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ABSTRACT

OpenAI’s Sora highlights the potential of video generation for developing world
models that adhere to fundamental physical laws. However, the ability of video
generation models to discover such laws purely from visual data without human
priors can be questioned. A world model learning the true law should give pre-
dictions robust to nuances and correctly extrapolate on unseen scenarios. In this
work, we evaluate across three key scenarios: in-distribution, out-of-distribution,
and combinatorial generalization. We developed a 2D simulation testbed for object
movement and collisions to generate videos deterministically governed by one or
more classical mechanics laws. This provides an unlimited supply of data for large-
scale experimentation and enables quantitative evaluation of whether the generated
videos adhere to physical laws. We trained diffusion-based video generation mod-
els to predict object movements based on initial frames. Our scaling experiments
show perfect generalization within the distribution, measurable scaling behavior for
combinatorial generalization, but failure in out-of-distribution scenarios. Further
experiments reveal two key insights about the generalization mechanisms of these
models: (1) the models fail to abstract general physical rules and instead exhibit
“case-based” generalization behavior, i.e., mimicking the closest training example;
(2) when generalizing to new cases, models are observed to prioritize different
factors when referencing training data: color > size > velocity > shape. Our study
suggests that scaling alone is insufficient for video generation models to uncover
fundamental physical laws, despite its role in Sora’s broader success.

1 INTRODUCTION

Foundation models (Bommasani et al., 2021) have emerged remarkable capabilities by scaling the
model and data to an unprecedented scale (Brown, 2020; Kaplan et al., 2020). As an example,
OpenAI’s Sora (Brooks et al., 2024) not only generates high-fidelity and surreal videos, but also has
sparked a new surge of interest in studying world models (Yang et al., 2023).

“Scaling video generation models is a promising path towards building general
purpose simulators of the physical world.” — Sora Report (Brooks et al., 2024)

World simulators are receiving broad attention from robotics (Yang et al., 2023) and autonomous
driving (Hu et al., 2023) for the ability to generate realistic data and accurate simulations. These
models are required to comprehend fundamental physical laws to produce data that extends beyond
the training corpus and to guarantee precise simulation. However, it remains an open question whether
video generation can discover such rules merely by observing videos, as Sora does. We aim to provide
a systematic study to understand the critical role and limitation of scaling in physical law discovery.

It is challenging to determine whether a video model has learned a law instead of merely memorizing
the data. Since the model’s internal knowledge is inaccessible, we can only infer the model’s
understanding by examining its predictions on unseen scenarios, i.e., its generalization ability. We
propose a categorization (Figure 1) for comprehensive evaluation based on the relationship between
training and testing data in this paper. In-distribution (ID) generalization assumes that training
and testing data are independent and identically distributed (i.i.d.). Out-of-distribution (OOD)
generalization, on the other hand, refers to the model’s performance on testing data that come
from a different distribution than the training data, particularly when latent parameters fall outside
the range seen during training. Human-level physical reasoning can easily extrapolate OOD and
predict physical processes without encountering the exact same scenario before. Additionally, we
also examine a special OOD capacity called combinatorial generalization, which assesses whether
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in-distribution combinatorialout-of-distribution 

Figure 1: Categorization of generalization patterns.# denotes training data. × denotes testing data.

a model can combine two distinct concepts in a novel way, a trait often considered essential for
foundation models in advancing toward artificial general intelligence (AGI) (Du & Kaelbling, 2024).

Moreover, real-world videos typically contain complex, non-rigid objects and motions, which present
significant challenges for quantitative evaluation and even human validation. The rich textures and
appearances in such videos can act as confounding factors, distracting the model from focusing on
the underlying physics. To mitigate these issues, we specifically focus on classical mechanics and
develop a 2D simulator with objects represented by simple geometric shapes. Each video depicts
the motion or collision of these 2D objects, governed entirely by one or two fundamental physical
laws, given the initial frames. This simulator allows us to generate large-scale datasets to support the
scaling of video generation models. Additionally, we have developed a tool to infer internal states
(e.g., the position and size) of each object in the generated video from pixels. This enables us to
establish quantitative evaluation metrics for physical law discovery.

We begin by investigating how scaling video generation models affects ID and OOD generalization.
We select three fundamental physical laws for simulation: uniform linear motion of a ball, perfectly
elastic collision between two balls, and parabolic motion of a ball. We scale the dataset from 30K
to 3 million examples and increase the video diffusion model’s parameters from 22M to 310M.
Consistently, we observe that the model achieves near-perfect ID generalization across all tasks.
However, the OOD generalization error does not improve with increased data and model size,
revealing the limitations of scaling video generation models in handling OOD data. For combinatorial
generalization, we design an environment that involves multiple objects undergoing free fall and
collisions to study their interactions. Every time, four objects from eight are selected to create a video.
In total, 70 combinations (C4

8 ) are possible. We use 60 of them for training and 10 for testing. We
train models by varying the number of training data from 600K to 6M. We manually evaluate the
generated test samples by labeling them as “abnormal” if the video looks physically implausible. The
results demonstrate that scaling the data substantially reduces the percentage of abnormal cases, from
67% to 10%. This suggests that scaling is critical for improving combinatorial generalization.

Our empirical analysis reveals two intriguing properties of the generalization mechanism in video
generation models. First, these models can be easily biased by "deceptive" examples from the training
set, leading them to generalize in a "case-based" manner under certain conditions. This phenomenon,
also observed in large language models (Hu et al., 2024), describes a model’s tendency to reference
similar training cases when solving new tasks. For instance, consider a video model trained on data of
a high-speed ball moving in uniform linear motion. If data augmentation is performed by horizontally
flipping the videos, thereby introducing reverse-direction motion, the model may generate a scenario
where a low-speed ball reverses direction after the initial frames, even though this behavior is not
physically correct. Second, we explore how different data attributes compete during the generalization
process. For example, if the training data for uniform motion consists of red balls and blue squares,
the model may transform a red square into a ball immediately after the conditioning frames. This
behavior suggests that the model prioritizes color over shape. Our pairwise analysis reveals the
following prioritization hierarchy: color > size > velocity > shape. This ranking could explain why
current video generation models often struggle with maintaining object consistency.

We hope these findings provide valuable insights for future research in video generation and the
development of world models.

2 DISCOVERING PHYSICS LAWS WITH VIDEO GENERATION

2.1 PROBLEM DEFINITION

In this section, we aim to establish the framework and define the concept of physical laws discovery
in the context of video generation. In classical physics, laws are articulated through mathematical
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equations that predict future state and dynamics from initial conditions. In the realm of video-based
observations, each frame represents a moment in time, and the prediction of physical laws corresponds
to generating future frames conditioned on past states.

Consider a physical procedure which involves several latent variables z = (z1, z2, . . . , zk) ∈ Z ⊆
Rk, each standing for a certain physical parameter such as velocity or position. By classical mechanics,
these latent variables will evolve by differential equation ż = F (z). In discrete version, if time
gap between two consecutive frames is δ, then we have zt+1 ≈ zt + δF (zt). Denote rendering
function as R(·) : Z 7→ R3×H×W which render the state of the world into an image of shape H ×W
with RGB channels. Consider a video V = {I1, I2, . . . , IL} consisting of L frames that follows
the classical mechanics dynamics. The physical coherence requires that there exists a series of
latent variables which satisfy following requirement: 1) zt+1 = zt + δF (zt), t = 1, . . . , L − 1.
2) It = R(zt), t = 1, . . . , L. We train a video generation model p parametried by θ, where
pθ(I1, I2, . . . , IL) characterizes its understanding of video frames. We can predict the subsequent
frames by sampling from pθ(I

′
c+1, . . . I

′
L | I1, . . . , Ic) based on initial frames’ condition. The

variable c usually takes the value of 1 or 3 depends on tasks. Therefore, physical-coherence loss
can be simply defined as − log pθ(Ic+1, . . . , IL | I1, . . . , Ic). It measures how likely the predicted
value will cater to the real world development. The model must understand the underlying physical
process to accurately forecast subsequent frames, which we can quantatively evaluate whether video
generation model correctly discover and simulate the physical laws.

2.2 VIDEO GENERATION MODEL

Following Sora (Brooks et al., 2024), we adopt the Variational Auto-Encoder (VAE) and DiT
architectures for video generation. The VAE compresses videos into latent representations both
spatially and temporally, while the DiT models the denoising process. This approach demonstrates
strong scalability and achieves promising results in generating high-quality videos.

VAE Model. We employ a (2+1)D-VAE to project videos into a latent space. Starting with the
SD1.5-VAE structure, we extend it into a spatiotemporal autoencoder using 3D blocks (Yu et al.,
2023b). All parameters of the (2+1)D-VAE are pretrained on high-quality image and video data to
maintain strong appearance modeling while enabling motion modeling. More details are provided
in Appendix A.3.1. In this paper, we fix the pretrained VAE encoder and use it as a video compressor.
Results in Appendix A.3.2 confirm the VAE’s ability to accurately encode and decode the physical
event videos. This allows us to focus solely on training the diffusion model to learn the physical laws.

Diffusion model. Given the compressed latent representation from the VAE model, we flatten it
into a sequence of spacetime patches, as transformer tokens. Notably, self-attention is applied to the
entire spatio-temporal sequence of video tokens, without distinguishing between spatial and temporal
dimensions. For positional embedding, a 3D variant of RoPE (Su et al., 2024) is adopted. As stated
in Sec.2.1, our video model is conditioned on the first c frames. The c-frame video is zero-padded to
the same length as the full physical video. We also introduce a binary mask “video” by setting the
value of the first c frames to 1, indicating those frames are the condition inputs. The noise, condition
and mask videos are concatenated along the channel dimension to form the final input to the model.

2.3 ON THE VERIFICATION OF LEARNED LAWS

Suppose we have a video generation model learned based on the above formulation. How do we
determine if the underlying physical law has been discovered? A well-established law describes
the behavior of the natural world, e.g., how objects move and interact. Therefore, a video model
incorporating true physical laws should be able to withstand experimental verification, producing
reasonable predictions under any circumstances, which demonstrates the model’s generalization
ability. To comprehensively evaluate this, we consider the following categorization of generalization
(see Figure 1) within the scope of this paper: 1) In-distribution (ID) generalization describes the
setting where training data and testing data are from the same distribution. In our case, both training
and testing data follow the same law and are located in the same domain. 2) A human who has
learned a physical law can easily extrapolate to scenarios that have never been observed before. This
ability is referred to as out-of-distribution (OOD) generalization. Although it sounds challenging,
this evaluation is necessary as it indicates whether a model can learn principled rules from data.
3) Moreover, there is a situation between ID and OOD, which has more practical value. We call
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this combinatorial generalization, representing scenarios where every "concept" or object has been
observed during training, but not their every combination. It examines a model’s ability to effectively
combine relevant information from past experiences in novel ways. A similar concept has been
explored in LLMs (Riveland & Pouget, 2024), which demonstrated that models can excel at linguistic
instructing tasks by recombining previously learned components, without task-specific experience.

3 IN-DISTRIBUTION AND OUT-OF-DISTRIBUTION GENERALIZATION

In this section, we study how in-distribution and out-of-distribution generalization is correlated with
model or data scaling. We focus on deterministic tasks governed by basic kinematic equations, as
they allow clear definitions of ID/OOD and straightforward quantitative error evaluation.

3.1 FUNDAMENTAL PHYSICAL SCENARIOS

Specifically, we consider three physical scenarios illustrated in Fig. 2. 1) Uniform Linear Motion: A
colored ball moves horizontally with a constant velocity. This is used to illustrate the law of Intertia.
2) Perfectly Elastic Collision: Two balls with different sizes and speeds move horizontally toward
each other and collide. The underlying physical law is the conservation of energy and momentum.
3) Parabolic Motion: A ball with a initial horizontal velocity falls due to gravity. This represents
Newton’s second law of motion. Each motion is determined by its initial frames.

uni motion collision parabola

Figure 2: Downsampled video visualization. The
arrow indicates the progression of time.

Training data generation. We use Box2D to simu-
late kinematic states for various scenarios and render
them as videos, with each scenario having 2-4 de-
grees of freedom (DoF), such as the balls’ initial
velocity and mass. An in-distribution range is de-
fined for each DoF. We generate training datasets of
30K, 300K, and 3M videos by uniformly sampling
a high-dimensional grid within these ranges. All
balls have the same density, so their mass is inferred
from their size. Gravitational acceleration is constant
in parabolic motion for consistency. Initial ball posi-
tions are randomly initialized within the visible range.
Further details are provided in Appendix A.4.

Table 1: Details of DiT model sizes.

Model Layers Hidden size Heads #Param

DiT-S 12 384 6 22.5M
DiT-B 12 768 12 89.5M
DiT-L 24 1024 16 310.0M
DiT-XL 28 1152 16 456.0M

Test data generation. We evaluate the trained model
using both ID and OOD data. For ID evaluation,
we sample from the same grid used during training,
ensuring that no specific data point is part of the train-
ing set. OOD evaluation videos are generated with
initial radius and velocity values outside the train-
ing range. There are various types of OOD setting,
e.g. velocity/radius-only or both OOD. Details are
provided in Appendix A.4.

Models. For each scenario, we train models of varying sizes from scratch, as shown in Table 1. This
ensures that the outcomes are not influenced by uncontrollable pretrain data. The first three frames
are provided as conditioning, which is sufficient to infer the velocity of the balls and predict the
subsequent frames. Diffusion model is trained for 100K steps using 32 Nvidia A100 GPUs with a
batch size of 256, which was sufficient for convergence, as a model trained for 300K steps achieves a
similar performance. We keep the pretrained VAE fixed. Each video consists of 32 frames with a
resolution of 128x128. We also experimented with a 256x256 resolution, which yielded a similar
generalization error but significantly slowed down the training process.

Evaluation metrics. We observed that the learned models are able to generate balls with consistent
shapes. To obtain the center positions of the i-th ball in the generated videos, xi

t, we use a heuristic
algorithm based on the mean of colored pixels, distinguishing the balls by color. To ensure the
correctness of xi

t, we exclude frames with part of a ball out of view, yielding valid frames T . For
collision scenarios, only the frames after the collision are considered. We then compute the velocity
of each ball, vit, at each moment by differentiating their positions. The error for a video is defined as:
e = 1

N |T |
∑N

i=1

∑
t∈T

∣∣vit − v̂it
∣∣ , where vit is the computed velocity at time t, v̂it is the ground-truth

velocity in the simulator, N is the number of balls, and |T | is the number of valid frames.
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Figure 3: The error in the velocity of balls between the ground truth state in the simulator and the values parsed
from the generated video by the diffusion model, given the first 3 frames.

Baseline. We calculate the error between the ground truth velocity and the parsed values from the
ground truth video, referred to as Groundtruth (GT). This represents the system error—caused by
parsing video into velocity—and defines the minimum error a model can achieve.

3.2 MAIN RESULT OF SCALING DATA AND MODEL

For in-distribution (ID) generalization in Figure 3, increasing the model size (DiT-S to DiT-L) or the
data amount (30K to 3M) consistently decreases the velocity error across all three tasks, strongly
evidencing the importance of scaling for ID generalization. Take the uniform motion task as an
example: the DiT-S model has a velocity error of 0.022 with 30K data, while DiT-L achieves an error
of 0.012 with 3M data, very close to the error of 0.010 obtained with ground truth video.

However, the results differ significantly for out-of-distribution (OOD) predictions. First, OOD
velocity errors are an order of magnitude higher than ID errors in all settings. For example, the OOD
error for the DiT-L model on uniform motion with 3M data is 0.427, while the ID error is just 0.012.
Second, scaling up the training data and model size has little or negative impact on reducing this
prediction error. The variation in velocity error is higly random as data or model size changes, e.g.,
the error for DiT-B on uniform motion is 0.433, 0.328 and 0.358, with data amounts of 30K, 300K
and 3M. We also trained DiT-XL on the uniform motion 3M dataset but observed no improvement in
OOD generalization. As a result, we did not pursue training of DiT-XL on other scenarios or datasets
constrained by resources. These findings suggest the inability of scaling to perform reasoning in
OOD scenarios. The sharp difference between ID and OOD settings further motivates us to study the
generalization mechanism of video generation in Section 5.2.

4 COMBINATORIAL GENERALIZATION

In Section 3, video generation models failed to reason in OOD scenarios. This is understand-
able—deriving precise physical laws from data is difficult for both humans and models. For example,
it took scientists centuries to formulate Newton’s three laws of motion. However, even a child can in-
tuitively predict outcomes in everyday situations by combining elements from past experiences. This
ability to combine known information to predict new scenarios is called combinatorial generalization.
In this section, we evaluate the combinatorial abilities of diffusion-based video models.

4.1 COMBINATORIAL PHYSICAL SCENARIOS

We selected the PHYRE simulator (Bakhtin et al., 2019) as our testbed—a 2D environment involves
multiple objects to free fall then collide with each other, forming complex physical interactions.
It features diverse object types, including balls, jars, bars, and walls, which can be either fixed or
dynamic. This enables complex interactions such as collisions, parabolic trajectories, rotations, and
friction to occur simultaneously within a video. Despite this complexity, the underlying physical laws
are deterministic, allowing the model to learn the laws and predict unseen scenarios.

Training Data. There are eight types of objects considered, including two dynamic gray balls, a
group of fixed black balls, a fixed black bar, a dynamic bar, a group of dynamic standing bars, a
dynamic jar, and a dynamic standing stick. Each task contains one red ball and four randomly chonsen
objects from the eight types, resulting in C4

8 = 70 unique templates. See Figure 4 for examples.
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Figure 4: Downsampled videos. The black
objects are fixed and others are dynamic.

Each template was initialized with random sizes and po-
sitions for four objects, generating 100K videos to cover
a range of possible scenarios. To explore the model’s com-
binatorial ability and scaling effects, we structured the
training data at three levels: a minimal set of 6 templates
(0.6M videos) that includes all types of two-object interac-
tions among the eight object types, and larger sets with 30
and 60 templates (3M/6M videos), with the 60-template
set nearly covering the entire template space. The mini-
mal training set places the highest demand on the model’s
ability for compositional generalization.

Test Data. For each training template, we reserve a small
set of videos to create the in-template evaluation set. Ad-
ditionally, 10 unused templates are reserved for the out-
of-template evaluation set to assess the model’s ability to
generalize to new combinations not seen during training.

Models. The first frame is used as the conditioning for video generation since the inital objects are
static. We found that smaller models like DiT-S struggled with complex videos, so we primarily used
DiT-B and DiT-XL. All models were trained for long 1000K gradient steps on 64 Nvidia A100 GPUs
with a batch size of 256, ensuring near convergence. To better capture the complexity of physical
events, we increased the resolution to 256x256 with 32 frames.

Evaluation Metrics. We use several metrics to assess the fidelity of generated videos compared to
the ground truth. Frechet Video Distance (FVD) (Unterthiner et al., 2018) calculates feature distances
between generated and real videos using features from Inflated-3D ConvNets (I3D) pretrained on
Kinetics-400 (Carreira & Zisserman, 2017). SSIM and PSNR (Wang et al., 2004) are pixel-level
metrics: SSIM evaluates brightness, contrast, and structural similarity, while PSNR measures the
ratio between peak signal and mean squared error, both averaged across frames. LPIPS (Zhang et al.,
2018) gauges perceptual similarity between image patches. We include human evaluations, reporting
the abnormal ratio of generated videos that violate physical laws assessed by humans.

4.2 MAIN RESULTS

Table 2: Combinatorial generalization results. The results are presented in the format of
{in-template result} / {out-of-template result}.

Model #Templates FVD (↓) SSIM (↑) PSNR (↑) LPIPS (↓) Abnormal (↓)

DiT-XL 6 18.2 / 22.1 0.973 / 0.943 32.8 / 25.5 0.028 / 0.082 3% / 67%
DiT-XL 30 19.5 / 19.7 0.973 / 0.950 32.7 / 27.1 0.028 / 0.065 3% / 18%
DiT-XL 60 17.6 / 18.7 0.972 / 0.951 32.4 / 27.3 0.030 / 0.062 2% / 10%

DiT-B 60 18.4 / 21.4 0.967 / 0.949 30.9 / 27.0 0.035 / 0.066 3% / 24%

It requires higher resolution, much more training iterations, and larger model sizes to perform well
on this task due to increased complexity. Consequently, we are unable to conduct a comprehensive
sweep of all data and model size combinations as in Section 3. Therefore, we start with the largest
model, DiT-XL, to study data scaling behavior for combinatorial generalization. As shown in Table 2,
when the number of templates increases from 6 to 60, all metrics improve on the out-of-template
testing sets. Notably, the abnormal rate for human evaluation significantly reduces from 67% to 10%.
Conversely, the model trained with 6 templates achieves the best SSIM, PSNR, and LPIPS scores
on the in-template testing set. This can be explained by the fact that each training example in the
6-template set is exposed ten times more frequently than those in the 60-template set, allowing it to
better fit the in-template tasks associated with template 6. Furthermore, we conducted an additional
experiment using a DiT-B model on the full 60 templates to verify the importance of model scaling.
As expected, the abnormal rate increases to 24%. These results suggest that both model capacity and
coverage of the combination space are crucial for combinatorial generalization. This insight implies
that scaling laws for video generation should focus on increasing combination diversity, rather than
merely scaling up data volume. The video generation visualizations of our models can be found in
Figure 19 and Figure 20.
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5 DEEPER ANALYSIS

In this section, we aim to investigate the generalization mechanism of a video generation model,
through systemic experimental designs. Based on the findings, we try to identify certain patterns in
combinatorial generalization that might be helpful in harnessing or prompting the models.

5.1 UNDERSTANDING GENERALIZATION FROM INTERPOLATION AND EXTRAPOLATION

The generalization ability of a model roots from its interpolation and extrapolation capability (Xu
et al., 2020; Balestriero et al., 2021). In this section, we design experiments to explore the limits
of these abilities for a video generation model. We design datasets which delibrately leave out
some latent values, i.e. velocity. After training, we test model’s prediction on both seen and unseen
scenarios. We mainly focus on uniform motion and collision processes.

Uniform Motion. We create a series of training sets, where a certain range of velocity is absent.
Each set contains 200K videos to ensure fairness. As shown in Figure 5 (1)-(2), with a large gap
in the training set, the model tends to generate videos where the velocity is either high or low to
resemble training data when initial frames show middle-range velocities. We find video generation
model’s OOD accuracy is closely related to the size of gap, as seen in Figure 5 (3), when the gap is
reduced, the model correctly interpolates for most of OOD data. Moreover, as shown in Figure 5 (4)
and (5), when a subset of the missing range is reintroduced (without increasing data amount), the
model exhibits stronger interpolation abilities.

Collision involves multiple variables, which is more challenging since the model has to learn a
two-dimensional non-linear function. Specifically, we exclude one or more square regions from
the training set of initial velocities for two balls and then assess the velocity prediction error after
the collision. For each velocity point, we sample a grid of radius parameters to generate multiple
video cases and compute the average error. As shown in Figure 6 (1)-(2), an interesting phenomenon
happens. The video generation model’s extrapolation error demonstate an intringuing discrepancy
among OOD points: For the OOD velocity combinations that lie within the convex hull of the training
set, i.e., the internal red squares in the yellow region, the model generalizes well. However, the model
experiences large errors when the latent values lies in exterior space of training set’s convex hull.

Velocity of conditioned frames v.s. Velocity of generated video 

Figure 5: Uniform motion video generation. Models are trained on datasets with a missing middle velocity
range. For example, in the first figure, training velocities cover [1.0, 1.25] and [3.75, 4.0], excluding the middle
range. When evaluated with velocity condition from the missing range [1.25, 3.75], the generated velocity tends
to shift away from the initial condition, breaking the Law of Inertia.
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Figure 6: Collision video generation. Models are trained on the yellow region and evaluated on data points in
both the yellow (ID) and red (OOD) regions. When the OOD range is surrounded by the training region, the
OOD generalization error remains relatively small and comparable to the ID error.
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5.2 MEMORIZATION OR GENERALIZATION

Previous work (Hu et al., 2024) indicates that LLMs rely on memorization, reproducing training
cases during inference instead of learning the underlying rules for tasks like addition arithmetic. In
this section, we investigate whether video generation models display similar behavior, memorizing
data rather than understanding physical laws, which limits their generalization to unseen data.
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Figure 7: The example of uniform motion illus-
trating memorization.

We train our model on uniform motion videos with
velocities v ∈ [2.5, 4.0], using the first three frames
as input conditions. Two training sets are used: Set-1
only contains balls moving from left to right, while
Set-2 includes movement in both direction, by using
horizontal flipping at training time. At evaluation, we
focus on low-speed balls (v ∈ [1.0, 2.5]), which were
not present in the training data. As shown in Figure 7,
the Set-1 model generates videos with only positive
velocities, biased toward the high-speed range. In con-
trast, the Set-2 model occasionally produces videos
with negative velocities, as highlighted by the green
circle. For instance, a low-speed ball moving from
left to right may suddenly reverse direction after its
condition frames. This could occur since the model
identifies reversed training videos as the closest match
for low-speed balls. This distinction between the two
models suggests that the video generation model is in-
fluenced by “deceptive” examples in the training data.
Rather than abstracting universal rules, the model ap-
pears to rely on memorization, and case-based imitation for OOD generalization.

5.3 HOW DOES DIFFUSION MODEL RETRIEVE DATA?

We aim to investigate the ways a video model performs case matching—identifying close training
examples for a given test input. We use uniform linear motion for this study. Specifically, we compare
four attributes, i.e., color, shape, size, and velocity, in a pairwise manner. Through comparisons, we
seek to determine the model’s preference for relying on specific attributes in case matching.

Every attribute has two disjoint sets of values. For each pair of attributes, there are four types of
combinations. We use two combinations for training and the remaining two for testing. For example,
we compare color and shape in Figure 8 (1). Videos of red balls and blue squares with the same
range of size and velocity are used for training. At test time, a blue ball changes shape into a square
immediately after the condition frames, while a red square transforms into a ball. We observed
no exceptions on 1,400 test cases, showing that the model prioritizes color over shape for case
matching. A similar trend is observed in the comparisons of size vs. shape and velocity vs. shape, as
illustrated in Figure 8 (2)-(3), indicating that shape is the least prioritized attribute. This suggests that
diffusion-based video models inherently favor other attributes over shape, which may explain why
current open-set video generation models usually struggle with shape preservation.

The other three pairs are presented in Figure 9. For velocity vs. size, the combinatorial generalization
performance is surprisingly good. The model effectively maintains the initial size and velocity for
most test cases beyond the training distribution. However, a slight preference for size over velocity is
noted, particularly with extreme radius and velocity values (top left and bottom right in Figure 9 (1)).
In Figure 9 (2), color can be combined with size most of the time. Conversely, for color vs. velocity
in Figure 9 (3), high-speed blue balls and low-speed red balls are used for training. At test time,
low-speed blue balls appear much faster than their conditioned velocity. No ball in the testing set
changes its color, indicating that color is prioritized over velocity. Based on the above analysis, we
conclude that the prioritization order is as follows: color > size > velocity > shape.

5.4 HOW DOES COMPLEX COMBINATORIAL GENERALIZATION HAPPEN?

In Section 4, we show that scaling the data coverage can boost combinatorial generalization. But
what kind of data can actually enable conceptually-combinable video generation? In this section, we
idenfify three foundamental combinatorial patterns through experimental design.
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Figure 8: Uniform motion. (1) Color v.s. shape, (2) Size v.s. shape, (3) Velocity v.s. shape. The arrow ⇒
signifies that the generated videos shift from their specified conditions to resemble similar training cases. For
example, in the first figure, the model is trained on videos of blue balls and red squares. When conditioned with
a blue ball, as shown in the bottom, it transforms into a blue square, i.e., mimicking the training case by color.
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Law of Inertia red ball blue ball
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Figure 9: Uniform motion. (1) Velocity v.s. size: The arrow → indicates the direction of generated videos
shifting from their initial conditions. (2) Color v.s. size: Models are trained with small red balls and large blue
balls, and evaluated on reversed color-size pair conditions. All generated videos retain the initial color but show
slight size shifts from the original. (3) Color v.s. velocity: Models are trained with low-speed red balls and
high-speed blue balls, and evaluated on reversed color-velocity pair conditions. All generated videos retain the
initial color but show large velocity shifts from the original.

Attribute composition. As shown in Figure 9 (1)-(2), certain attribute pairs—such as velocity and
size, or color and size—exhibit some degree of combinatorial generalization.

Spatial composition. As given by Figure 11 (left side) in the appendix, the training data contains two
distinct types of physical events. One type involves a blue square moving horizontally with a constant
velocity while a red ball remains stationary. In contrast, the other type depicts a red ball moving
toward and then bouncing off a wall while the blue square remains stationary. At test time, when the
red ball and the blue square are moving simultaneously, the learned model is able to generate the
scenario where the red ball bounces off the wall while the blue square continues its uniform motion.

Temporal combination. As illustrated on the right side of Figure 11, when the training data includes
distinct physical events—half featuring two balls colliding without bouncing and the other half
showing a red ball bouncing off a wall—the model learns to combine these events temporally.
Consequently, during evaluation, when the balls collide near the wall, the model accurately predicts
the collision and then determines that the blue ball will rebound off the wall with unchanged velocity.

With these attribute, spatial, and temporal combinatorial patterns, the video generation model can
identify basic physical events in the training set and combine them across attributes, time, and space
to generate videos featuring complex chains of physical events.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.5 IS VIDEO SUFFICIENT FOR COMPLETE PHYSICS MODELING?

For a video generation model to function as a world model, the visual representation must provide
sufficient information for complete physics modeling. In our experiments, we found that visual ambi-
guity leads to significant inaccuracies in fine-grained physics modeling. For example, in Figure 10, it
is difficult to determine if a ball can pass through a gap based on vision alone when the size difference
is at the pixel level, leading to visually plausible but incorrect results. Similarly, visual ambiguity in a
ball’s horizontal position relative to a block can result in different outcomes. These findings suggest
that relying solely on visual representations, may be inadequate for accurate physics modeling.

Figure 10: First row: Ground truth; second row: generated video. Ambiguities in visual representation result in
inaccuracies in fine-grained physics modeling.

6 RELATED WORKS

Video generation. Open-set video generation is mostly based on diffusion models (Rombach et al.,
2022; Ho et al., 2022b;a; He et al., 2024) or auto-regressive models (Yu et al., 2023a;b; Kondratyuk
et al., 2023). These models often require a pretrained image or video VAE (Kingma, 2013; Van
Den Oord et al., 2017) for data compression to improve computational efficiency. Some approaches
leverage pretrained Text-to-Image (T2I) models for zero-shot (Khachatryan et al., 2023; Zhang
et al., 2023b) or few-shot (Wu et al., 2023) video generation. Additionally, Image-to-Video(I2V)
generation (Zeng et al., 2024; Girdhar et al., 2023; Zhang et al., 2023a) shows that video quality
improves substantially when conditioned on an image. The Diffusion Transformer (DiT) (Peebles
& Xie, 2023) demonstrates better scaling behavior than U-Net (Ronneberger et al., 2015) for T2I
generation. Sora (Brooks et al., 2024) leverages the DiT architecture to directly operate on spacetime
patches of video and image latent codes. Our model follows Sora’s architecture and conceptually
aligns with I2V generation, relying on image(s) for conditioning instead of text prompts.

World model. World models (Ha & Schmidhuber, 2018) aim to learn models that can accurately
predict how an environment evolves after some actions are taken. Previously, they often operated in
an abstracted space and were used in reinforcement learning (Sutton, 2018) to enable planning (Silver
et al., 2016; Schrittwieser et al., 2020) or facilitate policy learning through virtual interactions (Hafner
et al., 2019; 2020). With the advancement of generative models, world models can now directly
work with visual observations by employing a general framework of conditioned video generation.
For example, in autonomous driving (Hu et al., 2023; Jia et al., 2023; Gao et al., 2024; Zheng et al.,
2024), the condition is the driver’s operations, while in robot world models (Yang et al., 2023; Black
et al., 2023; 1xw, 2024), the condition is often the control signals. Genie (Bruce et al., 2024) instead
recovers the conditions from video games in an unsupervised learning manner. In our physical law
discovery setting, it does not require a per-step action/condition since the physical event is determined
by the underlying laws once an initial state is specified. See more related works in Appendix A.1.

7 CONCLUSION

Video generation is believed as a promising way towards scalable world models. However, its
capability to learn physical laws from visual observations has not yet been verified. We conducted the
first systematic study in this area by examining its generalization performance across three typical
scenarios: in-distribution, out-of-distribution (OOD), and combinatorial generalization. The findings
indicate that scaling alone cannot address the OOD problem, although it does enhance performance
in other scenarios. Our in-depth analysis suggests that video model generalization relies more on
referencing similar training examples rather than learning universal rules. We observed a prioritization
order of color > size > velocity > shape in this "case-based" behavior. In conclusion, our study
suggests that naively scaling is insufficient for video generation models to discover fundamental
physical laws.
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Figure 11: Spatial and temporal combinatorial generalization. The two subsets of the training set contain disjoint
physical events. However, the trained model can combine these two types of events across spatial and temporal
dimensions.

A APPENDIX

A.1 MORE RELATED WORKS

Physical reasoning. It refers to the ability to understand and predict the way objects will interact
under certain conditions according to physical laws. Melnik et al. (2023) categorize physical reasoning
tasks into passive and interactive tasks. Passive tasks often require the AI to predict certain properties
of objects, e.g., materials (Bell et al., 2015; Bouman et al., 2013), physical parameters (Wu et al.,
2016), stability of a physical system (Groth et al., 2018), or involve question-answering for the
agent to recognize conceptual differences (Weitnauer et al., 2023; Yi et al., 2019), or describe a
physical scenario (Ates et al., 2020). For interactive tasks, AI is required to control some objects in
the environment to complete certain tasks based on physical commonsense, e.g., solving classical
mechanics puzzles (Bakhtin et al., 2019), flying a bird to reach a target position (Xue et al., 2023),
and using a tool (Allen et al., 2020). Two works closely related to ours are Girdhar et al. (2020) and
de Silva et al. (2020). Girdhar et al. (2020) introduce a forward prediction model to aid physical
reasoning but do not address what is learned in the prediction model. de Silva et al. (2020) attempt
to discover universal physical laws from data with abstracted internal states and human expertise
introduced in the dynamic model design. In contrast, we focus on recovering physical laws from raw
observation without any human priors, akin to a newborn baby.

A.2 DIFFUSION PRELIMINARIES

Let p(x) be the real data distribution. Diffusion models (Ho et al., 2020; Song et al., 2020) learn
the data distribution by denoising samples from a noise distribution step-by-step. In this paper, we
use the Gaussian diffusion models, where the video V is progressively corrupted by gaussian noise
ϵ ∼ N (0, I) during the forward process, denoted by

Vt = αtV + βtϵ, (1)

where αt, βt are the time-dependent noise scheduler. We use the original DDPM formulation (Ho
et al., 2020), where αt =

√
γt, βt =

√
1− γt, γt is a monotonically decreasing scheduler from 1 to

0. The diffusion models are trained to reverse the forward corruptions, denoted by

EV∼p(x),t∼U(0,I),ϵ∼N (0,I)

[
∥y − pθ(Vt, c, t)∥2

]
, (2)
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where the target y can be the corrupted noise ϵ, the original video V , or the velocity between data and
noise. Following Salimans & Ho (2022), we use the velocity prediction to train the video diffusion
models, denoted by

y =
√
1− γtϵ−

√
γtV. (3)

Also, to eliminate the training and inference gap and ensure a zero signal-to-noise ratio at the final
timestep, following Lin et al. (2024), we set γt to 1 when t = 1.

A.3 VAE

A.3.1 VAE ARCHITECTURE AND PRETRAIN

We commence with the structure of the SD1.5-VAE, retaining the majority of the original 2D
convolution, group normalization, and attention mechanisms on the spatial dimensions. To inflate
this structure into a spatial-temporal auto-encoder, we convert the final few 2D downsample blocks of
the encoder and the initial few 2D upsample blocks of the decoder into 3D ones, and employ multiple
extra 1D layers to enhance temporal modeling. For all the downsample blocks where temporal
downsampling is required, we replace all the original 2D downsample layers with re-initialized causal
3D downsample layers by adding causal paddings to the head of the frame sequence (Yu et al., 2023b)
and introduce an additional causal 1D convolution layer after the original ResNetBlock. As for the
decoder part, all the 2D Nearest-Interpolation operations are substituted by a 2D convolution layer
and a channel-to-space transformation, which are specifically initialized to behave precisely the same
as Nearest-Interpolation operations before the first training step. For the discriminator part, we inherit
the structure of the original 2D PatchGAN (Isola et al., 2016) discriminator used by SD1.5-VAE, and
design a 3D PatchGAN discriminator based on the 2D version. Different from the generator module,
we train the group of discriminators from scratch for the consideration of stability. Subsequently, all
parameters of the (2+1)D-VAE are jointly trained with high-quality image and video data to preserve
the capability of appearance modeling and to enable motion modeling. For the image dataset, we
filter data samples from LAION-Aesthetics (Beaumont & Schuhmann, 2022), COYO (Byeon et al.,
2022) and DataComp (Gadre et al., 2023) with high aesthetics and clarity to form a high-quality
subset. As for the video dataset, we collect a high-quality subset from Vimeo-90K (Xue et al., 2017),
Panda-70M (Wang et al., 2020) and HDVG Wang et al. (2023). In the training process, we train the
entire structure for 1M steps and only the random resized crop and random horizontal flip are applied
in the data augmentation process.

A.3.2 VAE RECONSTRUCTION

In this paper, we fix the pretrained VAE encoder and use it as a video compressor. To verify the VAE’s
ability to accurately encode and decode the physical event videos, we evaluate its reconstruction
performance. Specifically, we use the VAE to encode and decode (i.e., reconstruct) the ground truth
videos and calculate the reconstruction error, erecon. We then compare this error to the ground truth
error, egt, as shown in Table 3. The results show that erecon is very close to egt, and both are an order
of magnitude lower than the OOD error, as illustrated in Figure 3. It confirms the pretrained VAE’s
ability to accurately encode and decode the physical event videos used in this paper.

Table 3: Comparison of errors for ground truth videos and VAE reconstruction videos.

Scenario Ground Truth Error VAE Reconstruction Error

Uniform Motion 0.0099 0.0105
Collision 0.0117 0.0131
Parabola 0.0210 0.0212

A.4 FUNDAMENTAL PHYSICAL SCENARIOS DATA

For the Box2D simulator, we initialize the world as a 10× 10 grid, with a timestep of 0.1 seconds,
resulting in a total time span of 3.2 seconds (32 frames). For all scenarios, we set the radius
r ∈ [0.7, 1.5] and velocity v ∈ [1, 4] as in-distribution (in-dist) ranges. Out-of-distribution (OOD)
ranges are defined as r ∈ [0.3, 0.6] ∪ [1.5, 2.0] and v ∈ [0, 0.8] ∪ [4.5, 6.0].
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Collision Scenario: The four degrees of freedom (DoFs) are the masses of the two balls and their
initial velocities, fully determining the collision outcomes. We generate 3k, 30k, and 3M training
samples by sampling grid points from the 4-dimensional in-dist joint space of radii and velocities.
For in-dist evaluation, we randomly sample about 2k points from the grid, ensuring they are not part
of the training set. For OOD evaluation, we sample from the OOD ranges, generating approximately
4.8k samples across six OOD levels: (1) only r1 OOD, (2) only v1 OOD, (3) both r1 and r2 OOD, (4)
both v1 and v2 OOD, (5) r1 and v1 OOD, and (6) r1, v1, r2, and v2 OOD. Additionally, for collisions,
we ensure that all collisions occur after the 4th frame in each video, allowing the initial velocities of
both balls to be inferred from the conditioned frames.

Uniform and Parabolic Motion: The two DoFs are the ball’s mass and initial velocity. We generate
3k, 30k, and 3M training samples by sampling from the 2-dimensional in-dist joint space of radius
and velocity. For in-dist evaluation, we sample approximately 1.05k for uniform motion and 1.1k for
parabolic motion. For OOD evaluation, we generate about 2.4k (uniform motion) and 2.5k (parabolic
motion) samples across three OOD levels: (1) only r OOD, (2) only v OOD, and (3) both r and v
OOD.

For all scenarios, we filter out videos where the ball exits the field of view prematurely by inspecting
the simulation state, as these videos do not provide sufficient meaningful information for the model.

A.5 OTHER SOTA VIDEO GENERATION MODELS

In this section, we explore how the findings in this paper apply to open-source pretrained models,
such as CogVideo (Hong et al., 2022) and Stable Video Diffusion (SVD) (Blattmann et al., 2023).

A.5.1 IS THE PRIORITIZATION RELEVANT TO VAE?

To evaluate how much the prioritization order color > size > velocity > shape is influenced by the
explicit instantiation of the video VAE used in our work, we perform experiments with alternative
architectures. Specifically, we replace the VAE from our primary experiments with the VAE from the
recently released CoGVideo and rerun the tests. By freezing the CoGVideo VAE and training only
the diffusion component, we find that the prioritization order remains consistent.

As detailed in Section 5.3, we designed experiments to compare the prioritization of velocity and
shape. Videos of balls with low velocities and squares with high velocities were used for training.
During testing, we evaluated scenarios where a ball with high velocity transformed into a square
immediately after the conditioned frames, and a square with low velocity transitioned into a ball.
Across 1,400 test cases, no exceptions were observed. The results are identical to those presented in
Figure 8 (3), confirming that the prioritization order velocity > shape holds. For velocity and size, as
shown in Figure 12 (1), the model consistently maintained the initial size and velocity for most test
cases, even beyond the training distribution. However, a slight preference for size over velocity was
observed, particularly when radius and velocity values were at extreme ends (top-left of the plot).
These results confirm that size holds a higher priority than velocity. Finally, for the prioritization
between color and velocity, we trained the model on high-speed blue balls and low-speed red balls.
During testing, high-speed red balls appeared much slower than their conditioned velocity, while
no balls in the test set changed their color. As illustrated in Figure 12 (2), this demonstrates that
color is prioritized over velocity. In summary, our experiments with the CoGVideo VAE confirm
the robustness of the prioritization order color > size > velocity > shape, demonstrating that these
findings generalize across different VAE pretrain.

A.5.2 CAN PRETRAINED MODELS LEARN PHYSICAL LAWS?

The primary goal of this paper is to answer the fundamental question: “Can a video generation
model learn physical laws?” Existing pretrained models are built on large-scale datasets sourced
from publicly available internet content. However, the extent to which these datasets contain videos
about physical laws or structured physical interactions remains unknown. This lack of transparency
leads to critical concern - contamination of evaluation data: There is a risk that pretrained models
may have been exposed to data similar to our evaluation experiments during training. This potential
overlap undermines the validity of assessing their ability to learn physical reasoning. To address
these concerns, we chose to train a model from scratch, which provides complete control over the
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Figure 12: Prioritization experiments with CogVideo’s VAE. (1) Velocity v.s. size. (2) Color v.s. velocity.

training data. This approach allows us to precisely ensure that the results stem from the model’s actual
learning process rather than potential pretraining data overlap or contamination. This methodology
is supported by recent research into the mechanisms of language models, where training relatively
small models from scratch has proven effective in isolating and analyzing reasoning processes more
rigorously.

To assess whether the inability to learn physical laws is specific to our setup or extends to open-
source pretrained models, we conducted experiments using the Stable Video Diffusion (SVD) model
on a representative uniform motion task. We fine-tuned SVD for 300k steps, following the same
training setup as DiT-B in our experiments. The results, summarized in Table 4, reveal several key
observations. First, SVD’s VAE demonstrates a very small reconstruction error, indicating that its
VAE component effectively preserves kinematic information. However, the diffusion component
of SVD, despite pretraining, performs worse than DiT-B in both in-distribution (ID) and out-of-
distribution (OOD) predictions. We attribute this to the considerable gap between the pretraining
dataset (internet videos) and the simplified kinematic test scenarios used in this evaluation. Notably,
the OOD error for SVD is an order of magnitude larger than its ID error, a trend consistent with DiT-B.
This finding reinforces the robustness of our conclusion that pretraining alone does not address the
inability of video generation models to generalize to OOD scenarios, a limitation that persists across
architectures, including open-source pretrained models like SVD.

Table 4: Results of finetuning SVD model.

Model ID Error OOD Error

GT 0.0099 0.0104
DiT-B (from scratch, ours) 0.0138 0.3583

SVD-VAE-Recon 0.0103 0.0107
SVD-Finetune 0.0505 0.9081

A.6 MORE EXPERIMENTS AND DISCUSSIONS

A.6.1 CAN LANGUAGE AND NUMERICS AID IN LEARNING PHYSICAL LAWS?

As discussed in Section 3, video generation based solely on image frames fails to learn physical
laws, showing significant prediction errors in OOD scenarios, despite containing all the necessary
information. In reinforcement learning, numerical values (e.g., states) are often used as conditions
for world models (Hafner et al., 2023), and language representations have shown generalization
capabilities in LLMs (Riveland & Pouget, 2024). This raises the question: can additional multimodal
inputs, such as numerics and text, improve video prediction and capture physical laws? We experi-
mented with collision scenarios and DiT-B models, adding two variants: one conditioned on vision
and numerics, and the other on vision and text. For numeric conditioning, we map the state vectors to
embeddings and add the layer-wise features to video tokens. For text, we converted initial physical
states into natural language descriptions, obtained text embeddings using a T5 encoder, and then add
a cross-attention layer to aggregate textual representations for video tokens.
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Figure 13: Comparison of different modal conditions for video generation.

As shown in Figure 13, for in-distribution generalization, adding numeric and text conditions resulted
in prediction errors comparable to using vision alone. This suggests that visual frames already
contain sufficient information for accurate predictions, and the additional numeric or text data do not
provide further benefits. However, in OOD scenarios, the vision-plus-numerics condition exhibited
slightly higher errors, while the vision-plus-language condition showed significantly higher errors.
We hypothesize that the embeddings of language tokens and numerics may cause the model to
overfit to specific patterns present in the training data, thereby impairing its ability to generalize to
unseen OOD scenarios. Additionally, language tokens are discrete and exhibit greater variability
compared to continuous numeric embeddings, making the model more susceptible to overfitting when
using language inputs, accounting for the higher OOD errors in the vision-plus-language condition
compared to the vision-plus-numerics condition.

A.6.2 PRINCIPLE BEHIND DATA RETRIEVAL IN THE DIFFUSION MODEL

As discussed in Section 5.3, the diffusion model appears to rely more on memorization and case-
based imitation, rather than abstracting universal rules for OOD generalization. The model exhibits a
preference for specific attributes during case matching, with a prioritization order of color > size >
velocity > shape. In this section, we aim to explore the reasoning behind this prioritization.

Since the diffusion model is trained by minimizing the loss associated with predicting VAE latent, we
hypothesize that the prioritization may be related to the distance in VAE latent space (though we use
pixel space here for clearer illustration) between the test conditions and the training set. Intuitively,
when comparing color and shape as in Figure 9 (1), a shape change from a ball to a rectangle results
in minor pixel variation, primarily at the corners. In contrast, a color change from blue to red causes
a more significant pixel difference. Thus, the model tends to preserve color while allowing shape to
vary. From the perspective of pixel variation, the prioritization of color > size > velocity > shape can
be explained by the extent of pixel change associated with each attribute. Changes in color typically
result in large pixel variations because it affects nearly every pixel across its surface. In contrast,
changes in size modify the number of pixels but do not drastically alter the individual pixels’ values.
Velocity affects pixel positions over time, leading to moderate variation as the object shifts, while
shape changes often involve only localized pixel adjustments, such as at edges or corners. Therefore,
the model prioritizes color because it causes the most significant pixel changes, while shape changes
are less impactful in terms of pixel variation.

To further validate this hypothesis, we designed a variant experiment comparing color and shape, as
shown in Figure 14. In this case, we use a blue ball and a red ring. For the ring to transform into
the ball without changing color, it would need to remove the ring’s external color, turning it into
blank space, and then fill the internal blank space with the ball’s color, resulting in significant pixel
variation. Interestingly, in this scenario, unlike the previous experiments shown in Figure 9 (1), the
prioritization of color > shape does not hold. The red ring can transform into either a red ball or a
blue ring, as demonstrated by the examples. This observation suggests that the model’s prioritization
may indeed depend on the complexity of the pixel transformations required for each attribute change.
Future work could explore more precise measurements of these variations in pixel or VAE latent
space to better understand the model’s training data retrieval process.
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Figure 14: Uniform motion. Color vs. shape. The shapes are a ball and a ring. Transforming from a ring to a
ball leads to a large pixel variation.

A.6.3 FAILURE CASES IN COMBINATORIAL GENERALIZATION

collision
only

bounce	only
w.o. red	ball	

train data failure case
ground
truth prediction

Temporal combinatorial generalization

Figure 15: Failure cases in combinatorial generalization. Note that the bounce cases in the training set do not
include the red ball.

In Figure 11, we present successful cases of spatial and temporal combinatorial generalization, where
the trained model can combine these two types of events across spatial and temporal dimensions to
generate videos under unseen conditions. However, the model does not always succeed in performing
such compositions, and here we illustrate some failure cases. As shown in Figure 15, when the
training set lacks a red ball in a bounce event, the model sometimes struggles. In the model’s generated
video, the red ball sometimes disappears after a collision. This likely stems from the model’s data
retrieval mechanism: since the training set does not include a red ball in a collision scenario, when
collision happens, the model retrieves similar training cases without the red ball, causing it to vanish
post-collision. In summary, while combinatorial generalization allows the diffusion model to generate
novel videos by composing spatial and temporal segments from the training set, its reliance on
data retrieval limits its effectiveness. As a result, the model may produce unrealistic outcomes by
retrieving and combining segments without understanding the underlying rules.

A.7 COMPARISON WITH ID/OOD GENERALIZATION WORKS

ID/OOD generalization Schott et al. (2021) in machine learning has been extensively discussed in
foundational works. These discussions highlight the fundamental challenges of OOD generalization
in machine learning. However, when applied to specific settings with unique data forms, distributions,
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Figure 16: Training loss curve of DiT-L trained on 3M collision videos.

and model inductive biases, it exhibits nuanced behaviors that remain scientifically significant.
For instance, similar debates have emerged in the study of large language models (LLMs), where
considerable attention has been devoted to determining whether models learn underlying rules or rely
on case-based memorization for performing arithmetic Hu et al. (2024). These insights have spurred
advancements in rule-based reasoning approaches within the LLM community. Similarly, our work
investigates how video generation models handle generalization within their own domain.

Our findings go beyond the simplistic observation that ID scenarios succeed while OOD scenarios
fail. Instead, we provide deeper insights and discoveries specific to video generation:

1. Addressing the Debate on Learning Physical Laws in Video Generation Models:
Through systematic experiments, we provide a clear answer to whether physical laws
can be learned by scaling video generation models. This has been a topic of debate in the
video generation community. For instance, OpenAI’s Sora Technical Report ? suggests that
video generation models can learn rules and act as world simulators, implying they might
generalize universal laws. Our findings challenge this assumption, showing that current
video generation models fail to learn physical laws as universal rules.

2. Scaling Guidance for Combinatorial Generalization: We demonstrate the importance of
combinatorial generalization and identify scaling laws for improving generalization in video
generation models. Our findings highlight that increasing the diversity of combinations in
the training data is more effective for achieving realistic physics than merely scaling the
data volume or model size. This offers actionable guidance for building video generation
models that better capture physical realism.

3. Revealing the Generalization Mechanism and Understanding the Boundaries of Video
Generation Models: We uncover how video generation models generalize, primarily relying
on referencing similar training examples rather than learning underlying universal principles.
This provides a deeper understanding of their limitations and biases in representing physical
phenomena.

These findings transcend traditional ID/OOD analyses, offering a more detailed understanding of the
limitations and potential of video generation models.

A.8 VISUALIZATION
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Figure 17: The visualization of in-distribution evaluation cases with very small prediction errors.
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Figure 18: The visualization of out-of-distribution evaluation cases with large prediction errors.
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Figure 19: The visualization of out-of-template evaluation cases that appear plausible and adhere to physical
laws, generated by DiT-XL trained on 6M data (60 templates). Zoom in for details. Notably, the first four cases
generated by the model are nearly identical to the ground truth. In some cases, such as the rightmost example,
the generated video seems physically plausible but differs from the ground truth due to visual ambiguity, as
discussed in Section 5.5.
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Figure 20: The visualization of out-of-template evaluation cases that appear abnormal and violate physical
laws, generated by DiT-XL trained on 6M data (60 templates). Abnormalities are highlighted with red dotted
circles. Case 1: A grey ball suddenly disappears. Case 2: The rigid-body bar breaks in several intermediate
frames during contact with the ball, then recovers after contact. Case 3: The rigid-body jar fails to maintain
its shape when interacting with the bar in several intermediate frames. Case 4: The rigid-body bar breaks in
several intermediate frames during contact with the standing sticker. Most of the abnormal cases we observed
involve object disappearance or shape inconsistencies, which can be explained by the case matching preference
discussed in Section 5.3.
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