
A Distributed Software Framework for

Vision-Based Drone Swarm Applications

Wei Li1*†, Taoying Liu1†, Qiang Liu2†, Yuwei Ben2†, Yan Jiang2†

1*Institute of Computing Technology, Chinese Academy of Sciences, No.
6 Kexuyuan South Road, Beijing, 100190, China.

2, Beijing VisBot Technolgoy Co., Ltd, Hanwang Building,
Zhongguancun Software Park Building 5, Beijing, 100193, China.

*Corresponding author(s). E-mail(s): liwei@ict.ac.cn;
Contributing authors: lty@ict.ac.cn; liuqiang@visbot.com.cn;

benyuwei@visbot.com.cn; jiangyan@visbot.com.cn;
†These authors contributed equally to this work.

Abstract

This paper presents a distributed software framework for drone swarm appli-
cations, focusing on the OWL-Swarm framework. The framework addresses
challenges in task allocation and coordination inherent in swarm robotics. It
introduces a modular architecture based on the Robot Operating System (ROS),
enabling seamless integration of various algorithms and functionalities. The Cap-
tain service acts as the central orchestrator, managing mission execution, task
allocation, and data sharing among drones. The framework supports both single-
drone and collaborative tasks, with mechanisms for distributed scheduling and
dynamic task re-allocation. The effectiveness of the framework is demonstrated
through use cases involving cooperative obstacle avoidance, coordinated search
and target tracking. The modular and extensible design of the framework allows
for easy customization and adaptation to various drone swarm applications,
making it a valuable tool for research and development in this field.

Keywords: Drone swarm, distributed software framework, ROS, task allocation,
coordination, obstacle avoidance, target tracking

1

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

1 Introduction

Drone swarms have garnered significant attention due to their potential to revolu-
tionize various industries and applications, such as large-scale surveillance, search
and rescue missions, precision agriculture, infrastructure inspection, and entertain-
ment [1]. Their inherent advantages-scalability, adaptability, and robustness - allow
them to cover larger areas, collect more data, and complete tasks faster than indi-
vidual drones, while also providing resilience against individual drone failures. The
distributed nature and cooperative capabilities of drone swarms enable them to
tackle complex tasks requiring collective intelligence. However, challenges such as task
allocation and coordination must be addressed for effective deployment.

Developing and deploying drone swarms present several interconnected challenges
that require careful consideration during the design and implementation phases to
ensure effective and reliable operation. Task allocation is fundamental, involving the
assignment of appropriate tasks to drones based on their capabilities, task require-
ments, and environmental dynamics, ranging from simple surveillance to complex
cooperative maneuvers [2]. Effective task allocation algorithms, including centralized,
distributed, and hybrid methods, are crucial for optimizing swarm efficiency and
resource use [3]. Coordination is essential for synchronized, conflict-free operation,
requiring decentralized, scalable mechanisms to handle dynamic environments and
swarm compositions. This can be achieved through communication protocols, shared
maps, and behavioral rules, enabling drones to exchange information, understand their
environment, and interact harmoniously [4].

Existing drone swarm frameworks address the challenges of task allocation and
coordination through centralized and decentralized architectures. Centralized frame-
works, such as the one proposed by [1], rely on a central controller for managing
task allocation, coordination, and decision-making. While efficient, these frameworks
are vulnerable to single points of failure and may not scale well to large swarms. In
contrast, decentralized frameworks distribute control among drones, each operating
autonomously based on local information and interactions, offering better scalabil-
ity and robustness but posing challenges for achieving coordinated behavior. Notable
decentralized frameworks include those by [4] and [5].

In this paper, we propose the OWL-Swarm framework, which is a specialized drone
swarm platform designed for research and development in vision-based swarm robotics,
comprising both hardware and software components. The hardware includes drones
equipped with cameras, IMUs, and potentially GPS, alongside onboard computers for
autonomous operation and swarm coordination. Built upon the Robot Operating Sys-
tem (ROS), the software architecture offers a modular environment for integrating
components related to perception, planning, control, and communication. A key fea-
ture is the Captain service, which acts as the central orchestrator, managing mission
execution, task allocation, and data sharing, and allowing for custom plugin integra-
tion. The platform includes modules for visual-inertial odometry, obstacle avoidance
and path planning, gimbal control, video streaming, and object detection and tracking.

The primary objective of this research is to design, implement, and evaluate a dis-
tributed software framework for vision-based drone swarm applications, specifically
focusing on the OWL-Swarm framework. This framework addresses challenges in task

2

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

allocation and coordination, ensuring scalability and flexibility. The main contribu-
tions of this paper include a comprehensive overview of the OWL-Swarm framework’s
hardware and software components, a novel distributed software architecture based
on ROS with modularity and extensibility through plugins, and the introduction of
the Captain service as the central orchestrator for mission planning, task allocation,
and data sharing.

2 Related Work

Existing drone swarm frameworks are classified into two main categories based on
their architectural design: centralized and distributed architectures. Centralized archi-
tectures rely on a single central controller or ground station to manage and coordinate
the entire swarm, handling task allocation, path planning, and decision-making for all
drones [1]. While efficient, centralized architectures are susceptible to single points of
failure and may not scale well due to computational and communication overhead. Dis-
tributed architectures, conversely, distribute control and decision-making among the
drones, with each operating autonomously based on local information and interactions
with neighbors [4]. This approach offers better scalability and robustness to failures
but poses challenges in achieving coordinated behavior and efficient task allocation.
The framework adopts a distributed architecture with a ”captain” service acting as a
central orchestrator for mission planning and task allocation, while individual drones
execute tasks autonomously, suggesting a hybrid approach that combines the strengths
of both centralized and distributed architectures.

Task assignment and path planning are crucial in drone swarm research, affecting
the swarm’s efficiency, performance, and mission success. Algorithms for task assign-
ment are divided into centralized and distributed approaches. Centralized algorithms,
like the Hungarian algorithm [6] and the auction algorithm [7], rely on a central
controller and can be computationally intensive but often provide optimal solutions.
Distributed algorithms, such as the consensus-based bundle algorithm (CBBA) [8] and
market-based task allocation (MBTA) [9], enable drones to make decisions based on
local information, offering scalability and robustness but sometimes at the expense
of optimality. Path planning algorithms must consider environmental constraints
and drone dynamics, with common methods including potential field methods [10],
sampling-based methods like Rapidly-exploring Random Trees (RRT) [11], and graph-
based methods like Dijkstra’s and A* algorithms [12]. The OWL-Swarm framework
employs the EGO-Planner [13] algorithm for path planning and obstacle avoidance,
integrating it with the Captain service for mission planning and task allocation, sug-
gesting a hybrid approach that combines centralized and distributed elements. The
choice of algorithms depends on factors like swarm size, task complexity, and operat-
ing environment, and the OWL-Swarm framework’s modular architecture allows for
flexible integration and experimentation with different approaches to meet specific
application needs.

While existing drone swarm frameworks have made significant strides in address-
ing task allocation and coordination, several gaps remain that the framework aims to
address. Many frameworks rely on GPS for localization and navigation, which can be
unreliable in environments like indoors or areas with dense obstacles. The framework

3

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

emphasizes vision-based sensing and control, enabling effective operation in GPS-
denied environments. Additionally, some frameworks lack modularity and extensibility,
making adaptation to new scenarios difficult; the framework’s modular architecture
and plugin system provide a flexible platform for diverse applications. Scalability is
another issue, as some frameworks struggle with large swarms due to computational
constraints. The framework’s distributed architecture and efficient communication
mechanisms distribute the computational load and minimize communication overhead.
Furthermore, the complexity of developing and deploying drone swarm applications
can be a barrier; the framework simplifies this process with user-friendly tools and
interfaces for mission planning, task allocation, and swarm behavior monitoring. By
addressing these gaps, the framework offers a comprehensive, flexible, and user-friendly
platform for vision-based drone swarm applications, making significant contributions
to drone swarm research and development.

3 Framework Architecture

3.1 Hardware platform

The OWL-Swarm framework includes two drone models: OWL mini2 and OWL2,
both tailored for vision-based drone swarm research with varying hardware specifica-
tions. The OWL mini2 is optimized for GPS-denied environments, measuring 180mm
in length, 175mm in width, with a diagonal wheelbase of 200mm (excluding propellers
and covers), and weighing approximately 617g. It achieves speeds of up to 15 m/s hor-
izontally, 5 m/s ascending, and 4 m/s descending, with a flight time of 28 minutes.
It features a stereo camera module (OV7251) with a 7cm baseline for 640x480 resolu-
tion stereo images at 10-60 fps, and an IMU providing 200Hz 6-axis data. The OWL2,
used in swarm demonstrations, likely shares similar sensor configurations, emphasiz-
ing vision-based navigation and control, though its specific dimensions and weight
are unspecified. Both models run Ubuntu and ROS on onboard computers for sen-
sor data processing, control algorithms, and swarm communication, ensuring robust
autonomous flight in challenging conditions without GPS. The OWL mini2 uses the
Rockchip RK3588s SoC, featuring four ARM Cortex-A73 cores, two ARM Cortex-A53
cores, and an NPU capable of up to 6 TOPS, supporting machine learning and AI tasks
critical for vision-based navigation and control algorithms. Although OWL2’s onboard
computer specifications are not detailed, it likely matches or exceeds the OWL mini2’s
capabilities to handle the increased computational demands of swarm coordination and
communication . Both models are equipped with a stereo camera module (OV7251)
for synchronized stereo images at 640x480 resolution and 10-60 fps, providing vital
depth perception for obstacle avoidance and navigation in complex environments. The
high-frequency (200Hz) IMU measures linear acceleration and angular velocity across
three axes, enhancing state estimation and flight stability by fusing visual and inertial
data. While optional GPS can support localization when available, the OWL-Swarm
framework’s vision-based sensors ensure reliable performance in GPS-denied environ-
ments, enabling precise mapping, obstacle avoidance, and robust autonomy indoors
and outdoors.

4

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

3.2 Software architecture

APP/Control

Mavros

Geometric
Controller

Captain

Captain API

Task
Plugin

Trajectory
Plugin

Mission
Plugin

PX4 FCU
PX4 SITL

Sevices

VIO
Service

LIO
Service

Stereo
Driver

Lidar
Driver

Fusion
Service

Map
Service

Planer
Service

Monitor
Service

ROS System Manager

System

Ubuntu OS Driver

OWL UAV Hardware VISIM Simulation

Fig. 1: Overview of the OWL-Swarm Software Architecture.

The OWL software employs a modular design and layered architecture to optimize
flexibility, scalability, and maintainability, as shown in Figure 1. Its structure divides
functionality into distinct layers, each serving specific roles, while the modular design
facilitates seamless integration and replacement of components. The OWL-Swarm
framework is organized into three main layers: the System Layer, which forms the foun-
dation with Ubuntu 20.04 OS, sensor drivers, and essential utilities; the Middleware
Layer, which acts as a bridge, leveraging ROS for inter-module communication, PX4
for flight control, MAVROS for ROS-PX4 interfacing, and specialized Sensor Services
for data handling from stereo cameras, IMUs, and optional GPS; and the Application
Layer, which houses high-level logic for drone swarm operations, including mission
planning, task allocation, and coordination, managed by the versatile Captain service.
Captain orchestrates mission execution, task decomposition, assignment, and progress
monitoring, supporting extensibility via plugins for tailored applications. This mod-
ular and layered approach ensures ease of integration for new algorithms, maintains
robust separation of concerns, and enhances the OWL-Swarm framework’s adapt-
ability across diverse drone swarm scenarios. Positioned between high-level mission
planning and low-level drone control, Captain oversees mission execution, task alloca-
tion, and data sharing among swarm drones, operating on a plugin architecture that
supports customization and extension for diverse swarm applications through Mission

5

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

Plugins, Task Plugins, and Trajectory Plugins. This architecture enhances flexibil-
ity and scalability, facilitating precise adaptation of the OWL-Swarm framework to
various drone swarm scenarios and supporting robust and efficient mission outcomes.

3.3 Key components

The infrastructure layer of the OWL-Swarm framework comprises foundational soft-
ware and hardware essential for drone swarm operations. This includes OWL drones
equipped with stereo cameras, IMUs, and onboard computers running Ubuntu 20.04
for real-world testing, and the VISIM simulation platform for algorithm development
and testing in a virtual environment, ensuring performance evaluation in a controlled
setting. Linux drivers facilitate interaction between software and hardware, enabling
sensor data access, thus establishing a robust foundation for seamless communica-
tion and resource utilization across higher-level middleware and application layers.
Algorithm modules within the OWL-Swarm framework leverage sensor data from the
infrastructure layer and middleware services to enable autonomous navigation, con-
trol, and swarm coordination. Key modules include VIO (Visual-Inertial Odometry)
using the VINS-Fusion [14] algorithm for position and velocity estimation in GPS-
denied areas, EGO-Planner for obstacle avoidance and path planning using stereo
camera depth data, and the Tracker Module for object detection and tracking. The
Gimbal Control Module stabilizes camera orientation, ensuring steady video footage,
while the Media Module encodes and transmits video data for live streaming. These
modules enable flexible integration and customization, allowing researchers to explore
diverse algorithms and optimize drone swarm operations. The Captain service func-
tions as the central orchestrator, overseeing the execution of complex swarm behaviors
through its modular design incorporating Mission, Task, and Trajectory plugins. This
plugin-based architecture enhances flexibility and customization for diverse applica-
tions, facilitating task assignment, progress monitoring, and contingency responses,
and is demonstrated through single-drone missions and coordinated swarm operations
within the OWL-Swarm framework.

4 Task Allocation and Coordination

4.1 Distributed task scheduling

The OWL-Swarm framework predominantly employs distributed task scheduling,
granting individual drones autonomy in task assignment decisions, contrasting with
centralized scheduling where a central entity dictates assignments. Distributed
scheduling offers several advantages: scalability, as the burden scales with swarm size
rather than bottlenecking at a central controller; robustness, where drone failures
don’t jeopardize the entire mission; adaptability to dynamic environments and mis-
sion changes; and reduced communication overhead compared to centralized systems.
However, it also presents challenges: increased complexity in algorithm design, poten-
tial for suboptimal solutions due to local decision-making, and coordination difficulties
in ensuring drones align actions with mission objectives without interference. OWL’s
adoption of distributed scheduling supports its emphasis on vision-based autonomy in

6

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

GPS-denied settings, enhancing adaptability and scalability for practical drone appli-
cations where centralized control is impractical or less effective. The OWL-Swarm
framework uses distributed algorithms to allocate tasks efficiently without a central-
ized controller, employing the Captain service for orchestration and coordination,
suggesting drones exchange information regarding capabilities and task preferences to
reach consensus on task assignments through message passing or auction-based pro-
tocols. The ”ego-planner-swarm” algorithm facilitates multi-drone coordination, path
planning, and collision avoidance in collaborative scenarios, integrating distributed
task allocation algorithms and negotiation protocols for effective task distribution in
diverse swarm applications, tailored to varying swarm sizes, capabilities, and opera-
tional environments, indicating a need for further exploration to optimize algorithmic
performance and communication protocols for enhanced efficiency.

4.2 Task prioritization and allocation strategies

Task prioritization and allocation strategies are critical for optimizing drone swarm
operations and achieving overall mission objectives, employing either rule-based or
optimization-based approaches. Rule-based methods use predefined rules or heuristics
based on factors such as task urgency, drone capabilities, proximity to task locations,
and energy constraints. These methods are simpler and computationally lighter, as
demonstrated in the OWL-Swarm framework where the Captain service employs cus-
tom plugins for task assignment. Examples include takeoff, landing, and waypoint
navigation tasks. Optimization-based approaches, on the other hand, aim to maxi-
mize or minimize an objective function, such as mission time or energy consumption,
though they require more computational resources and detailed information about
the swarm and environment. While the OWL-Swarm framework doesn’t explicitly
mention optimization-based approaches, its modular architecture can support them
through custom plugins. Task allocation in OWL also considers individual drone capa-
bilities like sensor payloads, battery life, computational resources, and communication
abilities, matching them to specific task requirements to optimize performance and
resource usage. Furthermore, dynamic task re-allocation is integral to the OWL-Swarm
framework, allowing for adaptation to unforeseen events and maintaining mission
effectiveness through automatic task re-assignment. This could involve auction-based
mechanisms, consensus-based algorithms, or market-based systems, depending on fac-
tors like swarm size and task complexity. The OWL-Swarm framework’s flexibility
enables it to integrate both rule-based and optimization-based strategies, enhancing
swarm adaptability and resilience in diverse operational scenarios.

4.3 Task cooperation in drone swarm

Effective data sharing is crucial for coordinated behaviors and efficient task execution
within drone swarms, and the OWL-Swarm framework employs several mechanisms
to facilitate this exchange among drones. Shared maps play a critical role in collabora-
tive navigation and obstacle avoidance, allowing drones to create and update maps of
their environment in real time. This capability, integrated with algorithms like ”ego-
planner-swarm,” enables drones to collaboratively plan paths and avoid collisions by

7

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

sharing information about itself position and plan trajectories. In search and track-
ing tasks, drones share target information such as location, trajectory, and visual
features, enabling collective tracking and coordinated decision-making. Synchroniza-
tion of state information-including position, velocity, and orientation-ensures drones
maintain precise relative positions, managed by the Captain service for cohesive and
adaptive behavior in dynamic environments. Captain provides lightweight communica-
tion proxy transparently transmitting of ROS messages, empowering the OWL-Swarm
framework to maintain real-time coordination across various scenarios. The Captain
service facilitates task cooperation by managing shared data declaration and synchro-
nization, enhancing operational efficiency by transmitting only essential information
and ensuring consistent views of shared data. This approach supports seamless cooper-
ation for tasks such as collaborative mapping, target tracking, and formation control,
demonstrating the OWL-Swarm framework’s effectiveness in developing sophisticated
drone swarm applications.

4.4 Key Algorithms

This subsection provides structured pseudo code for the task scheduling, prioritiza-
tion, allocation strategies, and task cooperation algorithms used in the OWL-Swarm
framework. The distributed task scheduling algorithm in the OWL-Swarm framework
enables autonomous drones to efficiently allocate tasks without relying on a central-
ized controller, where each drone broadcasts its capabilities and selects tasks based
on these capabilities and the requirements of the tasks, resolving conflicts through
auction-based or consensus-based protocols. In task prioritization and allocation, tasks
are prioritized based on a predefined function and then allocated to drones that meet
the capability requirements, with dynamic reallocation to adapt to real-time condi-
tions. Task cooperation within the swarm is facilitated by shared data structures,
where drones continuously share and update local maps and state information, allow-
ing for coordinated path planning, collision avoidance, and task execution, ensuring
real-time synchronization and adjustment for optimal performance.

8

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

Algorithm 1 Distributed Task Scheduling in OWL-Swarm

Require: Swarm of drones D = {d1, d2, . . . , dn}, set of tasks T = {t1, t2, . . . , tm},
communication protocol P

Ensure: Efficient task allocation and coordination among drones
1: Initialize task pool Tpool ← T
2: Each drone di broadcasts its capabilities Ci and current status
3: while Tpool ̸= ∅ do
4: for each di ∈ D do
5: di receives task list Tpool

6: di selects task tj ∈ Tpool based on Ci and tj requirements
7: di broadcasts task selection to other drones
8: Resolve conflicts using auction-based or consensus-based protocol
9: end for

10: Update Tpool by removing assigned tasks
11: end while
12: Coordinate with other drones to execute assigned tasks using shared maps and

state synchronization

Algorithm 2 Task Prioritization and Allocation Strategies in OWL-Swarm

Require: Set of tasks T = {t1, t2, . . . , tm}, set of drones D = {d1, d2, . . . , dn}, task
priority function fpriority, drone capability function fcapability

Ensure: Optimized task allocation and prioritization
1: for each tj ∈ T do
2: Compute priority pj ← fpriority(tj)
3: end for
4: Sort tasks in T by priority pj in descending order
5: for each tj ∈ T do
6: for each di ∈ D do
7: if fcapability(di, tj) is satisfied then
8: Assign task tj to drone di
9: Update drone status and resource availability

10: Break loop
11: end if
12: end for
13: end for
14: Execute dynamic task reallocation if necessary based on real-time conditions

9

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

Algorithm 3 Task Cooperation in OWL-Swarm

Require: Set of drones D = {d1, d2, . . . , dn}, shared data structure Sshared

Ensure: Effective cooperation and task execution within the swarm
1: for each di ∈ D do
2: di shares its local map and state information Si with the swarm
3: di updates Sshared with Si

4: end for
5: for each di ∈ D do
6: Retrieve shared map and state information Sshared

7: Plan path and tasks based on Sshared

8: Execute tasks while continuously sharing updates with Sshared

9: end for
10: Synchronize and adjust plans dynamically to avoid collisions and optimize task

execution

5 Use Case Studies

5.1 Cooperative Obstacle Avoidance

Fig. 2: Experimental setup of drone
swarms

2 3 4 5
60

80

100

Number of Drones

S
u
cc
es
s
R
at
e
(%

)

Indoor
Outdoor

Fig. 3: Success rates for indoor and out-
door scenarios with varying swarm sizes

To evaluate the effectiveness of the OWL-Swarm framework in enabling coopera-
tive obstacle avoidance in drone swarms, an experimental setup was designed where
multiple OWL drones navigated cluttered environments, aiming to avoid collisions
with static and dynamic obstacles while moving cohesively towards a designated goal.
The experiments varied swarm sizes from 2 to 5 drones to assess scalability and per-
formance impact, created environments with different obstacle densities, and were
conducted in both controlled indoor settings and complex outdoor environments, as
shown in Figure 2. In the indoor scenario, drones navigated a controlled environment
with static obstacles like walls and furniture, allowing for precise, repeatable experi-
ments. In the outdoor scenario, drones faced both static and dynamic obstacles, testing
the OWL-Swarm framework’s robustness against challenges such as varying lighting,
wind gusts, and unpredictable movements.

10

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

The results of the cooperative obstacle avoidance experiments demonstrate the
effectiveness of the OWL-Swarm framework in enabling safe and efficient navigation
in cluttered environments. Figure 3 illustrates the success rates for both indoor and
outdoor scenarios with varying swarm sizes. In the indoor environment, the swarm
achieved high success rates, consistently above 88%, even with five drones, demon-
strating the effectiveness of the EGO-Planner algorithm in generating collision-free
paths and the distributed scheduling approach in coordinating drone movements. In
the outdoor environment, success rates were slightly lower due to the increased com-
plexity and unpredictability of dynamic obstacles, but the swarm still maintained a
respectable success rate above 70% even with five drones, showcasing the OWL-Swarm
framework’s robustness in challenging real-world conditions. The time to completion
generally increased with the number of drones and obstacle density, but not linearly,
suggesting that the distributed scheduling approach effectively mitigated potential
bottlenecks and conflicts as swarm size grew. Overall, the experimental results high-
light the effectiveness of the EGO-Planner algorithm in generating safe and efficient
trajectories, and the ability of the distributed scheduling approach to coordinate mul-
tiple drones in a cluttered environment, with the OWL-Swarm framework’s modular
architecture and flexible communication mechanisms enabling seamless integration
of these components into a robust and adaptable system for cooperative obstacle
avoidance.

5.2 Coordinated Search and Target Tracking

To evaluate the effectiveness of the OWL-Swarm framework in coordinated search
and target tracking, experiments were conducted with multiple OWL drones in a
20m×20m arena, simulating real-world scenarios like search and rescue missions or
surveillance tasks. The primary goal was to assess the swarm’s ability to efficiently
search for and track a visually distinct target, either stationary or moving at a slow,
predictable speed. This setup allowed for systematic evaluation under different swarm
sizes and target behaviors.

The coordinated search and target tracking experiments conducted with the OWL-
Swarm framework yielded promising results, demonstrating its efficiency in search
strategies and robustness in target tracking. Figure 4 illustrates that increasing the
number of drones significantly reduced search time, with five drones achieving nearly
a third of the time taken by a single drone, highlighting the scalability and efficiency
gains from swarm cooperation. The distributed search strategy effectively utilizes
drone collaboration to cover the area efficiently. Additionally, Figure 5 shows high
tracking accuracy, consistently above 95%, even with a single drone, indicating the
robustness of the tracking algorithm in maintaining target lock despite environmen-
tal challenges. Tracking accuracy slightly improved with more drones, suggesting
enhanced performance through collective data integration. Evaluating the OWL-
Swarm framework’s robustness to drone failures, scenarios simulated malfunctioning
drones during tracking, demonstrating swift adaptation by redistributing tracking
duties to maintain continuous target surveillance. These results underscore the OWL-
Swarm framework’s effectiveness in search and tracking applications, supported by
fault-tolerant mechanisms ensuring mission continuity in adverse conditions.

11

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

1 2 3 4 5
20

40

60

80

100

120

Number of Drones

S
ea
rc
h
T
im

e
(s
)

Search Time

Fig. 4: Search Time vs. Number of
Drones

1 2 3 4 5
90

92

94

96

98

100

Number of Drones

T
ra
ck
in
g
A
cc
u
ra
cy

(%
)

Tracking Accuracy

Fig. 5: Tracking Accuracy vs. Number of
Drones

5.3 Algorithmic Efficiency

1 2 3 4 5
0

1

2

3

Number of Drones

T
as
k
A
ll
o
ca
ti
on

T
im

e
(s
)

Task Allocation Time

Fig. 6: Task allocation time with increas-
ing swarm size.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Obstacle Density

P
at
h
P
la
n
n
in
g
T
im

e
(s
)

Path Planning Time

Fig. 7: Path planning time with increas-
ing obstacle density.

In addition to task completion time and success rate, we propose to evaluate algo-
rithmic efficiency to gain a deeper understanding of the OWL framework’s capabilities.
The efficiency of the algorithms, particularly task allocation and path planning, is
crucial for real-time performance in dynamic environments. We will measure the exe-
cution time of these algorithms under varying swarm sizes and task complexities. The
goal is to analyze their computational complexity and ensure they can operate effi-
ciently in real-time scenarios. For task allocation time vs. swarm size, we anticipate
that the time taken for task allocation will increase with the swarm size, as more
drones need to negotiate and reach a consensus on task assignments. However, the

12

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

increase may not be linear due to the distributed nature of the algorithm, as show in
Figure 6. For path planning time vs. obstacle density, we expect the path planning
time to increase with the density of obstacles in the environment, as the EGO-Planner
algorithm needs to consider more constraints and explore a larger search space to find
collision-free paths, as shown in Figure 7.

6 Conclusion

The OWL-Swarm framework represents a significant step forward in the development
of vision-based drone swarm systems. Its distributed architecture, flexible communi-
cation mechanisms, and fault tolerance capabilities make it a promising platform for
a wide range of applications. However, there are still several areas for future research
and development, such as the integration of more advanced algorithms, the exploration
of new use cases, and the development of more robust fault tolerance mechanisms. As
the field of drone swarm technology continues to evolve, the OWL-Swarm framework
is poised to play a crucial role in shaping its future.

Acknowledgement

This project is partly supported by Institue of Computing Technology, Chinese
Academy of Sciences. The funding No. is E361070.

References

[1] Chung, J.-H., Kim, K.-C., Kim, J.: A survey on aerial swarm robotics. IEEE
Transactions on Robotics 34(4), 837–855 (2018)

[2] Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation
in multi-robot systems. The International Journal of Robotics Research 23(9),
939–954 (2004)

[3] Cornejo, A., Lynch, N., Viqar, S., Richa, A.: Task allocation in a multi-robot
system. In: International Workshop on Algorithmic Foundations of Robotics, pp.
41–58 (2014). Springer

[4] Rubenstein, M., Ahler, C., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014)

[5] Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The grasp multiple micro-uav
testbed. IEEE Robotics & Automation Magazine 17(3), 56–65 (2010)

[6] Kuhn, H.W.: The hungarian method for the assignment problem. Naval research
logistics quarterly 2(1-2), 83–97 (1955)

[7] Bertsekas, D.P.: The auction algorithm: A distributed relaxation method for the
assignment problem. Annals of operations research 14(1), 105–123 (1989)

13

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

[8] Choi, H., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust
task allocation. IEEE transactions on robotics 25(4), 912–926 (2009)

[9] Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination:
A survey and analysis. Proceedings of the IEEE 94(7), 1257–1270 (2006)

[10] Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In:
Autonomous Robot Vehicles, pp. 396–404. Springer, ??? (1986)

[11] LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning
(1998)

[12] Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics 4(2), 100–107 (1968)

[13] Zhou, X., Wang, Z., Ye, H., Xu, C., Gao, F.: Ego-planner: An esdf-free gradient-
based local planner for quadrotors. IEEE Robotics and Automation Letters 6(2),
478–485 (2020)

[14] Qin, T., Li, P., Shen, S.: Vins-mono: A robust and versatile monocular visual-
inertial state estimator. IEEE transactions on robotics 34(4), 1004–1020 (2018)

14

C
h

in
aX

iv
:2

0
2

4
0

9
.0

0
2

2
3

v
1

T h i s v e r s i o n p o s t e d 2 0 2 4 - 0 9 - 2 5 .

https://chinaxiv.org/abs/202409.00223V1

	Introduction
	Related Work
	Framework Architecture
	Hardware platform
	Software architecture
	Key components

	Task Allocation and Coordination
	Distributed task scheduling
	Task prioritization and allocation strategies
	Task cooperation in drone swarm
	Key Algorithms

	Use Case Studies
	Cooperative Obstacle Avoidance
	Coordinated Search and Target Tracking
	Algorithmic Efficiency

	Conclusion

