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ABSTRACT

Learning-based methods have gained attention as general-purpose solvers due
to their ability to automatically learn problem-specific heuristics, reducing the
need for manually crafted heuristics. However, these methods often face scala-
bility challenges. To address these issues, the improved Sampling algorithm for
Combinatorial Optimization (iSCO), using discrete Langevin dynamics, has been
proposed, demonstrating better performance than several learning-based solvers.
This study proposes a different approach that integrates gradient-based update
through continuous relaxation, combined with Quasi-Quantum Annealing (QQA).
QQA smoothly transitions the objective function, starting from a simple convex
function, minimized at half-integral values, to the original objective function, where
the relaxed variables are minimized only in the discrete space. Furthermore, we
incorporate parallel run communication leveraging GPUs to enhance exploration ca-
pabilities and accelerate convergence. Numerical experiments demonstrate that our
method is a competitive general-purpose solver, achieving performance comparable
to iSCO and learning-based solvers across various benchmark problems. Notably,
our method exhibits superior speed-quality trade-offs for large-scale instances
compared to iSCO, learning-based solvers, commercial solvers, and specialized
algorithms.

1 INTRODUCTION

Combinatorial optimization (CO) problems aim to find the optimal solution within a discrete space,
a fundamental challenge in many real-world applications (Papadimitriou & Steiglitz, 1998; Crama,
1997). Most CO problems are NP-hard, making it challenging to solve large-scale problems within
feasible computational time. As a result, developing algorithms that efficiently find high-quality
approximate solutions has been a critical focus. Traditionally, heuristic methods have been widely
used to find approximate solutions, but they require significant insights into the specific problems.
Accordingly, increasing efforts have been directed toward developing general-purpose solvers that
can be applied to a broad range of problems to reduce the need for problem-specific insights.

Among the general-purpose solvers, sampling-based approaches have been proposed, which treat
CO problems as sampling problems. Simulated annealing (SA) (Kirkpatrick et al., 1983), a widely
well-known technique, uses local thermal fluctuations and updates (Metropolis et al., 1953; Hastings,
1970). Additionally, techniques such as tempered transitions (Neal, 1996) and exchange Monte Carlo
algorithms (Hukushima & Nemoto, 1996) have shown strong performance in practical CO problems
(Johnson et al., 1989; 1991; Earl & Deem, 2005). However, these methods often depend on local
updates, where only one dimension is updated at a time, and the update process across dimensions
typically cannot be parallelized. As a result, these methods become computationally prohibitive when
addressing large-scale CO problems.

Learning-based methods have recently gained recognition as general-purpose solvers for their ability
to learn problem-specific heuristics automatically. This reduces the need for manually designed
heuristics and leverages modern accelerators like GPUs and TPUs. Some learning-based methods
rely on supervised data, which is often difficult to obtain (Li et al., 2018; Gasse et al., 2019; Gupta
et al., 2020). Reinforcement learning (Khalil et al., 2017; Kool et al., 2018; Chen & Tian, 2019)
and unsupervised learning approaches (Karalias & Loukas, 2020; Wang et al., 2022; Wang & Li,
2023) have expanded their applicability. However, these approaches encounter challenges when
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applied to out-of-distribution instances, limiting their flexibility in addressing a wide range of problem
distributions. In response, unsupervised learning-based solvers that do not depend on training data
have emerged, leveraging the ability of machine learning models to learn valuable representations
(Schuetz et al., 2022a;b; Ichikawa, 2023). These methods address CO problems by optimizing the
weight parameters of deep learning models, but model selection is critical in determining solution
quality Schuetz et al. (2023). Furthermore, additional computational costs arise because the number
of weight parameters typically exceed the number of discrete variables in the original CO problem.
Moreover, the performance of these methods compared to sampling-based solvers remains unclear.

On the other hand, the improved Sampling algorithm for CO (iSCO) (Sun et al., 2023b) was proposed,
motivated by advances in Markov Chain Monte Carlo methods for discrete space. This method
integrates discrete Langevin dynamics (Sun et al., 2023a) with traditional annealing techniques,
demonstrating results on par with, or better than, learning-based solvers by using gradient information
from the objective function. This method efficiently utilizes GPUs via frameworks such as PyTorch
and JAX, similar to learning-based methods. In this study, we propose a different method that
combines gradient-based updates through continuous relaxation and Quasi Quantum Annealing
(QQA) inspired by quantum annealing (Kadowaki & Nishimori, 1998). QQA gradually transitions
the objective function, starting with a simple convex function minimized at half-integral values,
similar to the state where the transverse field dominates in quantum annealing. This process leads to
the original objective function, where the relaxed variables are minimized only within the discrete
space, analogous to the classical state without the transverse field in quantum annealing. Unlike iSCO,
our method introduces an extended Boltzmann distribution with a communication term between
parallel runs, facilitating broader exploration with minimal overhead by effectively utilizing GPUs.
This also accelerates convergence.

Numerical experiments on the same benchmark used as iSCO (Sun et al., 2023b), along with several
other benchmarks, demonstrate that our method is a competitive general-purpose solver, achieving
performance comparable to iSCO and learning-based solvers across all benchmarks. For larger
problems, our method offers better speed-quality trade-offs than iSCO, learning-based solvers,
commercial solvers, and specialized algorithms.

2 BACKGROUND

Combinatorial Optimization. The goal of this study is to solve CO problems formulated as

min
x∈X (C)

f(x;C), X (C) =

{
x ∈ {0, 1}N

∣∣∣∣ gi(x;C) ≤ 0, ∀i ∈ [I],
hj(x;C) = 0 ∀j ∈ [J ]

}
, (1)

where C ∈ C denotes instance-specific parameters, such as a graph G = (V,E), and C represents a
set of all possible instances. The vector x = (xi)1≤i≤N ∈ {0, 1}N represents the discrete decision
variables, and X (C) denotes the feasible solution space. f : X × C → R is the cost function, while
gi : X × C → R and hj : X × C → R represent inequality and equality constraints, respectively. We
also use the shorthand notation [N ] = {1, 2, . . . , N}, with N ∈ N.

To transform the constrained CO problem into a sampling problem, we reformulate it as an uncon-
strained CO problem using the penalty method:

min
x∈{0,1}N

l(x;C,λ), l(x;C,λ) =∆ f(x;C) +

I+J∑
i=1

λivi(x;C), (2)

where vi : {0, 1}N ×C → R,∀i ∈ [I+J ] represents penalty terms, which increase as the constraints
are violated. For example, these penalty terms can be defined as

∀i ∈ [I], vi(x;C) = max(0, gi(x;C)), ∀j ∈ [J ], vj(x;C) = (hj(x;C))2. (3)
λ = (λi)1≤i≤I+J ∈ RI+J denotes the penalty parameters that control the balance between constraint
satisfaction and cost function minimization. As λ increases, these penalty terms grow, penalizing
constraint violations more heavily.

Energy Based Model (EBM). For the penalized objective function l(x;C,λ), we define the
following Boltzmann distribution:

P (x;T ) =
1

Z(T )
e−

1
T l(x;C,λ), Z(T ) =

∑
x∈X

e−
1
T l(x;C,λ), (4)
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where T ∈ R≥0 is a parameter called temperature, which controls the smoothness of the distribution.
The summation

∑
x represents the sum over all possible values of x. This distribution has the

following property:
Proposition 2.1. As the temperature T approaches infinity, the Boltzmann distribution P (x;T )
converges to a uniform distribution over {0, 1}N . When the temperature T = 0, the Boltzmann
distribution becomes a uniform distribution over the optimal solutions of Eq. (2).

Thus, the original CO problem can be transformed into a sampling problem from the probability
distribution in Eq. 4 with T = 0.

Metropolis–Hastings Algorithm. The Metropolis–Hastings Algorithm (Metropolis et al., 1953;
Hastings, 1970) is a general method for sampling from high-dimensional distributions. This algorithm
uses a conditional distribution Q, called a proposal distribution, which satisfy the ergodicity condition.
A Markov chain (x(t))Tt=0 is constructed to have P (x;T ) as its stationary distribution by following
steps; starting from x(0) ∼ P (0), where P (0) is the initial distribution, at each step t, propose
x′ ∼ Q(x′|x(t)), and with probability

A(x′|x(t)) = min

(
1,

P (x′;T )Q(x(t)|x′)

P (x(t);T )Q(x′|x(t))

)
(5)

accept x′ as the next state x(t+1) = x′, or with probability 1−A(x′|x(t)), reject x′ and retain the
previous state x(t+1) = x(t). The proposal distribution is typically a local proposal, such as a flipping
a single bit. Gibbs sampling (Geman & Geman, 1984) is a local update method where the proposal
distribution is the conditional distribution, Q(x(t)|x′) = P (x

(t)
i |x−i;T ), with x−i = x \ {xi}. In

this case, the acceptance rate A(x′|x(t)) is always 1. The effectiveness of the algorithm is highly
influenced by the choice of the proposal distribution Q(x(t)|x′).

Simulated Annealing. Simulated annealing (SA) was introduced by Kirkpatrick et al. (1983); Černỳ
(1985). While the original optimization problem can be solved by sampling from the distribution
limT→0 P (x;T ), directly sampling from the distribution is difficult due to its highly nonsmooth
nature at low temperatures. To overcome, SA performs Metropolis–Hastings updates while gradually
lowering the temperature T to zero through a temperature path, T = (T0, T1, . . . , TM ) where the
path T0 > T1 > · · · > TM → 0. This approach enables the system to reach a state with lower energy
over time.

3 METHOD

We begin by explaining the continuous relaxation approach in Section 3.1. Section 3.2 introduces
an extended Boltzmann distribution and QQA. Section 3.3 proposes the communication between
parallel runs, and Section 3.4 summarizes optimization-specific techniques. This overall approach is
termed Parallel Quasi-Quantum Annealing (PQQA).

3.1 CONTINUOUS RELAXATION STRATEGY

The continuous relaxation strategy reformulates a CO problem into a continuous one by converting
discrete variables into continuous ones as follows:

min
p∈[0,1]N

l̂(p;C,λ), l̂(p;C,λ) =∆ f̂(p;C) +

m+p∑
i=1

λiv̂i(p;C),

where p = (pi)1≤i≤N ∈ [0, 1]N denotes the relaxed continuous variables, where each binary variable
xi ∈ {0, 1} is relaxed to a continuous value pi ∈ [0, 1]. f̂ : [0, 1]N ×C → R represents the relaxation
of f , satisfying f̂(x;C) = f(x;C) for x ∈ {0, 1}N . Similarly, for all i ∈ [I + J ], v̂i denotes the
relaxation of vi, with v̂i(x;C) = vi(x;C) for x ∈ {0, 1}N .

However, the landscape of relaxed objective function l̂(p;C,λ) remains complex even after contin-
uous relaxation, posing challenges for optimization. Moreover, continuous relaxation encounters
rounding issues, where artificial post-rounding is needed to map the continuous solutions back to the
original discrete space, undermining the robustness.
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3.2 QUASI-QUANTUM ANNEALING

We represent the relaxed variable p ∈ [0, 1]N as a real-valued parameter w ∈ RN and a nonlinear
mapping to evaluate gradients and introduce following entropy term to control the balance between
continuity and discreteness of relaxed variables:

r̂(σ(w);C,λ, γ) = l̂(σ(w);C,λ) + γs(σ(w)), (6)

where σ : RN → [0, 1]N denotes element-wise mapping, such as the sigmoid function and γ ∈ R
denotes a penalty parameter. The relaxed variables are defined as σ(w) = (σ(wi))1≤i≤N ∈ [0, 1]N .
The entropy term s(σ(w)) is a convex function, which attains its minimum value of 0 when σ(w) ∈
{0, 1}N and its maximum when σ(w) = 1N/2. In particular, this study employs the following
entropy:

s(σ(w)) =

N∑
i=1

{1− (2σ(wi)− 1)α} , α ∈ {2n | n ∈ N}, (7)

which was introduced by Ichikawa (2023) and is referred to as α-entropy.

Furthermore, we extend the entropy term to general discrete optimization problems. Details of this
generalization are provided in Appendix B. The effectiveness of this generalization is demonstrated
through numerical experiments on two benchmarks: the balanced graph partitioning in Section 5.4
and the graph coloring problem in Section 5.5.

Subsequently, we extend the Boltzmann Distribution in Eq. (4) to the continuous space [0, 1]N using
Eq. (6) as follows:

P̂ (σ(w); γ, T ) =
1

Z(γ, T )
e−

1
T r̂(σ(w);C,λ,γ), Z(γ, T ) =

∫ N∏
i=1

dwie
− 1

T r̂(σ(w);C,λ,γ). (8)

When γ is negative, i.e., γ < 0, the relaxed variables tend to favor the half-integral value σ(w) = 1N/2,
smoothing the non-convexity of the objective function l̂(p;C,λ) due to the convexity of the penalty
term Φ(p). This state can be interpreted as a quasi-quantum state, where the values are uncertain
between 0 and 1. Conversely, when γ is positive, i.e., γ > 0, the relaxed variables favor discrete
values. This state can be interpreted as a classical state, where the values are deterministically
determined as either 0 or 1. Formally, the following theorem holds.

Theorem 3.1. Under the assumption that the objective function l̂(p;C) is bounded within the
domain [0, 1]N , the Boltzmann distribution limγ→+∞ limT→0 P̂ (σ(w); γ, T ) converges to a uniform
distribution over the optimal solutions of Eq. (2), i.e., x∗ ∈ argminxl(x;C,λ). Additionally,
limγ→−∞ limT→0 P̂ (σ(w); γ, T ) converges to a single-peaked distribution

∏N
i=1 δ(σ(wi)− 1/2).

The detailed proof can be found in Appendix A.1.

The following gradient-based update can be used for any γ, provided that r(w) is differentiable:

wt+1 = wt − η∇wr(σ(wt);C,λ) +
√
2ηTξ, (9)

where η is the time step, and ξ ∼ N (0N , IN ) is Gaussian noise, with IN ∈ RN×N denoting an
identity matrix and 0N representing the zero vector (0, . . . , 0)⊤ ∈ RN . This update rule generates
a Markov chain whose stationary distribution is given by Eq. (8), provided that η is sufficiently
small. Unlike the local updates in conventional SA for discrete problems, this method simultaneously
updates multiple variables in a single step via the gradient, allowing for high scalability.

Following Ichikawa (2023), annealing is conducted on γ from a negative to a positive value while
updating the parameter w. Initially, a negative γ is set to enable extensive exploration by smoothing
the non-convexity of l̂(σ(w);C,λ), where the quasi-quantum state σ(w) = 1N/2 dominates. Sub-
sequently, the penalty parameter γ is gradually increased to a positive value until the entropy term
approaches zero, i.e., s(σ(w)) ≈ 0, to automatically round the relaxed variables by smoothing out
continuous suboptimal solutions oscillating between 1 and 0. This annealing is similar to quantum
annealing, where the system transitions from a state dominated by a superposition state of 0, 1,
induced by the transverse field, to the ground state of the target optimization problem. Therefore, we
refer to this annealing as Quasi-Quantum Annealing (QQA).
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3.3 COMMUNICATION IN PARALLEL RUNS

Gradient-based updates in QQA enable efficient batch parallel computation for multiple initial values
and instances {Cµ}Pµ=1 using GPU or TPU resources, similar to those used in machine learning tasks.
We propose communication between these parallel runs to conduct a more exhaustive search, obtain
diverse solutions. Specifically, we define the extended Boltzmann distribution over all S parallel runs
{σ(w(s))}Ss=1 as follows:

P ({σ(w(s))}Ss=1; γ, T ) ∝ e−
1
T R̂({σ(w(s))}S

s=1;C,λ,γ),

R̂({w(s)}Ss=1;C,λ, γ) =

S∑
s=1

r̂(σ(w(s));C,λ, γ)− Sα

N∑
i=1

STD[{σ(w(s)
i )}Ss=1], (10)

where STD[{ak}Kk=1] denotes the empirical standard deviation (
∑K

k=1(ak −
∑K

k′=1 ak′/K)2/K)1/2

and α ∈ [0, 1] is a parameter controlling the diversity of the problem. A larger value of α enhances
the exploration ability during the parallel run. The second term is a natural continuous relaxation
of the Sum Hamming distance (Ichikawa & Iwashita, 2024). As in Eq. (9), we perform Langevin
updates on {σ(w(s))}Ss=1 whose stationary distribution is given by Eq. (10).

3.4 OPTIMIZATION-SPECIFIC ACCELERATIONS

We focus on optimization, rather than generating a sample sequence that strictly follows the probability
distribution in Eq. (8). This section introduce several optimization-specific enhancements to the
Langevin dynamics in Eq. (9) that are specifically designed to improve efficiency in optimization.

Sensitive Transitions. The update of w is linked with the objective function through the element-
wise mapping σ(·), which can reduce sensitivity with respect to w. To address this issue, we propose
replacing the update in Eq. (9) with a two-step process. In the first step, rather than updating w
directly, we update the relaxation variables p ∈ RN as follows:

p′ = pt − η∇pr̃(p
t;C, λ) +

√
2ηTξ, (11)

where r̃ : RN × C → R is the relaxed form of r̂, satisfying r̃(p;C) = r̂(p;C) for any p ∈ [0, 1]N .
This update leads to a more sensitive transition than updating w, as it bypasses σ(·). However, p′

may fall outside the range [0, 1]N after the update Eq. (11). In the second step, we update p′ by
setting pt+1 = σ(p′), which ensures that pt+1 always lies within the range [0, 1]N .

Furthermore, the gradient-based update in Eq. (11) is replaced with more sophisticated optimizers
to improve exploration efficiency. In this paper, we employ AdamW (Loshchilov & Hutter, 2017).
Note that the stationary distribution of this optimization-specific update does not correspond to the
Boltzmann distribution in Eq. (8).

4 RELATED WORK

Sampling-based methods (Metropolis et al., 1953; Hastings, 1970; Neal, 1996; Hukushima & Nemoto,
1996) have been widely applied to various CO problems, including MIS (Angelini & Ricci-Tersenghi,
2019), TSP (Kirkpatrick et al., 1983; Černỳ, 1985; Wang et al., 2009), planning (Chen & Ke, 2004;
Jwo et al., 1995), scheduling (Seçkiner & Kurt, 2007; Thompson & Dowsland, 1998), and routing
(Tavakkoli-Moghaddam et al., 2007; Van Breedam, 1995). However, these methods generally depend
on local updates, such as Gibbs sampling or single-bit flip Metropolis updates, which can restrict their
scalability. To address this limitations, methods leveraging gradient information from the objective
function have been proposed. Continuous relaxation techniques, conceptually related to our approach,
have also been introduced (Zhang et al., 2012). However, these methods often struggle to capture the
topological properties of discrete structures (Pakman & Paninski, 2013; Mohasel Afshar & Domke,
2015; Dinh et al., 2017; Nishimura et al., 2020). In contrast, our method gradually recovers the
discrete nature of the original problem through QQA. Sun et al. (2023b) proposed iSCO, a sampling-
based solver using discrete Langevin dynamics (Sun et al., 2023a; Zhang et al., 2022; Sun et al., 2021;
Grathwohl et al., 2021), which accelerates traditional Gibbs sampling and improves performance.
While iSCO approximates the acceptance rate of candidate transitions in discrete Langevin dynamics
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using a first-order Taylor expansion, its effectiveness for general discrete optimization problems
remains uncertain. In addition to adjusting the temperature path, hyperparameter tuning is required
for the path auxiliary sampler (Sun et al., 2021). Furthermore, communication between parallel
chains in PQQA has not been implemented, preventing iSCO from fully utilizing the benefits of
parallel execution on GPUs.

5 EXPERIMENT

In this section, the performance of PQQA is evaluated across five CO problems: maximum inde-
pendent set (MIS), maximum clique, max cut, balanced graph partition, and graph coloring. For
each problem, experiments are performed on synthetic and real-world benchmark datasets, including
instances used in iSCO (Sun et al., 2023b), all benchmarks recently proposed (Sun et al., 2023a), and
instances commonly used in learning-based solvers. Detailed formulations and instances of these
problems are presented in Appendix D.1 and D.2. PQQA is compared with various baselines, includ-
ing sampling-based methods, learning-based methods, heuristics, and both general and specialized
optimization solvers. Notably, iSCO (Sun et al., 2023b) is employed as our direct baselines.

Implementation. We use the α-entropy with α = 4 across all experiments. The parameter γ is
increased linearly from γmin = −2 to γmax = 0.1 with each gradient update. After annealing, the
relaxed variables are converted into discrete ones using the projection method: for all i ∈ [N ], we
map as xi = Θ(pi − 1/2), where Θ is the step function. Notably, even with γmax = 0.1, the solution
became almost binary, indicating robustness in the rounding process. We set σ(w) = Clamp(w),
where Clamp(w) constrains the values within the range [0, 1]N . Specifically, for each i ∈ [N ], if
wi is less than 0, it is set to 0; if wi exceeds 1, it is set to 1. For further discussion on why the
sigmoid function is not applied for σ(w), see Appendix C.1. The AdamW optimizer (Loshchilov
& Hutter, 2017) is used. The parallel number S is set to 100 or 1,000. We report the runtime of
PQQA on a single V100 GPU. The runtime can be further improved with more powerful GPUs
or additional GPUs. Section 5.6 provide an ablation study that examines the effect of different
hyper-parameters. Refer to Appendix C for further implementation details. For all benchmark CO
problems, the soft solution at the end of the training process became 0 or 1 within the 32-bit Floating
Point range in Pytorch GPU. Additionally, no violations of the constraints were observed in our
numerical experiments. Thus, following results presented in are feasible solutions.

Evaluation Metric. This experiment primarily evaluates solution quality using the approximation
ratio (ApR), the ratio between the obtained and optimal solutions. For maximization problems,
ApR ≤ 1, and the solution is considered optimal when ApR = 1. In cases where an optimal solution
is not guaranteed due to problem complexity, we directly compare objective functions or report
the ratio relative to the solution found by a commercial solver with the best effort or asymptotic
theoretical results. The specific definition of ApR used in each section is provided accordingly.

5.1 MAX INDEPENDENT SET

SATLIB and Erdős–Rényi Graphs. We evaluate PQQA using the MIS benchmarks from recent
studies (Goshvadi et al., 2023; Qiu et al., 2022), which includes graphs from SATLIB (Hoos &
Stützle, 2000) and Erdős–Rényi graphs (ERGs) of various sizes. Following Sun et al. (2023b), the
instances consist of 500 SATLIB graphs, each containing with 403 to 449 clauses, corresponding at
most 1,347 nodes and 5,978 edges, 128 ERGs with 700 to 800 nodes each, and 16 ERGs with 9,000 to
11,000 nodes each. PQQA is performed under four settings: a number of parallel runs with S = 100
or S = 1000 and fewer steps (3000 steps) or more steps (30000 steps), similar to the experiment in
iSCO (Sun et al., 2023b). Table 1 shows the solution quality and runtime. The results indicate that
PQQA achieves better speed-quality trade-offs than learning-based methods. In particular, PQQA
outperforms both iSCO (Sun et al., 2023b) and KaMIS (Lamm et al., 2016; Hespe et al., 2019), the
winner of PACE 2019 and a leading MIS solver, especially on both ERGs with shorter runtimes.
Notably, for larger ERGs, PQQA finds much better solutions in a shorter time than iSCO and KaMIS.

Regular Random Graphs. We focus on MIS problems on regular random graphs (RRGs) with a
degree d greater than 16, which are known to be particularly difficult (Barbier et al., 2013). Previous
studies have pointed out the difficulties in solving these instances with learning-based solvers
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Table 1: ApR and runtime are evaluated on three benchmarks provided by DIMES (Qiu et al., 2022).
The ApRs are evaluated against the results obtained by KaMIS. Runtime is reported as the total
clock time per instance in seconds (s/g) or minutes (m/g). The runtime and ApR are sourced from
Sun et al. (2023b). Baselines include the OR solvers, learning-based methods using Reinforcement
Learning (RL) and Supervised Learning (SL) combined with Tree Search (TS), Greedy decoding (G)
or Sampling (S), and iSCO. Methods that fail to produce results within 10 times the time limit of
DIMES are marked as N/A.

Method Type SATLIB ER-[700-800] ER-[9000-11000]
ApR↑ Time↓ ApR↑ Time↓ ApR↑ Time↓

KaMIS OR 1.000 4.50s/g 1.000 24.44s/g 1.000 28.5m/g
Gurobi OR 1.000 3.12s/g 0.922 23.44s/g N/A N/A

Intel SL+TS N/A N/A 0.865 9.38s/g N/A N/A
SL+G 0.988 2.78s/g 0.777 2.84s/g 0.746 18.83s/g

DGL SL+TS N/A N/A 0.830 10.65s/g N/A N/A
LwD RL+S 0.991 2.26s/g 0.918 2.97s/g 0.907 28.35s/g

DIMES RL+G 0.989 2.90s/g 0.852 2.87s/g 0.841 19.54s/g
RL+S 0.994 2.43s/g 0.937 5.63s/g 0.873 46.91s/g

iSCO fewer steps 0.995 0.70s/g 0.998 0.65s/g 0.990 35.18s/g
more steps 0.996 1.83s/g 1.006 2.61s/g 1.008 4.69m/g

PQQA

fewer (S = 100) 0.993 0.88s/g 1.004 0.35s/g 1.027 21.86s/g
more (S = 100) 0.994 8.71s/g 1.005 3.33s/g 1.039 3.66m/g

fewer (S = 1,000) 0.996 9.00s/g 1.007 3.20s/g 1.033 2.58m/g
more (S = 1,000) 0.996 1.50m/g 1.009 32.06s/g 1.043 25.50m/g

Table 2: ApR and runtime are evaluated using five different seeds. ApR is measured relative to
the asymptotic theoretical result (Barbier et al., 2013). Runtime is reported as the total clock time
per instance in seconds (s/g) or minutes (m/g). The baselines include solvers such as the random
greedy algorithm (GREEDY) (Angelini & Ricci-Tersenghi, 2019), CRA-GNN (Ichikawa, 2023), SA.
Methods that failed to produce results on V100 GPU are marked as N/A.

Method RRG (d = 20) RRG (d = 100)
# nodes 104 105 106 104 105 106

GREEDY 0.715
(0.06s/g)

0.717
(9.76s/g)

0.717
(18.96m/g)

0.666
(0.02s/g)

0.667
(3.51s/g)

0.664
(5.16m/g)

CRA-GNN 0.922
(3.483m/g) N/A N/A 0.911

(4.26m/g) N/A N/A

SA fewer 0.949
(3.00m/g)

0.840
(3.00m/g)

0.296
(3.00m/g)

0.894
(3.00m/g)

0.719
(3.00m/g)

0.190
(3.00m/g)

more 0.971
(30.00m/g)

0.943
(30.00m/g)

0.695
(30.00m/g)

0.926
(30.00m/g)

0.887
(30.00m/g)

0.194
(30.00m/g)

iSCO fewer 0.874
(2.06s/g)

0.820
(3.75s/g)

0.709
(39.06s/g)

0.841
(2.04s/g)

0.781
(10.62s/g)

0.660
(1.36m/g)

more 0.956
(11.11s/g)

0.923
(25.73s/g)

0.895
(6.27m/g)

0.916
(11.52s/g)

0.884
(1.60m/g)

0.850
(13.99m/g)

PQQA fewer 0.967
(1.32s/g)

0.971
(1.35s/g)

0.971
(5.59s/g)

0.946
(1.34s/g)

0.955
(2.36s/g)

0.956
(18.47s/g)

more 0.976
(3.77s/g)

0.980
(5.82s/g)

0.980
(47.99s/g)

0.957
(3.70s/g)

0.966
(15.69s/g)

0.966
(2.94m/g)

(Angelini & Ricci-Tersenghi, 2023; Wang & Li, 2023). Building on the observations of Angelini
& Ricci-Tersenghi (2023), we employ MIS problems on RRGs with d = 100 and d = 20 with
sizes ranging from 104 to 106 variables. Additionally, we evaluate the ApR against the asymptotic
theoretical values in the limit of an infinite number of variables (Barbier et al., 2013). If solvers
cannot run even on V100 GPU, the result is reported as N/A. We employed QQA (S = 1) using
two different step sizes: fewer steps (3,000 steps) and more steps (30,000 steps). Table 2 shows
the solution quality and runtime results across five different graphs generated with different random
seeds. The results indicate that QQA performs well in these complex and large-scale instances.
Notably, as the instance size increases, the performance gap between QQA and other methods grows,
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Table 3: ApR and runtime are evaluated on two benchmarks. Runtime is reported as the total clock
time per instance in seconds (s/g) or minutes (m/g).

Method Twitter RBtest

EPM (Karalias & Loukas, 2020) 0.924 ± 0.133 (0.17s/g) 0.788 ± 0.065 (0.23s/g)
AFF (Wang et al., 2022) 0.926 ± 0.113 (0.17s/g) 0.787 ± 0.065 (0.33s/g)
RUN-CSP (Toenshoff et al., 2021) 0.987 ± 0.063 (0.39s/g) 0.789 ± 0.053 (0.47s/g)
iSCO (Sun et al., 2023b) 1.000 ± 0.000 (1.67s/g) 0.857 ± 0.062 (1.67s/g)
PQQA (Ours) 1.000 ± 0.000 (0.53s/g) 0.868 ± 0.061 (1.51s/g)
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Figure 1: Approximation ratio comparison across different node sizes in train/test graphs.

emphasizing the superior scalability for large-scale problems, which is a primary focus of heuristic
approaches.

5.2 MAX CLIQUE

Following Sun et al. (2023b), we present results on max clique benchmarks. We use the same instances
from Karalias & Loukas (2020) and Wang & Li (2023), reporting the ApRs on synthetic graphs
generated using the RB model (Xu et al., 2007) and a real-world Twitter graph (Jure, 2014). Table 3
shows the results of PQQA, which was run with 3,0000 steps and 1,000 parallel runs on each instance,
compared to other learning-based methods trained on graphs from the same distribution. PQQA
achieves significantly better solution quality while requiring only a minimal increase in runtime,
considering that PQQA is executed without any prior training. Moreover, PQQA demonstrates better
speed-quality tradeoffs than iSCO.

5.3 MAX CUT

Table 4: Maxcut results on
Optsicom.

Method ApR↑
SDP 0.526

Approx 0.780
S2V-DQN 0.978

iSCO 1.000
PQQA 1.000

We conduct max cut experiments following the same setup as in Sun
et al. (2023b); Dai et al. (2021), where the benchmarks include ran-
dom graphs and corresponding solutions obtained by running Gurobi
for 1 hour. Specifically, the benchmarks includes both ERGs and
Barabási–Albert (BA) graphs, with sizes ranging from 16 to 1,100
nodes and up to 91,239 edges. PQQA was run with 1,000 parallel
processes and 30,000 steps for each instance. We report ApRs against
the solutions provided by Gurobi and compare against the LAG (Dai
et al., 2021) with either supervised learning-based approach (Li et al.,
2018) denoted as LAG or unsupervised learning-based approach (Kar-
alias & Loukas, 2020) denoted as LAG-U, and classical approach like
semidefinite programming and approximated heuristics. Figure 1 shows that PQQA achieves optimal
solutions in most cases and significantly outperforms Gurobi on large instances. PQQA performs
comparably to iSCO. We also test PQQA on realistic instances (Khalil et al., 2017) which includes
10 graphs from the Optsicom project where edge weights are in {−1, 0, 1}. Table 4 shows the results
show that PQQA can achieve the optimal solution in 1,000 steps, with a runtime of less than 5 second.
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Table 5: Balanceness are Graph partition are evaluated on 5 benchmarks.
Metric Methods VGG MNIST-conv ResNet AlexNet Inception-v3

Edge cut ratio↓
hMETIS 0.05 0.05 0.04 0.05 0.04
GAP 0.04 0.05 0.04 0.04 0.04
iSCO 0.05 0.04 0.05 0.05 0.05
PQQA 0.04 0.04 0.03 0.04 0.03

Balanceness↑
hMETIS 0.99 0.99 0.99 0.99 0.99
GAP 0.99 0.99 0.99 0.99 0.99
iSCO 0.99 0.99 0.99 0.99 0.99
PQQA 0.99 0.99 0.99 0.99 0.99

Table 6: Numerical results for COLOR graphs (Trick, 2002) are presented. For a specified number of
colors, we report the cost, defined as the number of conflicts in the best coloring obtained by PQQA,
PI-GCV, PI-SAGE (learning-based methods), and Tabucol (a tabu search-based method), sourced
from Schuetz et al. (2022b); Yang et al. (2021).

Graph Colors Tabucol GNN PI-GCN PI-SAGE PQQA
anna 11 0 1 1 0 0
jean 10 0 0 0 0 0
myciel5 6 0 0 0 0 0
myciel6 7 0 0 0 0 0
queen5-5 5 0 0 0 0 0
queen6-6 7 0 4 1 0 0
queen7-7 7 0 15 8 0 0
queen8-8 9 0 7 6 1 0
queen9-9 10 0 13 13 1 0
queen8-12 12 0 7 10 0 0
queen11-11 11 20 33 37 17 11
queen13-13 13 35 40 61 26 14

5.4 BALANCED GRAPH PARTITION

We next demonstrate the results of applying PQQA to general discrete variables, using the general-
ization of entropy detailed in Appendix 18. Following Sun et al. (2023b); Nazi et al. (2019), PQQA
is evaluated on balanced graph partition, including five different computation graphs from widely
used deep neural networks. The largest graph, Inceptionv3 (Szegedy et al., 2017), consists of 27,144
nodes and 40,875 edges. The results are compared with iSCO, GAP (Nazi et al., 2019), which is a
specialized learning architecture for graph partitioning, and hMETIS (Karypis & Kumar, 1999), a
widely used framework for this problem. We use the edge cut ratio and balanceness for evaluation
metrics, where a lower edge cut ratio indicates better performance, while a higher balanceness is
preferable. Further details on these metrics and specific experimental conditions are provided in
Appendix D.1. Table 5 shows that PQQA achieves better results with near-perfect balanceness and a
lower cut ratio. Although PQQA required approximately 20 minutes for the largest graph, GAP, the
fastest method, was completed in around 2 minutes. However, PQQA consistently achieved a lower
edge cut ratio than GAP. Furthermore, with iSCO taking approximately 30 minutes to run, PQQA
stands out as the faster approach, while still achieving a better edge cut ratio.

5.5 GRAPH COLORING
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Figure 2: Comparison of SA and
single-run QQA (S=1).

We evaluate PQQA on the graph coloring problem. Following
the experimental setup of Schuetz et al. (2022b), we report
the results on the publicly available COLOR dataset (Trick,
2002), commonly used in graph-based benchmark studies. For
more detail on the dataset properties and specific experimental
conditions, refer to Appendix D.1. The evaluation metric is the
cost, representing the number of conflicts in the best coloring
solution. We compare PQQA against PI-GCV and PI-SAGE
(Schuetz et al., 2022b), both general-purpose unsupervised
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Figure 3: Ablation study on (left) annealing schedule speed, (middle) initial γ, and (right) communi-
cation strength α. The shaded area denotes the standard deviation across five random seeds.

learning based solvers, and Tabucol (Yang et al., 2021), a tabu search-based heuristic that performs
local search within a tabu list. As shown in Table 6 shows that PQQA achive the best results.

5.6 ABLATION STUDY

Detail Comparison with SA. We compare our method to classical SA with Gibbs sampling. Figure
2 shows the ApR curves for an MIS on the largest ERGs in Section 5.1 as a function of the number
of sampling steps. The results are reported as the mean and standard deviation across five random
seeds. This experiment excluded communication between parallel runs to isolate the impact of
gradient-based transitions, i.e., S = 1. The results demonstrate that QQA achieves a speedup of over
104 times in the number of steps. Moreover, using gradient information improves the stability of the
solution process.

Schedule Speed and Initial γ. We conduct an ablation study to evaluate the impact of different γ
schedules and initial values, γ0. As in SA, QQA with a smaller initial value γ0 and slower annealing
achieves better results. Thus, we examine how the solution quality varies across different parameter
settings. For the MIS on the largest ER graph in Section 5.1, Figure 3 (left) shows the independent
set size across various annealing speeds, with the initial γ0 fixed at −2. The annealing follows a
linear schedule determined by the maximum number of steps, where fewer steps correspond to faster
annealing. The results show no performance degradation, even with faster annealing. Indeed, QQA
with 103 steps maintains an ApR around 1.00, outperforming other learning-based solvers. Figure 3
(middle) shows the results for different γ0 values under the same annealing speed, indicating that
skipping the annealing phase when γ < 0 results in poor outcomes. Furthermore, the results are
consistent when γ0 is set below −2.

Communication Strength. An important contribution of this study is the introduction of commu-
nication between parallel chains, which was not discussed in iSCO (Sun et al., 2023b). Here, we
conduct an ablation study on the communication strength, α in Eq. (10). The number of parallel
chains is set to S = 1,000, and the performance is evaluated on the MIS on small ERGs, as described
in Section 5.1 across various α values. Figure 3 shows the existence of the optimal α values, leading
to the best ApR. Additionally, increasing α enhances convergence speed while maintaining perfor-
mance comparable to the case of α = 0. This improvement arises from the effect of the STD term in
Eq. (10), which implicitly drives the relaxed variables toward 0 or 1. Additional theoretical insights
are detailed in Appendix A.2.

6 CONCLUSION

PQQA, which integrates QQA, gradient-based updates, and parallel run communication, demonstrates
performance comparable to or superior to iSCO and learning-based solvers across various CO
problems. Notably, for larger problems, PQQA achieves a superior speed-quality trade-off. This
suggests that future research on learning-based methods should carefully evaluate their efficiency
compared to our GPU-based, general-purpose approach. Future work includes extending PQQA to
the mixed-integer optimization and sampling tasks.
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A DERIVATION AND ADDITIONAL THEORETICAL RESULTS

A.1 DERIVATION OF THEOREM 3.1

In this section, we present the proof of Theorem 3.1.
Theorem A.1. Under the assumption that the objective function l̂(p;C) is bounded within the
domain [0, 1]N , the Boltzmann distribution limγ→+∞ limT→0 P̂ (σ(w); γ, T ) converges to a uniform
distribution over the optimal solutions of Eq. (2), i.e., x∗ ∈ argminxl(x;C,λ). Additionally,
limγ→−∞ limT→0 P̂ (σ(w); γ, T ) converges to a single-peaked distribution

∏N
i=1 δ(σ(wi)− 1/2).

Proof. We begin by recalling the definition of P̂ (σ(w); γ, T ):

P̂ (σ(w); γ, T ) =
1

Z(γ, T )
e−

1
T r̂(σ(w);C,λ,γ), Z(γ, T ) =

∫ N∏
i=1

dwie
− 1

T r̂(σ(w);C,λ,γ). (12)

where r̂(σ(w);C,λ, γ) is defined as

r̂(σ(w);C,λ, γ) = l̂(σ(w);C,λ) + γs(σ(w)), (13)
where γ ∈ R and s(σ(w)) is a convex function that takes its minimum value of 0 when σ(w) ∈
{0, 1}N and a maximum value when σ(w) = 1N/2. The set of global minimizers of r̂(σ(w);C,λ, γ)
is defined as:

Ω∗
γ = argminw∈RN r̂(σ(w);C,λ, γ).

The remainder of the state space is denoted by Ωγ = RN \Ω∗
γ . In the limit as T → +0, the following

holds:

lim
T→+0

P̂ (σ(w); γ, T ) =
e−

1
T r̂(σ(w);C,λ,γ)∫ ∏N

i=1 dwie−
1
T r̂(σ(w);C,λ,γ)

,

= lim
T→+0

e
1
T (r̂(σ(w∗);C,λ,γ)−r̂(σ(w);C,λ,γ))∫ ∏N

i=1 dwie
1
T (r̂(σ(w∗);C,λ,γ)−r̂(σ(w);C,λ,γ))

= lim
T→+0

1∫ ∏N
i=1 dwie

1
T (r̂(σ(w∗);C,λ,γ)−r̂(σ(w);C,λ,γ))

δ(w −w∗)

+ lim
T→+0

e
1
T (r̂(σ(ŵ);C,λ,γ)−r̂(σ(w);C,λ,γ))∫ ∏N

i=1 dwie
1
T (r̂(σ(ŵ);C,λ,γ)−r̂(σ(w);C,λ,γ))

δ(w − ŵ)

= lim
T→+0

1∫ ∏N
i=1 dwi

∑
w∗∈Ω∗

γ
δ(w −w∗)

δ(w −w∗)

=
1

|Ω∗
γ |
δ(w −w∗),

where w∗ ∈ Ω∗
γ and ŵ ∈ Ωγ . Here, we applied the property that limT→+0 e

x/T = 1 when x = 0, and
limT→+0 e

x/T = 0 when x < 0. Therefore, in the limit as T → +0, the distribution P̂ (σ(w); γ, T )
converges to a uniform distribution over the set of global minimizers Ω∗

γ of Eq. (13). Given that
s(σ(w)) is a convex function with minimum value 0 when σ(w) ∈ {0, 1}N and maximum value
at 1/2, in the limit as γ → +∞, the entropy term s(σ(w)) becomes dominant. Consequently, the
state space is constrained to the set σ(w) ∈ {0, 1}N where s(σ(w)) = 0. Minimizing l̂(σ(w);C,λ)
within this constrained space yields:

lim
γ→+∞

Ω∗
γ = argminx∈{0,1}N l(x;C,λ). (14)

Thus, in the limit as γ → ∞ followed by T → +0, P̂ (σ(w); γ, T ) converges to a uniform distribution
over the set of global minimizers of the discrete objective function l(x;C,λ). Conversely, as
γ → −∞, the entropy s(σ(w)) reaches its maximum value when σ(w) = 1N/2, leading to the
minimization of r̂(w;C,λ, γ) at Ω∗

γ = {1N/2}. Hence, we have:

lim
γ→−∞

lim
T→+0

P̂ (σ(w); γ, T ) =

N∏
i=1

δ(σ(wi)− 1/2). (15)

This concludes the proof.
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A.2 ADDITIONAL THEORETICAL RESULTS

The following proposition holds for the communication term in Eq. (10).

Proposition A.2. The function
∑N

i=1 STD[{σ(w
(s)
i )}Ss=1] is maximized when, for any i ∈ [N ], the

set {σ(w(s)
i )}Ss=1 consists of S/2 zeros and S/2 ones.

Proof. Consider the expression STD[{σ(w(s))}Ss=1], which can be expanded as:

N∑
i=1

STD[{σ(w(s)
i )}Ss=1] =

N∑
i=1

√√√√ S∑
s=1

(
σ(w

(s)
i )− 1

S

S∑
s=1

σ(w
(s)
i )

)2

.

Thus, it suffices to solve the following maximization problem for any i ∈ [N ]:

max
{σ(w(s)

i )}S
s=1

S∑
s=1

(
σ(w

(s)
i )− 1

S

S∑
s=1

σ(w
(s)
i )

)2

.

This problem can be addressed using the method of Lagrange multipliers. Given that σ(w(s)) ∈
[0, 1]N , we define the Lagrangian as:

L({σ(w(s)
i ), λs, νs}Ss=1) =

S∑
s=1

(
σ(w

(s)
i )− 1

S

S∑
s′=1

σ(w
(s′)
i )

)2

+

S∑
s=1

λs(−σ(w
(s)
i )) +

S∑
s=1

νs(1− σ(w
(s)
i )),

where λs and νs are the Lagrange multipliers corresponding to the constraints 0 ≤ σ(w
(s)
i ) ≤ 1. The

stationarity condition gives:

∂L({σ(w(s)
i ), λs, νs}Ss=1)

∂σ(w
(s)
i )

= 2

(
σ(w

(s)
i )− 1

S

S∑
s′=1

σ(w
(s′)
i )

)(
1− 1

S

)

− 2

S

∑
t̸=s

(
σ(w

(t)
i )− 1

S

S∑
s′=1

σ(w
(s′)
i )

)
− λs + νs

= 2

(
σ(w

(s)
i )− 1

S

S∑
s′=1

σ(w
(s′)
i )

)
− λs + νs = 0.

From dual feasibility, λs ≥ 0 and νs ≥ 0 for any s ∈ [S]. Moreover, complementary slackness
implies λsσ(w

(s)
i ) = 0 and νs(σ(w

(s)
i ) − 1) = 0 for any s ∈ [S]. Considering the case where

σ(w
(s)
i ) = 0, λs > 0 due to complementary slackness, and hence σ(w

(s)
i ) = 0. On the other hand,

if σ(w(s)
i ) = 1, then νs > 0, again due to complementary slackness, which forces σ(w

(s)
i ) = 1.

For the intermediate case where 0 < σ(w
(s)
i ) < 1, both λs and νs must be zero, implying that

σ(w
(s)
i ) =

∑
s′ σ(w

(s′)
i )/S. This means that all σ(w(s)

i ) are equal, leading to the variance being
minimized to zero. To achieve the maximum variance, consider the scenario where K out of S
variables are set to 0 and the remaining S −K variables are set to 1. The variance is then computed
as:

S∑
s=1

(
σ(w

(s)
i )− 1

S

S∑
s=1

σ(w
(s)
i )

)2

=
K

S
·
(
0− K

S

)2

+
S −K

S
·
(
1− K

S

)2

=
K(S −K)

S2
.

To maximize this quadratic function, differentiate with respect to K:

d

dK

(
K(S −K)

S2

)
=

S − 2K

S2
.
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Setting this derivative to zero yields K = S/2. For even S, the maximum variance is:

K(S −K)

S2
=

(
S
2

) (
S
2

)
S2

=
1

4
.

For odd S, K is either ⌊S/2⌋ or ⌈S/2⌉. In both cases, the maximum variance is:

⌊S
2 ⌋ · ⌈

S
2 ⌉

S2
=

(S − 1)(S + 1)

4S2
=

S2 − 1

4S2
.

As S increases, the variance approaches 1/4, consistent with the even case.

This result suggests that the communication term also favors binary values for σ(w) ∈ {0, 1}N .
Indeed, as shown in the ablation study in Figure 3 (right), increasing the strength of the communication
term α accelerates convergence. This may be due to the communication term further reinforcing
binary variables, in addition to the entropy term.

B GENERALIZATION TO DISCRETE OPTIMIZATION PROBLEMS

In this section, we generalize PQQA, defined for binary optimization, to a general discrete optimiza-
tion problem. Specifically, we consider the following optimization problem:

min
x∈{1,...,K}N

l(x;C,λ), (16)

where C represents the characteristic parameters of the problem, and λ denotes the penalty coefficients.
In this case, each discrete variable is relaxed to output probabilities for each discrete value, denoted
as σ(W ), where W ∈ RN×K and the function σ satisfies

∑K
k=1 σ(Wik) = 1 for all i ∈ [N ], with

the softmax function being a typical choice for σ. We then introduce an entropy term as follows:
min

W∈RN×K
l(σ(W );C,λ) + γsK(σ(W )), (17)

where σ(W ) takes its maximum value of 1/K for all i ∈ [N ] and k ∈ [K], and for all i ∈ [N ], there
exists a k such that σ(Wik) = 1 and σ(Wik′) = 0 for all k′ ∈ [K] \ {k}. For example, we can
consider the following entropy, which generalizes the α-entropy:

sK(σ(w)) =

N∑
i=1

{
1− 1

(K − 1)((K − 1)α−1 + 1)

K∑
k=1

(Kσ(Wik)− 1)α

}
, α ∈ {2n | n ∈ N}.

(18)
where γ ∈ R is a penalty parameter. This entropy has the following properties:
Proposition B.1. The entropy defined in Eq. (18) is equivalent with Eq. (7) when K = 2.

Proof. When K = 2, Eq. (18) can be written as

s2(σ(W )) =

N∑
i=1

{
1− 1

2
(2σ(Wi1)− 1)α − 1

2
(2σ(Wi2)− 1)α

}
.

From the properties of σ, for any i ∈ [N ], we have σ(Wi1) = 1− σ(Wi2). Using this relationship,
we can rewrite the expression as follows:

s2
(
{σ(Wi1)}Ni=1

)
=

N∑
i=1

{
1− 1 + (−1)α

2
(2σ(Wi1)− 1)α

}
.

Finally, by noting that α ∈ {2n | n ∈ N} and redefining w = (Wi1)
N
i=1, we obtain s2(σ(w)) =

s(σ(w)).

Next, we generalize the following general discrete optimization problem:
min

x∈{α1,...,αK}
l(x;C,λ), (19)

where α = (αk)
K
k=1 ∈ RK . When applying PQQA to this problem, we use one-hot encoding to

express the probability of αk occurring for each i ∈ [N ] as σ(Wik), and relax the discrete variable xi

as xi = α⊤σ(Wi:). To encode this with one-hot encoding, we also employ the entropy sK(σ(W ))
in Eq. (18). Moreover, PQQA can be generalized to mixed-integer optimization problems by adding
the entropy term only to the integer variables.

17
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C ADDITIONAL IMPLEMENTATION DETAILS

C.1 REASONS FOR NOT USING THE SIGMOID FUNCTION

We provide an intuitive explanation for avoiding the use of the sigmoid function, σ(x) = 1/(1+ e−x)
when mapping w to the range [0, 1]. Given the characteristics of the sigmoid function, w tends to take
on extremely large positive or small negative values when σ(w) is almost binary value. This makes it
challenging for gradient-based methods to transition w from very large positive values to very small
negative values and vice versa once the variable approaches discrete values. Indeed, experimental
results indicate that the sigmoid function performs less effectively than the clamp function. Further
exploration of transformations tailored for CO beyond the clamp function remains for future research.

C.2 ANNEALING SCHEDULE

We linearly increase γ from γmin to γmax over the total steps. In general, we set γmin = −2 and
γmax = 0.1. For the Max Cut problem, γmin = −20 was used for larger graphs, while γmin = −5
was applied for the remaining graphs.

C.3 CONFIGURATION OF OPTIMIZER

The learning rate was set to an appropriate value from {1, 0.1, 0.01}, depending on the specific
problem. The weight decay was fixed at 0.01 and the temperature was fixed as T = 0.001.

C.4 TRANSFORMATION FOR GENERAL DISCRETE VARIABLES

For discrete variables, each row i ∈ [N ] of the updated matrix W ∈ RN×K is transformed as follows:

σ(Wik) =
Clamp(Wik)∑K

k′=1 Clamp(Wik′)
, ∀k ∈ [K]. (20)

D ADDITIONAL EXPERIMENT DETAILS

D.1 ENERGY FUNCTION OF BENCHMARK PROBLEMS

In this section we provide the actual energy function we used for each of the problems we exper-
imented in the main paper. For a graph G = (V,E) we label the nodes in V from 1 to N . The
adjacency matrix is represented as A. For a weighted graph we simply let Aij denote the edge
weight between node i and j. For constraint problems, we follow Sun et al. (2022) to select penalty
coefficient λ as the minimum value of λ such that x∗ = argminx∈{0,1}N l(x;λ, C) is achieved at x∗

satisfying the original constraints. Such a choice of the coefficient guarantees the target distribution
converges to the optimal solution of the original CO problems while keeping the target distribution as
smooth as possible.

Max Independent Set. The MIS problem is a fundamental NP-hard problem (Karp, 2010) defined
as follows. Given an undirected graph G(V,E), an independent set (IS) is a subset of nodes I ∈ V
where any two nodes in the set are not adjacent. The MIS problem attempts to find the largest IS,
which is denoted I∗. In this study, ρ denotes the IS density, where ρ = |I|/|V |. To formulate the
problem, a binary variable xi is assigned to each node i ∈ V . Then the MIS problem is formulated as
follows:

min
x∈{0,1}N

−
N∑
i=1

cixi, s.t. xixj = 0, ∀(i, j) ∈ E. (21)

We use the corresponding energy function in the following quadratic form:

l(x;A, λ) = −c⊤x+ λ
x⊤Ax

2
. (22)

where the first term attempts to maximize the number of nodes assigned 1, and the second term
penalizes the adjacent nodes marked 1 according to the penalty parameter λ. In our experiments
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c = 1N and we use λ = 2. First, for every d, a specific value ρ∗d, which is dependent on only the
degree d, exists such that the independent set density |I∗|/|V | converges to ρ∗d with a high probability
as N approaches infinity (Bayati et al., 2010). Second, a statistical mechanical analysis provides
the typical MIS density ρTheory

d and we clarify that for d > 16, the solution space of I undergoes a
clustering transition, which is associated with hardness in sampling (Barbier et al., 2013) because
the clustering is likely to create relevant barriers that affect any algorithm searching for the MIS I∗.
Finally, the hardness is supported by analytical results in a large d limit, which indicates that, while
the maximum independent set density is known to have density ρ∗d→∞ = 2 log(d)/d, to the best
of our knowledge, there is no known algorithm that can find an independent set density exceeding
ρalgd→∞ = log(d)/d (Coja-Oghlan & Efthymiou, 2015).

Max Clique. The max clique problem is equivalent to MIS on the dual graph. The max clique the
integer programming formulation as

min
x∈{0,1}N

−
N∑
i=1

cixi, s.t. xixj = 0, ∀(i, j) /∈ E. (23)

The energy function is expressed as

l(x;A, λ) = −c⊤x+
λ

2

(
1⊤
Nx(1⊤

Nx− 1)− x⊤Ax
)
, (24)

where 1N denotes the vector (1, . . . , 1)⊤ ∈ RN . In our experiments c = 1N and we use λ = 2.

Max Cut. The MaxCut problem is also a fundamental NP-hard problem (Karp, 2010) with practical
application in machine scheduling (Alidaee et al., 1994), image recognition (Neven et al., 2008)
and electronic circuit layout design (Deza & Laurent, 1994). Given an graph G = (V,E), a cut set
C ∈ E is defined as a subset of the edge set between the node sets dividing (V1, V2 | V1 ∪ V2 =
V, V1 ∩ V2 = ∅). The MaxCut problems aim to find the maximum cut set, denoted C∗. Here, the cut
ratio is defined as ν = |C|/|V|, where |C| is the cardinality of the cut set. To formulate this problem,
each node is assigned a binary variable, where xi = 1 indicates that node i belongs to V1, and xi = 0
indicates that the node belongs to V2. Here, xi + xj − 2xixj = 1 holds if the edge (i, j) ∈ C. As a
result, we obtain the following:

min
x∈{0,1}N

−
∑

(i,j)∈E

Aij

(
1− (2xi − 1)(2xj − 1)

2

)
(25)

Due to no constraints on this problem, the energy function can be expressed as

l(x;A) = −
∑

(i,j)∈E

Aij

(
1− (2xi − 1)(2xj − 1)

2

)
. (26)

Balanced Graph Partition. The balanced graph partition is formulated as follows:

min
x∈{0,1,...,k}N

k∑
s=1

∑
(i,j)∈E

I [xi ̸= xj&&(xi = s∥xj = s)] + λ

k∑
s=1

(
d

k
−

N∑
i=1

I(xi = s)

)2

(27)

where k is the number of partitions. The goal of graph partitioning is to achieve balanced partitions
while minimizing the edge cut. The quality of the resulting partitions is assessed using the following
metrics: (1) Edge cut ratio, defined as the ratio of edges across partitions to the total number of edges,
and (2) Balancedness, calculated as one minus the difference between the number of nodes in each
partition and the ideal partition size as follows:

Balanceness = 1−
k∑

s=1

(
1

k
−
∑d

i=1 I(xi = s)

N

)2

. (28)
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Table 7: Synthetic data statistics.
MIS max clique maxcut

Name ER-[700-800] ER-[9000-11000] RB ER BA

# max nodes 800 10,915 475 1,100 1,100
# max edges 47,885 1,190,799 90,585 91,239 4,384
# instances 128 16 500 1,000 1,000

Table 8: Synthetic data statistics of graph coloring.
Graph # nodes # edges colors

anna 138 493 11
jean 80 254 10
myciel5 47 236 6
myciel6 95 755 7
queen5-5 25 160 5
queen6-6 36 290 7
queen7-7 49 476 7
queen8-8 64 728 9
queen9-9 81 1056 10
queen8-12 96 1368 12
queen11-11 121 1980 11
queen13-13 169 3328 13

Table 9: Real-world data statistics.
MIS Max Clique Maxcut Balanced Graph Partition

Name Satlib Twitter Optsicom Mnist Vgg Alexnet Resnet Inception

# max nodes 1,347 247 125 414 1,325 798 20,586 27,114
# max edges 5,978 12,174 375 623 2,036 1,198 32,298 40,875
# instances 500 196 10 1 1 1 1 1

Graph Coloring. The graph coloring problem is formulated as follows:

min
x∈{0,1,...,K}N

−
∑

(i,j)∈E

I[xi = xj ]

 (29)

where K is a number of color. Following Schuetz et al. (2022b), we evaluate several benchmark in-
stances from the COLOR dataset (Trick, 2002) for graph coloring. These instances can be categorized
as follows:

(1) Book graphs: For a given work of literature, a graph is created with each node representing
a character. Two nodes are connected by an edge if the corresponding characters encounter
each other in the book. This type of graph is publicly available for Tolstoy’s Anna Karenina
(anna), and Hugo’s.

(2) Myciel graphs: This family of graphs is based on the Mycielski transformation. The Myciel
graphs are known to be difficult to solve because they are triangle free (clique number 2) but
the coloring number increases in problem size.

(3) Queens graphs: This family of graphs is constructed as follows. Given an n by n chessboard,
a queens graph is a graph made of n2 nodes, each corresponding to a square of the board.
Two nodes are then connected by an edge if the corresponding squares are in the same row,
column, or diagonal. In other words, two nodes are adjacent if and only if queens placed on
these two nodes can attack each other in a single move. In all cases, the maximum clique in
the graph is no more than n, and the coloring value is lower-bounded by n.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: ApR (size of independent set) and runtime are evaluated on three benchmarks provided by
DIMES (Qiu et al., 2022). The ApR is assessed relative to the results obtained by KaMIS. Runtime is
reported as the total clock time, denoted in seconds (s), minutes (m), or hours (h). Methods that fail
to produce results within 10 times the time limit of DIMES are marked as N/A.

Method Type SATLIB ER-[700-800] ER-[9000-11000]
ApR
(size) Time

ApR
(size) Time

ApR
(size) Time

KaMIS OR 1.000
(425.96) 37.58m 1.000

(44.87) 52.13m 1.000
(381.31) 7.6h

Gurobi OR 1.000
(425.95) 26.00m 0.922

(41.38) 50.00m N/A N/A

Intel
(Li et al., 2018)

SL+TS N/A N/A 0.865
(38.80) 20.00m N/A N/A

SL+G 0.988
(420.66) 23.05m 0.777

(34.86) 6.06m 0.746
(284.63) 5.02m

DGL
(Böther et al., 2022)

SL+TS N/A N/A 0.830
(37.26) 22.71m N/A N/A

LwD
(Ahn et al., 2020)

RL+S 0.991
(422.22) 18.83 0.918

(41.17) 6.33m 0.907
(345.88) 7.56m

DIMES
(Qiu et al., 2022)

RL+G 0.989
(421.24) 24.17m 0.852

(38.24) 6.12m 0.841
(320.50) 5.21m

RL+S 0.994
(423.28) 20.26m 0.937

(42.06) 12.01m 0.873
(332.80) 12.51m

iSCO
(Sun et al., 2023b)

fewer 0.995
(423.66) 5.85m 0.998

(44.77) 1.38m 0.990
(377.5) 9.38m

more 0.996
(424.16) 15.27m 1.006

(45.15) 5.56m 1.008
(384.20) 1.25h

PQQA (Ours)

fewer 0.993
(423.018) 7.34m 1.004

(44.91) 44.72s 1.027
(391.50) 5.83m

more 0.994
(423.57) 1.21h 1.005

(45.11) 7.10m 1.039
(396.06) 58.48m

fewer 0.996
(424.06) 1.25h 1.007

(45.20) 6.82m 1.033
(393.94) 41.26m

more 0.996
(424.44) 12.46h 1.009

(45.29) 1.14h 1.043
(397.75) 6.80h

D.2 BENCHMARK DETAILS

We present additional details on our experiments. First, Table 7 and Table 8 shows the statistics of
the synthetic datasets, including the maximum number of nodes and edges per graph and the number
of test instances. Table 9 provides the corresponding statistics for the real-world graphs.

E ADDITIONAL RESULTS

E.1 MIS

In this section, we present additional information in Table 10, including references for each method
and the sizes of the maximum independent sets obtained, alongside the MIS results discussed in
Table 1.

F DISCUSSION ON LIMITATION

Sampling-based solvers, including PQQA, iSCO (Sun et al., 2023b), SA (Kirkpatrick et al., 1983),
and UL-based solvers (Wang et al., 2022; Wang & Li, 2023; Schuetz et al., 2022a;b; Ichikawa, 2023),
utilize the penalty method described in Eq. (2) of the main text to convert constrained combinatorial
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optimization (CO) problems into unconstrained ones. However, when finding even a single feasible
solution becomes challenging, the formulation in Eq. (2) may fail to find one.

To address this issue, PQQA leverages large-scale parallel processing on GPUs to solve multiple
problems with varying λ values simultaneously. Future work will thoroughly investigate how this
parallel processing capability, combined with the enhanced search performance of PQQA, mitigates
this limitation. Additionally, combining PQQA with exact solvers such as Gurobi to tackle these
issues presents an interesting avenue for future research.
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