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ABSTRACT

Long-context modeling has become the core capability for Large Language Mod-
els (LLMs) and most of the studies focus on scaling Rotary Position Embed-
dings (RoPE) to overcome the inherent limitations of positional encoding extrap-
olation. Previous methods show that the high-frequency components of RoPE
are sensitive to small relative distances and capture local information, while the
low-frequency components respond to large relative distances and capture long-
range dependencies. This phenomenon has led to the conventional strategies of
directly extrapolating the high-frequency components and interpolating the low-
frequency ones. However, due to the periodic nature of trigonometric functions,
appropriate interpolation of high-frequency components can enhance their abil-
ity to capture longer-range dependencies, thereby contributing to improved long-
context modeling. Building on these insights, we propose AlphaRoPE, a novel
approach for RoPE-based length extrapolation. AlphaRoPE applies interpolation
to low-frequency components to resolve out-of-distribution (OOD) issues, while
for the high-frequency components, it introduces a carefully calibrated, gradually
increasing interpolation factor as frequency descends. This dual approach effec-
tively extends the context window of LLMs without degrading their performance
on shorter sequences. Experiments conducted on various models further confirm
our hypothesis and demonstrate the superiority of AlphaRoPE.

1 Introduction

In recent years, the ability to handle long-context tasks has become a crucial evaluation criterion for
Large Language Models (LLMs). With growing application demands, such as full-document anal-
ysis (Beltagy et al., 2020), long dialogue modeling (Guo et al., 2021), and complex reasoning (Wei
et al., 2022), the ability to capture long-range dependencies has gained significant attention. Leading
models like GPT-5 (OpenAI, 2024), DeepSeek-R1 (Guo et al., 2025), Gemini2.5 (Comanici et al.,
2025), Claude4 (Anthropic, 2024), and Llama3.1 (Dubey et al., 2024) now support substantially
extended context windows, establishing long-context modeling capability as a standard feature in
next-generation LLMs.

The key factor for this context expansion lies in adapting positional encoding mechanisms (Vaswani
et al., 2017) during the continual pre-training stage. Rotary Position Embedding (RoPE) (Su et al.,
2024) is widely adopted due to its favorable extrapolation properties. A common strategy involves
rescaling RoPE to accommodate longer sequences and then fine-tuning on long-context data to en-
sure consistent positional awareness. Several methods have been proposed to determine suitable
scaling strategies for RoPE-based length extrapolation, including YaRN (Peng et al., 2023), NTK
(LocalLLaMA, 2023), and LongRoPE (Ding et al., 2024). They adopt rescaling factors that remap
extended token positions into the value range that the model learned to handle during pre-training,
thus solving the out-of-distribution (OOD) problem in RoPE. However, these studies often em-
ploy a piecewise scaling approach, sacrificing fidelity for simplicity. YaRN, for instance, operates
under a “high-frequency extrapolation, low-frequency interpolation” paradigm, assuming that high-
frequency dimensions are only relevant for short-range dependencies and should remain unscaled to
preserve local information. We find that due to the inherent periodicity of trigonometric functions,
high-frequency dimensions can also contribute to encoding long-range dependencies. Completely
omitting them from the interpolation process is an oversimplified design that limits their potential.
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Our method is motivated by the insight that a controlled, small-amplitude interpolation of high-
frequency dimensions can better adapt the model to longer sequences without compromising its
ability to capture local context. A critical issue with existing methods is that their scaling factors
on non-OOD dimensions are excessively large, leading to unnecessary positional disturbances. This
is particularly problematic for high-frequency dimensions, which are already well-trained during
the pre-training phase to model short-range dependencies. Ideally, the scaling for these dimensions
should be minimal to avoid disrupting the learned representations and to reduce the number of fine-
tuning tokens required for adaptation.

To achieve this, we introduce AlphaRoPE, a new RoPE scaling strategy based on a mathematically-
derived power function that elegantly satisfies our design principles. We further present a novel met-
ric, the high-frequency scaling magnitude A, to quantify the degree of interpolation on these critical
non-OOD dimensions. Our analysis demonstrates that as the context window expands, the value
A of our method grows at a significantly lower rate than existing methods, providing theoretical
evidence of our method’s superior extensibility and training efficiency. Experimental results vali-
date our approach, with AlphaRoPE achieving state-of-the-art performance on diverse long-context
tasks. Its effectiveness on various models not only demonstrates superior performance over strong
baselines like YaRN but also proves its generalizability.

Our main contributions are summarized as follows: 1) Theoretical Re-examination: We challenge
the conventional wisdom of ”high-frequency extrapolation” by demonstrating that appropriate inter-
polation of high-frequency RoPE dimensions can enhance their contribution to long-range depen-
dency encoding through trigonometric periodicity, providing new insights for positional encoding
design. 2) Novel Scaling Framework: We propose AlphaRoPE, a mathematically-derived scal-
ing strategy that achieves optimal balance between local preservation and long-context adaptation
through controlled high-frequency interpolation. 3) Comprehensive Validation: We introduce a
quantitative metric for scaling magnitude and demonstrate state-of-the-art performance on diverse
long-context benchmarks across multiple model architectures.

2 Background and Related Work

2.1 Rotary Position Embedding (RoPE)

Our work is based on the Rotary Positional Embedding (Su et al., 2024), which becomes the de facto
module in modern LLMs. Let m,n be the positional index of xm,xn ∈ Rd, where d denotes the
attention-head dimension. RoPE converts them into query and key vectors:

qm = fq(xm,m), kn = fk(xn, n) (1)

where fq and fk are the transformation functions for queries and keys, respectively. The core idea
of RoPE is to encode absolute positional information with a rotation matrix. For a vector x ∈ R2

representing a pair of features, the rotation matrix is defined as:

RΘ,m =

(
cosmθ − sinmθ
sinmθ cosmθ

)
(2)

For high-dimensional vectors in Rd (where d is even), the rotation is applied to each pair of consec-
utive dimensions. The full block-diagonal rotation matrix RΘ,m ∈ Rd×d is:

RΘ,m = diag
(
RΘ0,m,RΘ1,m, . . . ,RΘd/2−1,m

)
(3)

where Θ = {θi = b−2j/d, j = 0, 1, 2, . . . , d/2− 1} are the frequencies. The query and key vectors
are then transformed as:

fq(xm,m) = RΘ,mWqxm, fk(xn, n) = RΘ,nWkxn (4)

where Wq and Wk are learned projection matrices. This rotational encoding ensures that the inner
product between query and key vectors depends only on their relative position m− n:

(RΘ,mq)⊤(RΘ,nk) = q⊤RΘ,n−mk (5)

thereby providing relative positional information in the attention mechanism.
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2.2 RoPE Scaling

When the target sequence length exceeds the pre-trained window length, LLMs cannot directly
extrapolate, as they encounter previously unseen positional indices. This leads to an Out-of-
Distribution (OOD) issue. Specifically, for the high-dimensional part of RoPE, the model does not
complete a full period during pre-training. Assuming the base of RoPE is b and the per-head dimen-
sion is d, and the model’s pre-trained text window length is Ltrain, if Ltrainb

−2j/d < 2π is satisfied,
the model has not completed a full period beyond the dimension 2j. This means that a portion of the
angles are outside the model’s training range. Consequently, when the target length Ltarget exceeds
Ltrain, angles outside the training range will inevitably appear beyond the dimension 2j, which is
the root cause of the OOD problem.

To address the OOD issue, the concept of a critical dimension is proposed. We follow the notation
from (Liu et al., 2023) and denote the critical dimension, where Ltrainb

−2j/d = 2π, as d0. This
gives us:

d0 = 2⌊d
2
logb

Ltrain

2π
⌋ (6)

It is evident from the formula that for high dimensions where j > d0, the condition Ltrainb
−2j/d <

2π holds true. This implies that a portion of the angles for these dimensions remains untrained.
Therefore, these high-dimensional parts require interpolation. We scale the out-of-training-range
angles by an interpolation factor, s =

Ltarget

Ltrain
, to ensure all angles fall within the model’s trained

distribution.

Conversely, for the low dimensions where j < d0, we have Ltrainb
−2j/d > 2π. This means these

dimensions have completed at least one full rotational period during training. The smaller the value
of j, the more periods are completed, indicating more thorough training for these dimensions.

2.3 Related Work

Several prominent methods have been developed to address the challenge of extending the con-
text window of RoPE-based models. These approaches can be broadly categorized into positional
interpolation and base modification techniques.

PI (Chen et al., 2023) scaling method introduces linear positional interpolation, applying a uniform
scaling factor s =

Ltarget

Ltrain
across all RoPE dimensions. This uniform scaling, however, leads to an

issue of “overly crowded” positional information, where the entire encoding space is compressed.
Consequently, the model’s ability to distinguish between different positions is impaired due to the
loss of discriminative resolution in the interpolated embeddings.

NTK (LocalLLaMA, 2023) scaling methods enhance RoPE-based models’ ability to extrapolate by
increasing the original RoPE base value to a larger value. An early method, proposed by (Local-
LLaMA, 2023), enlarged the base by a factor of s

d
d−2 . However, this approach was not aligned

with OOD theory for high RoPE dimensions, resulting in insufficient interpolation and a drop in
performance at longer sequence lengths.

A more effective and widely adopted NTK-based solution, introduced by (Liu et al., 2023), enlarges
the RoPE base based on the theoretical critical dimension, d0. This approach specifically enlarges
the RoPE base by a factor of s

d
d0 , which provides a scaling factor si ≥ L

Ltrain
for dimensions i > d0.

Despite its effectiveness, this configuration can lead to excessive interpolation of the low-frequency
components where j > d0, requiring a significant increase in the number of tokens needed for
fine-tuning (Liu et al., 2023). To address this, a uniform interpolation factor of s is adopted for
dimensions beyond the critical dimension. In this work, the term “NTK scaling” refers to this refined
approach.

YaRN (Peng et al., 2023) significantly improves length extrapolation performance by treating differ-
ent RoPE dimensions based on their frequency. It divides the dimensions into a high-frequency part
and a low-frequency part. The high-frequency part, which corresponds to the low-dimension part of

3
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RoPE, is handled with direct extrapolation. Conversely, the low-frequency part, which corresponds
to the high-dimension part, undergoes linear interpolation to mitigate the OOD problem.

LongRoPE (Ding et al., 2024) distinguishes itself from theoretical derivation-based approaches by
utilizing a performance-driven evolutionary search to optimize dimension-specific scaling parame-
ters. Since this method requires additional computational costs and does not provide explicit scaling
rules, we do not include it in our comparison and analysis.

3 AlphaRoPE

3.1 Rethinking High-Frequency Interpolation: Beyond Local, Toward
Global Context

Current RoPE scaling methods, such as YaRN, predominantly follow a “high-frequency extrapola-
tion, low-frequency interpolation” paradigm. This approach is based on the assumption that high-
frequency dimensions (corresponding to small j values) are primarily responsible for encoding local
positional information, and should therefore be excluded from interpolation to preserve fine-grained
positional accuracy.

We argue that this conventional view requires reconsideration. The fundamental mathematical form
of RoPE encoding for dimension j at position m is:

PE(m, j) = eimθj , θj = b−2j/d (7)

This formulation exhibits inherent periodicity with period Tj = 2π/θj , satisfying:

PE(m+ kTj , j) = PE(m, j) for any integer k (8)

This periodic property means that high-frequency dimensions (small j, small Tj) can encode in-
formation about positions separated by integer multiples of their period through aliasing effects,
contrary to the assumption that they are solely dedicated to local information encoding.

The critical trade-off in RoPE scaling can be understood through the positional discrimination capa-
bility, which is quantified by:

|PE(m+∆, j)− PE(m, j)| = |eimθj (ei(∆·θj) − 1)| = |ei(∆·θj) − 1| = 2

∣∣∣∣sin(∆ · θj
2

)∣∣∣∣ (9)

As illustrated in Figure 1, this leads to two distinct operational regimes: High-frequency dimensions
(small j) exhibit strong discrimination for small ∆ (high local sensitivity) but suffer from frequent
aliasing due to short Tj . Low-frequency dimensions (large j) provide long aliasing distance (large
Tj) but show weak discrimination for adjacent positions.

Interpolation through scaling θ′j = θj/s extends the effective period to T ′
j = s · Tj , thereby in-

creasing the aliasing distance. However, this operation simultaneously reduces local discrimination
capability according to the sensitivity equation above.

Therefore, completely avoiding high-frequency interpolation (as in YaRN) sacrifices long-range po-
tential, while excessive interpolation (as in NTK) harms local information preservation. This trade-
off is evident in specific dimensions: interpolating the highest-frequency dimension (period ≈6.28)
severely impairs local sensitivity with minimal long-range gain (period ×2 ≈12.56), whereas in-
terpolating medium-frequency dimensions (e.g., period ≈112) meaningfully extends the effective
range (period ×2 ≈224) with limited sensitivity loss.

Our method, AlphaRoPE, introduces a frequency-adaptive strategy that balances this trade-off: ap-
plying minimal interpolation to highest-frequency dimensions to preserve local sensitivity, while
progressively increasing interpolation strength for lower frequencies to enhance long-context capa-
bility.

4
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Figure 1: The trade-off between local sensitivity and aliasing distance in RoPE dimensions. (a)
A high-frequency dimension (short period Tj = 12) exhibits large differences between adjacent
positions (∆ = 1), indicating high local sensitivity, but a short aliasing distance where positions
separated by Tj share the same encoding. (b) A medium-frequency dimension (period Tj = 24)
achieves a compromise between local sensitivity and aliasing distance, maintaining reasonable po-
sitional discrimination while extending the effective range. (c) A low-frequency dimension (long
period Tj = 48) has a long aliasing distance, supporting better long-range discrimination, but shows
minimal differences between adjacent positions, resulting in low local sensitivity. This illustrates
the fundamental compromise that guides our interpolation strategy.

3.2 Scaling Principles

To achieve this, we establish four fundamental design principles for scaling the RoPE dimensions.
An ideal interpolation factor f should satisfy:

1. Monotonicity: The interpolation factor f(j) should increase monotonically with the dimen-
sion j, meaning that higher-frequency dimensions (smaller j) should undergo smaller interpolation
magnitudes.

2. Boundary Conditions: At dimension j = 0, the interpolation factor f(0) = 1; at the critical
dimension d0, the interpolation factor f(d0) = s, where s is the overall scaling factor.

3. Minimal High-Frequency Interpolation: For smaller j (i.e., high-frequency dimensions), the
interpolation factor should be close to 1, ensuring minimal change in the interpolation magnitude
for high-frequency dimensions. This preserves the model’s ability to model local relationships and
minimizes the difficulty of fine-tuning on short texts.

4. Uniform Low-Frequency Interpolation: According to 2.2, for all j > d0 RoPE dimensions,
which are all OOD dimensions, the interpolation factor should be no less than s =

Ltarget

Ltrain
.

The first three principles are applied to dimensions where j ≤ d0, while only the fourth principle
is applied to dimensions where j > d0. Following the YaRN setup, we can simply set f(j) = s
for j > d0 to satisfy the fourth principle. To satisfy the first three principles, we naturally consider
using a power function as our interpolation factor function for dimensions where j ≤ d0. Given the
nature of a power function, the setup of f(j) = s(j/d0)

α

for j ≤ d0 with α > 0 perfectly satisfies
the first three conditions.

Finally, we propose AlphaRoPE scaling:

f(j) =

{
s(j/d0)

α

j ≤ d0
s j > d0

(10)

Notably, when α = 0, the scaling factor f(j) is uniformly s, which degenerates to PI interpolation.
When α = 1, the method becomes equivalent to NTK scaling. Therefore, by setting α > 1, we can
ensure that the interpolation magnitude of AlphaRoPE is smaller than that of NTK scaling.

5
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3.3 Parameter Optimization and Metric Quantification

After defining our function form f(j) = s(j/d0)
α

, j ≤ d0, a key question is how to choose the
parameter α. For the high-frequency part, since there is no OOD issue, we aim to keep the inter-
polation magnitude as small as possible to reduce the number of fine-tuning steps required for the
model. Specifically, we want α to be a function of s, ensuring that the degree of interpolation for
high frequencies does not increase too rapidly with the scaling factor s.

We define a metric, A, to quantify the interpolation magnitude of high-frequency dimensions. And
we aim to derive the value of α using this metric. A metric is defined as the geometric mean of the
interpolation factors for these dimensions:

A =

d0/2∏
j=1

s

(
2j
d0

)α

 2
d0

= s
2
d0

∑d0/2
j=1

(
2j
d0

)α

(11)

Next, we need to estimate 2
d0

∑d0/2
j=1

(
2j
d0

)α

. Since d0 = 2⌊d
2 logbase

Ltrain

2π ⌋ is guaranteed to be

even, d0

2 = n is an integer. Thus, the expression becomes:

2

d0

n∑
j=1

(
j

n

)α

=

∑n
j=1 j

α

nα+1
≈

∫ n

0
xα dx

nα+1
=

nα+1

α+1

nα+1
=

1

α+ 1
(12)

This approximation is reasonably accurate. Substituting into Eq. 11 yields:

A = s
2
d0

∑d0/2
j=1

(
2j
d0

)α

≈ s
1

α+1 = exp

(
ln s

α+ 1

)
(13)

The final metric A is independent of the critical dimension and depends solely on the scaling factor
s and the parameter α. To suppress the growth rate of the interpolation magnitude as s increases,
we define α as a function of s. We adopt a logarithmic form, α = 0.6 ln s, which ensures a slow
growth rate and an upper bound 1

0.6 on the key term. The derivation and empirical justification for
the coefficient value of 0.6 are provided in Appendix C. This particular choice of constant guarantees
that for common scaling factors (s ≥ 8), we have α > 1, which makes the interpolation amplitude
smaller than that of the NTK method (α = 1). For the special case where s ≤ 4, this function yields
α < 1; therefore, we stipulate α = 1 to maintain consistency with NTK scaling. This piecewise
definition ensures a suppressed interpolation rate while aligning with NTK scaling for small factors.

Finally, we present the expression of AlphaRoPE:

f(j) =

{
s(j/d0)

max(0.6 ln s,1)

j ≤ d0
s j > d0

(14)

3.4 Bridging the Spectrum: A Unified Analysis of RoPE Scaling Strategies

Following (Shang et al., 2025), we visualize AlphaRoPE’s interpolation scaling factor, as shown in
Figure 2, occupies a middle ground between NTK-aware scaling and YaRN. Its curve demonstrates
a more gradual decay at lower frequencies compared to NTK, while maintaining a higher scaling
factor than YaRN at higher frequencies. This design positions AlphaRoPE as a compromise between
the two methods, balancing the need for controlled interpolation across all dimensions.

To quantitatively analyze the differences in interpolation amplitudes among various RoPE scaling
methods, we examine how the value A—representing the average interpolation magnitude of high-
frequency dimensions—varies with the scaling factor s for each method. For the PI method, the
interpolation factor is uniformly s across all RoPE dimensions, making its value A consistently s
and independent of the specific model. The NTK scaling method is a special case with α = 1, and its
value A is derived following the same calculation framework. For the YaRN method, the value A is

6
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Figure 2: Per-dimensional RoPE scaling factor under different methods (Llama2-7B, s = 16)

contingent on the model’s critical dimension, d0, which is model-dependent. We use the Llama2-7B
model as a concrete example, with its critical dimension of d0 = 90, to calculate the value A for
YaRN. Further details on this calculation are provided in Appendix D.

Method s = 8 s = 16 s = 32 s = 64

PI 8 16 32 64
NTK 2.89 4.12 5.88 8.38
YaRN 1.99 2.32 2.61 2.85

AlphaRoPE 2.58 2.92 3.20 3.44

Table 1: A-value comparison under different scaling factors s on Llama2-7b model

Table 1 presents the A values for various RoPE scaling methods under different scaling factors
(s = 8, 16, 32, 64). Based on the value A comparison across different scaling factors, several key
observations emerge. First, NTK exhibits rapid growth in values A, while both YaRN and Alpha-
RoPE demonstrate much more gradual increases, indicating better stability. Second, Alpha-RoPE
consistently shows higher values A than YaRN across all scales, confirming that its mild interpo-
lation strategy in high-frequency components provides better mathematical properties compared to
YaRN’s approach of no interpolation in very high frequencies.

The comparison with NTK scaling, which corresponds to the special case of AlphaRoPE with α = 1
serves as a baseline to validate the effectiveness of using the optimized α = 0.6 ln s. This optimized
parameter significantly slows the growth of the value A, demonstrating an improvement over the
NTK approach. Similarly, the systematic comparison with YaRN highlights the benefit of applying
a small degree of interpolation to the high-frequency dimensions rather than completely avoiding it.

4 Experiments

4.1 Training Setup

We selected base models with relatively small original context windows to better evaluate length ex-
tension capabilities, choosing Llama2-7B (Touvron et al., 2023) (4k context) and OLMo-7B (Groen-
eveld et al., 2024) (2k context) for our experiments. This contrasts with models like Llama3.1
(Dubey et al., 2024), which already natively supports 128k context length. We extended these mod-
els to 64k context length, corresponding to scaling factors of s = 16 for Llama2-7B and s = 32
for OLMo-7B respectively. Inspired by CodeLlama (Roziere et al., 2023), which is trained on a 16k
dataset with s ≈ 88.6, we trained the Llama2-7B model with 16k context length datasets (approxi-
mately 0.6B tokens). We used the PG-19 dataset (Rae et al., 2019) chunked into 16k segments and
trained for 600 steps. For OLMo-7B, we found that training on the 16k dataset did not yield satisfac-

7
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tory results, so we used the PG-19 dataset (Rae et al., 2019) chunked into 32k segments and trained
for 400 steps (approximately 0.8B tokens). For all model training experiments, We used the AdamW
(Kingma & Ba, 2014) optimizer with a learning rate of 2× 10−5, β1 = 0.9, and β2 = 0.95. Weight
decay was not applied, and we included a linear warmup for the first 20 steps. Our experimental
setup roughly followed (Peng et al., 2023).

4.2 Evaluation

Our evaluation methodology is designed to assess both long and short-context performance. We
evaluate long-context capabilities through three key scenarios: perplexity scores, the passkey re-
trieval task (Kamradt, 2023), and real-world long-context tasks from LongBench (Bai et al., 2023).
For completeness, we also verify the model’s performance on standard short-context benchmarks,
and the corresponding results are provided in Appendix E.

4.2.1 Perplexity Score

Model Name 2k 4k 8k 16k 32k 48k 64k
Llama2-NTK (s = 16) 4.387 3.827 3.345 2.850 2.597 2.531 2.519
Llama2-YaRN (s = 16) 4.360 3.845 3.351 2.887 2.662 2.603 2.589
Llama2-AlphaRoPE (s = 16) 4.351 3.838 3.324 2.837 2.593 2.529 2.508
OLMo-NTK (s = 32) 5.931 4.948 4.317 3.635 3.280 3.190 3.124
OLMo-YaRN (s = 32) 5.872 5.003 4.392 3.731 3.382 3.298 3.213
OLMo-AlphaRoPE (s = 32) 5.767 4.874 4.252 3.586 3.236 3.148 3.076

Table 2: Sliding Window Perlexity (S = 128) on Proof-pile documents over extended Llama2-7B
and OLMo-7B.

Following the setup of (Peng et al., 2023), we use the Proof-Pile (Azerbayev et al., 2022) dataset to
evaluate the perplexity scores of the extended Llama2-7B model and OLMo-7B model. We use the
sliding window method from (Press et al., 2021) with S = 128.

Table 2 compares the performance of Llama2-7B and OLMo-7B models when their context windows
are extended to 64k from 4k and 2k, respectively. The results show that our AlphaRoPE-extended
models achieve significantly lower perplexity scores than those extended with YaRN, outperforming
it by 0.081 on Llama2-7B and 0.137 on OLMo-7B. The difference between AlphaRoPE and NTK
is less pronounced, which can be attributed to the fact that both methods, unlike YaRN, apply in-
terpolation to high-frequency RoPE dimensions. This finding further supports our hypothesis that
applying appropriate interpolation to high-frequency RoPE dimensions is beneficial for the capabil-
ity of long-context modeling.

4.2.2 Passkey Retrieval

Model Name 4k 8k 16k 32k 48k 64k Overall
Llama2-NTK (s = 16) 80.0 80.0 80.0 80.0 74.0 10.0 73.0
Llama2-YaRN (s = 16) 100.0 100.0 100.0 100.0 94.0 4.0 89.5
Llama2-AlphaRoPE (s = 16) 100.0 100.0 100.0 100.0 90.0 74.0 93.5
OLMo-NTK (s = 32) 100.0 100.0 98.0 86.0 76.0 56.0 81.0
OLMo-YaRN (s = 32) 100.0 100.0 100.0 92.0 90.0 60.0 88.5
OLMo-AlphaRoPE (s = 32) 100.0 100.0 100.0 98.0 90.0 76.0 93.5

Table 3: Passkey retrieval accuracy results under different RoPE scaling methods (%). The ”Overall”
column represents the average accuracy across all tested context lengths.
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We evaluated model performance on the passkey retrieval task across context lengths ranging from
0 to 64k, using 4k length intervals. Table 3 shows the passkey retrieval accuracies under different
RoPE scaling methods. The results demonstrate that AlphaRoPE significantly outperforms both
YaRN and NTK across both model architectures, indicating that appropriate interpolation of high-
frequency dimensions effectively enhances the model’s ability to capture long-range information.
The NTK method shows the weakest performance, suggesting that its introduced interpolation mag-
nitude is too aggressive, requiring more extensive fine-tuning to be effective. We show detailed
results in Appendix F.

4.2.3 LongBench Tasks

Model Single-Doc QA Multi-Doc QA Few-Shot
Qasper Multifieldqa HotpotQA 2WikiMQA Trec SAMsum TriviaQA

Llama2-NTK (s = 16) 4.59 5.50 1.88 2.54 65.00 38.89 89.66
Llama2-YaRN (s = 16) 5.60 5.33 2.68 2.85 62.33 38.87 88.08
Llama2-AlphaRoPE (s = 16) 5.22 6.49 2.19 1.94 65.00 39.76 88.63

OLMo-NTK (s = 32) 7.69 17.25 9.86 10.48 64.33 5.52 83.30
OLMo-YaRN (s = 32) 7.90 16.87 8.89 9.29 60.00 3.63 81.46
OLMo-AlphaRoPE (s = 32) 7.97 15.54 9.01 9.74 66.67 7.06 82.92

Model Summarization Code Synthetic Average
GovReport MultiNews LCC Repobench-P PassageRetrieval PassageCount

Llama2-NTK (s = 16) 13.95 4.65 66.49 52.62 0.00 0.00 26.60
Llama2-YaRN (s = 16) 14.20 6.16 65.24 53.29 0.50 0.22 26.57
Llama2-AlphaRoPE (s = 16) 20.14 9.52 66.75 52.37 0.11 0.00 27.55
OLMo-NTK (s = 32) 27.90 18.30 51.54 45.87 4.72 3.75 26.96
OLMo-YaRN (s = 32) 24.67 16.97 46.28 40.26 6.62 3.42 25.10
OLMo-AlphaRoPE (s = 32) 28.70 19.84 51.58 44.30 3.90 6.58 27.22

Table 4: LongBench-E performance comparison under different RoPE-scaling methods

We evaluate extended models using LongBench-E, a curated subset of LongBench containing 13
diverse tasks supported by comprehensive experimental data. As shown in Table 4, AlphaRoPE
demonstrates superior overall performance compared to existing RoPE scaling methods. The advan-
tage is particularly pronounced against YaRN, with improvements of 0.98 and 2.12 average points
on Llama2-7B and OLMo-7B, respectively, indicating AlphaRoPE’s more effective handling of
long-context scenarios.

While AlphaRoPE’s margin over NTK scaling is narrower (0.95 and 0.26 points on the two architec-
tures), its performance proves substantially more stable. This stability is most evident in the Passkey
Retrieval task, where NTK suffers a dramatic performance collapse while AlphaRoPE maintains
strong capability. The contrasting results reveal a critical limitation of existing methods: YaRN’s
avoidance of high-frequency interpolation leads to consistent underperformance, while NTK’s uni-
form scaling approach results in unpredictable failures on specific tasks. In comparison, AlphaRoPE
achieves an optimal balance, delivering both competitive performance and reliable stability across
diverse evaluation scenarios.

5 Conclusion

In this paper, we have shown that AlphaRoPE outperforms mainstream length extrapolation meth-
ods, including NTK and YaRN. As an explicitly defined method that introduces no training parame-
ters, AlphaRoPE requires minimal implementation cost while delivering superior performance. Ex-
tensive evaluations demonstrate that fine-tuned models equipped with AlphaRoPE achieve state-of-
the-art results across multiple long-context benchmarks while consistently maintaining their original
short-context capabilities.
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A Reproducibility

Our work prioritizes reproducibility, and a comprehensive effort has been made to ensure our results
can be verified. The core methodology, including the mathematical derivation of our RoPE scaling
function and the proposed high-frequency scaling amplitude metric, is detailed in Section 3. All
experimental setups, including dataset preparation, model architectures, and training hyperparame-
ters, are described in Section 4. We are committed to making our research accessible and plan to
release the code and model checkpoints upon paper acceptance to facilitate full reproducibility and
encourage future research.

B The Use of Large Language Models

Our paper utilized AI-assisted writing tools during the drafting and polishing stages to enhance
linguistic fluency and grammatical accuracy. These tools helped refine the technical presentation
while ensuring the integrity of our original research content and scientific findings.
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C Derivation of the Coefficient 0.6

The coefficient value of 0.6 in the logarithmic form α = 0.6 ln s was determined through empirical
optimization on the Llama2-7B model with a scaling factor of s = 8. We conducted systematic
experiments testing α values of 1.0, 1.25, and 1.5, with results indicating that α = 1.25 yielded
optimal performance.

Solving for the coefficient a in the equation α = a ln s with s = 8 and α = 1.25:

a =
α

ln s
=

1.25

ln 8
≈ 0.60 (15)

D Details of A Value Calculation of YaRN

Following the settings and notations in (Peng et al., 2023) where α = 1, β = 32, we can calculate
two critical dimensions, dalpha = 90 and dbeta = 36, corresponding to dimension index 45 and 18
respectively. We then obtain the A value for the YaRN method on the Llama2-7B model as:

A = (

45∏
i=18

(
1− γ(r(i))

s
+ γ(r(i))))

1
45 ,

where r(i) =
4096

2π ∗ 100002i/128
, γ(r(i)) =

r(i)− α

β − α
=

r(i)− 1

31

(16)

E Short Tasks Evalutaion

Model Arc-C TrQA Hella GSM8K Average
Llama2-NTK (s=16) 48.63 38.08 56.58 9.70 38.41
Llama2-YaRN (s=16) 47.56 38.89 57.01 11.14 38.65
Llama2-AlphaRoPE (s=16) 47.78 38.96 57.21 9.70 38.10

OLMo-NTK (s=16) 41.72 33.36 55.79 2.92 31.41
OLMo-YaRN (s=16) 41.47 34.56 56.15 3.11 33.45
OLMo-AlphaRoPE (s=16) 41.47 36.36 56.03 2.43 34.07

Table 5: Standard short tasks performance over extended Llama2-7B and OLMo-7B

Table 5 compares different RoPE extension methods on standard short-context tasks including Arc-
Challenge(Arc-C) (Clark et al., 2018), TruthfulQA(TrQA) (Lin et al., 2021), Hellaswag(Hella)
(Zellers et al., 2019), and GSM8k (Shi et al., 2022). The results show that AlphaRoPE maintains
comparable performance to YaRN, while NTK exhibits slightly degraded capabilities across most
evaluation metrics. This suggests that while all methods preserve fundamental short-context under-
standing, NTK’s aggressive interpolation strategy may partially impair the model’s ability to cap-
ture local contextual information. The minimal performance differences indicate that AlphaRoPE
achieves an optimal balance between maintaining short-context performance and enabling long-
context extension.

F Details of Passkey Retrieval

For each target length, we tested the retrieval capability at different relative depths where the passkey
could be located. Specifically, we examined depth values spanning from 0 to 1.0 in increments of
0.1 (i.e., [0, 0.1, 0.2, ..., 0.9, 1.0]). At each depth position, we conducted 5 independent test cases to
ensure statistical reliability of the results. The experimental results are presented below.
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Figure 3: Passkey retrival result on Llama2-NTK (s=16)

Figure 4: Passkey retrival result on Llama2-YaRN (s=16)

Figure 5: Passkey retrival result on Llama2-AlphaRoPE (s=16)
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Figure 6: Passkey retrieval result on OLMo-NTK (s=32)

Figure 7: Passkey retrieval result on OLMo-YaRN (s=32)

Figure 8: Passkey retrieval result on OLMo-AlphaRoPE (s=32)
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