
Toward Information Theoretic Active Inverse
Reinforcement Learning

Ondrej Bajgar
University of Oxford

Dewi Sid William Gould
Alan Turing Institute

Jonathon Liu
Independent

Oliver Newcombe
University of Oxford

Rohan Narayan Langford Mitta
Independent

Jack Golden
University of Oxford

Abstract

As AI systems become increasingly autonomous, aligning their decision-making to
human preferences is essential. In domains like autonomous driving or robotics, it
is impossible to write down the reward function representing these preferences by
hand. Inverse reinforcement learning (IRL) offers a promising approach to infer the
unknown reward from demonstrations. However, obtaining human demonstrations
can be costly. Active IRL addresses this challenge by strategically selecting the
most informative scenarios for human demonstration, reducing the amount of
required human effort. Where most prior work allowed querying the human for an
action at one state at a time, we motivate and analyse scenarios where we collect
longer trajectories. We provide an information-theoretic acquisition function,
propose an efficient approximation scheme, and illustrate its performance through
a set of gridworld experiments as groundwork for future work expanding to more
general settings.

1 Introduction

Stuart Russell suggested three principles for the development of beneficial artificial intelligence: its
only objective is realizing human preferences, it is initially uncertain about these preferences, and
its ultimate source of information about them is human behavior [1]. Apprenticeship learning via
Bayesian inverse reinforcement learning (IRL) can be understood as a possible operationalization
of these principles: Bayesian IRL starts with a prior distribution over reward functions representing
initial uncertainty about human preferences. It then combines this prior with demonstration data from
a human expert acting approximately optimally with respect to the unknown reward, to produce a
posterior distribution over rewards. In apprenticeship learning, this posterior over rewards is then
used to produce a policy that should perform well with respect to the unknown reward function.

However, getting human demonstrations requires scarce human time. Also, many risky situations
where we would wish AI systems to behave especially reliably may be rare in these demonstration
data. Bayesian active learning can help with both by giving queries to a human demonstrator that are
likely to bring the most information about the reward. Most prior methods for active IRL [2, 3, 4]
queried the expert for action annotations of particular isolated states. However, in domains such as
autonomous driving with a high frequency of actions, it can be much more natural for the human
to provide whole trajectories – say, to drive for a while in a simulator – than to annotate a large
collection of unrelated snapshots. There is one previous paper on active IRL with full trajectories [5]
suggesting a heuristic acquisition function whose shortcomings can, however, completely prevent
learning. We instead suggest using the principled tools of Bayesian active learning for the task.

Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).

-1.0 -50.0 -1.0 -1.0 100.0 -20.0

-1.0 -50.0 -1.0 -50.0 -30.0 -50.0

-1.0 -50.0 -1.0 -50.0 -50.0 -50.0

-1.0 -1.0 -1.0 -1.0 -1.0 -1.0

-30.0 -20.0 -50.0 -1.0 -30.0 -50.0

-50.0 -20.0 -50.0 -50.0 -30.0 -50.0

(a) Ground-truth rewards.

70 60 50 40 30 20 10 0
Reward

0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

Mud
Water
Lava

(b) Current belief over rewards. (c) EIG of each initial state.

Figure 1: (a) shows an illustrative gridworld and its true rewards. The lower left corner has a "jail"
state with negative reward from which an agent cannot leave. The starred green state is the terminal
"goal" state with a large positive reward. The brown, blue, and red states are "mud", "water", and
"lava" type states respectively, whose rewards are unknown to the IRL agent. The IRL agent tries
to learn the rewards of these three state types from expert demonstrations. (b) shows the learned
distributions over the rewards of the "mud", "water", and "lava" state types respectively, at some
particular step of the active learning process. These learned reward distributions are used to calculate
the EIG of obtaining another expert demonstration starting from each given state, shown in (c). In this
case, a demonstration starting in the bottom right state gives the most information about the unknown
reward parameters.

The article provides the following contributions: we formulate the problem of active IRL with full
expert trajectories and adapt the expected information gain (EIG) acquisition function to this setting.
We then provide an algorithm approximating the EIG and present experiments showing its superior
performance relative to random sampling and two other baselines in gridworlds. We consider this
initial investigation in tabular settings a stepping stone toward algorithms for more general settings.

2 Task formulation

Let M(ξ) = (S,A, pξ, r, γ, tmax, ρξ) be a parameterized Markov decision process (MDP), where S
and A are finite state and action spaces respectively, pξ : S ×A → P(S) is the transition function
where P(S) is a set of probability measures over S, r : S × A → R is an (expected) reward
function,1 γ ∈ (0, 1) is a discount rate, tmax ∈ N ∪ {∞} is the time horizon, and ρξ is the initial
state distribution. The parameter ξ will be used to set up the environment in active learning. Due
to space limitations here, we present experiments where ξ = s0 deterministically chooses an initial
state, but our method can be used also for choosing the transition dynamics.

We assume we are initially uncertain about the reward r, and our initial knowledge is captured
by a prior distribution p(r) over rewards, which is a distribution over R|S||A| – a space of vectors
representing the reward associated with each state-action pair. We also have access to an expert that,
given an instance M(ξi) of the MDP, can produce a trajectory τi =

(
(si0, a

i
0), . . . , (s

i
ni
, aini

)
)
, where

si0 ∼ ρξi , st+1 ∼ pξi(·|st, at), and

πξ
E(at|st) =

exp(βQ∗
ξ(st, at))∑

a′∈A exp(βQ∗
ξ(st, a

′))
, (1)

which is called a Boltzmann-rational policy, given the optimal Q function Q∗
ξi

and a hyperparameter
β expressing how close to optimal the expert behaviour is (where β = 0 corresponds to fully random
behaviour and β → +∞ would yield the optimal policy).

1Our formulation permits for the reward to be stochastic. However, our expert model (1) depends on the
rewards only via the optimal Q-function, which in turn depends only on the expectated reward. Thus, the
demonstrations can only ever give us information about the expectation. Throughout the paper, the learnt reward
function can be interpreted either as modeling a deterministic reward, or an expectation of a stochastic reward.

2

The task of Bayesian active inverse reinforcement learning is to sequentially query the expert to
provide demonstrations in environments ξ1, . . . , ξN to gain maximum information about the unknown
reward. We start with a (possibly empty) set of expert trajectories D0 and then, at each step of active
learning, we choose a parameter ξi for the MDP, from which we get the corresponding expert
trajectory τi. We then update our demonstration dataset to Di = Di−1 ∪ τi, and the distribution over
rewards to p(r|Di), which we again use to select the most informative environment setup ξi+1 in the
next step. We repeat until we exhaust our limited demonstration budget N .

Our goal can be operationalized as minimizing the entropy of the posterior distribution over rewards,
once all expert demonstrations have been observed. This is equivalent to maximizing the log
likelihood of the true parameter value in expectation, or to maximizing the mutual information
between the demonstrations and the reward. We call this the information-theoretic objective.

For the apprenticeship-learning objective, we use the final posterior p(r|DN) to produce an apprentice
policy πA := argmaxπEr[Eτ [

∑
st,at∈τ γ

tr(st, at)]] maximizing the expected return, where τ is a
trajectory on a known target setup ξtarget with s0 ∼ ρξtarget , st+1 ∼ pξtarget(·|st, at) and at = π(st).

3 Method

Our goal at each step is to select an environment setup ξ that will produce the most information in
expectation. In Bayesian experimental design (BED) [6], especially Bayesian optimization [7], this is
often framed in terms of an acquisition function that for each ξ estimates how useful it would be to
select, i.e. we would like to select ξ that maximizes the acquisition function.

We use the acquisition function most common in BED, the expected information gain (EIG):

EIGn(ξ) = Er|Dn

[
Eτ |r,ξ[log p(r|τ, ξ)− log p(r)]

]
= Er|Dn

[
Eτ |r,ξ[log p(τ |r, ξ)− log p(τ |ξ)]

]
,

where the expectation over trajectories is taken with respect to ρξ , pξ , and an expert policy that would
correspond to the reward r from the outer expectation, taken with respect to the current posterior.

In general, the expectations cannot be calculated analytically. A basic way to approximate the EIG
would be using the following nested Monte Carlo estimator for each candidate environment setup ξ:

1. Sample Nr reward functions ri from the current posterior p(r|Dn). For each ri:

(a) Sample Nτ trajectories τij from the estimated expert policy π̂ri,ξ
E given the environment

parameters ξ, where π̂ri,ξ
E would be the Boltzmann-rational policy corresponding to ri.

(b) Estimate2 p(τij |ri, ξ) =
∏

st,at∈τ π̂
ri,ξ
E (at|st) and p(τij |ξ) = 1

Nr

∑
k p(τij |rk, ξ).

2. Approximate EIG using the Monte Carlo estimate:

ÊIG(ξ) =
1

Nr

Nr∑
i=1

1

Nτ

Nτ∑
j=1

[log p(τij |ri, ξ)− log p(τij |ξ)] . (2)

While conceptually simple, the computational demands of this grow quickly with the size of the state
space. Thus, in the next section, we discuss a method based on Bayesian optimization to allocate any
computational budget we may have more efficiently.

3.1 Efficient sampling with Bayesian optimization

We propose to use Bayesian optimization, in particular the upper confidence bound (UCB) algorithm,
to adaptively choose from which initial states to sample additional hypothetical trajectories to
efficiently estimate the EIG. We still use the basic structure of (2), but instead of using the same
number of samples in each initial state, we dynamically choose where to add additional samples to
best improve our chance of identifying the state maximizing the EIG.

We model the information gain from each hypothetical trajectory τsi starting in state s as a Gaussian
noisy observation of the true EIG value:

esi(s) ∼ N (µs, ϵ
2
s) , (3)

2Note that we can omit the probabilities due to the initial state and transitions since these cancel out in Eq. 2.

3

where we assume µs = EIG(s). We also assume we have a prior on the mean and noise,

µs ∼ N (µprior, σ
2
prior) , ϵs ∼ pϕ(ϵs) . (4)

We first collect a fixed initial number of samples for each state. Then, we repeat the following
until we have exhausted a budget of trajectories T . Following standard Gaussian updating, after an
observation of a new hypothetical trajectory from s, we update the parameters

µs =
(

µprior

σ2
prior

+ nsÊIG(s)
ϵ2s

)(
1

σ2
prior

+ ns

ϵ2s

)−1

, σ2
s =

(
1

σ2
prior

+ ns

ϵ2s

)−1

, (5)

where ns is the number of observed trajectories from s, and ÊIG(s) = 1
ns

∑ns

i=1 esi is the average
of the corresponding EIG estimates. We then update ϵs using maximum a posteriori estimation:

ϵs = argmax
ϵs

[
pϕ(ϵs) · N

(
ÊIG(s) | µs(ϵs), σs(ϵs)

)]
. (6)

and compute a new EIG estimate for the value s∗ maximizing the upper confidence bound:

s∗ = argmax
s

UCB(s) := argmax
s

µs + κσs , (7)

where κ is a UCB hyperparameter (we use κ = 3).

4 Experiments

We evaluated our EIG-based methods with full trajectories on two randomized gridworld setups
against several simpler baselines: (1) uniform random sampling, (2) selecting the state with maximum
entropy in Q-values, (3) querying just a single state (to measure the benefits of whole trajectories),
and (4) selecting the starting state leading to trajectories with maximum posterior predictive entropy
over the optimal policy. The last one is an acquisition function from [5], which is the only previous
work on active IRL over trajectories that we are aware of.

We use two main metrics: the entropy of the posterior distribution over reward parameters after a
given number of steps of active learning and the expected return (with respect to the initial state
distribution and environment dynamics) of an apprentice policy maximizing this expected return (also
with respect to the posterior over rewards).

We test on two kinds of gridworld environments: one with fewer state types (and thus reward
parameters) than states, which gives the algorithm a known environment structure to exploit, and
one with a single random reward per state. Full details on our experiments and additional results
(including the efficiency gains from Bayesian optimization) are provided in Appendix C.

Structured gridworld We begin with the 6× 6 gridworld shown in Figure 1a. This environment is
deterministic with 5 actions corresponding to moving in the four directions and staying in place. The
agent can move freely, except for the bottom-left "jail" state, which is non-terminal, has a negative
reward, and traps the agent permanently upon entry. In terms of the state rewards, there are five
different state types and both the apprentice and the expert know the type of each state a priori. The
rewards associated with two state types are known: "path" type, with a reward of −1, and a "goal"
type with reward 100, which is also terminal. There are 3 state types, which we refer to as "water",
"mud", and "lava", which have unknown negative reward. We place an independent uniform prior in
the interval [−100, 0] on the reward of each state type. Our goal is to infer the reward of these three
state types.

Fully random gridworld We also performed experiments on a 7× 7 gridworld with each state’s
reward drawn from N (0, 3). Each state furthermore has a 10% probability of being terminal. States
with reward above the 0.9 quantile of rewards are also terminal.

Results Figure 2 shows results for structured environment (the results for the fully random environ-
ment can be found in Appendix C), comparing active methods with randomly choosing trajectories.
We observe that the performance of EIG in terms of posterior entropy and in terms of apprentice
performance is superior to the baselines. The Q-Entropy does better than random initially, but then
starts to do worse due to repeatedly sampling from states with irreducible uncertainty. Notably, on

4

0 20 40 60 80 100 120 140 160 180 200
Active Step

7

8

9

10

11

12

13

14

En
tro

py

Random
NMC EIG (50s)
BO EIG (50s)
Action entropy
Single-state EIG
S.-s. EIG (x×8.8)

(a) Posterior entropy

0 2 4 6 8 10 12 14 16 18 20 22 24
Active Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
gr

et

Random
NMC EIG (50s)
BO EIG (50s)
Action entropy
Single-state EIG

(b) Apprentice regret

Figure 2: Entropy of the posterior the regret of the apprentice policy on the structured environment.
NMC stands for the naive nested Monte Carlo estimation, while BO stands for Bayesian optimization.
"S.s. EIG (x×8.8)" denotes single-state EIG with the x axis scaled by 8.8 - the mean length of
trajectories collected by the full trajectory EIG variants.

the structured environment, the posterior predictive action entropy acquisition function from [5]
breaks entirely, as it only ever queries for demonstration trajectories that start in the jail state, as
this state trivially has a uniform action distribution, and demonstrations starting in the jail state
deterministically remain in the jail state. Thus these demonstrations offer no useful information about
the expert reward or the policy. Based on these results, we believe that our information-theoretically
derived acquisition function is more principled and robust.

5 Discussion and conclusion

We have provided a preliminary study of the problem of active IRL with full trajectories in tabular
environments. We have shown that an information theoretic acquisition function provides improve-
ments both in terms of achieving lower posterior entropy, and in terms of apprentice performance. It
thus allows using the scarce time of demonstrators more efficiently. We see this preliminary study
with synthetic gridworlds and demonstrations as a stepping stone toward an extension to continuous
state spaces and more realistic settings.

References
[1] Stuart Russell. Human Compatible: Artificial Intelligence and the Problem of Control. Penguin

Random House, 2019.

[2] Manuel Lopes, Francisco Melo, and Luis Montesano. Active learning for reward estimation in
inverse reinforcement learning. In Wray Buntine, Marko Grobelnik, Dunja Mladenić, and John
Shawe-Taylor, editors, Machine learning and knowledge discovery in databases, pages 31–46,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-04174-7.

[3] Daniel S. Brown, Yuchen Cui, and Scott Niekum. Risk-Aware Active Inverse Reinforcement
Learning. In Proceedings of The 2nd Conference on Robot Learning, pages 362–372. PMLR, Oc-
tober 2018. URL https://proceedings.mlr.press/v87/brown18a.html. ISSN: 2640-
3498.

[4] Alberto Maria Metelli, Giorgia Ramponi, Alessandro Concetti, and Marcello Restelli. Provably
Efficient Learning of Transferable Rewards. In Proceedings of the 38th International Conference
on Machine Learning, pages 7665–7676. PMLR, July 2021. URL https://proceedings.
mlr.press/v139/metelli21a.html. ISSN: 2640-3498.

5

https://proceedings.mlr.press/v87/brown18a.html
https://proceedings.mlr.press/v139/metelli21a.html
https://proceedings.mlr.press/v139/metelli21a.html

[5] Sehee Kweon, Himchan Hwang, and Frank C Park. Trajectory-based active inverse reinforce-
ment learning for learning from demonstration. In 2023 23rd International Conference on
Control, Automation and Systems (ICCAS), pages 1807–1812. IEEE, 2023.

[6] Tom Rainforth, Adam Foster, Desi R. Ivanova, and Freddie Bickford Smith. Modern
Bayesian Experimental Design, February 2023. URL http://arxiv.org/abs/2302.14545.
arXiv:2302.14545 [cs, stat].

[7] Peter I. Frazier. A Tutorial on Bayesian Optimization. arXiv:1807.02811, July 2018. URL
http://arxiv.org/abs/1807.02811. arXiv: 1807.02811.

[8] Stuart Russell. Learning agents for uncertain environments (extended abstract). In Proceedings
of the eleventh annual conference on Computational learning theory, pages 101–103, Madison
Wisconsin USA, July 1998. ACM. ISBN 978-1-58113-057-7. doi: 10.1145/279943.279964.
URL https://dl.acm.org/doi/10.1145/279943.279964.

[9] R. E. Kalman. When Is a Linear Control System Optimal? Journal of Basic Engineering, 86
(1):51–60, March 1964. ISSN 0021-9223. doi: 10.1115/1.3653115. URL https://doi.org/
10.1115/1.3653115.

[10] Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges,
methods and progress. Artificial Intelligence, 297:103500, August 2021. ISSN 00043702.
doi: 10.1016/j.artint.2021.103500. URL https://linkinghub.elsevier.com/retrieve/
pii/S0004370221000515.

[11] Stephen Adams, Tyler Cody, and Peter A. Beling. A survey of inverse reinforce-
ment learning. Artificial Intelligence Review, February 2022. ISSN 0269-2821, 1573-
7462. doi: 10.1007/s10462-021-10108-x. URL https://link.springer.com/10.1007/
s10462-021-10108-x.

[12] Deepak Ramachandran and Eyal Amir. Bayesian Inverse Reinforcement Learning. In Proceed-
ings of the Twentieth International Joint Conference on Artificial Intelligence, 2007.

[13] Thomas Kleine Buening, Victor Villin, and Christos Dimitrakakis. Environment design for
inverse reinforcement learning. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceed-
ings of the 41st International Conference on Machine Learning, volume 235 of Proceed-
ings of Machine Learning Research, pages 24808–24828. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/kleine-buening24a.html.

[14] Thomas Kleine Büning, Anne-Marie George, and Christos Dimitrakakis. Interactive in-
verse reinforcement learning for cooperative games. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 2393–2413. PMLR, 17–23 Jul 2022. URL https:
//proceedings.mlr.press/v162/buning22a.html.

[15] Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. Active Preference-Based
Learning of Reward Functions. In Robotics: Science and Systems XIII. Robotics: Science and
Systems Foundation, July 2017. ISBN 978-0-9923747-3-0. doi: 10.15607/RSS.2017.XIII.053.
URL http://www.roboticsproceedings.org/rss13/p53.pdf.

[16] Dylan P. Losey and Marcia K. O’Malley. Including Uncertainty when Learning from Human Cor-
rections. In Proceedings of The 2nd Conference on Robot Learning, pages 123–132. PMLR, Oc-
tober 2018. URL https://proceedings.mlr.press/v87/losey18a.html. ISSN: 2640-
3498.

[17] David Lindner, Andreas Krause, and Giorgia Ramponi. Active Exploration for Inverse
Reinforcement Learning. Advances in Neural Information Processing Systems, 35:5843–
5853, December 2022. URL https://proceedings.neurips.cc/paper/2022/hash/
26d01e5ed42d8dcedd6aa0e3e99cffc4-Abstract-Conference.html.

6

http://arxiv.org/abs/2302.14545
http://arxiv.org/abs/1807.02811
https://dl.acm.org/doi/10.1145/279943.279964
https://doi.org/10.1115/1.3653115
https://doi.org/10.1115/1.3653115
https://linkinghub.elsevier.com/retrieve/pii/S0004370221000515
https://linkinghub.elsevier.com/retrieve/pii/S0004370221000515
https://link.springer.com/10.1007/s10462-021-10108-x
https://link.springer.com/10.1007/s10462-021-10108-x
https://proceedings.mlr.press/v235/kleine-buening24a.html
https://proceedings.mlr.press/v162/buning22a.html
https://proceedings.mlr.press/v162/buning22a.html
http://www.roboticsproceedings.org/rss13/p53.pdf
https://proceedings.mlr.press/v87/losey18a.html
https://proceedings.neurips.cc/paper/2022/hash/26d01e5ed42d8dcedd6aa0e3e99cffc4-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2022/hash/26d01e5ed42d8dcedd6aa0e3e99cffc4-Abstract-Conference.html

[18] Ondrej Bajgar, Konstantinos Gatsis, Alessandro Abate, and Michael A. Osborne. Walking the
Values in Bayesian Inverse Reinforcement Learning. In Proceedings of the 40th Conference on
Uncertainty in Artificial Intelligence, 2024.

[19] Alex J Chan and Mihaela van der Schaar. Scalable Bayesian Inverse Reinforcement Learning.
ICLR 2021, 2021.

[20] Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid Monte Carlo.
Physics Letters B, 195(2):216–222, September 1987. doi: 10.1016/0370-2693(87)91197-X.

[21] Matthew D Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively Setting Path
Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15:1593–1623,
2014.

A Related work

Our work builds on two strands of work: inverse reinforcement learning (IRL) and active learning,
which we will address in turn. The IRL problem itself was introduced by Russell [8], preceded
by the closely related problem of inverse optimal control formulated by Kalman [9]. See Arora
and Doshi [10] and Adams et al. [11] for recent reviews of the already extensive literature on IRL.
Ramachandran and Amir [12] introduced the Bayesian formulation of the problem that we build on
here.

Active learning has first been introduced into IRL by Lopes et al. [2] who collect action annotations
in states where the current posterior over reward functions implies high ambiguity about the expert’s
action. A key limitation of this approach is that the action ambiguity can come from several actions
being equally good according to the true reward (such as in the jail state in our structured environment).
This ambiguity remains even when we already have plenty of expert data for a given state, which can
result in queries that do not bring any additional value. Our approach focuses on states that actually
bring extra information about the uknown reward. A second limitation – common with other methods
discussed below – is that the expert provides single action annotations. This is not practical in settings
such as autonomous driving where actions are sampled with high frequency, and it may be more
natural for a human demonstrator to provide longer trajectories (i.e. drive for a while) rather than
give annotations for unrelated individual time frames.

Bueuning et al. [13] query full trajectories in the context of IRL, where the active component arises
in a choice of transition function from a set of transition functions at each step of learning. Buening
et al [14] also query full trajectories in a different context involving two cooperating autonomous
agents.

Our work addresses the setting of identifying an optimal strategy for choosing trajectories within a
fixed environment.

Instead of directly providing demonstrations, in Sadigh et al. [15], the human expert is asked to
provide a relative preference between two sample trajectories synthesized by the algorithm. While
this generally provides less information per query than our formulation, it is a useful alternative for
situations where providing high-quality demonstrations is difficult for humans.

Brown et al. [3] present a risk-aware approach, which queries individual states with the highest
α-quantile policy loss, i.e. the states with a high risk that the apprentice action could be much worse
than the expert’s action.

Instead of querying at arbitrary states, Losey and O’Malley [16] and Lindner et al. [17] synthesize a
policy that explores the environment to produce a trajectory which subsequently gets annotated by
the expert. We instead let the expert produce the trajectory.

The closest baseline for our work, and the only existing work we are aware of that deals with
full trajectories in active IRL, comes from Kweon et al. [5]. Like in our experimental setup, they
propose an acquisition function for querying for expert trajectories starting from a given initial state.
Their acquisition function is based on maximizing the posterior predictive action entropy along the

7

5 10 15 20 25 30 35 40
n

0

25

50

75

100

125

150

175

200

Ti
m

e
(s

)

EIG Step Calculation Time for nxn Gridworld

(a) Scaling of EIG step calculation in time (s) with
increasing grid size.

5 10 15 20 25 30 35 40
n

0

250

500

750

1000

1250

1500

1750

2000

Ti
m

e
(s

)

IRL Step Calculation Time for nxn Gridworld

(b) Scaling of IRL step calculation in time (s) with
increasing grid size.

Figure 3: These plots show that the EIG calculation step scales approximately quadratically in n,
or linearly in the number of steps, and is very consistent. For comparison, the plot also shows the
scaling of the time required to run the PolicyWalk algorithm for Bayesian IRL

demonstration trajectory τ . That is, maximizing

Eτ∼π̂D
E

 |τ |∑
t=0

A(st)

∣∣∣∣∣∣s0
 (8)

where
A(s) =

∑
a

−π̂D
E (a|s) log π̂D

E (a|s),

i.e. the entropy of the estimated expert policy π̂D
E at state s, estimated from demonstration data D.

B Scaling Properties

We also provide a brief view of the scaling properties of the nested Monte Carlo estimation of the
EIG with respect to increasing sizes of a scaled-up version of the structured environment. We ran
3 repeated trials with adaptive step sizes, 50 warmup steps and 200 samples, for 5 active learning
steps, then timed the computational time for the EIG calculation as well as the associated PolicyWalk
algorithm for Bayesian IRL. The results are displayed in Figure 3. They suggest that the Bayesian IRL
algorithm may be the limiting factor in scaling up, though the ValueWalk algorithm (which we found
not suitable for the structured environment, but performing well on the fully random one) generally
displays better scaling properties [18]. That said, for scaling the algorithms further, especially to
continuous spaces, we expect to need to resort to methods based on variational inference.

On the other hand, we observed the Bayesian-optimization-based method of EIG calculation to scale
more favourably, since it does not need to assign a uniform budget to all n2 squares, but can focus
only on the most promising ones based on an initial estimate. In our initial investigation, we found
that assigning a quarter of the budget across initial squares (which still scales quadratically) and
scaling the rest linearly tended to preserve performance on par with nested Monte Carlo with a fully
quadratic scaling of the budget, but we are leaving a fuller analysis to a future version of this paper.

C Experiment details

C.1 Bayesian IRL methods

Our active learning uses a Bayesian IRL method as a key component. In our experiments, we used
two methods based on Markov chain Monte Carlo (MCMC) sampling: on the structured environment,
we used PolicyWalk [12], while on the environment with a different random reward in every state, we
used the faster ValueWalk [18], which performs the sampling primarily in the space of Q-functions

8

before converting into rewards. We also tried a method based on variational inference [19], but we
found its uncertainty estimates unreliable for the purposes of active learning.

For MCMC sampling, we used Hamiltonian Monte Carlo [20] with the no-U-turns (NUTS) sam-
pler [21] and automatic step size selection during warm-up (starting with a step size of 0.1). At every
step of active learning, we ran the MCMC sampling from scratch using all demonstrations available
up to that point. We ran for 100 warm-up steps and then 200 collected samples. For subsequent usage,
we generally thin the sample to 50 samples to reduce autocorrelation.

C.2 Baselines

We compare our methods against various baseline approaches. To evaluate the value of using full
trajectories in our EIG estimate, we also give results for experiments where ÊIG is computed after
querying a single state only (equivalently a unit-length trajectory), and the returned demonstration has
unit length. Relatedly, we consider a baseline experiment in which N = 8 single states are queried
at each active step, where N equals the average length of demonstrations in the active setting. In a
sense, the latter baseline serves as an “upper bound” of performance we could hope to achieve with a
fixed budget of trajectory lengths. For these length-one trajectories, we otherwise use the same EIG
calculation as for our longer trajectories.

For the Q-entropy baseline, we calculate the optimal Q-value corresponding to each reward sample
(this is in fact produced as a byproduct of both Bayesian IRL algorithms) and estimate its entropy
using the k-nearest-neighbours method with k = 5. We then select the state with maximum entropy
as the next initial state. The reasoning behind this is that uncertainty in the expert policy is directly
dependent on the uncertainty in the Q-value. Furthermore, the uncertainty in the Q-value captures not
only uncertainty about the reward in the given state, but also about the rewards and Q-values of states
that are expected to follow.

For the posterior predictive action entropy baseline [5], we use the acquisition function (8), while
adapting everything else to be consistent with our experiments. Specifically, this means calculating the
estimated expert policy π̂D

E directly from samples of the expert Q-values and assuming a Boltzmann
rational expert. The expectation in Eq. 8 is again approximated by sampling a number of trajectories
starting from s0, according to policy π̂D

E . For the structured environment, this acquisition function
only queries trivial trajectories remaining on the jail state which did not terminate, so it was necessary
to truncate these trajectories a maximum length. We chose 15 for this maximum.

C.3 Experimental setup

In sampling the hypothetical trajectories, we cap their length at 15 in the structured environment and
10 in the fully random one. In approximations, we used 20 reward samples and 2 sampled trajectories
per reward.

C.3.1 Structured environment

In the structured environment, we use an expert rationality coefficient of β = 1. We do not provide
any initial demonstrations. All experiments were run with 10 random reward assignments, consistent
across all tested methods. The reward was drawn from the same prior as was used by the Bayesian
IRL method, i.e. independent Uniform[0, 100] for the 3 rewards associated with the 3 state types.

C.3.2 Fully random environment

In the fully random environment, we use an expert rationality coefficient of β = 1 and provide 1
initial trajectory starting in the top left corner. Each method was run with 16 random reward and
terminal-state assignments. The reward was drawn from the same prior as was used by the Bayesian
IRL method, i.e. N (0, 3), i.i.d. for each state.

C.4 Additional results

In Figure 4 we provide the results on the fully random environment. To make the entropy plot more
legible, we aggregate the results for 10 steps subsequent steps, i.e. the result at 10 steps is the mean

9

0 25 50 75 100 125 150 175 200

90

100

110

120

130

Action Entropy
Random
NMC EIG (2 traj., 20 rew. samples)
BO EIG (2 traj., 20 rew. samples, kappa=2)
Active Single State
Q-Entropy

(a) Posterior entropy
(b) Apprentice policy cumulative regret, on the 7x7 random,
averaged over 16 experiments.

Figure 4: Results on the fully random environment. NMC stands for the naive nested Monte Carlo
estimation, while BO stands for Bayesian optimization.

and standard error across steps 1-10, at 20 across 11-20 and so on. The result at 0 is the performance
based on only the initial trajectory (before the first active step).

The results are mostly consistent with the results on the structured environment with several differ-
ences. Here we do not observe any advantage to sampling using the Q-entropy baseline even in the
early steps. We also observe an advantage of the Bayesian-optimization calculation for EIG - with
the same budget, the method is able to achieve better posterior entropy – in fact, a similar entropy
is achieved by the naive nested Monte Carlo estimation only with about double the budget. With
the same budget of trajectory samples, the Bayesian optimization method incurs a less than 10%
increase in computation time, taking 6.6 instead of 6.2 seconds per step on average. On top of this,
the Bayesian IRL method takes about 20 seconds to collect the 200 reward samples (+ 100 warm up
steps).

10

	Introduction
	Task formulation
	Method
	Efficient sampling with Bayesian optimization

	Experiments
	Discussion and conclusion
	Related work
	Scaling Properties
	Experiment details
	Bayesian IRL methods
	Baselines
	Experimental setup
	Structured environment
	Fully random environment

	Additional results

