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ABSTRACT

Pre-training world models on large, action-free video datasets offers a promising
path toward generalist agents, but a fundamental flaw undermines this paradigm.
Prevailing methods train models to predict a single, deterministic future, an ob-
jective that is ill-posed for inherently stochastic environments where actions are
unknown. We contend that a world model should instead learn a structured, prob-
abilistic representation of the future where predictive uncertainty correctly scales
with the temporal horizon. To achieve this, we introduce a pre-training framework,
Horizon-cAlibrated Uncertainty World Model (HAUWM), built on a probabilis-
tic ensemble that predicts frames at randomly sampled future horizons. The core
of our method is a Horizon-Calibrated Uncertainty (HCU) loss, which explicitly
shapes the latent space by encouraging predictive variance to grow as the model
projects further into the future. This approach yields a latent dynamics model that
is not only predictive but also equipped with a reliable measure of temporal con-
fidence. When fine-tuned for downstream control, our pre-trained model signifi-
cantly outperforms state-of-the-art methods across a diverse suite of benchmarks,
including the DeepMind Control Suite, MetaWorld, and RoboDesk. These results
underscore the crucial role of structured uncertainty in informed decision-making.

1 INTRODUCTION

World models, which learn compressed representations of environmental dynamics, have become
a cornerstone of modern reinforcement learning (RL), boosting agent sample efficiency and per-
formance in complex domains (Ha & Schmidhuber, 2018; Hafner et al., 2020; Hu et al., 2023;
Assran et al., 2025; Agarwal et al., 2025). A promising frontier is to pre-train these models on large,
action-free video datasets (Seo et al., 2022), allowing them to build a foundational understanding
of dynamics from passive observation that can be rapidly fine-tuned for downstream control tasks.
This paradigm enables versatile agents to learn without extensive task-specific interaction.

However, a critical flaw undermines current approaches. Video-based pre-training frameworks typ-
ically optimize for a single objective: maximizing predictive accuracy under the assumption of a
deterministic future (Seo et al., 2022; Wu et al., 2023). This objective is fundamentally misaligned
with the nature of action-free video. Without action labels, any observed future is merely one of
many possible outcomes, as illustrated in Figure 1. A model trained on this data is erroneously
compelled to predict one “correct” future from a state that could unfold in myriad ways.

This deterministic bias creates a paradox. By forcing the model to predict a single future with
high precision, pre-training penalizes any representation of environmental stochasticity—the very
property that makes real-world dynamics so challenging. Consequently, models learn to suppress
ambiguity rather than represent it, fostering a false certainty and losing the capacity for diverse
forecasting. This limitation becomes a significant liability during fine-tuning, when the agent must
navigate the action-conditioned dynamics that its pre-trained model was never equipped to handle.

This suggests an opportunity to reframe the objective of action-free pre-training. We contend that
instead of prioritizing predictive accuracy alone, a more robust approach is to develop a structured
representation of temporal uncertainty. Specifically, world models should learn that predictive con-
fidence decays with the horizon, a principle often under-emphasized in current methods (Seo et al.,
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Figure 1: Prevailing pre-training methods erroneously compel a world model to predict a single
deterministic outcome from action-free video, ignoring the multiple futures that could unfold from
the same past. This deterministic bias creates a fundamental conflict with the fine-tuning stage,
where an agent must learn to use actions to actively select a desired future from these possibilities.

2022; Wu et al., 2023; Gao et al., 2025). To realize this, we introduce a new pre-training frame-
work named Horizon-cAlibrated Uncertainty World Model (HAUWM) that redefines the model’s
relationship with the future. Instead of single-step prediction, our method trains a probabilistic en-
semble to forecast states across variable, randomly sampled time horizons. The foundation of our
approach is the Horizon-Calibrated Uncertainty (HCU) loss, which explicitly enforces that the
ensemble’s predictive variance grows with the prediction horizon.

Our framework produces world models that not only predict future states but also quantify their own
confidence across different timescales, a capability vital for robust decision-making. When fine-
tuned on benchmarks from the DeepMind Control Suite (Tassa et al., 2018), MetaWorld (Yu et al.,
2020a), and RoboDesk (Kannan et al., 2021), our models significantly outperform state-of-the-art
methods. This demonstrates that explicitly modeling temporal uncertainty is not just beneficial—it
is essential for building truly generalizable agents. Our contributions are:

1. We identify and analyze the key limitation of deterministic prediction in action-free world
model pre-training: it suppresses environmental stochasticity rather than representing it.

2. We propose a novel framework using variable-horizon prediction and introduce the
Horizon-Calibrated Uncertainty (HCU) loss to learn the relationship between time and pre-
dictive uncertainty explicitly.

3. We provide comprehensive empirical evidence that our uncertainty-aware pre-training
leads to superior performance across diverse and challenging control benchmarks.

2 RELATED WORK

2.1 WORLD MODELS FOR REINFORCEMENT LEARNING

Model-based reinforcement learning (MBRL) seeks to improve the sample efficiency of agents by
learning a model of the environment’s dynamics (Janner et al., 2019; Yu et al., 2020b; 2021). This
learned model, often referred to as a “world model”, enables an agent to plan or learn behaviors
through simulated experience, thereby reducing the need for costly real-world interactions (Sutton,
1991; Kaiser et al., 2020). Early approaches often operated in low-dimensional state spaces; the ad-
vent of deep learning enabled the creation of world models that learn directly from high-dimensional
sensory inputs, such as images (Janner et al., 2019; Yu et al., 2020b; 2021; Hansen et al., 2024).

A seminal work by Ha & Schmidhuber (2018) demonstrated that a compact, recurrent neural net-
work could capture the essential dynamics of an environment, enabling an agent to solve tasks en-
tirely within its dreamed latent space. This concept was significantly advanced by the development
of latent dynamics models, most notably the Recurrent State-Space Model (RSSM) introduced in
PlaNet (Hafner et al., 2019) and its successors, the Dreamer family of agents (Hafner et al., 2020;
2021; 2025). These models learn a probabilistic representation of the environment state by combin-
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ing a deterministic recurrent pathway with a stochastic latent variable. This structure allows them to
model complex dynamics and uncertainty while remaining computationally tractable. The policy is
then trained efficiently on imagined trajectories generated by rolling out the learned latent dynam-
ics model. While highly effective, the success of these models hinges on their ability to accurately
capture the actual environmental dynamics from scratch, a process that can still require substantial
in-domain experience, especially in visually complex or diverse settings (Fu et al., 2021; Wan et al.,
2023). Our work leverages the power of these latent dynamics models but alleviates the burden of
learning from scratch by pre-training on external data.

2.2 PRE-TRAINING ON VIDEO DATASETS

The paradigm of pre-training on large, unlabeled datasets has revolutionized fields like natural lan-
guage processing (Devlin et al., 2019; Radford et al., 2018; Brown et al., 2020) and computer vi-
sion (Murahari et al., 2020; He et al., 2022), where models first learn general-purpose representations
that are later fine-tuned for specific tasks. Recently, this approach has gained significant traction in
reinforcement learning, with a focus on using vast, readily available video data as a source of prior
knowledge about the physical world (Seo et al., 2022; Wu et al., 2023; Zhang et al., 2024; Wu et al.,
2024; Gao et al., 2025). The core idea is that by observing a wide range of dynamic scenes, a model
can learn a foundational understanding of physics, object interactions, and temporal coherence be-
fore taking an action in a target environment.

Several works have explored this direction. Action-Free Pre-training from Videos (APV) (Seo et al.,
2022) demonstrated that a world model pre-trained on a collection of action-free robotic videos
could be effectively fine-tuned for new, unseen manipulation and locomotion tasks. To bridge the
gap between the action-free pre-training phase and the action-conditioned fine-tuning phase, APV
introduced a stacked architecture that preserves the pre-trained representations while integrating ac-
tion inputs. Other approaches, such as ContextWM (Wu et al., 2023) and iVideoGPT (Wu et al.,
2024), have focused on disentangling static and contextual information from dynamic information
in complex in-the-wild videos to improve knowledge transfer. Similarly, some research has explored
using contrastive learning objectives on video data to learn useful representations for downstream
control (Nair et al., 2022; Xiao et al., 2022). Despite their success, a common limitation unites many
of these generative pre-training methods: they typically rely on a deterministic, single-step predic-
tion objective (i.e., predicting frame t + 1 from frame t). As we argue in this paper, this objective
is fundamentally misaligned with the stochastic nature of action-free dynamics (Babaeizadeh et al.,
2018), where multiple plausible futures exist. This forces the model to average over all possibilities,
often resulting in blurry predictions and a failure to capture the multi-modal nature of the future. Our
work directly addresses this limitation by designing a framework that not only predicts the future
but also explicitly models and structures its uncertainty over time.

3 PRELIMINARIES

Recent work in model-based reinforcement learning has established a powerful two-phase paradigm:
unsupervised pre-training on large video datasets followed by task-specific fine-tuning (Seo et al.,
2022; Wu et al., 2023; 2024). This approach, exemplified by Action-Free Pre-training from Videos
(APV) (Seo et al., 2022), aims to learn generalizable world knowledge from passive, action-free
videos, which can then be leveraged to significantly improve the sample efficiency and performance
on downstream control tasks (Seo et al., 2022; Wu et al., 2023; 2024).

The first phase involves action-free pre-training. Here, a latent video prediction model is trained on
a diverse corpus of videos without corresponding action labels. This model is typically a variant of a
latent dynamics model, such as a Recurrent State-Space Model (RSSM) (Hafner et al., 2019), which
learns to predict future frames by operating in a compressed latent space. It consists of three core
components: (i) a representation model zt ∼ qϕ(zt|zt−1, ot) that encodes the current observation ot
into a latent state zt, (ii) a latent transition model ẑt ∼ pϕ(ẑt|zt−1) that predicts the next state without
access to the observation, and (iii) an image decoder ôt ∼ pϕ(ôt|zt) that reconstructs the observation
from the latent state (Hafner et al., 2019; 2020). The entire model is trained to reconstruct the video
sequence by optimizing the variational lower bound (ELBO).
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Figure 2: Our pre-training framework (left) uses a dynamics ensemble to predict states at variable
horizons, conditioned by a temporal embedding, learning a structured representation of future un-
certainty via our HCU loss. During fine-tuning (right), this pre-trained model is frozen to provide an
action-agnostic foundation, while a new, lightweight module is trained to learn task-specific, action-
conditioned dynamics.

The second phase is action-conditioned fine-tuning. To adapt the pre-trained model for a specific
RL task, agent actions must be incorporated. A key challenge is to integrate this new information
without overwriting the valuable priors learned during pre-training. APV addresses this by introduc-
ing a stacked latent prediction model, where a new action-conditional dynamics model is stacked on
top of the frozen or gently-tuned action-free model. This new model layer produces a task-specific
state st conditioned on both the agent’s action at−1 and the underlying action-free state zt. This
composite world model is then used to learn a policy, typically via an actor-critic algorithm that
trains on imagined trajectories generated by the model.

4 METHODOLOGY

Our methodology is structured around a two-phase framework as shown in fig. 2: (1) uncertainty-
aware pre-training on action-free video, followed by (2) efficient fine-tuning for downstream con-
trol tasks. In the pre-training phase, we introduce a variable-horizon prediction task, where an
ensemble of dynamics models learns to forecast future states over randomly sampled time inter-
vals. The cornerstone of this phase is our novel Horizon-Calibrated Uncertainty (HCU) loss, which
explicitly encourages the predictive variance of the ensemble to increase with the temporal hori-
zon. This procedure endows the model with a structured understanding of temporal uncertainty. For
fine-tuning, we freeze the pre-trained uncertainty-aware model and augment it with a lightweight,
action-conditioned dynamics module, enabling rapid adaptation to specific control objectives while
retaining the foundational world knowledge.

4.1 UNCERTAINTY-AWARE PRE-TRAINING ON ACTION-FREE VIDEO SETS

Conventional video-based world model pre-training often erroneously assumes deterministic futures
by optimizing single-step prediction accuracy (Seo et al., 2022; Wu et al., 2023). However, video
data inherently lacks explicit action labels and permits multiple plausible futures from identical
states. This deterministic bias suppresses environmental stochasticity and compromises the model’s
ability to predict diverse futures—a critical capability for robust decision-making. To resolve this
tension, our pre-training framework simultaneously optimizes three key objectives: (1) learning
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meaningful visual representations from unlabeled video data, (2) maintaining predictive fidelity to
observed trajectories, and (3) preserving the capacity to represent multiple plausible futures.

We achieve these objectives using an ensemble of M independent dynamics heads. Each head p
(i)
θ

models the stochastic transition to a future latent state st+k, conditioned on the current latent state
st and temporal horizon ∆tek (for the consistency of expression, the variable-horizon k and temporal
embedding ∆tek are detailed in section 4.2). Formally, each ensemble head outputs the Gaussian
parameters for the future latent state:

p
(i)
θ (st+k | st,∆tek) = N

(
µθi(st,∆tek), σ

2
θi(st,∆tek)I

)
(1)

To ensure effective extraction of observational information, we employ a widely used encoder-
decoder architecture of Dreamer style (Hafner et al., 2020; Seo et al., 2022). The encoder qϕ(st+k |
st,∆tek, ot+k) infers the latent state st+k from st, ∆tek, and future observation ot+k. Under POMDP
assumptions, the image decoder pϕ acts as an emission function, reconstructing observations from
latent states. The set of predicted means {µθi}Mi=1 represents a discrete distribution over plausible
futures. For image reconstruction, we compute the ensemble mean µ̄t+k = 1

M

∑M
i=1 µθi(st,∆tek)

as st+k and decode it as ôt+k ∼ pϕ(st+k).

We optimize model parameters by minimizing a combined objective. The primary predictive loss is
the negative variational lower bound:

Lpred = β DKL
[
qϕ(st+k|st,∆tek, ot+k)

∥∥ pθ(ŝt+k|st,∆tek)
]
− ln pϕ(ôt+k|st+k) (2)

where β weights the KL-divergence term. This loss forces the model to learn effective representa-
tions while maintaining predictive accuracy.

To explicitly preserve future-state diversity, we introduce a Horizon-Calibrated Uncertainty
(HCU) loss. This loss encourages the ensemble’s predictive dispersion to grow monotonically with
the temporal horizon ∆tek. To implement this, we adopt a widely-used approach based on the model
disagreement (Pathak et al., 2019; Sekar et al., 2020; Seyde et al., 2021):

LHCU = −k 1

M − 1

M∑
i=1

(µθi(st,∆tek)− µ̄t+k)
2 (3)

The HCU loss maximizes the model disagreement scaled by horizon length k. Minimizing LHCU
explicitly encodes the inductive bias that uncertainty should increase with prediction horizon.

To dynamically balance predictive accuracy against uncertainty representation, we formulate a dual
optimization objective:

Ltotal = Lpred + λLHCU (4)

Here, λ serves as an adaptive counterweight that maintains the essential tension between two com-
peting objectives: minimizing reconstruction error (Lpred) to retain predictive fidelity and maximiz-
ing uncertainty diversity (LHCU) to capture environmental stochasticity simultaneously. This self-
regulating equilibrium allows the model to maintain high reconstruction quality while progressively
capturing necessary stochasticity—avoiding degenerate solutions where either extreme uncertainty
or artificial determinism would degrade downstream performance.

4.2 VARIABLE-HORIZON PREDICTION AND RELATIVE TEMPORAL EMBEDDING

Conventional video-based world models predominantly focus on single-step next-frame prediction,
neglecting the inherent multi-scale temporal relationships in unlabeled video data (Hong et al.,
2022; Brooks et al., 2024). To make visual states exhibit predictable transitions across arbitrary
time intervals when equipped with explicit temporal conditioning, we implement variable-horizon
prediction during pre-training. For each training instance, we sample a random prediction horizon
k ∼ Uniform{1, 2, . . . ,Kmax} and construct observation pairs (ot, ot+k). To condition the dynamics
model on the relative temporal relationship, we generate sinusoidal positional embeddings (Vaswani
et al., 2017) for the entire video segment E ∈ RT×de , where T is the segment length. We then ex-
tract the specific temporal embedding ∆tek = E [k] ∈ Rde corresponding to horizon k. This relative
encoding strategy provides two critical advantages: it inherently normalizes temporal relationships

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

across videos of varying lengths by representing k as a proportion of T , and preserves event dynam-
ics by encoding the relative position k/T rather than absolute time steps.

The embedding ∆tek thereby captures whether k represents a short or long interval relative to the
video context, enabling the model to distinguish between rapid and gradual state transitions. This
temporal conditioning is input to each ensemble dynamics head, allowing unified modeling of tran-
sitions across diverse timescales. Implementation details are provided in appendix D.2.

4.3 FINE-TUNING FOR DOWNSTREAM CONTROL

Having established an uncertainty-aware world model through action-free video pre-training, we
adapt this foundation to task-specific control via a structured fine-tuning phase. This transition
preserves the rich dynamics and stochasticity learned during pre-training while integrating action-
conditioned transitions essential for decision-making. We achieve this by augmenting the pre-
trained model with a dedicated task-oriented pathway, following established pretraining-finetuning
paradigms (Seo et al., 2022; Wu et al., 2023) but critically extending them to maintain uncertainty
calibration. Specifically, we initialize the visual encoder and ensemble dynamics heads from pre-
training, freezing their parameters to retain general visual and temporal representations, while intro-
ducing a new action-conditioned dynamics stream trained from scratch.

Our fine-tuning architecture processes two parallel latent streams. The pre-trained
stream—unmodified from pre-training—receives only temporal embeddings and generates latent
states ŝt that capture action-agnostic environmental dynamics. To maintain compatibility with this
stream’s original design, we condition it on relative temporal embeddings ∆tek=1 (as defined in Sec-
tion 4.2), injecting a Gaussian noise (σ = 0.01) to enhance robustness against temporal discretiza-
tion artifacts. Concurrently, a new action-conditioned stream processes agent actions at−1 and the
pre-trained latent state ŝt to produce task-specific predictions s̃t via pψ(s̃t | st−1, at−1, ŝt). This
dual-stream design ensures that the model leverages pre-trained uncertainty awareness while learn-
ing real action effects. The composite latent state [ŝt; s̃t] then drives policy optimization, with an
auxiliary reward predictor Rθ trained on task-specific rewards to guide imagination-based planning.

Using this integrated world model, we execute standard model-based reinforcement learning: the
agent learns an actor-critic policy by generating imagined trajectories entirely within the calibrated
latent space. Crucially, the pre-trained ensemble dynamics provide uncertainty-aware state pre-
dictions during imagination, enabling the policy to account for environmental stochasticity while
exploiting task-specific action knowledge from the fine-tuned stream. The overall algorithm is in ap-
pendix C, and full architectural details appear in appendix D.1.

5 EXPERIMENTS

We conduct a series of experiments to validate our proposed framework and answer the following
key research questions:

1. Performance (RQ1): Does HAUWM lead to improved sample efficiency and final perfor-
mance on downstream RL tasks compared to state-of-the-art methods?

2. Ablation (RQ2): What are the relative contributions of the core components of HAUWM?
3. Analysis (RQ3): Does HAUWM successfully estimate the uncertainty in different training

stage?
4. Robustness (RQ4): Can our pre-training world model generalize to diverse downstream

learning paradigms?

5.1 EXPERIMENTAL SETUP

Benchmark Environments. We evaluate our method on a diverse suite of challenging, vision-
based continuous control benchmarks. These include several locomotion tasks from the DeepMind
Control Suite (DMC) (Tassa et al., 2018), a set of distinct robotic manipulation tasks from Meta-
World (Yu et al., 2020a), and complex, long-horizon tasks from RoboDesk (Kannan et al., 2021).
These environments test the agent’s ability to learn complex motor skills, generalize across tasks,
and operate from high-dimensional pixel inputs. All observations are rendered as 64×64×3 images.
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Figure 3: Performance comparison of HAUWM against state-of-the-art baselines on a suite of down-
stream manipulation and locomotion tasks. Solid curves represent the mean evaluation return across
four random seeds, and shaded regions denote the 95% confidence interval.

Pre-training Data. For the pre-training phase, we utilize a large, publicly available video dataset,
Something-Something-v2 (Goyal et al., 2017), for HAUWM and all baselines. The key charac-
teristic is that these videos are action-free and sourced from domains that may differ visually and
dynamically from the downstream fine-tuning tasks. More details are in appendix B.

Baselines. We compare our method, which we denote as HAUWM, against several strong base-
lines to provide a comprehensive evaluation:

• APV (Seo et al., 2022): A leading method that first establishes a foundational framework
for leveraging unlabeled videos through stacked latent prediction.

• ContextWM (Wu et al., 2023): A state of the art method that effectively handles complex
in-the-wild videos by disentangling contextual and dynamic information.

• PreLAR (Zhang et al., 2024): A method that learns implicit action representations directly
from observation pairs during pre-training and fine-tuning with real actions.

• iVideoGPT (Wu et al., 2024): A flexible framework that shows scalability through
transformer-based architectures trained on over one million manipulation trajectories.

5.2 DOWNSTREAM TASK PERFORMANCE (RQ1)

Table 1: Ablation study of HAUWM.

Method DMC MetaWorld RoboDesk

λ = 10.0 0.67±0.13 0.77±0.05 0.61 ± 0.09
λ = 10−1 0.69±0.06 0.80±0.10 0.60 ± 0.05
λ = 10−2 0.70±0.04 0.76±0.07 0.65 ± 0.07
w/o HCU 0.64±0.11 0.73±0.14 0.55 ± 0.08
HAUWM 0.74±0.03 0.85±0.05 0.71 ± 0.05

As illustrated in fig. 3, our method, HAUWM,
achieves state-of-the-art sample efficiency and final
performance on the majority of the tested bench-
marks. The advantage is particularly pronounced
in dynamically complex locomotion tasks such as
Walker Run, and Hopper Hop. In these environ-
ments, HAUWM consistently learns faster and con-
verges to a higher final return than all baselines. We
attribute this strong performance to our core contri-
bution: by pre-training a model that explicitly repre-
sents temporal uncertainty, the agent builds a more
robust and realistic internal model of the world. This foundation allows it to adapt more effectively
during fine-tuning, where it must control its actions amidst environmental stochasticity.

Conversely, on the Push Green task, HAUWM is outperformed by ContextWM. We hypothesize
this is because the task’s dynamics are more deterministic and narrowly goal-oriented, reducing the
relative benefit of sophisticated uncertainty modeling. In such settings, methods that learn a direct,
implicit action-to-outcome mapping may have an advantage. The somewhat larger performance
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Figure 5: Imagined future rollouts from three randomly selected dynamics heads during action-
free pre-training (a) and action-conditioned fine-tuning (b). The model produces diverse, high-
uncertainty futures when no action is given, which converge to a single, low-uncertainty outcome
when conditioned on a specific action, with uncertainty values noted below each frame.

variance of HAUWM on tasks like Dial Turn is an expected trade-off of our ensemble-based archi-
tecture, which, while enabling superior average performance, can naturally lead to greater diversity
across independent training seeds.

5.3 ABLATION STUDIES (RQ2)

We conduct a series of ablation studies to dissect the contributions of HAUWM’s key components
and validate our design choices, and record results in table 1 and fig. 4. Each value is normalized
against the random and expert returns and averaged across all corresponding tasks.
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Figure 4: Ablation results on
Kmax.

First, to verify the necessity of our core contribution, we trained
a variant without the Horizon-Calibrated Uncertainty loss (w/o
HCU). This led to significant performance degradation, particu-
larly on the DMC benchmark, confirming that explicitly modeling
structured temporal uncertainty is critical for learning robust dy-
namics representations. Next, we examined the sensitivity to the
initial weight of HCU loss, λ. The results indicate that performance
suffers with both overly large (λ = 10.0) and excessively small
(λ = 10−2) values. A large λ forces the model to prioritize uncer-
tainty at the expense of predictive fidelity, while a small λ provides
an insufficient training signal. Our final model employs a moderate
weight (λ = 1.0), striking an effective balance between these com-
peting objectives. The episodic returns of each task are in table 4.

Finally, we analyzed the impact of the maximum prediction hori-
zon, Kmax. As shown in fig. 4, a moderate value of Kmax = 5
yields the best performance. A small horizon like Kmax = 1 or 2
provides an insufficient range of temporal intervals to learn a meaningful uncertainty curve. Con-
versely, a large horizon like Kmax = 10 can make the long-range prediction task overly complex,
introducing noisy signals that may destabilize training.

5.4 ANALYSIS OF LEARNED UNCERTAINTY (RQ3)

To address RQ3, we perform a qualitative analysis of the model’s uncertainty estimation capabilities
at different stages. During the action-free pre-training phase (left in fig. 5), HAUWM successfully
preserves predictive diversity, demonstrating its capacity to represent environmental stochasticity.
Different heads of the dynamics ensemble forecast distinct, plausible futures from the same ini-
tial state; for instance, dynamics model 1 imagines the robotic arm lifting away from the surface,
whereas model 3 predicts it continuing to push rightward. The model correctly learns that uncer-
tainty increases with the prediction horizon, which aligns with our design of the HCU loss. As
shown by the quantitative values below the frames, the uncertainty associated with predictions fur-
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Table 2: Performance of HAUWM and baselines on diverse downstream learning paradigms, includ-
ing imitation and offline RL. All scores are normalized returns, reported as the mean and standard
deviation across 10 evaluation trajectories (details in appendix F).

Cheetah Run Hopper Hop Dial Turn Drawer Close Push Green

Imitation

APV 0.78 ± 0.11 0.83 ± 0.07 0.55 ± 0.13 0.89 ± 0.21 0.71 ± 0.05
ContextWM 0.91 ± 0.04 0.85 ± 0.05 0.69 ± 0.09 0.98 ± 0.03 0.69 ± 0.05
PreLAR 0.82 ± 0.07 0.81 ± 0.11 0.72 ± 0.06 0.93 ± 0.05 0.69 ± 0.05
HAUWM 0.94 ± 0.03 0.89 ± 0.05 0.77 ± 0.06 0.97 ± 0.02 0.63 ± 0.06

Offline RL

APV 0.56 ± 0.06 0.66 ± 0.12 0.74 ± 0.13 0.71 ± 0.09 0.63 ± 0.04
ContextWM 0.61 ± 0.06 0.69 ± 0.06 0.69 ± 0.07 0.70 ± 0.05 0.66 ± 0.03
PreLAR 0.71 ± 0.08 0.65 ± 0.05 0.69 ± 0.02 0.68 ± 0.03 0.69 ± 0.09
HAUWM 0.81 ± 0.13 0.71 ± 0.08 0.67 ± 0.12 0.74 ± 0.07 0.70 ± 0.04

ther in the future (e.g., frame predicted at t34 from t30) is consistently higher than for nearer frames
(e.g., frame predicted at t43 from t41), validating the efficacy of our HCU loss.

During fine-tuning (right in fig. 5), this learned agent actions appropriately constrain stochasticity.
When conditioned on a specific and same action sequence, the different dynamics models con-
verge on a single, consistent outcome. Concurrently, the associated uncertainty values drop dra-
matically compared to the action-free stage. This behavior demonstrates that HAUWM learns a
well-calibrated representation of temporal uncertainty, fulfilling our primary motivation.

5.5 PERFORMANCES UNDER DIVERSE DOWNSTREAM LEARNING PARADIGMS (RQ4)

A crucial test for a pre-trained foundation model is its versatility across different downstream learn-
ing paradigms, not just standard online RL. Therefore, we fine-tune our pre-trained model using
established algorithms for imitation learning (IL) and offline RL on several benchmark tasks, with
standard VMAIL (Rafailov et al., 2021b) and LOMPO (Rafailov et al., 2021a) algorithms, respec-
tively (extra experimental details are in appendix F). The results, presented in table 2, demonstrate
the broad applicability of our approach. In the imitation learning setting, HAUWM achieves state-
of-the-art performance, outperforming baselines in several tasks and performing competitively in
Drawer Close. This suggests that the structured uncertainty learned during pre-training provides a
robust foundation for mimicking experts, where understanding plausible future states is crucial.

Furthermore, HAUWM shows strong performance in the offline RL, where learning from a fixed
dataset without online interaction is required. It significantly surpasses the baselines on almost all
tasks. While APV performs better on the Dial Turn task, HAUWM’s overall significant perfor-
mance across both IL and offline RL highlights its versatility. Our uncertainty-aware pre-training
strategy equips the model with a greater representational capacity under diverse downstream learn-
ing paradigms. This adaptability validates that HAUWM is not just a pre-training solution for online
RL but a powerful and versatile foundation model for a wide array of decision-making tasks.

6 CONCLUSION

In this work, we address a critical limitation in pre-training world models from action-free video: the
reliance on deterministic prediction objectives, which are ill-posed for inherently stochastic environ-
ments. We posit that models must instead explicitly learn temporal uncertainty—the principle that
long-term futures are less predictable than near-term ones. Our proposed framework achieves this
through a variable-horizon prediction task and a novel Horizon-Calibrated Uncertainty (HCU) loss.
The HCU loss incentivizes an ensemble’s predictions to diverge systematically as the time horizon
increases. Across multiple benchmarks, our method achieves state-of-the-art sample efficiency and
final performance. This work demonstrates that making structured uncertainty a primary objective
of pre-training is crucial for building capable and general-purpose world models.

Future work will focus on developing more computationally-efficient probabilistic models, such as
diffusion models (Ho et al., 2020), and improving their scalability with large-scale Transformer
architectures (Vaswani et al., 2017; Brown et al., 2020). Scaling our approach to massive, in-the-
wild video datasets remains a promising direction for creating truly generalist agents.
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A THE USE OF LARGE LANGUAGE MODELS

In preparing this work, we utilized a Large Language Model (LLM) solely for limited, auxiliary pur-
poses. Specifically, the LLM was employed to assist with refining the English phrasing of certain
paragraphs, correcting grammatical errors, and, in the Related Work section, for generating ideas
and searching for potentially relevant literature. The model did not contribute to the core research
ideation, mathematical formulation, theoretical analysis, algorithm development, experimental de-
sign, or interpretation of results. All authors take full responsibility for the entire content of this
work, including any text generated with the aid of the LLM.

B ENVIROMENTS AND DATASETS

We evaluate our method across three representative benchmarks that collectively span diverse do-
mains of visual reinforcement learning. The DeepMind Control Suite (DMC) (Tassa et al., 2018)
provides a standardized testbed for locomotion tasks with physically realistic dynamics, featur-
ing continuous control challenges that require precise motor coordination and long-term planning.
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Figure 6: The observation example of each task in the environments: Meta-World (top left), DMC
(bottom left), and RoboDesk (right).

Specifically, we examine walker run, which tests bipedal locomotion stability; cheetah run, evalu-
ating high-speed quadrupedal movement; hopper hop, assessing single-legged balance and propul-
sion; and quadruped run, measuring complex multi-joint coordination for agile movement. Meta-
World (Yu et al., 2020a) offers a comprehensive benchmark of robotic manipulation tasks with vary-
ing geometric and physical properties, enabling rigorous evaluation of transfer learning capabilities
across structurally different but conceptually related challenges. Our evaluation includes dial turn,
requiring precise rotational control; lever pull, testing force application at mechanical advantage
points; door open, evaluating sequential manipulation of articulated objects; and drawer close, as-
sessing fine-grained spatial reasoning for object containment. Finally, RoboDesk (Kannan et al.,
2021) presents real-world inspired manipulation scenarios with increased visual complexity and
longer horizons, where push green challenges object relocation with color-based discrimination,
while open slide demands precise linear actuation of constrained mechanisms. We display the ob-
servation example of each task in fig. 6.

For pre-training, we leverage the Something-Something-V2 (SSv2) dataset (Goyal et al., 2017), a
large-scale collection of 220,000 short video clips capturing humans performing basic physical in-
teractions with everyday objects under natural lighting conditions. This dataset provides diverse
action demonstrations—including “Putting something on a surface”, “Moving something up”, and
“Covering something with something”—that, despite originating from non-robotic contexts, contain
fundamental physical dynamics transferable to robotic manipulation. By utilizing this in-the-wild
video resource, our approach demonstrates that meaningful world models can emerge from general
human-object interactions rather than domain-specific robotic data, significantly reducing the need
for task-specific pre-training collections while maintaining strong transfer performance to down-
stream robotic control tasks.

C PSEUDO CODES

We list the pseudo-codes of HAUWM in algorithm 1.

D MODEL DETAILS

D.1 MODEL ARCHITECTURE

Our model architecture builds upon the Recurrent State-Space Model (RSSM) framework (Hafner
et al., 2019; 2020) and is composed of several key modules: a shared image encoder, a corresponding
decoder, and dynamics models for the pre-training and fine-tuning phases.
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Algorithm 1 Uncertainty-Aware Pre-training and Fine-tuning

1: Input: Action-free video dataset Dvideo, task interaction budget
2: Initialize: World model parameters θ, ϕ; adaptive weight λ; task replay buffer Dtask ← ∅
3:
4: Phase 1: Uncertainty-aware Pre-training with Dual Optimization
5: for each pre-training step do
6: Sample video clip from Dvideo and a horizon k ∼ Uniform{1, . . . ,Kmax}.
7: Get temporal embedding ∆tek for horizon k.
8: Compute ensemble predictions {µθi(st,∆tek)}Mi=1 and model uncertainty.
9: Calculate total loss Ltotal = Lpred + λLHCU.

10: Update world model parameters θ, ϕ by minimizing Ltotal.
11: Update λ via dual optimization to balance Lpred and LHCU.
12: end for
13:
14: Phase 2: Fine-tuning for Downstream Control
15: Initialize action-conditioned dynamics pψ and policy πξ. Freeze θ, ϕ.
16: for each environment step up to budget do
17: // World Model Adaptation and Policy Learning
18: Sample trajectories from Dtask to update pψ and reward predictor Rθ.
19: Imagine trajectories using the policy πξ and the composite world model (pθ, pψ, Rθ).
20: Update policy πξ on imagined trajectories.
21: // Environment Interaction
22: Execute action at ∼ πξ(st), observe (ot+1, rt+1) and add to Dtask.
23: end for
24: return Trained policy πξ

Encoder and Decoder We use a ResNet-based architecture for both the visual encoder and de-
coder, enabling the processing of 64× 64× 3 image observations.

• Encoder: The encoder is a convolutional neural network (CNN) with 3 residual blocks.
It processes an input image ot to produce a low-dimensional embedding. This embedding
serves as the primary input for the dynamics model.

• Decoder: The decoder is a transposed convolutional neural network, also with 3 residual
blocks. It reconstructs the image observation ôt from a given latent state st.

Pre-training During the action-free pre-training phase, the world model learns environmental dy-
namics using a variable-horizon prediction task.

• Dynamics Model: We use an ensemble of M = 5 dynamics heads built upon an
EnsembleRSSM. The model features a deterministic state of size 200 and a stochastic
state of size 30. It takes the image embedding and a sinusoidal temporal embedding ∆tek
to predict a future latent state st+k.

Fine-tuning For downstream tasks, we freeze the pre-trained components and introduce a new
action-conditioned module.

• Dynamics Model: The fine-tuning architecture employs a dual-stream design.

– The frozen, pre-trained EnsembleRSSM generates an action-agnostic latent state ŝt
conditioned on the image embedding and a fixed temporal embedding (∆tek=1).

– A new, lightweight action-conditioned RSSM, trained from scratch, produces a task-
specific latent state s̃t from the agent’s action at−1 and the action-agnostic state ŝt.

• Actor-Critic and Reward Predictor: The policy and value functions are MLPs that take
the composite latent state [ŝt; s̃t] as input. The reward predictor is a separate MLP that
estimates the task reward from the task-specific state s̃t. Both consist of 2 hidden layers
with 400 units each and employ the ELU activation function.

15
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D.2 TRAINING DETAILS

We implement our framework in PyTorch and use the Adam optimizer for all model components.
All experiments are run on NVIDIA A6000 GPUs with 16-bit precision (FP16) to accelerate training
and take about 2000 GPU hours.

Pre-training Phase The goal of the pre-training phase is to learn a robust, uncertainty-aware world
model from action-free video data.

• Data and Batching: We pre-train our model on the Something-Something-v2 (SSv2)
dataset (Goyal et al., 2017). To implement our variable-horizon prediction strategy, we
process each video into training sequences. For each sample, we extract a sequence of
frames with length L, where the temporal gap k between any two consecutive frames is
randomly sampled from a uniform distribution, k ∼ Uniform{1, . . . ,Kmax}. We set the
maximum horizon to Kmax = 5. This creates batches where the model must predict across
varied and non-contiguous time steps.

• Temporal Embedding: To inform the model of the time gap, we generate a relative tem-
poral embedding ∆tek for each sampled gap k. This is achieved by creating a sinusoidal
positional encoding matrix for the full length of the source video; the embedding for a spe-
cific gap k is then looked up from this matrix. This embedding is supplied as input to the
dynamics model, analogous to an action.

• Optimization: The world model is trained for 600k gradient steps. We use the Adam
optimizer with a learning rate of 1 × 10−4 and a batch size of 32. The adaptive weight λ
for the HCU loss is also optimized with Adam, using a learning rate of 3× 10−4.

Fine-tuning Phase In the fine-tuning phase, the pre-trained model is adapted for downstream
control tasks.

• Initialization: We initialize the visual encoder and the action-agnostic dynamics model
with the weights from the pre-training phase and freeze them. The new action-conditioned
dynamics model and the actor-critic policy are trained from scratch.

• Training Loop: The agent first collects an initial dataset of 5,000 steps by executing a
random policy. It then enters the main training loop, alternating between environment
interaction to collect new data into a replay buffer and updating the model parameters. The
agent is trained for a total of 1 million steps in the DMC environment and 250 thousand
steps in the Meta-World and RoboDesk environments.

• Temporal Conditioning: To maintain compatibility with the pre-trained components, the
frozen action-agnostic dynamics stream is conditioned on a fixed temporal embedding for
k = 1, with minor Gaussian noise (σ = 0.01) added to enhance robustness.

• Optimization: The new world model components (action-conditioned stream and reward
predictor) are trained with the Adam optimizer using a learning rate of 3×10−4. The actor
and critic components are trained with a learning rate of 8× 10−5.

D.3 HYPER PARAMETERS

We summarize the key hyperparameters used for the pre-training and fine-tuning phases in table 3.

E DETAILED BASELINES

APV (Action-Free Pre-training from Videos) (Seo et al., 2022) introduces a two-phase paradigm
that first pre-trains a world model on unlabeled videos without action information, then adapts it
to downstream reinforcement learning tasks through fine-tuning. During pre-training, APV learns
a generative video prediction model by optimizing a standard single-step predictive objective on
action-free video sequences, effectively capturing visual dynamics without requiring action labels.
To bridge the gap between action-free pre-training and action-conditioned reinforcement learning,
APV employs a stacked architecture that preserves pre-trained representations while integrating
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Phase Hyperparameter Value

Pre-training

Batch Size 32
Sequence Length len(video)
Max Prediction Horizon (Kmax) 5
Total Gradient Steps 600,000

Ensemble Size (M ) 7
KL Loss Balance 0.8
Initial HCU Weight (λ) 1.0

World Model Learning Rate 1× 10−4

HCU λ Learning Rate 3× 10−4

Optimizer Adam

Fine-tuning

Batch Size 32
Sequence Length 50
Replay Buffer Capacity 1× 106

Initial Random Steps (Prefill) 10,000
Total Environment Steps
DMC 1× 106

Meta-World & RoboDesk 2.5× 105

Imagination Horizon 15
Discount Factor (γ) 0.99
GAE Parameter (λGAE) 0.95

World Model Learning Rate 3× 10−4

Actor-Critic Learning Rate 8× 10−5

Optimizer Adam

Table 3: Core hyperparameters for HAUWM pre-training and fine-tuning.

action inputs during fine-tuning. This approach significantly improves sample efficiency in down-
stream tasks by transferring knowledge from diverse video datasets to specific control problems,
establishing an important foundation for world model pre-training that subsequent methods have
built upon.

ContextWM (Contextualized World Models) (Wu et al., 2023) specifically addresses the challenges
of pre-training world models on complex, diverse in-the-wild videos that contain numerous contex-
tual factors irrelevant to task dynamics. Rather than treating all visual information equally, Con-
textWM explicitly disentangles static contextual elements (such as backgrounds and object appear-
ances) from dynamic state transitions through a specialized architecture. During pre-training, it
learns to separate these components, preserving only the dynamics-relevant information while fil-
tering out task-irrelevant variations. This contextual disentanglement enables more effective knowl-
edge transfer when fine-tuning on downstream tasks, particularly when pre-training data comes from
visually diverse sources that differ significantly from target environments. By focusing on the core
dynamics rather than superficial visual variations, ContextWM achieves superior performance on a
wide range of control tasks despite the domain gap between pre-training and target environments.

PreLAR (World Model Pre-training with Learnable Action Representation) (Zhang et al., 2024)
addresses the fundamental limitation of previous approaches by incorporating action-conditional
learning during the pre-training phase, even when explicit action labels are unavailable. Instead of
treating pre-training as a pure video prediction task, PreLAR extracts implicit action representations
by encoding observations from two consecutive time steps, effectively learning the causal transi-
tions between states from unlabeled videos. The method introduces an action-state consistency
loss to ensure these learned representations align with actual dynamics, creating a more seamless
transition between pre-training and fine-tuning phases. This innovative approach eliminates the ar-
chitectural discrepancy between pre-training (video prediction) and fine-tuning (action-conditional
world model), resulting in more effective knowledge transfer and significantly improved sample
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efficiency across various visual control tasks, particularly in robotic manipulation scenarios where
action understanding is critical.

iVideoGPT (Interactive VideoGPTs) (Wu et al., 2024) represents a significant advancement in
world model scalability by leveraging transformer architectures to handle long video sequences
while maintaining interactivity. Unlike RNN-based approaches that process sequences step-by-
step, iVideoGPT employs a token-based video prediction framework that processes entire video
sequences in parallel, enabling efficient training on massive datasets comprising over one million
trajectories from both robotic and human manipulation. The model uses a cross-entropy loss to pre-
dict subsequent video tokens autoregressively, creating a versatile foundation that can be adapted to
various downstream tasks through domain-specific fine-tuning. Crucially, iVideoGPT demonstrates
that world models can be both highly scalable (processing long sequences efficiently) and interac-
tive (supporting action conditioning for control), overcoming a fundamental limitation in previous
approaches that often sacrificed one capability for the other. This dual capability makes it partic-
ularly effective for complex manipulation tasks requiring both long-term planning and responsive
interaction.

F EXTRA EXPERIMENTAL DETAILS

F.1 DIVERSE DOWNSTREAM LEARNING PARADIGMS

To rigorously assess the versatility of our pre-trained world model, we fine-tune it on downstream
tasks using two distinct and challenging learning paradigms: model-based imitation learning (IL)
and offline reinforcement learning (RL). This tests the model’s ability to serve as a robust foundation
not only for online exploration but also for learning from expert demonstrations and static, pre-
collected datasets.

For the imitation learning paradigm, we adapt the Visual Model-based Adversarial Imitation Learn-
ing (VMAIL) framework (Rafailov et al., 2021b). Instead of training a variational dynamics model
from scratch as in the original work, we leverage the fine-tuned, action-conditioned world models
(APV (Seo et al., 2022), ContextWM (Wu et al., 2023), HAUWM) as the latent environment for
policy optimization. Expert demonstrations are first encoded into latent trajectories using the frozen
pre-trained encoder. A discriminator, Dψ , is then trained to distinguish these latent expert trajecto-
ries from those generated by the agent’s policy, πξ, during imagined rollouts within our world model.
The policy and discriminator are optimized via a minimax game where the discriminator’s output
provides a dense reward signal. This process minimizes the Jensen-Shannon divergence between
the expert and policy visitation distributions in the latent space, governed by the objective:

min
πξ

max
Dψ

EτE∼DE [− logDψ(s, a)]

+ Eτπ∼πξ [− log(1−Dψ(s, a))]
(5)

By training the policy entirely on imagined rollouts, this approach effectively capitalizes on the
pre-trained dynamics to achieve high sample efficiency in the target imitation task.

For the offline RL paradigm, we address the critical challenge of learning from a fixed dataset where
distributional shift can lead to catastrophic failures. We integrate our framework with the princi-
ples of Latent Offline Model-Based Policy Optimization (LOMPO) (Rafailov et al., 2021a). Our
uncertainty-aware pre-trained world model is uniquely suited for this paradigm. The ensemble dy-
namics, a core component of HAUWM, provides a natural and robust mechanism for quantifying
epistemic uncertainty through model disagreement. For APV (Seo et al., 2022) and ContextWM (Wu
et al., 2023), we also equipped them with ensemble dynamics models. To mitigate the risk of the pol-
icy exploiting out-of-distribution states where the model is inaccurate, we incorporate a pessimism
principle directly into the reward function for imagined trajectories. Specifically, the reward is pe-
nalized by the variance of the predictions across the dynamics ensemble heads, discouraging the
policy from venturing into uncertain regions of the state space. The uncertainty-penalized reward
r̃(st, at) is formulated as:

r̃(st, at) = r(st, at)− λu(st, at) (6)

Here, u(st, at) is the uncertainty measured as the variance of the ensemble’s predictive distributions,
and λ is a hyperparameter controlling the degree of conservatism. This ensures that the policy learns
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Table 4: The absolute episodic return values for the random agent, the expert, and all ablated versions
on all tasks averaged by four seeds.

Task Random Expert λ = 10.0 λ = 10−1 λ = 10−2 w/o HCU HAUWM
Dial Turn 687 ± 189 4232 ± 270 3417 ± 177 3523 ± 355 3381 ± 248 3258 ± 709 3225 ± 281
Lever Pull 239 ± 215 4913 ± 379 3838 ± 234 3978 ± 467 3791 ± 327 3725 ± 935 4022 ± 288
Door Open 277 ± 158 4637 ± 478 3634 ± 218 3765 ± 436 3591 ± 305 3609 ± 872 3811 ± 502

Drawer Close 221 ± 198 4895 ± 578 3820 ± 234 3960 ± 467 3773 ± 327 3707 ± 935 4736 ± 393
Cheetah Run 71 ± 38 821 ± 44 574 ± 98 589 ± 45 596 ± 30 544 ± 75 626 ± 23
Walker Run 120 ± 61 932 ± 54 664 ± 106 680 ± 49 688 ± 32 632 ± 81 721 ± 24
Hopper Hop 25 ± 12 478 ± 101 329 ± 59 338 ± 27 342 ± 18 310 ± 45 360 ± 14

Quadruped Run 35 ± 19 795 ± 96 544 ± 99 559 ± 46 567 ± 30 514 ± 76 597 ± 23
Push Green 12 ± 5 378 ± 77 235 ± 33 232 ± 18 250 ± 26 213 ± 33 272 ± 18
Open Slide 7 ± 3 177 ± 55 111 ± 15 109 ± 9 118 ± 12 101 ± 15 128 ± 9

effective behaviors while remaining confined to the regions of the state space well-supported by the
offline data. We choose the “medexp” dataset for each task as the offline dataset, a combination of
medium replay and expert demonstrations.

F.2 DETAILED EPISODIC RETURNS

To facilitate a clear and intuitive comparison, we report all performance metrics in the ablation
(RQ2) and extension (RQ4) experiments as normalized returns. These returns are normalized for
each task based on its corresponding random and expert performance. The absolute return values
for the random agent, the expert, and all ablated versions are detailed in table 4.

19


	Introduction
	Related Work
	World Models for Reinforcement Learning
	Pre-training on Video Datasets

	Preliminaries
	Methodology
	Uncertainty-aware Pre-training on Action-free Video Sets
	Variable-horizon Prediction and Relative Temporal Embedding
	Fine-tuning for Downstream Control

	Experiments
	Experimental Setup
	Downstream Task Performance (RQ1)
	Ablation Studies (RQ2)
	Analysis of Learned Uncertainty (RQ3)
	Performances under Diverse Downstream Learning Paradigms (RQ4)

	Conclusion
	The Use of Large Language Models
	Enviroments and Datasets
	Pseudo Codes
	Model Details
	Model Architecture
	Training Details
	Hyper Parameters

	Detailed Baselines
	Extra Experimental Details
	Diverse Downstream Learning Paradigms
	Detailed Episodic Returns


