
Differentiable Rendering with Reparameterized
Volume Sampling

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose an alternative rendering algorithm for neural radiance fields based1

on importance sampling. In view synthesis, a neural radiance field approximates2

underlying density and radiance fields based on a sparse set of scene views. To3

generate a pixel of a novel view, it marches a ray through the pixel and computes a4

weighted sum of radiance emitted from a dense set of ray points. This rendering5

algorithm is fully differentiable and facilitates gradient-based optimization of the6

fields. However, in practice, only a tiny opaque portion of the ray contributes most7

of the radiance to the sum. Therefore, we can avoid computing radiance in the rest8

part. In this work, we use importance sampling to pick non-transparent points on9

the ray. Specifically, we generate samples according to the probability distribution10

induced by the density field. Our main contribution is the reparameterization of11

the sampling algorithm. It allows end-to-end learning with gradient descent as in12

the original rendering algorithm. With our approach, we can optimize a neural13

radiance field with just a few radiance field evaluations per ray. As a result, we14

alleviate the costs associated with the color component of the neural radiance field15

at the additional cost of the density sampling algorithm.16

1 Introduction17

We propose a volume rendering algorithm for learning 3D scenes and generating novel views.18

Recently, learning-based approaches led to significant progress in this area. As an early instance,19

[8] proposed to represent a scene via a density field and a radiance (color) field parameterized20

with an MLP. They run a differentiable volume rendering algorithm with the MLP-based fields and21

minimize the discrepancy between the produced images and a set of reference images to learn a22

scene representation. The algorithm we propose is a drop-in replacement for the volume rendering23

algorithm used in NeRF [8] and follow-ups.24

The underlying model in NeRF generates an image point in the following way. It casts a ray from25

a camera through the point and defines the point color as a weighted sum along the ray. The sum26

aggregates the radiance of each ray point with weights induced by the density field. Each summand27

involves a costly neural network query, and model has a trade-off between rendering quality and28

computational load. NeRF obtained a better trade-off with a two-stage sampling algorithm used to get29

ray points with higher weights. The algorithm is reminiscent of importance sampling, yet it requires30

training an auxiliary model.31

In this work we propose a rendering algorithm based on importance sampling. Our algorithm also32

acts in two stages. In the first stage, it marches through the ray to estimate density. In the second33

stage, it constructs a Monte-Carlo color approximation using the density to pick points along the ray.34

The resulting estimate is fully-differentiable and does not require any auxiliary models. Besides that,35

we only need a few samples to construct precise color approximation. An intuitive explanation is that36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

we only need to compute the radiance of the point where a ray hits a solid surface. In the experiments,37

we query radiance for ×16 fewer ray points during training compared to baseline. Nevertheless, we38

manage to obtain competitive model and rendering quality.39

As a result, our algorithm is more suitable for recent solutions [10, 13, 12] that use distinct models to40

parameterize radiance and density. Specifically, the first stage only queries the density field, whereas41

the second stage only queries the radiance field. Compared to the standard rendering algorithm, the42

second stage of our algorithm avoids redundant radiance queries and reduces the memory required43

for rendering.44

2 Neural Radiance Fields45

Neural radiance fields represent 3D scenes with a scalar density field σ : R3 → R+ and a vector46

radiance field c : R3 × R3 → R3. The scalar field σ represents volume density at each spatial47

location x, and c(x,d) returns the light emitted from spatial location x in directionn d represented as48

a normalized three dimensional vector.49

For novel view synthesis, they adapt a volume rendering technique that computes a pixel color50

C(o,d) (denoted with a capital letter). In particular, the expected color along a ray r = o+ td going51

from the camera through the pixel is52

C(o,d) =

∫ +∞

tn

pr(t)c(o+ td,d)dt, for pr(t) = σ(o+ td) exp

(
−
∫ t

tn

σ(o+ sd)ds

)
. (1)

Here, pr(t) is a probability density function of a random variable T on a ray r. Intuitively, T is the53

location on the ray where a portion of light coming into the point o was emitted.54

One way to approximate to the integral would be to cut off the integral at depth tf and then use a grid55

tn = t0 < t1 < · · · < tm = tf to compute the integral with a Riemann sum56

ĈRiemann(o,d) =

m∑
i=1

(ti − ti−1)pr,ic(o+ tid,d), (2)

where pr,i = σ(o+ tid) exp

− i∑
j=1

(tj − tj−1)σ(o+ tjd)

. (3)

Importantly, Eq 2 is fully differentiable and can be used as a part of gradient-based learning pipeline.57

While such approximation works in practice, a fauithfull approximation requires a dense grid and58

multiple evaluations of σ and c. Besides that, a common situation is when a ray intesects a solid59

surface at some point s ∈ [tn, tf]. In this case, probability density pr(t) will concentrate its mass60

near s and will be close to zero in other parts of the ray. As a result, most of the summands in Eq. 261

will make negligible contribution to the sum.62

Monte Carlo methods give another way to apporximate the color. Given n i.i.d. samples t1, . . . , tn ∼63

pr(t), the color estimate is gatherd by64

ĈMC(o,d) =
1

m

m∑
i=1

c(o+ tid,d). (4)

Due to the importance sampling with distribution pr(t), each term in Eq 4 contributes equally to the65

sum as the samples come from regions with non-negligible density. Unlike the grid estimate in Eq. 2,66

the Monte-Carlo estimate depends on the scene density σ implicitly and requires a custom gradient67

estimate for the parameters of σ. For instance, NeRF adresses the issue via a hierarchical sampling68

scheme. It trains a coarse model with a grid approximation to generate importance-weighted ray69

locations for a separate fine-grained model.70

In the next section, we propose a propose a novel principled approach to training neural radiance71

fields with importance-weighted color approximation as in Eq. 4.72

2

3 Learning with Stochastic Color Estimates73

In this section, we will discuss stochastic approximations to the expected color C(o,d) in detail.74

Recall that C(o,d) = ET c(o+ Td, d), where T is a random variable with density specified in Eq. 1.75

Even though density pr(t) involves an integral we cannot compute in closed form, below we first76

assume that we have an algorithm to compute
∫ t
tn
σr(s)ds used in pr(t).77

Given a groundtruth expected color Cgt, optimization objective in NeRF captures the difference78

L(Ĉ(o,d), Cgt) between Cgt and the estimated color Ĉ(o,d). To reconstruct a scene NeRF runs79

a gradient based optimizer to minimize the objective averaged across multiple rays and multiple80

viewpoints. Such approach works for grid estimate Ĉ(o,d) = ĈRiemann(o,d) that depends on81

density σr explicitly, but Monte-Carlo estimate ĈMC(o,d) of the expectation depends on σ implicitly82

and a naive automatic differentiation algorithm will return zero gradients.83

In the rest of the section, we first introduce an algortihm to compute ĈMC(o,d) and derive a gradient84

estimate for the algorithm. Then, we conclude with a discussion our implementation of the estimate.85

To ease the notation, we will also introduce σr(t) = σ(o+ td) and cr(t) = c(o+ td,d) to denote86

fields restricted to a ray r = o+ td.87

3.1 Estimate Reparameterization88

To make the dependence of Ĉ(o,d) on σr explicit, we change the variables in the expectation89

ET cr(T). For F (t) = 1− exp
(
−
∫ t
tn
σr(s)ds

)
and y := F (t) we write90

ET cr(T) =
∫ +∞

tn

cr(t)pr(t)dt =

∫ yf

yn

cr(F
−1(y))dy. (5)

Function F (t) acts as cumulative distribution function of the variable T with a single exception91

that, in general, yf = limt→∞ F (t) 6= 1. In volume rendering, F (t) is called the opacity function92

with yf being equal to pixel opaqueness. Bounds of integration are where yn = F (tn) = 0 and93

yf = limt→+∞ F (t). For simplicity, below we replace yf with F (tf) where tf is the maximum ray94

depth.95

In the right-hand side of Eq. 5, integration boundaries depend on the opacity F and, thus, on the96

volume density σr . We further simplify the integral by changing the integration boundaries to [0, 1] :97 ∫ yf

yn

cr(F
−1(y))dy =

∫ 1

0

(yf − yn)cr(F−1(yn + (yf − yn)u))du. (6)

With this, we arrive to the following reparameterized Monte-Carlo estimate of the expected color98

obtained with i.i.d U [0, 1] samples u1, . . . , um:99

ĈRMC(o, d) :=
1

m

m∑
i=1

(yf − yn)cr(F−1(yn + (yf − yn)ui)). (7)

In the above estimate sampling does not depend on volume density σr or color cr. Essentially,100

this is a reparameterized Monte-Carlo estimate that generates samples from pr(t) using the inverse101

cumulative distribution function F−1(yn + (yf − yn)u).102

We further improve the estimate using stratified sampling. To do this, we replace the uniform samples103

u1, . . . , um with uniform independent samples within regular grid bins vi ∼ U [i−1m+1 ,
i

m+1], i =104

1, . . . ,m and derive a reparameterized (R) stratified (S) Monte Carlo estimate105

ĈRSMC(o, d) =
1

m

m∑
i=1

(yf − yn)cr(F−1(yn + (yf − yn)vi)). (8)

It is easy to show that both 7 and 8 are unbiased estimates of 1.106

Next, we will discuss algorithms used to compute the inverse opacity function F−1(y) and compute107

the gradients of the function with automatic differentiation.108

3

3.2 Implementation of Inverse Opacity for Volume Sampling109

To compute the estimates in Eqs. eqs. (7) and (8), we need to compute the inverse opacity F−1(y)110

along with its gradient. In practice, we start with a black-box density field σr(x) and compute111

the induced density pr(t) and opacity F (t) on a ray r via approximations. Assuming we have an112

algorithm to compute
∫ t
tn
σr(s)ds, below we show how to implement the inverse opacity F−1.113

We invert F (t) = 1 − exp
(
−
∫ t
tn
σr(s)ds

)
with binary search. Note that F (t) is a monotonic114

function and for y ∈ (yn, yf) = (F (tn), F (tf)) the inverse lies in (tn, tf). To compute F−1(y), we115

start with boundaries tl = tn and tr = tf and gradually decrease the gap between the boundaries116

based on the comparison of F (tl+tr2) with y. Importantly, such procedure is easy to parallelize across117

multiple inputs and multiple rays.118

However, we cannot backpropagate through the binary search iterations and need a workarond to119

compute the gradient ∂t∂θ of t(θ) = F−1(y, θ). To do this, we compute differentials of the right and120

the left hand side of equation y(θ) = F (t, θ)121

∂y

∂θ
dθ =

∂F

∂t

∂t

∂θ
dθ +

∂F

∂θ
dθ. (9)

By the definition of F (t, θ) we have122

∂F
∂t = (1− F (t, θ))σr(t, θ), (10)

∂F
∂θ = (1− F (t, θ)) ∂∂θ

(∫ t

tn

σr(s, θ)ds

)
. (11)

We solve Eq. 9 for ∂t
∂θ and substitute the partial derivatives using Eqs. eqs. (10) and (11) to obtain the123

final expression for the gradient124

∂t

∂θ
=

∂y
∂θ − (1− F (t, θ)) ∂∂θ

∫ t
tn
σr(s, θ)ds

(1− F (t, θ))σr(t, θ)
. (12)

In our implementation, we use automatic differentiation to compute ∂y/∂θ and ∂
∂θ

∫ t
tn
σ(s)ds to125

combine the results as in Eq. 12.126

3.3 Computing Opacity in Practice127

To describe the sampling procedure, we assumed that we have an oracle for computing
∫ t
tn
σr(s)ds128

along with its gradient. The integral is required to compute opacity F (t). In this work, we consider an129

arbitrary volumetric density σ(s) and approximate it with a linear spline on a ray r = o+td to sample130

the points on the ray. Specifically, we take a grid t0 < · · · < tm and compute σr(t0), . . . , σr(tn)131

to construct the spline σ̂r(s) (Fig. 1). For the piecewise linear function σ̂r(x) we can compute the132

integral
∫ t
tn
σ̂r(s)ds in a closed form. Additionally, we can backpropagate the gradients through the133

approximation to compute the gradients of knots σr(t0), . . . , σr(tm). Thus, we obtain a differentiable134

rendering algorithm for an arbitrary density field σ. Besides that, some recent works parameterize

tn tf
t

y

Density Field

(t)
Spine (t)

tn tf
t

0.0

0.5

1.0
Opacity

Opacity F(t)
Approximation F(t)
F 1(y)

Figure 1: Illustration of opacity inversion. We approximate an arbitrary density field σ with a linear
spline(left). Then we use the spline to approximate opacity F̂ (t) and compute F̂−1(y) (right).

135
density fields thruogh voxel grids. For a voxel grid, when σr is a trilinear interpolation of the grid136

values, we can compute the integral in a closed form.137

4

4 Related Work138

Neural Radiance Fields & Efficient Sampling Even in the orginial work on neural radiance139

fields [8] the authors aimed to find an efficient sampling algorithm for volume rendering. Our140

importance sampling approach is reminscent of their hierarchical sampling solution. On the first141

stage, they use an auxilliary model on a sparse grid. Then they use the predicted densities to generate142

a dense grid with a improtance sampling-like algorithm. As opposed to NeRF, we compute density143

on a dense grid at the first stage and then use a sparse set of samples to evaluate radiance on the144

second stage. Our algorithm also allows training without auxilliary models.145

Several recent follow-up works also aimed to improve NeRF rendering time and overall efficiency.146

Most of these works consider trainable encoding θ and utilize some efficient data structure to make147

each evaluation of multi-layered perceptron fast or avoid evaluating MLP at all. One of the earliest148

work in this direction was NSVF [7]. The authors proposed to use octree to store point-based149

embeddings and then estimate query point embedding with a trilinear interpolation and positional150

encoding. During training, the octree gradually increased resolutionn in the regions of interest151

and pruned the empty areas. However, this method still requires the time-consuming training of152

MLPs. Voxel-based embedding structure was further studied in recent works and it was shown that153

positional encoding doesn’t affect model convergence - the network can be trained with fully trainable154

embedding without any encoding. And also, what is more important, such a structure allows for155

making neural network (MLP) shallower and consequently faster. Following this idea, DirectVoxGo156

[12] proposes to avoid MLP at all in density computation, while Instant Neural Graphic Primitives157

[10] uses it to solve hash collisions. When density field is a piecewise linear we can compute opacity158

in a closed-form.159

Reparameterization Trick & Implicit Differentiation Our solution is inspired by the literature on160

deep latent variable models [6, 11] and approximate inference. In this area, models often contain161

an internal sampling algorithm with parameters we need to optimize. The now-common approach162

for continuous random variables is the reparameterization trick, which we apply in our setup. The163

authors of [9] give a comprehensive overview of the area state.164

A closely related work in the context of deep variable models is [4]. They were first to apply implicit165

differentiation to estimate gradients for the reparameterization trick. While we use the implicit166

differentiation to compute the gradient of binary search output, the same approach applies to other167

iterative algorithms. The examples include ODE solves [3], fixed-point iterators [1] and optimization168

algorithms.169

5 Experiments170

5.1 Importance Sampling for a Single Ray171

t
0

1

y

Foggy Density Field
Opacity

25 50 75 100 125
Number of Samples

100

10 1

10 3

10 5

Estimate Variance

U[tn, tf]
with stratified sampling
pr(t) (ours)
with stratified sampling

Radiance

t
0

1

y

Glass and Wall Density Field
Opacity

25 50 75 100 125
Number of Samples

100

10 1

10 3

10 5

Estimate Variance

Radiance

t
0

1

y

Wall Density Field
Opacity

25 50 75 100 125
Number of Samples

100

10 1

10 3

10 5

Estimate Variance

Radiance

Figure 2: Color estimate variance compared for a varying number of samples. The upper plot
illustrates underlying opacity function on a ray; the lower graph depicts variance in logarithmic scale.
Our importance sampling approach (solid green) has significantly lower deviation than a stratified
baseline (solid red) typically used in volume rendering.

5

We begin with an evaluation of color estimates in a one-dimensional setting. Our experiment models172

light propagation on a single ray in three typical situations. The upper row of Fig. 2 defines a scalar173

radiance field (orange) c(t) and opacity functions (blue) F (t) for174

• "Foggy" density field. It models a semi-transparent volume. Similar fields occur after model175

initialization during density field training;176

• "Glass and wall" density field. Models light passing through nearly transparent volumes such177

as glass. The light is emitted at three points: the inner and outer surface of the transparent178

volume and an opaque volume near the end of the ray;179

• "Wall" density field. Light is emitted from a single point on a ray. Such fields are most180

common in applications.181

For the three fields we estimated the expected radiance C =
∫ tf
tn
c(t)dF (t). We considered two182

baseline methods (both in red in Fig. 2): the first was a Monte Carlo estimate of C obtained with183

U [tn, tf] samples, the second was a stochastic modification of Eq. 2 using a grid tn = t0 < · · · <184

tm = tf :185

Ĉ =
m∑
i=1

(ti − ti−1)c(τi)
dF

dt

∣∣∣∣
t=τi

, with independent τi ∼ U [ti − 1, ti]. (13)

In other terms, the second baseline uses stratified sampling to reduce the baseline Monte Carlo186

estimate variance. Eq 13 is an instance of a vanilla volume rendering algorithm one may encounter in187

practice. We compared the baseline against estimate from Eq. eq. (7) and its stratified counterpart188

from Eq. 8. All estimates are unbiased. Therefore, we only compared the estimates variances for a189

varying number of samples m.190

In all setups, our stratified estimate uniformly outperformed the baselines. For the most challenging191

"foggy" field, approximately m = 32 samples we required to match the baseline performance for192

m = 128. We matched the baseline with only a m = 4 samples for other fields. Importance sampling193

requires only a few points for degenerate distributions. In further experiments, we take m = 8, 32 to194

obtain a precise color estimate even when a model did not converge to a degenerate distribution.195

5.2 Scene Reconstruction with Reparameterized Volume Sampling196

Next, we apply our algorithm to 3D scene reconstruction based on a set of image projections. As a197

benchmark, we use the common Lego dataset. The primary goal of the experiment is to demonstrate198

computational advantages of our algorithm compared to a basic volume rendering baseline.199

As a starting point, we took the original NeRF’s MLP [8] with eight layers used to compute density200

and radiance. Then we modified the architecture to use only three first layers to compute the density201

field. When the density field is queried, we only compute the first three layers, while for the radiance202

we compute the whole network. Even though such modification may have put additional limitations203

on the density model, it illustrates the benefit of using fewer radiance queries. For density, we used204

softplus activation to ensure its positivity, while for the radiance we used sigmoid activation to ensure205

that the output will be a valid RGB image.206

In our experiment, we did not reproduce the expensive hierarchical sampling used in NeRF and207

trained a single model in all experiments. Our baseline calculated color using Eq. ??. We took a208

dense grid of m = 128 points along each ray and trained the model using Huber loss with the ground209

truth colors and the predict colors. We additionally perturbed the grid to r egularize the model. We210

used Adam [5] optimizer for training and decayed the learning rate during 100 epochs of training211

from 3e−4 to 3e−7 following MIP-NeRF’s scheduler [2] with image batch size equal 8 and each212

epoch consisting of 8000 batches. To form a training batch, for each image in an image batch we213

selected 375 pixels and cal culated loss over them.214

We evaluated the importance sampling-based rendering algorithm with the same architecture and215

hyperparameters as with the baseline model. We used the same algorithm to sample a dense grid of216

m = 128 points to query the density field and construct an approximating spline. Then we calculated217

color approximation with Eq. 8 with m′ = {8, 32} samples from the inverse cumulative density218

function approximated by the spline.219

6

Model PSNR (↑) SSIM (↑) LPIPS (alex) [14](↓)
Baseline 27.247 0.904 0.1138

Splines, #pts in estimation 8
Training Validation
8 pts 1 pts 23.377 0.822 0.1819
8 pts 2 pts 25.193 0.858 0.1449
8 pts 4 pts 26.210 0.883 0.1215
8 pts 8 pts 26.502 0.892 0.1243
8 pts 16 pts 26.570 0.894 0.1333
8 pts 32 pts 26.585 0.895 0.1369
32 pts 1 pts 22.519 0.805 0.2050
32 pts 2 pts 24.902 0.846 0.1523
32 pts 4 pts 26.523 0.881 0.1181
32 pts 8 pts 27.100 0.897 0.1083
32 pts 16 pts 27.252 0.902 0.1167
32 pts 32 pts 27.286 0.904 0.1223

Table 1: Ablation study and comparison with the baseline. Metrics are calculated over test views for
Lego scene [8]

First, we compared the rendering quality of our algorithm against the baseline. Tab. 1 contains the220

quantitative results and figs. 3 and 4 contain qualitative results. From the rendering quality viewpoint221

(1), with m′ = 32 samples, our model works on par with the baseline, while with m′ = 8 samples it222

has slightly worse performance. Though we did not aim to reproduce the state-of-the-art results, we223

speculate that a better density model could improve the results even further. In Fig. ??, we compared224

the rend ering performance of importance sampling for varying m′. Our algorithm produced sensible225

renders even for m′ = 1, however noise artifacts only disappeared for m′ = 32. Fig. 4 shows a226

stratified estimate renders (Eq. 8) along with a Monte Carlo renders (Eq. 7) for m′ = 32. With227

the same rendering complexity, the variance reduction obtained via stratified sampling purges the228

rendering artifacts that a naive Monte Carlo estimate has.229

Model Iter/sec (↑) Mem Usage (↓)
Baseline 3.90 8.5 Gb
Splines 1 pts 4.89 1.8 Gb
Splines 2 pts 5.06 1.8 Gb
Splines 4 pts 4.88 2.1 Gb
Splines 8 pts 4.53 2.2 Gb
Splines 16 pts 3.81 2.5 Gb
Splines 32 pts 2.98 2.8 Gb

Table 2: Speed & memory estimates. Iteration time is measured during training on GTX 1080 ti,
memory usage is measured during inference with batch size equal 1024

Besides the rendering quality, we estimated the training speed and memory footprint of our algorithm230

in Tab. 2. For m′ = 8 training iterations were on average ×1.2 faster, while for m′ = 32 training231

iterations took ×1.3 more time. The difference occurred due to a varying number of radiance queries.232

For a memory footprint viewpoint, our algorithm used ×3.0 and ×3.9 less memory for m′ = 32 and233

m = 8 correspondingly. With this, important sampling leaves room for further optimization as it234

allows to work with bigger batches with a moderate variability in rendering speed and quality.235

7

Figure 3: Rendering results with a different number of samples in the stratified estimate. From left to
right and from top to down: 1, 2, 8, 32 points estimates, Baseline and Target for reference.

Figure 4: Comparation of rendering results from different viewing angles with Monte-Carlo estimate
(top row) and stratified Monte-Carlo estimate (bottom row), both with 32 points along each ray

8

6 Conclusion236

We proposed an alternative to classic volume rendering algorithms used in 3D scene reconstruction.237

For a synthetic experiment and in full-scale reconstruction task we achieve better estimation results238

in terms of variance with a significantly smaller computation footprint. In particular, our algorithm239

allows for significant memory reductions and even increased inference time. At the same time, we240

demonstrate competitive rendering quality. We believe that our approach is a promising altenative to241

standard volume rendering techniques.242

6.1 Broader Impact243

We hypothesize that models like NeRFs may be used in online stores for a better user experience.244

Then people will choose more suitable products. We are not aware of any possibilities to use this in a245

negative way. Furthermore, we are sure that the efficient sampling we proposed for 3D rendering246

may reduce computation costs and therefore environmental damage.247

References248

[1] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural249

Information Processing Systems, 32, 2019.250

[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla,251

and Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance252

fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages253

5855–5864, 2021.254

[3] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary255

differential equations. Advances in neural information processing systems, 31, 2018.256

[4] Mikhail Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameterization gradients.257

Advances in Neural Information Processing Systems, 31, 2018.258

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint259

arXiv:1412.6980, 2014.260

[6] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint261

arXiv:1312.6114, 2013.262

[7] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse263

voxel fields. Advances in Neural Information Processing Systems, 33:15651–15663, 2020.264

[8] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi,265

and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European266

conference on computer vision, pages 405–421. Springer, 2020.267

[9] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient268

estimation in machine learning. J. Mach. Learn. Res., 21(132):1–62, 2020.269

[10] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics270

primitives with a multiresolution hash encoding. arXiv preprint arXiv:2201.05989, 2022.271

[11] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation272

and approximate inference in deep generative models. In International conference on machine273

learning, pages 1278–1286. PMLR, 2014.274

[12] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast275

convergence for radiance fields reconstruction. arXiv preprint arXiv:2111.11215, 2021.276

[13] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and277

Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks. arXiv preprint278

arXiv:2112.05131, 2021.279

[14] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreason-280

able effectiveness of deep features as a perceptual metric. In CVPR, 2018.281

9

Checklist282

1. For all authors...283

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s284

contributions and scope? [Yes] See Section 1.285

(b) Did you describe the limitations of your work? [Yes] See Section 1.286

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See287

Section 6.1288

(d) Have you read the ethics review guidelines and ensured that your paper conforms to289

them? [Yes]290

2. If you are including theoretical results...291

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We listed our292

assumptions in section293

(b) Did you include complete proofs of all theoretical results? [Yes] Proofs in section are294

complete and rely on basic math.295

3. If you ran experiments...296

(a) Did you include the code, data, and instructions needed to reproduce the main experi-297

mental results (either in the supplemental material or as a URL)? [No] But we plan to298

release code soon, within supplementary materials299

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they300

were chosen)? [Yes] See Section 5.2301

(c) Did you report error bars (e.g., with respect to the random seed after running experi-302

ments multiple times)? [No] We have reruned our experiments several times and so303

that results are pretty similar. We plan to continue experiments and made more run304

with other MLP architectures as well as voxel-based models.305

(d) Did you include the total amount of compute and the type of resources used (e.g., type306

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.2307

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...308

(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, we cite Pytorch,309

pytorch3d and NeRF’s creators as well as many other relevant. See Section 5.2310

(b) Did you mention the license of the assets? [No] We use opensource assets and cite/share311

links to them.312

(c) Did you include any new assets either in the supplemental material or as a URL? [No]313

But we plan to release code soon, within supplementary materials314

(d) Did you discuss whether and how consent was obtained from people whose data you’re315

using/curating? [N/A] Not applicable, data is artificially generated316

(e) Did you discuss whether the data you are using/curating contains personally identifiable317

information or offensive content? [N/A] Not applicable, data is artificially generated318

5. If you used crowdsourcing or conducted research with human subjects...319

(a) Did you include the full text of instructions given to participants and screenshots, if320

applicable? [N/A] Not applicable321

(b) Did you describe any potential participant risks, with links to Institutional Review322

Board (IRB) approvals, if applicable? [N/A] Not applicable323

(c) Did you include the estimated hourly wage paid to participants and the total amount324

spent on participant compensation? [N/A] Not applicable325

10

	Introduction
	Neural Radiance Fields
	Learning with Stochastic Color Estimates
	Estimate Reparameterization
	Implementation of Inverse Opacity for Volume Sampling
	Computing Opacity in Practice

	Related Work
	Experiments
	Importance Sampling for a Single Ray
	Scene Reconstruction with Reparameterized Volume Sampling

	Conclusion
	Broader Impact

