cost, Aggregation cost agg cost
Output: Final global model after all updates

1 Server(Wt, n, agg cost, comm cost)
2 for ci from 0 to n→ 1 do

3 time+ = CommTime(Wt, ci, comm cost) (Send global model)

4 Event 1: Send the global model to client ci.
5 end for

6 for t = 1 to n↑ T do

7 if local model is received from any client ci then

8 time+ = CommTime(W (i)
t+1, server, comm cost) (Receive local model)

9 Event 4: Receive and aggregate the local model from client ci.
10 time+ = AggregateTime(agg cost) (Aggregation)

11 Event 1: Send updated global model back to client ci.
12 time+ = CommTime(W (i)

t+1, ci, comm cost) (Send updated model)

13 end if

14 end for

15 for ci from remaining unterminated clients do

16 time+ = CommTime(Termination Signal, ci, comm cost)
17 Event 5: Send termination signal to each client.
18 end for

19 Client(ci, train cost, comm cost)
20 while termination signal not received do

21 time+ = CommTime(Wt, ci, comm cost) (Receive global model)

22 Event 2: Client ci receives the global model from the server.
23 time+ = ComputeTime(Wt, train cost) (Local training)

24 time+ = CommTime(W (i)
t+1, server, comm cost) (Send local model)

25 Event 3: Client ci sends the updated local model back to the server.
26 end while
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Algorithm 3: FedDES-Compass (Exemplifies Semi-Asynchronous FL with Client Grouping)
Input: Global model Wt, Number of clients n, Number of epochs T , Communication cost comm cost,

Training cost train cost, Aggregation cost agg cost, Maximum local steps max local steps,
Group ratio q ratio, Group delay factor ω

Output: Final global model after all epochs
1 Server(Wt, n, T , agg cost, comm cost)
2 time+ = CommTime(Wt, clients, comm cost) (Simulate communication)

3 Event 1: Broadcast global model to all clients.
4 while t < n↑ T do

5 if local model from client ci received then

6 Event 4: Receive local model from client ci.
7 Buffer client’s model into its group.
8 if group update is determined by compass algorithm or time limit reached then

9 Perform group aggregation for the buffered models.
10 time+ = AggregateTime(agg cost) (Simulate aggregation)

11 t+ = |group|
12 Event 1: Send updated global model back to all clients in the group.
13 time+ = CommTime(Wt+1, clients, comm cost) (Simulate communication)

14 end if

15 end if

16 end while

17 for ci from unterminated clients do

18 time+ = CommTime(Termination Signal, ci, comm cost)
19 Event 5: Terminate the remaining clients.
20 end for

21 Client(ci, n, train cost, comm cost, max local steps)

22 (Same as in Algorithm 2)

3.3 HIGH-USABILITY: REAL-WORLD SIMULATION METHODOLOGY

As shown in Figure 2, FedDES enhances the usability and accuracy of FL simulations by integrating
real-world considerations through a systematic process of logging, tracing, and profiling. The sim-
ulation framework incorporates real-world variability, such as system jitters, network delays, and
stragglers, into its event generation process.

To achieve this, FedDES first logs and traces small-scale real-world FL workloads, capturing de-
tailed event patterns such as local training, communication, and aggregation. These logs help ab-
stract state machine transition rules for different FL paradigms. By understanding the timing and
sequencing of these real-world events, FedDES accurately represents how the system transitions
between states, including computation and communication phases.

FedDES also profiles computation and communication workloads. Profiling measures local training
times, aggregation costs, and network delays for different system configurations. This data is then
scaled to simulate large-scale deployments, with users only needing to input high-level parameters,
such as the number of clients, system jitter distribution (like Gaussian), and network heterogeneity.

Sample FL
Workload

Tracer

Logger

Profiler
User Defined

Parameter

Large Scale 
Simulated Events

FedDES
Simulator

Figure 2: Compelete FedDES Architecture That Establishs An Systematic Simulation Workflow

This high-level input allows developers to easily generate accurate large-scale simulations without
needing detailed knowledge of the system’s internals. For example, users can simulate scenarios
with varying system jitters or straggler behaviors by simply adjusting the parameters, while FedDES
generates the corresponding detailed events and execution traces. Using profiling and tracing ensures
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that FedDES produces accurate, real-world-like performance metrics, offering insights into how FL
systems behave under different conditions.

Furthermore, all events in FedDES, including computation, communication, and aggregation, are
logged with precise timestamps. This comprehensive event logging enables a deep analysis of sys-
tem behavior, bottleneck identification, and performance evaluation across large-scale FL deploy-
ments. Integrating real-world profiling and tracing makes FedDES a highly usable and accurate tool
for simulating and analyzing federated learning at scale.

4 CORRECTNESS OF FEDDES

This section proves FedDES’s correctness for modeling and FL across three aggregation paradigms:
synchronous, asynchronous, and semi-asynchronous. The correctness of FedDES is demonstrated
by proving that the state transitions follow the definitions of each aggregation paradigm.
Theorem 1. FedDES-Avg correctly simulates synchronous FL by ensuring that the system main-
tains the invariant that no global model update occurs until all clients have completed their local
training and sent their updates.

Proof. Section 3.1 formalizes FedDES’s state machine for FL event management. The state machine
is represented by the tuple:

M = →S, E , T , C,A↑
where S denotes system states (clients, server, network), E represents discrete events (communica-
tion, training, aggregation), T : S ↓ E ↔ S is the state transition function, C are the conditions for
state transitions, and A are actions triggered by events.

We define the state transitions for FedDES-Avg as:
TFedDES-Avg : Sserver(t), Sclienti(t) ↗↔ Sserver(t+ 1), Sclienti(t+ 1),

where Sserver(t) is the server’s state at time t, and Sclienti(t) is the state of client ci at time t.

The correctness of FedDES-Avg is based on the following invariant:

↘t, Call clients done(t) =≃ Aaggregate(W
(1)
t+1, . . . ,W

(n)
t+1),

indicating that aggregation occurs only when all client updates are received.

1. Initial Condition: At t = 0, the server distributes the global model W0 to all clients, triggering
the state transition:

Sserver(0) ↔ Sserver(1), Sclienti(0) ↔ Sclienti(1),

where Sserver(1) reflects the server waiting for client updates.

2. State Transition: For t > 0, each client ci completes local training and sends its updated model
W (i)

t+1 to the server. The condition Call clients done(t) is satisfied only when all client updates are
received, triggering the aggregation action:

Aaggregate(W
(1)
t+1, . . . ,W

(n)
t+1).

3. Invariant Preservation: The transition function guarantees that the invariant is maintained at every
time step. If any client ci has not completed its update, the server continues waiting, preventing
premature aggregation and ensuring synchronous behavior.

Thus, FedDES-Avg correctly models synchronous FL by ensuring that no aggregation occurs until
all client updates are received, preserving the synchronous nature of the system.

Theorem 2. FedDES-Async correctly simulates asynchronous FL by ensuring that each client up-
date is aggregated as soon as it is received, without waiting for updates from other clients.

The proof of Theorem 2 is provided in Appendix A.1
Theorem 3. FedDES-Compass correctly simulates semi-asynchronous FL by ensuring that client
updates within each group are synchronized while groups themselves operate asynchronously.

The proof of Theorem 3 is provided in Appendix A.2
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5 EVALUATION

This section evaluates FedDES’ accuracy by comparing the simulation’s event distributions against
real-world experimental results. We aim to determine how well the simulated FL events reflect the
system dynamics compared to a real FL environment.

5.1 EXPERIMENTAL SETUP

Testbed and Software Settings: We use a Vision Transformer (ViT) Alexey (2020) on the parti-
tioned CIFAR-10 Krizhevsky et al. (2009) dataset for both real-world and simulated FL experiments.
The real-world FL experiments involve more than 1,000 clients and three aggregation strategies: Fe-
dAvg, FedAsync, and FedCompass. Our FedDES simulations mirror these strategies using the class

partitioning method. The real experiments are performed on the NCSA Delta High-Performance
Computing (HPC) system, while the simulations run on a server equipped with two NVIDIA A40
GPUs and an Intel(R) Xeon(R) Gold 6336Y CPU. The real-world experiment captures communica-
tion events across multiple clients during an FL task, while the same FL task is simulated through
FedDES with identical client configurations, communication steps, and task settings. In both the
simulation and experiment, events are logged with timestamps, indicating when clients send or re-
ceive models and when the server performs aggregation.

Metric Settings We assess the similarity between the event distributions of real-world FL exper-
iments and FedDES simulations across three dimensions: time, communication steps, and client
ID. Evaluating the similarity between actual and simulated event distributions in only one or two
dimensions (e.g., time alone or step-wise comparisons) would fail to capture the full complexity of
the system. By analyzing the distribution of events across all three dimensions—time, step, and
client ID—we ensure a more holistic and accurate comparison of the behavior between real-world
experiments and simulations. The metrics we employ for this 3D evaluation are:

Kullback-Leibler (KL) Divergence Kullback & Leibler (1951): This metric measures how much the
simulated distribution deviates from the real distribution across the three dimensions. A lower value
indicates a higher similarity between the real and simulated data.

Jensen-Shannon (JS) Divergence Lin (1991): This symmetric measure compares the real and simu-
lated distributions over time, step, and client ID. It captures the overall similarity of the distributions
in three dimensions.

Bhattacharyya Distance Bhattacharyya (1943): The Bhattacharyya distance measures the overlap
between the real and simulated distributions in the three-dimensional space of time, communication
steps, and client ID. It is particularly sensitive to differences in distribution shape and spread.

By evaluating these metrics in three dimensions, we ensure that the simulation’s accuracy is assessed
not only with respect to time but also to the sequence of communication steps and the behavior of
individual clients. This approach allows us to capture the full complexity of the system dynamics
and ensures that the simulation faithfully reproduces the interaction patterns observed in real-world
federated learning environments.

5.2 RESULTS AND ANALYSIS

Table 1,2, and 3 compare the event distribution similarities between FedDES-Avg, FedDES-Async,
and FedDES-Compass and their respective real workloads across three different simulation settings:
simulation with no noise (N (0, 0)), simulation with Gaussian noise (N (0, 0.12)), and simulation
with system heterogeneity observed from real workloads. We employ the discussed metrics to mea-
sure the divergence between the simulated and real workload distributions.

As shown in Table 1, across all three metrics (KL, Jensen-Shannon, and Bhattacharyya), the sim-
ulation with no noise (N (0, 0)) has the highest divergence from the real workload. Introducing
Gaussian noise (N (0, 0.12)) slightly improves the similarity, as reflected by marginal decreases in
all three metrics, suggesting that noise approximates the behavior of real systems better. The simula-
tion with system heterogeneity further improves the similarity, showing the lowest values across all
metrics. This demonstrates that accounting for system jitters and heterogeneity aligns the simulation
more closely with real-world workloads. Figure 3 visualize the event distribution comparison among
simulation settings (FedDES-Avg) and real-world experiments (FedAvg), showcasing visually per-
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ceivable similarities and correct communication patterns in event distributions. When accounting
for system jitter and heterogeneity, the simulation yields highly accurate execution time results in
just 1.47s, with a simulated execution time error of just 0.69% (2336s simulated vs. 2320s real).

Table 1: Comparison of 3D event distribution evaluation in FedDES-Avg and real workloads across
KL, Jensen-Shannon, and Bhattacharyya distances under different simulation settings.

Simulation Settings / Metrics Kullback-Leibler Jensen-Shannon Bhattacharyya

Simu. w/ N (0, 0) 9.125 0.495 1.25
Simu. w/ N (0, 0.12) 9.121 0.494 1.249
Simu. w/ system heterogeneity 9.106 0.491 1.24

Execution Time

C
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m
un

ic
at

io
n 

St
ep

s

(a) Simu. With 𝒩(0, 0) (b) With 𝒩(0, 0.12) (c) W/ Sys. Heterogeneity (d) Real Run

Figure 3: Event Distribution of FedDES for Synchronous FL training compared to Real Runs. The
S1-4 in Communication Steps denote for: S1, Server sends global model; S2, Clients receive global
model; S3, Clients send local model; S4, Server receives local model. Note that there’s an explicit
synchronization block after clients receive global model.

As shown in Table 2, similar to FedDES-Avg, the no-noise simulation shows the highest divergence
(KL: 9.687, JS: 0.546, Bhattacharyya: 1.532). Introducing Gaussian noise improves the distribu-
tion similarity slightly, as indicated by minor reductions in KL and Jensen-Shannon Divergence,
although Bhattacharyya Distance slightly increases. The simulation with system heterogeneity per-
forms best, showing small reductions across all three metrics, indicating that heterogeneity captures
real-world conditions better than noise alone. Figure 4 visualize the event distribution comparison
among simulation settings (using FedDES-Async) and real-world experiments (FedAsync), which
also showcased visually perceivable similarities and correct communication patterns in event distri-
butions. When accounting for system jitter and heterogeneity, the simulation yields near-identical
execution time results in just 2.03s, with a simulated execution time error of just 0.04% (2596s
simulated vs. 2595s real).

Table 2: Comparison of 3D event distribution evaluation in FedDES-Async and real workloads
across KL, Jensen-Shannon, and Bhattacharyya distances under different simulation settings.

Simulation Settings / Metrics Kullback-Leibler Jensen-Shannon Bhattacharyya

Simu. w/ N (0, 0) 9.687 0.546 1.532
Simu. w/ N (0, 0.12) 9.721 0.547 1.544
Simu. w/ system heterogeneity 9.658 0.544 1.533

As shown in Table 3, for FedDES-Compass, we observe a larger difference in divergence. The sys-
tem heterogeneity simulation shows the lowest divergence across all metrics, with KL divergence
dropping to 8.709 from 9.591 in the no-noise setting. Gaussian noise also reduces divergence com-
pared to the no-noise scenario. Still, the reduction is more significant in FedDES-Compass than in
FedDES-Avg or FedDES-Async, indicating that this semi-asynchronous approach might be more
sensitive to noise and system variations. The Bhattacharyya Distance improves significantly in the
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Figure 4: Event Distribution of FedDES for Asynchronous FL training compared to Real runs.
Additionally, S5 in Communication Steps denote for Server signals the finalization.

system heterogeneity setting, showing that this simulation closely approximates real-world event
distributions. Figure 5 visualizes the event distribution comparison between simulation settings (us-
ing FedDES-Compass) and real-world experiments (FedCompass). Due to the dynamic grouping
in FedCompass, which dynamically adjusts client training step size based on client speed, the event
distribution exhibits higher randomness and sensitivity to system jitter and heterogeneity. Nonethe-
less, accounting for system jitter and heterogeneity in the simulation yields accurate results in only
2.77s, with a simulated execution time error of just 1.95% (2309s simulated vs. 2355s real).

Table 3: Comparison of 3D event distribution evaluation in FedDES-Compass and real workloads
across KL, Jensen-Shannon, and Bhattacharyya distances under different simulation settings.

Simulation Settings / Metrics Kullback-Leibler Jensen-Shannon Bhattacharyya

Simu. w/ N (0, 0) 9.591 0.539 1.49
Simu. w/ N (0, 0.12) 9.392 0.528 1.425
Simu. w/ system heterogeneity 8.709 0.489 1.214

Execution Time
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(a) Simu. With 𝒩(0, 0) (b) With 𝒩(0, 0.12) (c) W/ Sys. Heterogeneity (d) Real Run

Figure 5: Event Distribution of FedDES for Semi-Async FL training compared to Real Runs. Note
that clients have to explicitly block for synchronization before the amount of waiting clients reaches
the preset threshold.

6 CONCLUSION

FedDES provides an efficient, scalable solution for simulating large-scale FL systems using Discrete
Event Simulation (DES). By modeling client selection, training, communication, and aggregation
as discrete events, it enables precise analysis of various FL strategies, including synchronous, asyn-
chronous, and semi-asynchronous paradigms. FedDES is framework-agnostic, allowing researchers
to integrate custom datasets and models, while accurately simulating heterogeneous client behaviors
and network conditions. Evaluations on over 1,000 clients show FedDES delivers high accuracy,
with less than 2% error compared to real-world experiments. This makes FedDES a powerful tool
for debugging, performance analysis, and prototyping new FL algorithms.
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