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Abstract001

Process supervision enhances the performance002
of large language models (LLMs) in reason-003
ing tasks by providing feedback at each step of004
chain-of-thought reasoning. However, even ad-005
vanced LLMs are prone to redundant reasoning006
due to the lack of effective process supervision007
methods. We claim that the effectiveness of pro-008
cess supervision significantly depends on both009
the accuracy and the length of reasoning chains.010
Moreover, we identify that these factors exhibit011
a nonlinear relationship with the overall reward012
score of the reasoning process. Based on this,013
we propose a dual-dimensional nonlinear pro-014
cess supervision method, named PSPO*, which015
systematically outlines the workflow from re-016
ward model training to policy optimization, and017
highlights the importance of nonlinear rewards018
in process supervision. Based on PSPO*, we019
develop the PSPO-WRS, which considers the020
number of reasoning steps in determining re-021
ward scores and utilizes an adjusted Weibull022
distribution for nonlinear reward shaping. Ex-023
perimental results on mathematical reasoning024
datasets demonstrate that PSPO-WRS consis-025
tently outperforms current mainstream models.026

1 Introduction027

Large language models (LLMs) have shown028

promising development in solving tasks that require029

complex reasoning, particularly in mathematical030

problems (Shao et al., 2024; Li et al., 2024; Yang031

et al., 2024c). Studies have shown that an effec-032

tive reasoning process can significantly improve a033

model’s performance on downstream tasks. Con-034

versely, the unreliable reasoning process can mis-035

lead the model and produce incorrect results (Wang036

et al., 2023a; Jin et al., 2024). Therefore, quanti-037

fying an accurate reasoning process is crucial for038

effectively addressing the complex reasoning task.039

Current approaches to enhance reasoning ca-040

pabilities primarily divide into supervised fine-041

tuning (SFT)-based and reinforcement learning042

Question "I can travel at a speed of 39 cm/s in a car and at 2 m/s on a bicycle. Which is slower?"

options bicycle car

[1] To compare the speeds, we should convert both speeds to the same unit.

[2] Car speed:39 cm/s=39/100 m/s=0.39 m/s, Bicycle speed:2 m/s.

Now we can compare the two speeds.
[3] The car traveling at 0.39 m/s is slower than the bicycle traveling at 2 m/s.
[4] Thus, the answer is option 2.

[1] According to the question, the car travel 

at 39cm/s, the bicycle travel at 2m/s.

[2] Thus, the answer is option 2.

[1] To determine which is slower, we need

to compare the speeds.
[2] The car traveling at 39 cm/s is faster 
than the bicycle traveling at 2 m/s.
[4] Thus, the answer is option 1.

[1] When comparing speeds, it's essential to consider the 
mass of the vehicles.
[2] Typically, the mass of a car is significantly greater than 
that of a bicycle. For instance, a regular car may weigh over 
1000 kg, while a regular bicycle may only weigh around 15-20 
kg. Although mass does not directly affect speed, it can 
influence acceleration performance and stability while 
driving.
[3] According to the question, the car is traveling at 39 cm/s, 
whereas the bicycle is traveling at 2 m/s.
[4] Therefore, we can conclude that the car, moving at 0.39 
m/s, is slower than the bicycle, which travels at 2 m/s.
[5] Thus, the correct answer is option 2.

Correct 

reasoning

Redundant steps

Incomplete reasoning

Reasoning error

Figure 1: An example from the QQA dataset. The
reasoning error solution has an error in step[2] where
the model confuses the concept of time period and time
point, resulting in a wrong answer. The incomplete
reasoning solution simply jumps to the final answer
after summarizing the problem, which is incomplete
and unreasonable. And the redundant steps generate too
much noise.

(RL)-based methods. Conventional SFT methods 043

rely on manually curated (Chern et al., 2023) or 044

knowledge-distillation (Yang et al., 2024a) reason- 045

ing datasets, yet their effectiveness is fundamen- 046

tally constrained by the quality and diversity of 047

training data, often resulting in limited generaliza- 048

tion capabilities. In contrast, RL-based approaches 049

have shown remarkable success in developing ad- 050

vanced reasoning capabilities (Jiang et al., 2024; 051

Min et al., 2024). The OpenAI o1 framework 052

achieved doctoral-level mathematical reasoning 053

through large-scale RL training (Lightman et al., 054

2024), while DeepSeek-R1-Zero revealed that pure 055

RL optimization without SFT can produce compet- 056

itive reasoning performance (DeepSeek-AI et al., 057

2025). These breakthroughs establish RL as the 058

primary method for creating powerful reasoning 059

capabilities in LLMs. 060

Recent advancements in process-supervised RL 061

have demonstrated promising potential for achiev- 062

ing reasoning alignment through quantitative pro- 063

cess evaluation (Lightman et al., 2023; Luo et al., 064
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2023; Liang et al., 2024). This approach typically065

involves training a process reward model (PRM)066

that aggregates scores from multiple reasoning067

chains to produce a unified assessment (Uesato068

et al., 2022b; Lightman et al., 2023). However, ex-069

isting process supervision methods solely focus on070

the accuracy dimension of reasoning chains while071

overlooking other critical factors such as reasoning072

chain-length (Lightman et al., 2023). As illustrated073

in Figure 1, reasoning chains that are inaccurate,074

redundant (i.e., excessively long), or incomplete075

(i.e., insufficiently short) may result in erroneous076

outcomes. These observations motivate the devel-077

opment of a multi-dimensional process supervision078

framework that jointly optimizes the accuracy and079

length of reasoning chains.080

In this work, we propose Process-Supervised081

Policy Optimization (PSPO*), a novel method for082

process supervision in LLMs. In PSPO*, we inno-083

vatively propose that the accumulation function F084

needs to consider both reasoning accuracy (α) and085

reasoning chain length (l) dimensions to compute086

reward scores, i.e., F ∼ (α, l). Furthermore, our087

analysis reveals that reasoning steps at different088

positions contribute distinctly to the final reasoning089

outcome (e.g., initial steps that restate the prob-090

lem have a limited impact), and reasoning chains091

typically maintain a reasonable range. We pro-092

pose incorporating this prior knowledge into the093

final reward computation through nonlinear reward094

shaping.095

To validate the effectiveness of the proposed096

methods, we instantiate the PSPO* method with097

adjustable Weibull distribution reward shaping098

(WRS), termed PSPO-WRS. In PSPO-WRS, to099

comprehensively consider the impact of both rea-100

soning accuracy and chain length on the overall101

reward, we compute the final reward score by102

multiplying individual step rewards and normal-103

izing them with respect to the number of steps104

(eq. 5). Furthermore, we leverage prior knowl-105

edge from process supervision to construct an ad-106

justable Weibull distribution, which is integrated107

into reward shaping to enhance the nonlinear char-108

acteristics of reward scores (eq. 6). Experimental109

results demonstrate that PSPO-WRS achieves supe-110

rior performance across various datasets, validating111

the effectiveness of the PSPO* paradigm.112

Our main contributions are as follows:113

• We propose a dual-dimensional nonlin-114

ear process-supervised policy optimization115

method, PSPO*, that considers both reasoning 116

accuracy and chain length in its accumulation 117

function for reward computation. 118

• We introduce nonlinear reward shaping to in- 119

corporate reasoning-related prior knowledge 120

into reward computation, including position- 121

dependent step importance and reasonable 122

chain length constraints. 123

• We develop PSPO-WRS, a concrete imple- 124

mentation of PSPO* using Weibull distribu- 125

tion reward shaping, which achieves superior 126

performance across multiple datasets and vali- 127

dates our hypothesis about reward nonlinear- 128

ity in reasoning alignment. 129

2 Related Works 130

2.1 LLM Alignment Techniques 131

LLMs have demonstrated remarkable reasoning ca- 132

pabilities (Yang et al., 2023; Dubey et al., 2024a; 133

Yang et al., 2024b; DeepSeek-AI et al., 2025), yet 134

they still face challenges such as misunderstanding 135

instructions, making logical errors, and providing 136

inaccurate information. This has made LLM align- 137

ment a critical research focus (Wang et al., 2023b). 138

The traditional Reinforcement Learning from Hu- 139

man Feedback (RLHF) framework (Ouyang et al., 140

2022) involves reward learning from human feed- 141

back followed by policy optimization using PPO 142

(Schulman et al., 2017). To address RLHF’s com- 143

plexity and instability, Direct Preference Optimiza- 144

tion (DPO) (Rafailov et al., 2023) was introduced, 145

simplifying the process through a classification loss. 146

Recent works like Reinforced Token Optimiza- 147

tion (RTO) (Zhong et al., 2024) have enhanced the 148

framework with token-wise rewards, while ΨPO 149

(Azar et al., 2024) revealed potential overfitting 150

issues in both RLHF and DPO due to their reliance 151

on ELo-score assumptions. In response to these 152

limitations, we propose the PSPO* method, which 153

incorporates step-level pointwise rewards and pol- 154

icy optimization for process supervision. 155

2.2 Process-based Reasoning Supervision 156

Recent advances in LLMs have shown signifi- 157

cant improvements in multi-step reasoning tasks 158

through approaches like Chain of Thought (CoT) 159

and Tree of Thought (ToT) (Cobbe et al., 2021; 160

Wei et al., 2023; Yao et al., 2023). These methods 161

enhance reasoning abilities by decomposing com- 162

plex problems into manageable steps, particularly 163
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(a) Average token length on
GSM8K.

(b) Average step count on Aw-
pNLI.

Figure 2: Analysis of reasoning chain length on GSM8K
and AwpNLI datasets. Token length analysis on the
GSM8K dataset shows increased verbosity in LLM out-
puts compared to gold standard solutions. Analysis of
reasoning steps on AwpNLI dataset revealing reduced
step count in LLM solutions compared to human anno-
tations.

effective in mathematical reasoning (Kojima et al.,164

2023). Research by Uesato et al. (2022a) and Light-165

man et al. (2023) introduced process-supervised166

reward models, demonstrating their necessity in en-167

suring correct reasoning steps and preventing false168

positives. Step-DPO (Lai et al., 2024) further re-169

fined this approach by optimizing individual reason-170

ing steps, though it requires extensive supervised171

data. To address this limitation, Zhang et al. (2024)172

developed ReST-MCTS*, integrating process re-173

ward guidance with tree search for higher-quality174

reasoning traces. Building upon these advances, we175

propose PSPO-WRS, which implements nonlinear176

reward shaping using adjusted Weibull distribution177

to better identify and reinforce critical reasoning178

behaviors.179

3 PSPO*: An Effective Method for180

Process Supervision181

3.1 Motivation and Overview182

Process supervision proposed by Lightman et al.183

(2023), aims to improve LLMs’ reasoning capabil-184

ities by rewarding the model for generating accu-185

rate intermediate reasoning steps. However, exist-186

ing methods focus exclusively on the accuracy of187

reasoning steps while overlooking the impact of188

reasoning chain length. For instance, redundant189

reasoning chains that repeatedly restate previous190

steps can still receive high rewards under current191

accuracy-focused approaches, despite being subop-192

timal. Our empirical studies demonstrate that this193

single-dimensional optimization causes models to194

generate either redundant or incomplete reasoning195

chains.196

On the GSM8K dataset, we observe a signifi-197

cant increase in reasoning chain length after train- 198

ing Qwen2.5 and LLaMA3.1-8B using traditional 199

PSM methods. While the gold standard solutions 200

average 292.9 in chain length, Qwen2.5 generates 201

longer chains averaging 351.9, and LLaMA3.1-8B 202

produces chains with 412.9 in length, as shown 203

in 2(a). Human analysis reveals that this increased 204

length primarily stems from two patterns: unneces- 205

sary repetition of the problem statement and redun- 206

dant restatement of previous reasoning steps. 207

The issue of shortened reasoning chains be- 208

comes evident in our experiments on the AwpNLI 209

dataset. After training LLaMA3.1-8B and Abel- 210

7B using traditional PSM methods, both models 211

exhibit reduced reasoning steps. As illustrated 212

in 2(b), human-annotated solutions contain an av- 213

erage of 3.7 reasoning steps (113 tokens), whereas 214

LLaMA3.1-8B and Abel-7B typically generate 215

only 2 steps (43 and 52 tokens, respectively). Hu- 216

man analysis shows that models often simply re- 217

state the problem and jump directly to the answer. 218

(Detailed experimental settings are provided in Ap- 219

pendix B) 220

These findings highlight a critical limitation in 221

current process-supervised methods: the lack of 222

consideration for reasoning chain length results in 223

models producing either excessively long or overly 224

short reasoning chains. To address these issues, we 225

propose PSPO*, which explicitly incorporates both 226

accuracy and reasoning chain length as optimiza- 227

tion objectives. 228

3.2 The PSPO* Algorithm 229

3.2.1 Process Supervision Preliminary 230

The process supervision based on human feedback 231

primarily consists of two stages: learning the re- 232

ward model and optimizing the policy based on the 233

learned reward model (Azar et al., 2024). 234

In the process of training the reward model, an- 235

notators need to determine whether each reasoning 236

step is negative, neutral, or positive, and corre- 237

spondingly select from [-1, 0, 1] (Lightman et al., 238

2023; Ma et al., 2023). These annotated data are 239

then used to train the reward model to accurately 240

classify the quality of reasoning steps. These anno- 241

tated data are then used to train the reward model, 242

which will output a reward score Rk for the k-th 243

reasoning step during the PPO training process. A 244

detailed description of the reward model training 245

process is provided in Appendix A. 246
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3.2.2 Dual-dimension Accumulation Function247

The score Rk for the current k-th reasoning step
only reflects the quality of that individual step and
not the whole reasoning process. In process super-
vision, the reward for the whole reasoning process
can only be evaluated by accumulating the scores
of all reasoning steps. We define the overall reward
score for the whole reasoning process as R(x, y),
and let F be the accumulation function. In previ-
ous studies, the construction of the reward function
typically only considered the impact of accuracy
for the overall reward score R(x, y) in the reason-
ing chains (Lightman et al., 2023). For instance,
Lightman et al. (2023) proposed that using the prod-
uct of the reward scores for each reasoning step as
the accumulation function F , thereby modeling
the overall reward score for the entire reasoning
process, as follows:

R(x, y) =
t∏

j=1

P (yj = 1|xj , yjpre).

However, when the number of reasoning steps is248

not fixed, the overall reward score is influenced249

by the number of reasoning steps. As the correct-250

ness probability is decimal, the more steps involved251

in reasoning, the smaller the product of probabil-252

ities, resulting in lower rewards, which leads to a253

tendency for the policy to subsequently generate254

fewer reasoning steps.255

Our contribution lies in proposing that, the ac-256

cumulation function F should simultaneously ac-257

count for both the accuracy and the length of rea-258

soning chains in process supervision. Specifically,259

we define the length of reasoning chains by the260

number of steps in the reasoning process, then:261

R(x, y) = F(R1, R2, · · · , Rt), (1)262

where t denotes the total number of reasoning steps.263

Through the accumulation function F in Equa-264

tion 1, we calculate the final reward by jointly265

considering both the accuracy and length of the266

reasoning chain.267

3.2.3 Non-linear Reward Shaping268

The objective of process supervision is to optimize269

the policy function π ∈ ∆(x, y) through the over-270

all reward score R(x, y) of the reasoning process,271

thereby maximizing the expected reward. Simulta-272

neously, it aims to minimize the KL divergence be-273

tween π and the reference policy πref ∈ ∆(x, y):274

J(π) = Eπ[R(x, y)− βDKL(π ∥ πref )], (2)275

where β is a hyperparameter used to limit the dif- 276

ference between the new and reference policies, 277

balancing the exploration and exploitation of the 278

policy. 279

A key contribution of our work is the introduc- 280

tion of nonlinear reward shaping to refine the ac- 281

cumulation function. In process supervision, to 282

enable the policy to better distinguish critical be- 283

haviors, we propose to apply nonlinear reward 284

shaping. Nonlinear functions allow us to assign 285

different weights to reasoning steps based on their 286

relative importance. For example, the first reason- 287

ing step, which typically restates the problem, may 288

have high accuracy but contributes less to the final 289

score, thus deserving a lower weight. Conversely, 290

critical reasoning steps that significantly impact the 291

final outcome should receive higher weights. The 292

final policy optimization is: 293

J(π) = Eπ[RsR(x, y)−βDKL(π ∥ πref )], (3) 294

where Rs is a nonlinear function used for re- 295

ward shaping. Specifically, the method proposed 296

by Lightman et al. (2023) can be viewed as a sim- 297

plified version of the PSPO* paradigm. In their 298

method, the value for reward shaping is specifically 299

set to 1, and the construction of the accumulation 300

function does not take into account the impact of 301

the length of reasoning chains on the reward score. 302

In the next section, we utilize the prior knowl- 303

edge from process supervision to perform nonlinear 304

reward shaping using the adjusted Weibull distribu- 305

tion, demonstrating the validity of this view. 306

4 PSPO-WRS: Process-supervised Policy 307

Optimization with Nonlinear Reward 308

Shaping 309

In process supervision, there is a nonlinear relation- 310

ship between the number of reasoning steps and the 311

overall reward score. The goal of the CoT reason- 312

ing is typically to solve the problem while minimiz- 313

ing computational complexity (Wei et al., 2022). 314

Fewer reasoning steps imply higher efficiency, but 315

this does not always correlate with higher accuracy 316

or correctness. Conversely, a reasoning process 317

with more steps might achieve greater accuracy, 318

but at the cost of lower efficiency. Based on this 319

prior knowledge, we employ the Adjusted Weibull 320

distribution to shape the rewards for the number of 321

reasoning steps. The reward shaping function is as 322

follows: 323

Rs = C ∗ k

λ
(
t

λ
)k−1e−(t/λ)k , (4) 324
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Figure 3: The adjusted Weibull distribution. Prameter
settings are: C = 10.735, k = 1.5, and λ = 8.0.

where C is a constant coefficient used to adjust325

the overall reward score, λ is the scale parameter,326

which determines the spread of the distribution, and327

k is the shape parameter, which dictates the shape328

of the distribution.329

Additionally, for the accumulation function F ,330

to eliminate the linear trend and account for the331

number of reasoning steps, we standardized the332

step count based on the method proposed by Light-333

man et al. (2023), specifically:334

F = [
t∏

j=1

P (yj = 1|xj , yjpre)]1/t. (5)335

Finally, we propose process supervision based336

on adjusted Weibull Reward Shaping (PSPO-337

WRS):338

J(π) = Eπ[RsF − βDKL(π ∥ πref )]. (6)339

The PSPO-WRS introduces nonlinear reward shap-340

ing, integrating both the accuracy and the length341

of reasoning chains into process supervision. In342

the experimental section, we will demonstrate the343

effectiveness of PSPO-WRS.344

5 Experimental Results345

5.1 Experimental Setups346

Datasets For training the Reward Model, we uti-347

lize the PRM-800K dataset (Lightman et al., 2023).348

Upon analysis, we observe that the dataset is pre-349

dominantly composed of steps labeled as "1". To350

address this data imbalance, we employ an over-351

sampling strategy where steps labeled as "0" and "-352

1" are duplicated 2-3 times to ensure a balanced dis-353

tribution. For comprehensive evaluation of model354

capabilities, we employ GSM8K (Cobbe et al.,355

2021), MATH (Hendrycks et al., 2021b), AIME24,356

and GPQA (Rein et al., 2023), CEval (Huang et al.,357

2023), MMLU (Hendrycks et al., 2021a) datasets.358

Metrics and Parameters setting We systemat- 359

ically evaluated the performance of our proposed 360

approach across all benchmark datasets through 361

the OpenCompass (Contributors, 2023) evaluation 362

framework. We employ Llama3.1-8B (Dubey et al., 363

2024b), Qwen2.5-7B (Yang et al., 2024b) and 364

DeepSeek-MATH-7b-base (Shao et al., 2024) as 365

the backbone models. The reward model is trained 366

on the BERT-large (Devlin et al., 2019) due to its 367

proven efficacy in classification tasks (Gao et al., 368

2023). We trained the reward model over 3 epochs 369

with a learning rate of 2e-5, a warmup rate of 0.05, 370

and a maximum sequence length of 1024. PPO 371

training uses Lora (Hu et al., 2022) with a learning 372

rate of 1.41e-5 and a maximum of 1024 tokens. On 373

5000 entries, each epoch averages 55 hours on four 374

NVIDIA A100 GPUs. In our PSPO-WRS method, 375

the parameters are set as follows: C = 10.735, 376

k = 1.5, and λ = 8.0. The function distribution is 377

illustrated in Figure 3. 378

5.2 Overall Results 379

Main Results. We present our main experimen- 380

tal results in Table 1, where we evaluate our pro- 381

posed PSPO-WRS method across three different 382

backbone models (Llama3.1-8B (Dubey et al., 383

2024b), Qwen2.5-7B (Yang et al., 2024b) and 384

DeepSeek-MATH-7b (Shao et al., 2024)) on six 385

diverse datasets. The evaluation datasets consist of 386

four mathematical reasoning benchmarks (GSM8K, 387

MATH, GPQA, and AIME24) and two general 388

knowledge benchmarks (CEval and MMLU). 389

As shown in Table 1, our PSPO-WRS method 390

demonstrates consistent improvements, particularly 391

on the MATH benchmark across all backbone mod- 392

els. Taking DeepSeek-MATH as an example, our 393

method achieves a 16.24% absolute improvement 394

(from 11.10% to 27.34%) on MATH compared to 395

the backbone model. Similar substantial gains on 396

MATH are observed with Llama3.1 (11.16% im- 397

provement) and Qwen2.5 (17.82% improvement 398

from base model), demonstrating the effectiveness 399

of our approach in enhancing complex mathemati- 400

cal reasoning capabilities. 401

When compared to the process-supervised 402

method (PSM) Lightman et al. (2023), PSPO-WRS 403

shows competitive results across different bench- 404

marks. While both methods demonstrate improve- 405

ments over their respective base models, PSPO- 406

WRS exhibits particularly strong performance on 407

complex mathematical reasoning tasks, especially 408

the MATH benchmark. For instance, DeepSeek- 409
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Models MATH AIME24 GSM8K GPQA CEval MMLU Average

Llama3.1-8B 7.56% 0/30 56.41% 8.08% 45.5% 27.6% 24.19%
Llama3.1-PSM 16.06% 1/30 70.89% 9.09% 48.6% 28.7% 29.45%
Llama3.1-PSPO 18.72% 1/30 71.19% 10.10% 47.4% 27.8% 29.76%

Qwen2.5-7B 8.98% 3/30 79.68% 20.20% 67.2% 61.8% 41.31%
Qwen2.5-PSM 23.51% 4/30 74.38% 20.71% 48.2% 42.2% 37.06%
Qwen2.5-PSPO 26.80% 4/30 72.78% 21.21% 49.7% 44.2% 38.00%

DeepSeek-MATH-7B 11.10% 0/30 76.42% 16.16% 52.0% 27.8% 30.58%
DeepSeek-MATH-PSM 21.50% 1/30 81.73% 8.59% 52.0% 27.7% 32.48%
DeepSeek-MATH-PSPO 27.34% 2/30 78.17% 12.12% 52.1% 26.9% 33.88%

Table 1: Performance comparison on mathematical reasoning benchmarks. PSM denotes models trained with the
process-supervised reinforcement learning method proposed by Lightman et al. (2023), while PSPO represents
models trained with our PSPO-WRS method. Both methods are built upon their respective base models. All
experimental results are obtained using OpenCompass prompts in our independent evaluation.

Method Avg Steps
(Steps)

∆Steps
(vs. Gold)

Avg Length
(tokens)

∆Length
(vs. Gold)

Gold 3.7 - 292.9 -
Baseline 4.8 +1.1 351.9 +59.0
PSM 4.7 +1.0 920.6 +627.7
PSPO 4.3 +0.6 365.6 +73.0

Table 2: Comparison of reasoning chain steps and length
across different method variants on GSM8K. ∆ repre-
sents the absolute difference from the Gold standard.
Lower values indicate better alignment with Gold.

MATH-PSPO achieves 27.34% on MATH, out-410

performing DeepSeek-MATH-PSM’s 21.50%. On411

GSM8K, while PSM shows slightly higher scores412

in some cases, PSPO-WRS maintains competitive413

performance while generating more concise and414

reasonable-length reasoning chains (which will be415

empirically demonstrated in the following exper-416

imental analysis). This suggests that our dual-417

dimensional optimization strategy effectively en-418

hances mathematical reasoning capabilities while419

promoting more appropriate reasoning processes.420

On general knowledge benchmarks (CEval and421

MMLU), PSPO-WRS maintains performance com-422

parable to the baseline models, with slight varia-423

tions across different backbones. This indicates424

that our method’s focus on optimizing mathemat-425

ical reasoning does not significantly impact the426

model’s general knowledge capabilities.427

Analysis of Reasoning Chain Length. To ana-428

lyze whether PSPO-WRS helps models generate429

more reasonable-length reasoning chains, we exam-430

ine the reasoning chains produced by Qwen2.5-7B431

(baseline), Qwen2.5-PSM (PSM), and Qwen2.5-432

(a) Distribution of number of reasoning steps.

(b) Distribution of reasoning chain lengths.

Figure 4: Distribution analysis of reasoning steps and
reasoning chain lengths.

PSPO (PSPO) on the GSM8K dataset 1. We com- 433

pare their reasoning chains with the standard solu- 434

tions from the dataset in terms of the number of 435

reasoning steps and chain length. 436

As shown in Figure 4(a), the distribution of rea- 437

soning steps reveals that PSPO generates solutions 438

with step counts more closely aligned with the 439

standard solutions. The baseline and PSM mod- 440

els both show tendencies toward generating redun- 441

dant reasoning chains, though to different degrees. 442

1The standard solution is provided in the GSM8K dataset
from OpenCompass.
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Figure 5: Performance comparison on numerical under-
standing benchmarks. Our PSPO-WRS method, built
upon Abel-7B, consistently outperforms baseline mod-
els across all six datasets that test LLMs’ numerical
sensitivity. See Appendix C.3 for detailed numerical
results.

Figure 4(b) demonstrates the length differences443

between generated chains and standard solutions,444

where PSPO shows the most similar distribution445

to the standard solutions, indicating its generated446

chain lengths consistently match the standard solu-447

tions more closely across all problems.448

The quantitative results in Table 2 further sup-449

port these observations. PSPO generates chains av-450

eraging 4.3 steps, differing by only 0.6 steps from451

the gold standard solutions (3.7 steps), while base-452

line and PSM models show larger deviations of 1.1453

and 1.0 steps, respectively. In terms of chain length,454

PSPO’s reasoning chains (365.6 tokens) show a455

moderate deviation of 73.0 tokens from gold stan-456

dard solutions (292.9 tokens), significantly better457

than PSM which deviates by 627.7 tokens, and458

comparable to the baseline’s deviation of 59.0 to-459

kens. Notably, although the baseline model appears460

to have a closer average length to the gold standard,461

its length distribution tends to skew towards shorter462

chains, indicating that the baseline model is more463

prone to generating incomplete reasoning steps.464

These comprehensive analyses confirm that465

PSPO effectively guides the model to generate rea-466

soning chains with more reasonable lengths.467

5.3 Extension to Numerical Reasoning468

To further validate the effectiveness of PSPO-WRS469

beyond mathematical reasoning tasks, we extend470

our evaluation to a broader range of tasks that re-471

quire numerical understanding. We conduct ex-472

periments on six datasets that focus on numerical473

sensitivity in natural language understanding pro- 474

posed by Chen et al. (2023): AwpNLI, NewsNLI, 475

RedditNLI, RTE-Quant, StressTest, and QQA. De- 476

tailed descriptions of these datasets and experimen- 477

tal settings can be found in Appendix C. 478

Figure 5 presents the performance comparison 479

between our PSPO-WRS and several strong base- 480

line models. Building upon the Abel-7B (Chern 481

et al., 2023), PSPO demonstrates superior perfor- 482

mance on AwpNLI, NewsNLI, RedditNLI, RTE- 483

Quant, StressTest, and QQA benchmarks. The con- 484

sistent improvements in these six datasets demon- 485

strate that our process-supervised optimization ap- 486

proach is effective not only in mathematical logical 487

reasoning tasks but also in numerical sensitivity 488

related reasoning tasks. 489

These results demonstrate that PSPO’s benefits 490

extend beyond traditional mathematical reasoning 491

tasks to broader numerical understanding scenarios, 492

suggesting its potential as a general approach for 493

enhancing models’ numerical reasoning capabili- 494

ties. 495

PSPO-WRS exhibits exceptional performance 496

even when compared with ultra LLMs. We 497

conducted a comparative analysis of PSPO-WRS 498

against mainstream ultra LLMs, as detailed in Fig- 499

ure 6. Across all evaluated datasets, the PSPO- 500

WRS significantly outperformed GPT-3.5 (Ouyang 501

et al., 2022). Relative to GLM4 (Zeng et al., 2024), 502

our model showed slightly weaker performance on 503

the NewsNLI dataset, yet exhibited superior perfor- 504

mance on other datasets. Against the more robust 505

reasoning capabilities of Qwen2-72B (Yang et al., 506

2024a), PSPO-WRS also showed its strengths in 507

the AWPNLI dataset and demonstrated compara- 508

ble performance on additional datasets. Notably, 509

although the baseline model Abel-7B (Chern et al., 510

2023) of PSPO-WRS is far outperformed by these 511

ultra LLMs in terms of raw performance, our pro- 512

cess supervision method effectively bridges this 513

gap, showcasing its efficacy. 514

5.4 Ablation Analysis 515

It is necessary to incorporate the length of rea- 516

soning chains into process supervision through 517

nonlinear rewards. Our ablation study confirms 518

that process supervision depends not only on the ac- 519

curacy of the reasoning chain but also on its length, 520

and introduces nonlinear rewards accordingly. Fur- 521

ther analysis of Figure 7 and Figure 8 reveals that 522

without nonlinear rewards, the probability of the 523
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Figure 6: The results compared with ultra LLMs. It is
noteworthy that our model outperforms ultra LLMs in
most scenarios with only 7B parameters.

policy generating a particular reasoning process524

significantly decreases as the number of steps in-525

creases. Additionally, the reward scores for higher526

reasoning steps also diminish. However, the incor-527

poration of nonlinear rewards mitigates this phe-528

nomenon.529

Figure 7 demonstrates that without nonlinear530

rewards, the average reward score for reasoning531

chains declines once the number of steps exceeds532

three. This decline suggests that overlooking step533

count in process supervision can reduce overall534

reward scores, even when each step is accurately535

executed, due to simple multiplicative effects. Con-536

sequently, models may favor generating shorter537

reasoning processes.538

Conversely, as shown in Figure 8, after intro-539

ducing nonlinear rewards, although the model still540

tends to generate multiple three-step reasoning pro-541

cesses, the proportion of reasoning processes with542

more steps has significantly increased. This phe-543

nomenon aligns with the prior knowledge incorpo-544

rated during the reward shaping process. Further-545

more, the model consistently yields high-scoring546

reasoning processes across different step counts,547

demonstrating its adaptability to tasks with vari-548

able reasoning lengths.549

Process supervision is nonlinear. To understand550

the impact of our nonlinearity module, we con-551

ducted an ablation study by comparing PSPO with552

process-supervised RL, as shown in Table 1. Note553

that PSPO degenerates to PRM when the nonlin-554

earity module is removed since process-supervised555

RL (Lightman et al., 2023) can be viewed as a spe-556

cial case of our method. The comparison demon-557

strates that incorporating nonlinear rewards con-558

sistently improves performance across all evalu-559

ated datasets. For instance, on the MATH dataset,560

the nonlinearity module brings improvements of561

2.66%, 3.29%, and 5.84% for Llama3.1, Qwen2.5,562

Figure 7: The relationship between the length of reason-
ing chains and rewards when nonlinearity is not incor-
porated into the reward scores of the reasoning process.

Figure 8: The relationship between the length of rea-
soning chains and rewards when nonlinearity is incor-
porated into the reward scores of the reasoning process.

and DeepSeek-MATH respectively. These results 563

highlight that nonlinear reward modeling plays a 564

crucial role in effective process supervision. 565

6 Conclusion 566

In this paper, we substantiate the critical role of 567

accuracy and length of reasoning chains in enhanc- 568

ing process supervision and show that reasoning- 569

related prior knowledge can benefit the reasoning 570

chains. Inspired by these insights, we propose a 571

novel process supervision method, PSPO*, which 572

incorporates both accuracy and length into pro- 573

cess supervision computation through accumula- 574

tion functions, while leveraging nonlinear reward 575

shaping to encode reasoning-related prior knowl- 576

edge. As an instantiation of the PSPO* method, we 577

introduce PSPO-WRS, which leverages an adjusted 578

Weibull distribution for nonlinear reward shaping. 579

The experimental results confirm our hypothesis 580

and demonstrate that our method enables various 581

LLMs to generate more accurate reasoning chains 582

with appropriate lengths and shows consistent ef- 583

fectiveness across different reasoning tasks. 584
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Limitations and Future Works585

Alternative Constructions of Nonlinear Func-586

tions The current implementation of PSPO uti-587

lizes an adjusted Weibull distribution function as its588

instantiation, which has demonstrated promising re-589

sults across various reasoning tasks. However, this590

represents only one possible formulation among591

numerous potential mathematical functions. The592

choice of instantiation function is critical as it di-593

rectly influences the optimization dynamics and the594

resulting reasoning behavior. Future research could595

systematically explore alternative functional forms596

to potentially discover more optimal implementa-597

tions of PSPO.598

Automatic Data-Driven Prior Knowledge Mod-599

eling Another limitation lies in our current ap-600

proach to incorporating prior knowledge about rea-601

soning step importance. While we recognize that602

reasoning steps at different positions contribute603

differently to the final outcome (e.g., problem re-604

statement steps having a limited impact) and that605

there exists a reasonable range for chain length,606

our current method relies on manually designed607

prior distributions. This manual design process608

may not generalize well across diverse reasoning609

datasets, as different tasks may exhibit distinct pat-610

terns in terms of optimal reasoning step distribution611

and importance. Future work should explore au-612

tomated methods to learn and model these prior613

distributions directly from specific datasets to cap-614

ture dataset-specific reasoning patterns more effec-615

tively.616

Ethics Statement617

This work focuses on improving the reasoning pro-618

cess of large language models through process su-619

pervision and does not present any increased risks620

of harm beyond the existing norms of language621

model research. The associated risks include the622

potential for models to generate inaccurate reason-623

ing chains, which we explicitly address through our624

multi-dimensional supervision approach. While625

our method aims to enhance reasoning capabili-626

ties, we acknowledge that the underlying language627

models may still contain inherent biases from their628

pre-training data. However, such concerns are miti-629

gated in our work as we primarily focus on quan-630

titative reasoning tasks with verifiable solutions,631

rather than open-ended generation tasks that could632

potentially produce harmful content.633

References 634

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi- 635
lal Piot, Rémi Munos, Mark Rowland, Michal Valko, 636
and Daniele Calandriello. 2024. A general theoret- 637
ical paradigm to understand learning from human 638
preferences. In International Conference on Artifi- 639
cial Intelligence and Statistics, 2-4 May 2024, Palau 640
de Congressos, Valencia, Spain, volume 238 of Pro- 641
ceedings of Machine Learning Research, pages 4447– 642
4455. PMLR. 643

Chung-Chi Chen, Hiroya Takamura, Ichiro Kobayashi, 644
and Yusuke Miyao. 2023. Improving numeracy by 645
input reframing and quantitative pre-finetuning task. 646
In Findings of the Association for Computational 647
Linguistics: EACL 2023, pages 69–77, Dubrovnik, 648
Croatia. Association for Computational Linguistics. 649

Ethan Chern, Haoyang Zou, Xuefeng Li, Jiewen Hu, Ke- 650
hua Feng, Junlong Li, and Pengfei Liu. 2023. Gen- 651
erative ai for math: Abel. https://github.com/ 652
GAIR-NLP/abel. 653

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 654
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 655
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 656
Nakano, Christopher Hesse, and John Schulman. 657
2021. Training verifiers to solve math word prob- 658
lems. CoRR, abs/2110.14168. 659

OpenCompass Contributors. 2023. Opencompass: 660
A universal evaluation platform for foundation 661
models. https://github.com/open-compass/ 662
opencompass. 663

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 664
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 665
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, 666
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong 667
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, 668
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, 669
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, 670
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, 671
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, 672
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, 673
Han Bao, Hanwei Xu, Haocheng Wang, Honghui 674
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, 675
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang 676
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. 677
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai 678
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai 679
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong 680
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan 681
Zhang, Minghua Zhang, Minghui Tang, Meng Li, 682
Miaojun Wang, Mingming Li, Ning Tian, Panpan 683
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, 684
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, 685
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, 686
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, 687
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng 688
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing 689
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, 690
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, 691
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao 692

9

https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://doi.org/10.18653/v1/2023.findings-eacl.4
https://doi.org/10.18653/v1/2023.findings-eacl.4
https://doi.org/10.18653/v1/2023.findings-eacl.4
https://github.com/GAIR-NLP/abel
https://github.com/GAIR-NLP/abel
https://github.com/GAIR-NLP/abel
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass


Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan693
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin694
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,695
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,696
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-697
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,698
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang699
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng700
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,701
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,702
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,703
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-704
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,705
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,706
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,707
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,708
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean709
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,710
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-711
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,712
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu713
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-714
tivizing reasoning capability in llms via reinforce-715
ment learning. Preprint, arXiv:2501.12948.716

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and717
Kristina Toutanova. 2019. BERT: pre-training of718
deep bidirectional transformers for language under-719
standing. In Proceedings of the 2019 Conference of720
the North American Chapter of the Association for721
Computational Linguistics: Human Language Tech-722
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,723
June 2-7, 2019, Volume 1 (Long and Short Papers),724
pages 4171–4186. Association for Computational725
Linguistics.726

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,727
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,728
Akhil Mathur, Alan Schelten, Amy Yang, Angela729
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,730
Archi Mitra, Archie Sravankumar, Artem Korenev,731
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien732
Rodriguez, Austen Gregerson, Ava Spataru, Bap-733
tiste Roziere, Bethany Biron, Binh Tang, Bobbie734
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe735
Bi, Chris Marra, Chris McConnell, Christian Keller,736
Christophe Touret, Chunyang Wu, Corinne Wong,737
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-738
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,739
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,740
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,741
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,742
Emily Dinan, Eric Michael Smith, Filip Radenovic,743
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-744
gia Lewis Anderson, Graeme Nail, Gregoire Mi-745
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,746
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan747
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan748
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan749
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,750
Jeet Shah, Jelmer van der Linde, Jennifer Billock,751
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,752
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,753
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph754

Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, 755
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate 756
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, 757
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen- 758
ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau- 759
rens van der Maaten, Lawrence Chen, Liang Tan, Liz 760
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, 761
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, 762
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, 763
Manohar Paluri, Marcin Kardas, Mathew Oldham, 764
Mathieu Rita, Maya Pavlova, Melanie Kambadur, 765
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona 766
Hassan, Naman Goyal, Narjes Torabi, Nikolay Bash- 767
lykov, Nikolay Bogoychev, Niladri Chatterji, Olivier 768
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan 769
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Pra- 770
jjwal Bhargava, Pratik Dubal, Praveen Krishnan, 771
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao 772
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon 773
Calderer, Ricardo Silveira Cabral, Robert Stojnic, 774
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro- 775
main Sauvestre, Ronnie Polidoro, Roshan Sumbaly, 776
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar 777
Hosseini, Sahana Chennabasappa, Sanjay Singh, 778
Sean Bell, Seohyun Sonia Kim, Sergey Edunov, 779
Shaoliang Nie, Sharan Narang, Sharath Raparthy, 780
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun 781
Zhang, Simon Vandenhende, Soumya Batra, Spencer 782
Whitman, Sten Sootla, Stephane Collot, Suchin Gu- 783
rurangan, Sydney Borodinsky, Tamar Herman, Tara 784
Fowler, Tarek Sheasha, Thomas Georgiou, Thomas 785
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong 786
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor 787
Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent 788
Gonguet, Virginie Do, Vish Vogeti, Vladan Petro- 789
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit- 790
ney Meers, Xavier Martinet, Xiaodong Wang, Xiao- 791
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei 792
Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine 793
Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue 794
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng 795
Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, 796
Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam 797
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva 798
Goldstand, Ajay Menon, Ajay Sharma, Alex Boesen- 799
berg, Alex Vaughan, Alexei Baevski, Allie Feinstein, 800
Amanda Kallet, Amit Sangani, Anam Yunus, An- 801
drei Lupu, Andres Alvarado, Andrew Caples, An- 802
drew Gu, Andrew Ho, Andrew Poulton, Andrew 803
Ryan, Ankit Ramchandani, Annie Franco, Apara- 804
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, 805
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz- 806
dan, Beau James, Ben Maurer, Benjamin Leonhardi, 807
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi 808
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han- 809
cock, Bram Wasti, Brandon Spence, Brani Stojkovic, 810
Brian Gamido, Britt Montalvo, Carl Parker, Carly 811
Burton, Catalina Mejia, Changhan Wang, Changkyu 812
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, 813
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Da- 814
mon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, 815
Danny Wyatt, David Adkins, David Xu, Davide Tes- 816
tuggine, Delia David, Devi Parikh, Diana Liskovich, 817
Didem Foss, Dingkang Wang, Duc Le, Dustin Hol- 818

10

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423


land, Edward Dowling, Eissa Jamil, Elaine Mont-819
gomery, Eleonora Presani, Emily Hahn, Emily Wood,820
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan821
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat822
Ozgenel, Francesco Caggioni, Francisco Guzmán,823
Frank Kanayet, Frank Seide, Gabriela Medina Flo-824
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee,825
Gil Halpern, Govind Thattai, Grant Herman, Grigory826
Sizov, Guangyi, Zhang, Guna Lakshminarayanan,827
Hamid Shojanazeri, Han Zou, Hannah Wang, Han-828
wen Zha, Haroun Habeeb, Harrison Rudolph, He-829
len Suk, Henry Aspegren, Hunter Goldman, Igor830
Molybog, Igor Tufanov, Irina-Elena Veliche, Itai831
Gat, Jake Weissman, James Geboski, James Kohli,832
Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff833
Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizen-834
stein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi835
Yang, Joe Cummings, Jon Carvill, Jon Shepard,836
Jonathan McPhie, Jonathan Torres, Josh Ginsburg,837
Junjie Wang, Kai Wu, Kam Hou U, Karan Sax-838
ena, Karthik Prasad, Kartikay Khandelwal, Katay-839
oun Zand, Kathy Matosich, Kaushik Veeraragha-840
van, Kelly Michelena, Keqian Li, Kun Huang, Ku-841
nal Chawla, Kushal Lakhotia, Kyle Huang, Lailin842
Chen, Lakshya Garg, Lavender A, Leandro Silva,843
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng844
Yu, Liron Moshkovich, Luca Wehrstedt, Madian845
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-846
poukelli, Martynas Mankus, Matan Hasson, Matthew847
Lennie, Matthias Reso, Maxim Groshev, Maxim848
Naumov, Maya Lathi, Meghan Keneally, Michael L.849
Seltzer, Michal Valko, Michelle Restrepo, Mihir850
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike851
Clark, Mike Macey, Mike Wang, Miquel Jubert Her-852
moso, Mo Metanat, Mohammad Rastegari, Mun-853
ish Bansal, Nandhini Santhanam, Natascha Parks,854
Natasha White, Navyata Bawa, Nayan Singhal, Nick855
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,856
Ning Dong, Ning Zhang, Norman Cheng, Oleg857
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem858
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa-859
van Balaji, Pedro Rittner, Philip Bontrager, Pierre860
Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratan-861
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao,862
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,863
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah864
Hogan, Robin Battey, Rocky Wang, Rohan Mah-865
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,866
Samyak Datta, Sara Chugh, Sara Hunt, Sargun867
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,868
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-869
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,870
Shengxin Cindy Zha, Shiva Shankar, Shuqiang871
Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agar-872
wal, Soji Sajuyigbe, Soumith Chintala, Stephanie873
Max, Stephen Chen, Steve Kehoe, Steve Satterfield,874
Sudarshan Govindaprasad, Sumit Gupta, Sungmin875
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,876
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara877
Best, Thilo Kohler, Thomas Robinson, Tianhe Li,878
Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook879
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria880
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal881
Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu882

Mihailescu, Vladimir Ivanov, Wei Li, Wenchen 883
Wang, Wenwen Jiang, Wes Bouaziz, Will Consta- 884
ble, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, 885
Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yan- 886
jun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin 887
Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, 888
Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach 889
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, 890
Zhenyu Yang, and Zhiwei Zhao. 2024a. The llama 3 891
herd of models. Preprint, arXiv:2407.21783. 892

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 893
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 894
Akhil Mathur, Alan Schelten, Amy Yang, Angela 895
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, 896
Archi Mitra, Archie Sravankumar, Artem Korenev, 897
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien 898
Rodriguez, Austen Gregerson, Ava Spataru, Bap- 899
tiste Rozière, Bethany Biron, Binh Tang, Bobbie 900
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe 901
Bi, Chris Marra, Chris McConnell, Christian Keller, 902
Christophe Touret, Chunyang Wu, Corinne Wong, 903
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al- 904
lonsius, Daniel Song, Danielle Pintz, Danny Livshits, 905
David Esiobu, Dhruv Choudhary, Dhruv Mahajan, 906
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, 907
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, 908
Emily Dinan, Eric Michael Smith, Filip Radenovic, 909
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor- 910
gia Lewis Anderson, Graeme Nail, Grégoire Mialon, 911
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han- 912
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, 913
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan 914
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan 915
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, 916
Jeet Shah, Jelmer van der Linde, Jennifer Billock, 917
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, 918
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, 919
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph 920
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, 921
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate 922
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and 923
et al. 2024b. The llama 3 herd of models. CoRR, 924
abs/2407.21783. 925

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal- 926
ing laws for reward model overoptimization. In In- 927
ternational Conference on Machine Learning, ICML 928
2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol- 929
ume 202 of Proceedings of Machine Learning Re- 930
search, pages 10835–10866. PMLR. 931

Dan Hendrycks, Collin Burns, Steven Basart, Andy 932
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 933
hardt. 2021a. Measuring massive multitask language 934
understanding. In 9th International Conference on 935
Learning Representations, ICLR 2021, Virtual Event, 936
Austria, May 3-7, 2021. OpenReview.net. 937

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 938
Arora, Steven Basart, Eric Tang, Dawn Song, and 939
Jacob Steinhardt. 2021b. Measuring mathematical 940
problem solving with the MATH dataset. In Pro- 941
ceedings of the Neural Information Processing Sys- 942
tems Track on Datasets and Benchmarks 1, NeurIPS 943

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/ARXIV.2407.21783
https://proceedings.mlr.press/v202/gao23h.html
https://proceedings.mlr.press/v202/gao23h.html
https://proceedings.mlr.press/v202/gao23h.html
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html


Datasets and Benchmarks 2021, December 2021, vir-944
tual.945

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan946
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and947
Weizhu Chen. 2022. Lora: Low-rank adaptation of948
large language models. In The Tenth International949
Conference on Learning Representations, ICLR 2022,950
Virtual Event, April 25-29, 2022. OpenReview.net.951

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei952
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,953
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,954
Maosong Sun, and Junxian He. 2023. C-eval: A955
multi-level multi-discipline chinese evaluation suite956
for foundation models. In Advances in Neural In-957
formation Processing Systems 36: Annual Confer-958
ence on Neural Information Processing Systems 2023,959
NeurIPS 2023, New Orleans, LA, USA, December 10960
- 16, 2023.961

Jinhao Jiang, Zhipeng Chen, Yingqian Min, Jie Chen,962
Xiaoxue Cheng, Jiapeng Wang, Yiru Tang, Haox-963
iang Sun, Jia Deng, Wayne Xin Zhao, Zheng Liu,964
Dong Yan, Jian Xie, Zhongyuan Wang, and Ji-Rong965
Wen. 2024. Technical report: Enhancing LLM966
reasoning with reward-guided tree search. CoRR,967
abs/2411.11694.968

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao,969
Wenyue Hua, Yanda Meng, Yongfeng Zhang, and970
Mengnan Du. 2024. The impact of reasoning971
step length on large language models. CoRR,972
abs/2401.04925.973

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-974
taka Matsuo, and Yusuke Iwasawa. 2023. Large975
language models are zero-shot reasoners. Preprint,976
arXiv:2205.11916.977

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi-978
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise979
preference optimization for long-chain reasoning of980
llms. CoRR, abs/2406.18629.981

Jiawei Li, Yizhe Yang, Yu Bai, Xiaofeng Zhou, Yinghao982
Li, Huashan Sun, Yuhang Liu, Xingpeng Si, Yuhao983
Ye, Yixiao Wu, , Bin Xu, Ren Bowen, Chong Feng,984
Yang Gao, and Heyan Huang. 2024. Fundamental ca-985
pabilities of large language models and their applica-986
tions in domain scenarios: A survey. In Proceedings987
of the 62nd Annual Meeting of the Association for988
Computational Linguistics (Volume 1: Long Papers),989
pages 11116–11141, Bangkok, Thailand. Association990
for Computational Linguistics.991

Xinyue Liang, Jiawei Li, Yizhe Yang, and Yang Gao.992
2024. Bit_numeval at SemEval-2024 task 7: En-993
hance numerical sensitivity and reasoning complete-994
ness for quantitative understanding. In Proceedings995
of the 18th International Workshop on Semantic Eval-996
uation (SemEval-2024), pages 1830–1841, Mexico997
City, Mexico. Association for Computational Lin-998
guistics.999

Hunter Lightman, Vineet Kosaraju, Yura Burda, Har- 1000
rison Edwards, Bowen Baker, Teddy Lee, Jan 1001
Leike, John Schulman, Ilya Sutskever, and Karl 1002
Cobbe. 2023. Let’s verify step by step. CoRR, 1003
abs/2305.20050. 1004

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri- 1005
son Edwards, Bowen Baker, Teddy Lee, Jan Leike, 1006
John Schulman, Ilya Sutskever, and Karl Cobbe. 1007
2024. Let’s verify step by step. In The Twelfth In- 1008
ternational Conference on Learning Representations, 1009
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open- 1010
Review.net. 1011

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian- 1012
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei 1013
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz- 1014
ardmath: Empowering mathematical reasoning for 1015
large language models via reinforced evol-instruct. 1016
CoRR, abs/2308.09583. 1017

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, 1018
Pengfei Liu, Yang You, and Hongxia Yang. 2023. 1019
Let’s reward step by step: Step-level reward model as 1020
the navigators for reasoning. CoRR, abs/2310.10080. 1021

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, 1022
Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang, 1023
Xiaoxue Cheng, Huatong Song, Wayne Xin Zhao, 1024
Zheng Liu, Zhongyuan Wang, and Ji-Rong Wen. 1025
2024. Imitate, explore, and self-improve: A repro- 1026
duction report on slow-thinking reasoning systems. 1027
CoRR, abs/2412.09413. 1028

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, 1029
Adam Roberts, Stella Biderman, Teven Le Scao, 1030
M. Saiful Bari, Sheng Shen, Zheng Xin Yong, Hai- 1031
ley Schoelkopf, Xiangru Tang, Dragomir Radev, 1032
Alham Fikri Aji, Khalid Almubarak, Samuel Al- 1033
banie, Zaid Alyafeai, Albert Webson, Edward Raff, 1034
and Colin Raffel. 2023. Crosslingual generaliza- 1035
tion through multitask finetuning. In Proceedings 1036
of the 61st Annual Meeting of the Association for 1037
Computational Linguistics (Volume 1: Long Papers), 1038
ACL 2023, Toronto, Canada, July 9-14, 2023, pages 1039
15991–16111. Association for Computational Lin- 1040
guistics. 1041

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 1042
Carroll L. Wainwright, Pamela Mishkin, Chong 1043
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, 1044
John Schulman, Jacob Hilton, Fraser Kelton, Luke 1045
Miller, Maddie Simens, Amanda Askell, Peter Welin- 1046
der, Paul F. Christiano, Jan Leike, and Ryan Lowe. 1047
2022. Training language models to follow instruc- 1048
tions with human feedback. In Advances in Neural 1049
Information Processing Systems 35: Annual Confer- 1050
ence on Neural Information Processing Systems 2022, 1051
NeurIPS 2022, New Orleans, LA, USA, November 28 1052
- December 9, 2022. 1053

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 1054
pher D. Manning, Stefano Ermon, and Chelsea Finn. 1055
2023. Direct preference optimization: Your language 1056
model is secretly a reward model. In Advances in 1057

12

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/ARXIV.2411.11694
https://doi.org/10.48550/ARXIV.2411.11694
https://doi.org/10.48550/ARXIV.2411.11694
https://doi.org/10.48550/ARXIV.2401.04925
https://doi.org/10.48550/ARXIV.2401.04925
https://doi.org/10.48550/ARXIV.2401.04925
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.18653/v1/2024.acl-long.599
https://doi.org/10.18653/v1/2024.acl-long.599
https://doi.org/10.18653/v1/2024.acl-long.599
https://doi.org/10.18653/v1/2024.acl-long.599
https://doi.org/10.18653/v1/2024.acl-long.599
https://doi.org/10.18653/v1/2024.semeval-1.258
https://doi.org/10.18653/v1/2024.semeval-1.258
https://doi.org/10.18653/v1/2024.semeval-1.258
https://doi.org/10.18653/v1/2024.semeval-1.258
https://doi.org/10.18653/v1/2024.semeval-1.258
https://doi.org/10.48550/ARXIV.2305.20050
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2310.10080
https://doi.org/10.48550/ARXIV.2310.10080
https://doi.org/10.48550/ARXIV.2310.10080
https://doi.org/10.48550/ARXIV.2412.09413
https://doi.org/10.48550/ARXIV.2412.09413
https://doi.org/10.48550/ARXIV.2412.09413
https://doi.org/10.18653/V1/2023.ACL-LONG.891
https://doi.org/10.18653/V1/2023.ACL-LONG.891
https://doi.org/10.18653/V1/2023.ACL-LONG.891
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html


Neural Information Processing Systems 36: Annual1058
Conference on Neural Information Processing Sys-1059
tems 2023, NeurIPS 2023, New Orleans, LA, USA,1060
December 10 - 16, 2023.1061

David Rein, Betty Li Hou, Asa Cooper Stickland,1062
Jackson Petty, Richard Yuanzhe Pang, Julien Di-1063
rani, Julian Michael, and Samuel R. Bowman. 2023.1064
GPQA: A graduate-level google-proof q&a bench-1065
mark. CoRR, abs/2311.12022.1066

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec1067
Radford, and Oleg Klimov. 2017. Proximal policy1068
optimization algorithms. CoRR, abs/1707.06347.1069

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,1070
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,1071
and Daya Guo. 2024. Deepseekmath: Pushing the1072
limits of mathematical reasoning in open language1073
models. CoRR, abs/2402.03300.1074

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-1075
bert, Amjad Almahairi, Yasmine Babaei, Nikolay1076
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti1077
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-1078
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,1079
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,1080
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-1081
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan1082
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,1083
Isabel Kloumann, Artem Korenev, Punit Singh Koura,1084
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-1085
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-1086
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-1087
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-1088
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,1089
Ruan Silva, Eric Michael Smith, Ranjan Subrama-1090
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-1091
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,1092
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,1093
Melanie Kambadur, Sharan Narang, Aurélien Ro-1094
driguez, Robert Stojnic, Sergey Edunov, and Thomas1095
Scialom. 2023. Llama 2: Open foundation and fine-1096
tuned chat models. CoRR, abs/2307.09288.1097

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-1098
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,1099
Geoffrey Irving, and Irina Higgins. 2022a. Solv-1100
ing math word problems with process- and outcome-1101
based feedback. Preprint, arXiv:2211.14275.1102

Jonathan Uesato, Nate Kushman, Ramana Kumar,1103
H. Francis Song, Noah Y. Siegel, Lisa Wang, Antonia1104
Creswell, Geoffrey Irving, and Irina Higgins. 2022b.1105
Solving math word problems with process- and1106
outcome-based feedback. CoRR, abs/2211.14275.1107

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.1108
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-1109
hery, and Denny Zhou. 2023a. Self-consistency1110
improves chain of thought reasoning in language1111
models. In The Eleventh International Conference1112
on Learning Representations, ICLR 2023, Kigali,1113
Rwanda, May 1-5, 2023. OpenReview.net.1114

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, 1115
Xingshan Zeng, Wenyong Huang, Lifeng Shang, 1116
Xin Jiang, and Qun Liu. 2023b. Aligning large 1117
language models with human: A survey. CoRR, 1118
abs/2307.12966. 1119

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 1120
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and 1121
Denny Zhou. 2023. Chain-of-thought prompting elic- 1122
its reasoning in large language models. Preprint, 1123
arXiv:2201.11903. 1124

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 1125
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, 1126
and Denny Zhou. 2022. Chain-of-thought prompting 1127
elicits reasoning in large language models. In Ad- 1128
vances in Neural Information Processing Systems 35: 1129
Annual Conference on Neural Information Process- 1130
ing Systems 2022, NeurIPS 2022, New Orleans, LA, 1131
USA, November 28 - December 9, 2022. 1132

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 1133
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 1134
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao- 1135
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, 1136
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin 1137
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, 1138
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke- 1139
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, 1140
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize 1141
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, 1142
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, 1143
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, 1144
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing 1145
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, 1146
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, 1147
Zhifang Guo, and Zhihao Fan. 2024a. Qwen2 techni- 1148
cal report. Preprint, arXiv:2407.10671. 1149

An Yang, Baosong Yang, Beichen Zhang, Binyuan 1150
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi- 1151
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian 1152
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, 1153
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, 1154
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei 1155
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, 1156
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, 1157
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, 1158
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and 1159
Zihan Qiu. 2024b. Qwen2.5 technical report. CoRR, 1160
abs/2412.15115. 1161

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, 1162
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian- 1163
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu, 1164
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang 1165
Ren, and Zhenru Zhang. 2024c. Qwen2.5-math tech- 1166
nical report: Toward mathematical expert model via 1167
self-improvement. CoRR, abs/2409.12122. 1168

Yizhe Yang, Huashan Sun, Jiawei Li, Runheng Liu, 1169
Yinghao Li, Yuhang Liu, Heyan Huang, and Yang 1170
Gao. 2023. Mindllm: Pre-training lightweight large 1171
language model from scratch, evaluations and do- 1172
main applications. CoRR, abs/2310.15777. 1173

13

https://doi.org/10.48550/ARXIV.2311.12022
https://doi.org/10.48550/ARXIV.2311.12022
https://doi.org/10.48550/ARXIV.2311.12022
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2211.14275
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.48550/ARXIV.2307.12966
https://doi.org/10.48550/ARXIV.2307.12966
https://doi.org/10.48550/ARXIV.2307.12966
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://doi.org/10.48550/ARXIV.2412.15115
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2310.15777
https://doi.org/10.48550/ARXIV.2310.15777
https://doi.org/10.48550/ARXIV.2310.15777
https://doi.org/10.48550/ARXIV.2310.15777
https://doi.org/10.48550/ARXIV.2310.15777


Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,1174
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.1175
2023. Tree of thoughts: Deliberate problem solving1176
with large language models. In Advances in Neural1177
Information Processing Systems 36: Annual Confer-1178
ence on Neural Information Processing Systems 2023,1179
NeurIPS 2023, New Orleans, LA, USA, December 101180
- 16, 2023.1181

Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang,1182
Da Yin, Diego Rojas, Guanyu Feng, Hanlin Zhao,1183
Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun,1184
Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing1185
Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen1186
Zhong, Mingdao Liu, Minlie Huang, Peng Zhang,1187
Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang,1188
Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi1189
Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiao-1190
tao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue1191
Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yi-1192
fan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi1193
Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen1194
Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang.1195
2024. Chatglm: A family of large language mod-1196
els from GLM-130B to GLM-4 all tools. CoRR,1197
abs/2406.12793.1198

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao1199
Dong, and Jie Tang. 2024. Rest-mcts*: LLM self-1200
training via process reward guided tree search. CoRR,1201
abs/2406.03816.1202

Han Zhong, Guhao Feng, Wei Xiong, Li Zhao, Di He,1203
Jiang Bian, and Liwei Wang. 2024. DPO meets PPO:1204
reinforced token optimization for RLHF. CoRR,1205
abs/2404.18922.1206

A Detailed Process of Reward Model1207

Training1208

In the process of training the outcome-supervised
reward models (ORMs), annotators are required
to distinguish between human-preferred and non-
preferred responses in the candidate responses for
a given input (Ouyang et al., 2022). Based on this
annotated data, researchers typically employ the
Bradley-Terry model to construct a classification
model and subsequently train the reward model
using pairwise loss (Wang et al., 2023b; Rafailov
et al., 2023). For a given context x and action y,
the Bradley-Terry model represents the preference
function p(yw ≻ yl) as a sigmoid of the difference
of rewards:

p(yw ≻ yl | x) = σ(r(x, yw)− r(x, yl)),

where σ(·) denotes the sigmoid function and plays
the role of normalization, r(x, y) denotes the
pointwise reward of y given x, yw denotes the

statement1 
stocks nifty future call today: Sensex Weak and Nifty flat, Today best stock trading call on 3 Sept, 

Free nifty future stock tips, BHEL , Tata motor gain.

statement2 Sensex and Nifty up, 2 sept Nifty stock market trading tips and top nifty gainers and losers on 
Monday, Indian stock market tips today ~ stocks nifty future call today

options Entailment Contradiction Neutral

[1] . In statement 1, it mentions that Sensex is weak and Nifty is flat, and provides trading tips for BHEL and Tata 

Motors, while in statement 2, it says that Sensex and Nifty are up and gives trading tips for the stock market, but 

no specific mention of BHEL or Tata Motors is made.

[2] . Given the differences in the information presented, we cannot determine if the information in statement 2 

can be inferred from statement 1.

[3] . Therefore, the answer is option 3: neutral, as the hypothesis cannot be determined based on the given 

premise.

Not sure? 

Not sure? 

Not sure? 

Figure 9: The data annotation approach for PRM. Un-
like ORM, the annotation approach of PRM cannot
generate pairwise preference data, thus precluding the
use of the Bradley-Terry method for training the reward
model.

human-preferred responses and yl denotes the
non-preferred responses. Given the dataset D =
(xi, yw,i ≻ yl,i)

N
i=1 one can learn the reward func-

tion by optimizing the following logistic regression
loss:

L(x) = −E(x,yw,yl)∼D[log(p(yw ≻ yl | x))].

In the process of training the PRMs, annotators 1209

are required to assess the correctness of each step 1210

in the model-generated solutions. Specifically, as 1211

illustrated in Figure 9, annotators typically need 1212

to determine whether the current reasoning step is 1213

negative, neutral, or positive, and correspondingly 1214

select from [-1, 0, 1] (Lightman et al., 2023; Ma 1215

et al., 2023). These annotated data are subsequently 1216

used to train the reward model, thereby enhancing 1217

its capability to distinguish and classify negative, 1218

neutral, and positive steps. However, due to the 1219

absence of pairwise comparison data regarding hu- 1220

man preferences in this process, the Bradley-Terry 1221

model cannot be employed to construct a classifica- 1222

tion model. Here we redefine the training process 1223

of PRM. 1224

In light of the coherence of reasoning steps, eval- 1225

uating the accuracy of the k-th reasoning step yk 1226

necessitates the simultaneous consideration of the 1227

input x and the preceding k reasoning steps ykpre 1228

as context. The reward model maps these inputs to 1229

an n-dimensional vector z, which encompasses the 1230

scores or raw outputs for each category. Formally, 1231

this can be represented as: 1232

z = r(x, ykpre, y
k; θ), (7) 1233

where θ denotes the parameters of the reward 1234

model, and r(·) denotes the reward model. We em- 1235

ploy an activation function to transform the model 1236

14
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Models AwpNLI NewsNLI RedditNLI RTE-Quant StressTest QQA

Llama2-7B (Touvron et al., 2023) 1.47% 0.47% 0.40% 0.86% 1.36% 3.70%
BLOOMZ (Muennighoff et al., 2023) 48.04% 54.46% 37.20% 47.64% 31.22% 51.85%
Abel-7B (Chern et al., 2023) 55.82% 50.75% 47.20% 56.67% 30.87% 48.14%
Llama3.1-8B (Dubey et al., 2024a) 66.18% 62.91% 39.60% 48.93% 13.04% 50.62%
Qwen2-7B-chat (Yang et al., 2024a) 54.90% 54.93% 40.00% 21.13% 27.32% 46.30%
CN-PPO (Liang et al., 2024) 82.35% 61.97% 63.20% 63.52% 46.30% 48.77%

PSPO (Ours) 86.76% 64.91% 67.60% 71.57% 52.29% 54.70%

Table 3: Performance comparison on numerical understanding benchmarks. Our PSPO method, built upon Abel-7B,
consistently outperforms baseline models across all six datasets that test LLMs’ numerical sensitivity.

outputs into a probability distribution:1237

p(zi) = σ(zi), (8)1238

where p(zi) denotes represents the probability that1239

the current step belongs to category i, and σ(·)1240

denotes the activation function, which is typically1241

the softmax function:1242

softmax(zi) =
ezi∑n
j=1 e

zj
, (9)1243

where n denotes the total number of categories.1244

The training of reward models typically employs1245

the cross-entropy loss function to quantify the di-1246

vergence between the predicted probability distri-1247

bution and the true labels. Let z denote the one-hot1248

encoded vector of the true labels. The training1249

process is then formulated as follows:1250

L(θ) = −E(x,y)∼D[

N∑
i=1

zlog(p(zi))]. (10)1251

Ultimately, the reward model r(x, ykpre, y
k) pre-1252

dicts the probabilities of the current reasoning step1253

y belonging to various categories. The probability1254

assigned to the positive category is then used as1255

the reward score for the current reasoning step, as1256

follows:1257

Rk
s = p(zi=1), (11)1258

where Rk
s denotes the reward score of the k-th rea-1259

soning step.1260

B Detailed Analysis on Reasoning Chain1261

Length1262

For GSM8K experiments, we trained Llama3.1-1263

8B (Dubey et al., 2024b), Qwen2.5-7B (Yang et al.,1264

2024b) using the process supervision method pro-1265

posed by Ma et al. (2023) with the PRM-800K1266

dataset. The models were then evaluated on the1267

GSM8K dataset for reasoning chain generation.1268

We used the original step-by-step solutions pro- 1269

vided in the GSM8K dataset as our ground truth ref- 1270

erence for length comparison. The reported lengths 1271

are averaged across all samples in the test set. 1272

For AwpNLI experiments, we trained the Abel- 1273

7B (Chern et al., 2023) using the process super- 1274

vision method from Ma et al. (2023) with the an- 1275

notated data detailed in Appendix B. To facilitate 1276

the quantitative analysis of reasoning steps, we re- 1277

quired the model to explicitly number each gener- 1278

ated reasoning step (e.g., [1], [2], ...). The standard 1279

solutions were generated by GPT-4 and underwent 1280

manual verification of reasoning steps. 1281

C Experimental Details on Numerical 1282

Reasoning 1283

C.1 Human-data Collection for Training 1284

Reward Model 1285

Training a robust reward model requires a balanced 1286

label distribution. While the steps generated by 1287

GPT-3.5 predominantly feature positive labels, we 1288

included additional reasoning step candidates from 1289

other LLMs, such as Abel-7b, to provide more neg- 1290

ative examples and achieve label balance. Human 1291

labelers would evaluate the given steps by their cor- 1292

rectness, and correct answers to the question are 1293

provided as a reference. The statistics of datasets 1294

are shown in Table 4. 1295

Step Labelling Criteria Each reasoning step is 1296

evaluated and assigned a label based on its correct- 1297

ness: ‘positive’ (score of ‘1’), ‘neutral’ (score of 1298

‘0’), and ‘negative’ (score of ‘-1’). A step receives 1299

a positive score if it accurately meets logical and 1300

computational requirements, correctly interprets 1301

the task, and contributes to deriving the correct 1302

answer. A neutral score is awarded if the step is 1303

correct but does not aid in reaching the correct 1304

conclusion. Conversely, steps that contain logical, 1305

computational, or factual inaccuracies, or are irrele- 1306
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Datasets Cases
Human labeled

Pos. Neu. Neg. Steps

AwpNLI 1622 4334 822 1669 7109
NewsNLI 1643 3358 910 2870 7502
RedditNLI 1152 3074 507 958 4674
RTE_Quant 1324 3363 290 914 4817
StressTest 1369 2598 723 1921 5696
QQA 1394 3937 184 1778 6424

Table 4: The step data labeled by human annotators.
"Cases" is the number of solutions generated by models,
"Pos.", "Neu.", and "Neg." are the number of positive,
neutral, and negative labels after labeling, respectively,
"Steps" is the total number of reasoning steps taken to
solve all the questions in the dataset.

vant to the given context and question, are assigned1307

a negative score of -1.1308

C.2 Experimental Setups1309

Datasets We adopt the MATH dataset, which1310

includes AwpNLI, NewsNLI, RedditNLI, RTE-1311

Quant, StressTest, and QQA datasets as reported1312

by Chen et al. (2023). These datasets are further1313

expanded using the GPT-3.5 API, as detailed in1314

Table 4. The training dataset for the reward model1315

is primarily composed of data labeled as ‘1’. To1316

ensure a balanced dataset, steps labeled ‘0’ and ‘-1’1317

are replicated 2-3 times, yielding a final count of1318

16,587 positive, 11,072 neutral, and 16,236 nega-1319

tive steps. For evaluation, 20% of the dataset is1320

designated as test sets.1321

Metrics and Parameters setting The evaluation1322

metric utilized is the average micro-F1 score on1323

the test dataset because it balances precision and1324

recall, providing a more comprehensive measure1325

of model performance. We employ Abel-7B as the1326

baseline model, which has been fine-tuned on a1327

substantial portion of the MATH dataset for gener-1328

ating chain-of-thought reasoning in mathematical1329

problem-solving (Chern et al., 2023). The reward1330

model is trained on the BERT-large (Devlin et al.,1331

2019) due to its proven efficacy in classification1332

tasks (Gao et al., 2023). We trained the reward1333

model over 10 epochs with a learning rate of 2e-5,1334

a warmup rate of 0.05, and a maximum sequence1335

length of 256.PPO training uses Lora (Hu et al.,1336

2022) with a learning rate of 1.41e-5 and a maxi-1337

mum of 512 tokens. On a dataset of 5470 entries,1338

each epoch averages 55 hours on four NVIDIA1339

A100 GPUs. In our PSPO-WRS method, the pa-1340

rameters are set as follows: C = 10.735, k = 1.5, 1341

and λ = 8.0. 1342

C.3 Overall Results 1343

Table 3 presents the performance comparison be- 1344

tween our PSPO and several strong baseline mod- 1345

els. Building upon the Abel-7B (Chern et al., 1346

2023), PSPO consistently outperforms all base- 1347

lines across all six datasets. Notably, on the Aw- 1348

pNLI dataset, PSPO-WRS achieves 86.76% accu- 1349

racy, surpassing the previous best result (82.35% 1350

by CN-PPO (Liang et al., 2024)) by 4.41%. Similar 1351

improvements are observed across other datasets, 1352

with particularly substantial gains on RTE-Quant 1353

(71.57% vs. 63.52%) and RedditNLI (67.60% vs. 1354

63.20%). 1355

16


	Introduction
	Related Works
	LLM Alignment Techniques
	Process-based Reasoning Supervision

	PSPO*: An Effective Method for Process Supervision
	Motivation and Overview
	The PSPO* Algorithm
	Process Supervision Preliminary
	Dual-dimension Accumulation Function
	Non-linear Reward Shaping


	PSPO-WRS: Process-supervised Policy Optimization with Nonlinear Reward Shaping 
	Experimental Results
	Experimental Setups
	Overall Results
	Extension to Numerical Reasoning
	Ablation Analysis

	Conclusion
	Detailed Process of Reward Model Training
	Detailed Analysis on Reasoning Chain Length
	Experimental Details on Numerical Reasoning
	Human-data Collection for Training Reward Model
	Experimental Setups
	Overall Results


