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Abstract

Geocoding, the task of converting unstructured001
text to structured spatial data, has recently seen002
progress thanks to a variety of new datasets,003
evaluation metrics, and machine-learning algo-004
rithms. We provide a comprehensive survey005
to review, organize and analyze recent work006
on geocoding (also known as toponym resolu-007
tion) where the text is matched to geospatial008
coordinates and/or ontologies. We summarize009
the findings of this research and suggest some010
promising directions for future work.011

1 Introduction012

Geocoding, also called toponym resolution or to-013

ponym disambiguation, is the subtask of geopars-014

ing that disambiguates place names in text. The015

goal of geocoding is, given a textual mention of a016

location, to choose the corresponding geospatial co-017

ordinates, geospatial polygon, or entry in a geospa-018

tial database. Geocoders must handle place names019

(known as toponyms) that refer to more than one ge-020

ographical location (e.g., Paris can refer to a town021

in the state of Texas in the United States, or the cap-022

ital city of France), and geographical locations that023

may be referred to by more than one name (e.g.,024

Leeuwarden and Ljouwert are two names for the025

same city in the Netherlands), as shown in fig. 1.026

Geocoding plays a critical role in tasks such as027

tracking the evolution and emergence of infectious028

diseases (Hay et al., 2013), analyzing and searching029

documents by geography (Bhargava et al., 2017),030

geospatial analysis of historical events (Tateosian031

et al., 2017), and disaster response mechanisms032

(Ashktorab et al., 2014; de Bruijn et al., 2018).033

Prior surveys (Leidner, 2007; Gritta et al., 2017)034

predate modern neural network approaches to035

geocoding. The number of geocoding datasets has036

also doubled since 2017, and new geocoding algo-037

rithms have been introduced with each new dataset.038

The field would thus benefit from a comprehensive039

survey and critical evaluation of the currently avail- 040

able datasets, evaluation metrics, and geocoding 041

algorithms. Our contributions are: 042

• the first survey to review deep learning ap- 043

proaches to geocoding 044

• comprehensive coverage of geocoding sys- 045

tems, which increased by 50% in the last 4 046

years 047

• comprehensive coverage of annotated geocod- 048

ing datasets, which increased by 100% in the 049

last 4 years 050

2 Background 051

An early work on geocoding, Amitay et al. (2004), 052

identifies two important types of ambiguity: A 053

place name may also have a non-geographic mean- 054

ing, such as Turkey the country vs. turkey the ani- 055

mal, and two places may have the same name, such 056

as the San Jose in California and the San Jose in 057

Costa Rica. The former is a challenge during geo- 058

tagging, i.e., finding the place names, while the lat- 059

ter is a challenge during geocoding, i.e., matching 060

the place names to geospatial coordinates, geospa- 061

tial polygons, or entries in a geospatial database. 062

To the best of our knowledge, the first formal 063

survey of geocoding is the PhD thesis of Leidner 064

(2007). The thesis found that most geocoding meth- 065

ods were based on combining natural language pro- 066

cessing techniques, such as lexical string matching 067

or word sense matching, with geographic heuristics, 068

such as spatial-distance minimum and population 069

maximum. Most geocoders studied in this thesis 070

were rule-based. 071

Gritta et al. (2017) reviewed both geotagging 072

and geocoding, while proposing a new dataset, 073

WikToR. The survey portion of this article com- 074

pared a variety of datasets for geoparsing, explored 075

heuristics of rule-based and feature-based machine 076

learning-based geocoders, summarized evaluation 077

metrics, and classified common errors cases from 078
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Figure 1: An illustrative example of geocoding challenges. One toponym (Paris) can refer to more than one
geographical location (a town in the state of Texas in the United States or the capital city of France in Europe), and
a geographical location may be referred to by more than one toponym (Leeuwarden and Ljouwert are two names
for the same city in the Netherlands).

several geocoders (misspellings, case sensitivity,079

processing fictional and historical text presents,080

etc.). Gritta et al. (2017) concluded that future081

geoparsers would need to utilize semantics and082

context, not just syntax and word forms as the083

geocoders of the time.084

Geocoding research since these previous sur-085

veys has changed in several important ways. It086

has indeed incorporated more semantics, especially087

through new deep learning methods. It has pivoted088

from generating database entries to directly gener-089

ating geospatial polygons. And some of the most090

recent work goes beyond explicit place names to091

inferring polygons for place descriptions like be-092

tween the towns of Adrano and S. Maria di Licodia093

(Laparra and Bethard, 2020).094

3 Methodology095

We searched for literature using the Google Scholar096

and Semantic Scholar search engines. We re-097

trieved papers matching any of the keyword queries:098

geocoding, geoparsing, geolocation, toponym res-099

olution, toponym disambiguation, or spatial infor-100

mation extraxtion. We manually excluded papers101

that matched these keywords but were not about102

geocoding. For example, we excluded papers that103

tried to match a full document or microblog post104

to a single location, rather than trying to match105

each individual place name to a location. We also106

filtered most papers published before 2010, as they107

have been covered thoroughly by prior surveys,108

though we still included influential older papers109

that were highly cited by the papers we collected 110

via the process above. In total, we reviewed more 111

than 60 papers and included more than 30 of them 112

in this survey. 113

4 Geocoding Datasets 114

Many geocoding corpora have been proposed, 115

drawn from different domains, linking to differ- 116

ent geographic databases, with different forms of 117

geocoding labels, and with varying sizes in terms 118

of both articles/messages and toponyms. Table 1 119

summarizes these datasets, and the following sec- 120

tions walk through some of the dimensions over 121

which the datasets vary. 122

4.1 Domains 123

The news domain is the most common target for 124

geocoding corpora, covering sources like broad- 125

cast conversation, broadcast news, and news mag- 126

azines. Examples include the ACE 2005 English 127

SpatialML Annotations (ACS, Mani et al., 2010)1, 128

the Local Global Lexicon (LGL, Lieberman et al., 129

2010), CLUST (Lieberman and Samet, 2011), TR- 130

NEWS (Kamalloo and Rafiei, 2018), GeoVirus 131

(Gritta et al., 2018), and GeoWebNews (Gritta et al., 132

2019). Though all these datasets include news text, 133

they vary in what toponyms are included. For ex- 134

ample, LGL is based on local and small U.S. news 135

sources with most toponyms smaller than a U.S. 136

1https://catalog.ldc.upenn.edu/
LDC2008T03
https://catalog.ldc.upenn.edu/LDC2011T02
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Corpus Domain Geographic
Database Label Type Articles /

Messages Toponyms

ACS, Mani et al. (2010) News GeoNames Point 428 4783
LGL, Lieberman et al. (2010) News GeoNames Point & GeoNamesID 588 4783
CLUST, Lieberman and Samet (2011) News GeoNames Point & GeoNamesID 1082 11564
Zhang and Gelernter (2014) Twitter GeoNames Point & GeoNamesID 956 1393
WOTR, DeLozier et al. (2016) Historical OpenStreetMap Point & Polygon 9653 10380
WikTOR, Gritta et al. (2017) Wikipedia GeoNames Point 5000 25000
TR-NEWS, Kamalloo and Rafiei (2018) News GeoNames Point & GeoNamesID 118 1274
GeoCorpora, Wallgrün et al. (2018) Twitter GeoNames Point & GeoNamesID 211 2966
GeoVirus, Gritta et al. (2018) News GeoNames Point 229 2167
GeoWebNews, Gritta et al. (2019) News GeoNames Point & GeoNamesID 200 5121
SemEval2019, Weissenbacher et al. (2019) Scientific GeoNames Point & GeoNamesID 150 8360
GeoCoDe, Laparra and Bethard (2020) Wikipedia OpenStreetMap Polygon 360187 360187

Table 1: Summary of geocoding datasets covered by this survey, sorted by year of creation.

state, while GeoVirus focuses on news about global137

disease outbreaks and epidemics with larger, often138

country-level, toponyms.139

Web text is also a common target for geocoding140

corpora. Wikipedia Toponym Retrieval (WikToR;141

Gritta et al., 2017) and GeoCoDe (Laparra and142

Bethard, 2020) are both based on Wikipedia pages.143

ACS, mentioned above, also includes newsgroup144

and weblog data. And social media, specifically145

Twitter, is the target for the Zhang and Gelernter146

(2014) dataset and GeoCorpora (Wallgrün et al.,147

2018). These corpora vary as widely as the inter-148

net text upon which they are based. For example,149

GeoCoDe and WikToR include the first paragraphs150

of Wikipedia articles, while Zhang and Gelernter151

(2014) and GeoCorpora contain Twitter messages152

with place names that were highly ambiguous and153

mostly unambiguous, respectively.154

Other geocoding domains are less common, but155

have included areas such as historical documents156

and scientific journal articles. The Official Records157

of the War of the Rebellion (WOTR; DeLozier158

et al., 2016) corpus annotates historical toponyms159

of the U.S. Civil War. The SemEval-2019 Task 12160

dataset (Weissenbacher et al., 2019) is based on161

scientific journal papers from PubMed Central2.162

4.2 Geographic Databases163

All geocoding corpora rely on some database of164

geographic knowledge, sometimes also called a165

gazetteer or ontology. Such a database includes166

canonical names for places along with their ge-167

ographic attributes such as latitude/longitude or168

geospatial polygon, and may include other infor-169

mation, such as population or type of place.170

2https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

Most geocoding corpora have used GeoNames3 171

as their geographic database, including ACS, LGL, 172

CLUST, the Zhang and Gelernter (2014) corpus, 173

WikToR, TR-NEWS, GeoCorpora, GeoVirus, Ge- 174

oWebNews, and the SemEval-2019 Task 12 corpus. 175

GeoNames is a crowdsourced database of geospa- 176

tial locations, with almost 7 million entries and a 177

variety of information such as feature type (country, 178

city, river, mountain, etc.), population, elevation, 179

and positions within a political geographic hierar- 180

chy. The freely available version of GeoNames 181

contains only a (latitude, longitude) point for each 182

location, with the polygons only available with a 183

premium data subscription, so most corpora based 184

on GeoNames do not use geospatial polygons. 185

Geocoding corpora where recognizing geospa- 186

tial polygons is important have typically turned 187

to OpenStreetMap4. OpenStreetMap is another 188

crowdsourced database of geospatial locations, 189

which contains both (latitude, longitude) points 190

and geospatial polygons for its locations. WOTR 191

and GeoCoDe are based on OpenStreetMap. 192

4.3 Geospatial Label Types 193

Three different types of geospatial labels have been 194

considered in geocoding corpora: database entries, 195

(latitude, longitude) points, and polygons. All cor- 196

pora except WTOR and GeoCoDe assign to each 197

place name the (latitude, longitude) point that rep- 198

resents its geospatial center on the globe. Many 199

of the GeoNames-based corpora (LGL, CLUST, 200

TR-NEWS, GeoCorpora, GeoWebNews, and the 201

SemEval-2019 Task 12 corpus) also assign to each 202

place name its GeoNames database ID. The WTOR 203

corpus assigns to each place name a point or a poly- 204

3https://www.geonames.org/
4https://www.openstreetmap.org/

3
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Figure 2: The red-shaded area is the polygon label for
Biancavilla, which is defined by the set of its boundary
coordinates retrieved from OpenStreetMap.

gon, and GeoCoDe assigns to each place name only205

a polygon. Figure 2 shows an example of a polygon206

annotation from GeoCoDe.207

5 Geocoding Evaluation Metrics208

Geocoding systems are evaluated on geocoding209

corpora using metrics that depend on the corpus’s210

geospatial label type.211

5.1 Database entry correctness metrics212

When the target label type is a geospatial database213

entry ID, common evaluation metrics for multi-214

class classification tasks are applied. These metrics215

can also be used for corpora with (latitude, longi-216

tude) point labels by breaking the globe down into217

a discrete grid of geospatial tiles, and treating each218

geospatial tile like a database entry.219

Accuracy is the number of place names where220

the system has predicted the correct database entry,221

divided by the number of place names. Accuracy is222

sometimes also called Precision@1 or P@1 when223

there is only one correct answer (as in the case for224

current geocoding datasets) and when the ranking-225

based system is turned into a classifier by taking226

the top-ranked result as its prediction (the current227

standard for geocoding evaluation).228

Accuracy =

∣∣∣Û ∣∣∣
|U |

229

where U is the set of all human-annotated place230

names, Û is the set of place names where the sys-231

tem has predicted correctly or the top-1 ranked232

result is correct.233

5.2 Point distance metrics 234

When the target label type is a (latitude, longi- 235

tude) point, common evaluation metrics attempt to 236

measure the distance between the system-predicted 237

point and the human-annotated point. 238

Mean error distance calculates the mean over 239

all predictions of the distance between each system- 240

predicted and human-annotated point: 241

MeanErrorDist =

∑
u∈U

dis(ls(u), lh(u))

|U |
242

where U is the set of all human-annotated place 243

names, ls(u) is the system-predicted (latitude, lon- 244

gitude) point for place name u, lh(u) is the human- 245

annotated (latitude, longitude) point for place name 246

u, and dis is the distance between the two points 247

on the surface of the globe. This metric is sensitive 248

to outliers, and in realistic scenarios the distribu- 249

tion of error distance is not normal. Gritta et al. 250

(2017) found that the bulk of errors are triggered 251

by roughly 20% of the places and the errors from 252

the remaining places are relatively low. 253

Median Error Distance is defined in a similar 254

way to mean error distance, but takes the median 255

of the error distances rather than the mean. This 256

metric has fewer problems with outliers than mean 257

error distance. 258

Accuracy@k km/miles measures the fraction of 259

system-predicted (latitude, longitude) points that 260

were less than k km/miles away from the human- 261

annotated (latitude, longitude) points. Formally: 262

Acc@k =
|{u|u ∈ U ∧ dis(ls(u), lh(u)) <= k}|

|U |
263

where U , ls, lh, and dis are defined as above, and 264

k is a hyper-parameter. The value of k may be hard 265

to select, but many researchers have adopted 161 266

as the value of k, that is using Accuracy@161 km 267

(Cheng et al., 2010). 268

Area Under the Curve (AUC) calculates the 269

area under the curve of the distribution of geocod- 270

ing error distances. A geocoding system is better if 271

the area under the curve is smaller. Formally: 272

AUC = ln
ActualErrorDistance

MaxPossibleErrors
273

where ActualErrorDistance is the area under 274

the curve, and MaxPossibleErrors is the far- 275

thest distance between two places on earth. The 276
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value of AUC is between 0 and 1 and the differ-277

ence between two small errors (such as 10 and 20278

km) is more significant than the same difference279

between two large errors (such as 110 and 120 km).280

This makes AUC more popular than Accuracy@k281

km/miles (Jurgens et al., 2015).282

5.3 Polygon-based metrics283

When the target label type is a polygon, eval-284

uation metrics attempt to compare the overlap285

between the system-predicted polygon and the286

human-annotated polygon.287

Polygon-based precision and recall were pro-288

posed by Laparra and Bethard (2020) based on289

the intersection of system-predicted and human-290

annotated geometries. Formally:291

Precision =
1

|S|
∑
i∈|S|

area(Si ∩Hi)

area(Si)
292

Recall =
1

|H|
∑
i∈|H|

area(Si ∩Hi)

area(Hi)
293

where the S is the system-predicted set of polygons294

and H is the human-annotated set of polygons.295

6 Geocoding Systems296

Table 2 summarizes the approaches of geocoders297

over the last decade. These models have differ-298

ent approaches to the prediction problem, ranging299

from ranking to classification to regression. They300

implement their predictive models with technology301

ranging from hand-constructed rules and heuristics,302

to feature-based machine-learning models, to deep303

learning (i.e., neural network) models that learn304

their own features.305

6.1 Prediction Types306

Ranking is the most common approach to307

making geospatial predictions (Edinburgh Parser,308

Grover et al., 2010; Tobin et al., 2010; Mar-309

tins et al., 2010; Lieberman et al., 2010; Lieber-310

man and Samet, 2011; MG, Freire et al., 2011;311

CLAVIN, Berico Technologies, 2012; Lieberman312

and Samet, 2012; WISTR, Speriosu and Baldridge,313

2013; GeoTxt, Karimzadeh et al., 2013; Zhang and314

Gelernter, 2014; CBH, SHS, Kamalloo and Rafiei,315

2018; DM NLP, Wang et al., 2019). For exam-316

ple, most rule-based systems index their geospatial317

database with a search system such as Lucene5,318

5https://lucene.apache.org/

and query that index to produce a ranked list of 319

candidate database entries. This ranked list may 320

be further re-ranked based on other features such 321

as population or proximity. The type of scores 322

using in re-ranking include binary classification 323

score (MG, Freire et al., 2011; Lieberman and 324

Samet, 2012; WISTR, Speriosu and Baldridge, 325

2013; Zhang and Gelernter, 2014; CBH, SHS, Ka- 326

malloo and Rafiei, 2018; DM NLP, Wang et al., 327

2019), regression distance (Martins et al., 2010) 328

and heuristics based on information in the geospa- 329

tial database (Edinburgh Parser, Grover et al., 2010; 330

Tobin et al., 2010; Lieberman et al., 2010; Lieber- 331

man and Samet, 2011; CLAVIN, Berico Technolo- 332

gies, 2012; GeoTxt, Karimzadeh et al., 2013). 333

Classification is commonly used in making 334

geospatial predictions when the Earth’s surface has 335

been discretized into tiny areas (Topocluster, De- 336

Lozier et al., 2015; CamCoder, Gritta et al., 2018; 337

Cardoso et al., 2019; MLG, Kulkarni et al., 2020). 338

For example, CamCoder divides the Earth’s surface 339

into 7,823 tiles, and then changes the geospatial 340

label of each toponym to the tile containing its co- 341

ordinate. CamCoder then directly predicts one of 342

7823 classes for each toponym mention. 343

Regression is sometimes used for geospatial pre- 344

dictions when the label type is a (latitude, longi- 345

tude) point or a polygon (Cardoso et al., 2019; La- 346

parra and Bethard, 2020). For example, Laparra 347

and Bethard (2020) predict a set of coordinates (i.e., 348

a polygon) by applying operations over reference 349

geometries, where the operations take sets of coor- 350

dinates as inputs and produce sets of coordinates as 351

outputs. Regression approaches to geocoding are 352

rare because directly predicting coordinates over 353

the entire surface of the Earth is challenging. 354

6.2 Features and Heuristics 355

All geocoding systems combine string matching 356

(exact string matching, Levenshtein distance, etc.) 357

with other features and/or heuristics (population, 358

words in nearby context, etc.). Details of such 359

features are described in this section. 360

String match checks whether the place name 361

matches any names in the geospatial database (Ed- 362

inburgh Parser, Grover et al., 2010; Tobin et al., 363

2010; Martins et al., 2010; Lieberman et al., 364

2010; Lieberman and Samet, 2011; MG, Freire 365

et al., 2011; CLAVIN, Berico Technologies, 2012; 366

GeoTxt, Karimzadeh et al., 2013; Zhang and Gel- 367

5
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GeoCoder Implementation Prediction Type Database
Independent

Polygon
based

Edinburgh Parser, Grover et al. (2010) Rule-based Ranking No No
Tobin et al. (2010) Rule-based Ranking No No
Martins et al. (2010) Machine Learning Ranking No No
Lieberman et al. (2010) Rule-based Ranking No No
Lieberman and Samet (2011) Rule-based Ranking No No
MG, Freire et al. (2011) Machine Learning Ranking No No
CLAVIN, Berico Technologies (2012) Rule-based Ranking No No
Lieberman and Samet (2012) Machine Learning Ranking No No
GeoTxt, Karimzadeh et al. (2013) Rule-based Ranking No No
WISTR, Speriosu and Baldridge (2013) Machine Learning Ranking No No
Zhang and Gelernter (2014) Machine Learning Ranking No No
Topocluster, DeLozier et al. (2015) Machine Learning Classification Yes No
CBH, SHS Kamalloo and Rafiei (2018) Machine Learning Ranking No No
CamCoder, Gritta et al. (2018) Deep Learning Classification No No
DM NLP, Wang et al. (2019) Machine Learning Ranking No No
Cardoso et al. (2019) Deep Learning Classification & Regression Yes No
MLG, (Kulkarni et al., 2020) Deep Learning Classification Yes No
Laparra and Bethard (2020) Rule-based Regression Yes Yes

Table 2: Summary of geocoding systems covered by this survey, sorted by year of creation.

ernter, 2014; CBH, SHS, Kamalloo and Rafiei,368

2018; DM NLP, Wang et al., 2019). String match-369

ing can be done exactly, or approximately with370

edit distances metrics like Levenshtein Distance.371

For example, GeoTxt calculates the Levenshtein372

Distance between the place name mentioned in373

text and each candidate entry from the geospatial374

database, and selects the candidate with the lowest375

edit distance.376

Population looks at the size of the population377

associated with candidate database entry, typically378

preferring more populous entries to less populous379

ones (Edinburgh Parser, Grover et al., 2010; Tobin380

et al., 2010; Martins et al., 2010; Lieberman et al.,381

2010; Lieberman and Samet, 2011; MG, Freire382

et al., 2011; Lieberman and Samet, 2012; CLAVIN,383

Berico Technologies, 2012; GeoTxt, Karimzadeh384

et al., 2013; Zhang and Gelernter, 2014; CBH, SHS,385

Kamalloo and Rafiei, 2018; CamCoder, Gritta et al.,386

2018; DM NLP, Wang et al., 2019). For example,387

when the Edinburgh Parser geocodes the text I love388

Paris. I love France! it resolves Paris to PARIS,389

FRANCE instead of PARIS, TX, U.S. since the390

former has a greater population in the geospatial391

database.392

Type of place looks at the geospatial feature type393

(country, city, river, populated place, facilities, etc.)394

of a candidate database entry, typically preferring395

the more geographically prominent ones (Edin-396

burgh Parser, Grover et al., 2010; Tobin et al., 2010;397

Martins et al., 2010; Lieberman et al., 2010; Lieber-398

man and Samet, 2011; MG, Freire et al., 2011;399

CLAVIN, Berico Technologies, 2012; Lieberman400

and Samet, 2012; GeoTxt, Karimzadeh et al., 2013; 401

TRAWL, Speriosu and Baldridge, 2013; Zhang and 402

Gelernter, 2014; CBH, SHS, Kamalloo and Rafiei, 403

2018; DM NLP, Wang et al., 2019). For example, 404

Tobin et al. (2010) prefers ”populated places” than 405

to ”facilities” such as farms and mines, when there 406

are multiple candidate geospatial labels. 407

Words in the nearby context are used to disam- 408

biguate ambiguous place names (Lieberman and 409

Samet, 2012; WISTR, Speriosu and Baldridge, 410

2013; Zhang and Gelernter, 2014; Topocluster, 411

DeLozier et al., 2015; CBH, SHS, Kamalloo and 412

Rafiei, 2018; DM NLP, Wang et al., 2019Cam- 413

Coder, Gritta et al., 2018; Cardoso et al., 2019; 414

MLG, Kulkarni et al., 2020). Ways of using these 415

context words range from simple to complex. For 416

example, WISTR (Speriosu and Baldridge, 2013) 417

uses a simple context window of 20 words on each 418

side of the target place name, and thereby benefits 419

from location-oriented words such as uptown and 420

beach. In contrast, Zhang and Gelernter (2014) 421

searches for common country and state names in 422

other nearby location expressions, in essence, re- 423

solving these mostly unambiguous place names to 424

help resolve the target place name. 425

One sense per referent is a heuristic that as- 426

sumes that all occurrences of a unique place name 427

in the same document will refer to the same 428

geographical database entry (Edinburgh Parser, 429

Grover et al., 2010; Tobin et al., 2010; Lieberman 430

et al., 2010; Lieberman and Samet, 2011; GeoTxt, 431

Karimzadeh et al., 2013; CBH, SHS, Kamalloo and 432

Rafiei, 2018 DM NLP, Wang et al., 2019). For ex- 433
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ample, after each time that Lieberman et al. (2010)434

resolves a place name to a geospatial label, it prop-435

agates the same resolution to all identical place436

names in the remainder of the document.437

Spatial minimality is a heuristic that assumes438

that place names in a text tend to refer to geospatial439

regions that are in close spatial proximity to each440

other (Edinburgh Parser, Grover et al., 2010; Tobin441

et al., 2010; Lieberman et al., 2010; Lieberman and442

Samet, 2011; CLAVIN, Berico Technologies, 2012;443

SPIDER, Speriosu and Baldridge, 2013; Topoclus-444

ter, DeLozier et al., 2015; CBH, SHS, Kamalloo445

and Rafiei, 2018;). For example, when Lieberman446

et al. (2010) geocodes the text 96 miles south of447

Phoenix, Arizona, just outside of Tucson, it takes448

Tucson as an “anchor” toponym and resolves that449

first to get a target region. Then for Phoenix, it450

selects the geospatial label that is most geographi-451

cally proximate to the target region.452

6.3 Implementation Types453

Rule-based systems use hand-crafted rules and454

heuristics to predict a geospatial label for a place455

name (Edinburgh Parser, Grover et al., 2010; To-456

bin et al., 2010; Lieberman et al., 2010; Lieber-457

man and Samet, 2011; CLAVIN, Berico Technolo-458

gies, 2012; GeoTxt, Karimzadeh et al., 2013; La-459

parra and Bethard, 2020). The rule bases range460

in size from 2 to more than 200 rules, and rules461

may be formalized in rule grammars or defined462

more informally and provided as code. For exam-463

ple, Lieberman et al. (2010) uses a rule (defined464

via code) to identify place names in comma groups,465

such as groups of prominent places (e.g., ”New466

York, Chicago and Los Angeles”, all major cities467

in the U.S.), and then resolves all toponyms in468

the group by applying a heuristic uniformly across469

the entire group. As another example, Laparra470

and Bethard (2020) use 219 synchronous gram-471

mar rules to parse a target polygon from reference472

polygons by constructing a tree of geometrical op-473

erators (e.g., BETWEEN(p1, p2) calculates the474

region between geolocation polygons p1 and p2).475

Feature-based machine-learning systems use476

many of the same features and heuristics of rule-477

based systems, but provide these as input to a su-478

pervised classifier which then makes the prediction479

of a geospatial label (Martins et al., 2010; MG,480

Freire et al., 2011; Lieberman and Samet, 2012;481

WISTR, Speriosu and Baldridge, 2013; Zhang and482

Gelernter, 2014; Topocluster, DeLozier et al., 2015;483

CBH, SHS, Kamalloo and Rafiei, 2018; DM NLP, 484

Wang et al., 2019). They typically operate in a 485

two-step rank-then-rerank framework, where first 486

an information retrieval system produces candi- 487

date geospatial labels, then a supervised machine- 488

learning model produces a probability or distance 489

for each candidate, and the candidates are reranked 490

by these scores. Common classification algorithms 491

include logistic regression (WISTR, Speriosu and 492

Baldridge, 2013), support vector machines (Mar- 493

tins et al., 2010; Zhang and Gelernter, 2014), 494

random forests (MG, Freire et al., 2011; Lieber- 495

man and Samet, 2012), and stacked LightGBMs 496

(DM NLP, Wang et al., 2019). For example, Mar- 497

tins et al. (2010) train a support vector machine 498

regression model using features such as the pop- 499

ulation and the number of alternative names for 500

candidates. 501

Deep learning systems have approached to- 502

ponym resolution as a one-step classification prob- 503

lem, by dividing the Earth’s surface into a N ×N 504

grid, where the neural network attempts to map 505

place names and their features to one of these 506

N ×N categories (CamCoder, Gritta et al., 2018; 507

Cardoso et al., 2019; MLG, Kulkarni et al., 2020). 508

Each system has a unique neural architecture for 509

combining inputs to make predictions, typically 510

based on either convolutional neural networks 511

(CNNs) or recurrent neural networks (RNNs). 512

CamCoder (Gritta et al., 2018) was the first deep 513

learning based-geocoder, and combines both lex- 514

ical and geospatial database features. Its lexical 515

model separately encodes three kinds of input with 516

CNNs: context words (a window of 200 words, lo- 517

cation mentions excluded), location mentions (con- 518

text words excluded) and the target place name. 519

Its geospatial model produces a vector representa- 520

tion using a geospatial label’s population (from the 521

database) as its prior probability. CamCoder con- 522

catenates the output of the lexical and geospatial 523

models for the final classification. This architecture 524

is illustrated in fig. 3. 525

MLG (Kulkarni et al., 2020), is also a CNN- 526

based geocoder, but it does not use population or 527

other geospatial database information, and is thus 528

database independent. It captures lexical features 529

in a similar manner to CamCoder, but takes advan- 530

tage of the S2 geometry6 to represent its geospatial 531

output space in hierarchical grid-cells from coarse 532

to fine-grained. MLG can predict the geospatial 533

6https://s2geometry.io/
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Figure 3: The architecture of CamCoder. The lexical
model learns representations for the context words, lo-
cation mentions, and the target place name, while the
geospatial model (called MapVec) draws population in-
formation from the geospatial database.

label of a place name at multiple S2 levels by mutu-534

ally maximizing both precision and generalization535

of predictions.536

Cardoso et al. (2019) proposed a RNN-based537

database-independent geocoder that uses Hi-538

erarchical Equal Area isoLatitude Pixelisation539

(HEALPix)(Gorski et al., 2005) instead of S2 ge-540

ometry to discretize the Earth’s surface. It con-541

siders three inputs: the place name, local context542

(50 words around the place name), and larger con-543

text (paragraph or 500 words around the place544

name). These are encoded using a Long Short-545

Term Memory (LSTM) network with Elmo embed-546

dings(Peters et al., 2018), a kind of pre-trained con-547

textual word embedding. The three embeddings for548

the three inputs are concatenated and used for two549

types of prediction: the class of HEALPix region,550

and the coordinates of the centroid of the HEALPix551

class. This joint learning approach allows the two552

tasks to be mutually promoted and restricted.553

7 Future Directions554

A key direction of future research will be output555

representations. Many past geocoders focused on556

mapping place names to geospatial database entries557

(see column 4 of table 2). This was convenient,558

enabling fast resolution by applying standard in-559

formation retrieval models to propose candidate560

entries from the database, but was limited by the561

simple types of matching that information retrieval562

systems could perform. Modern deep learning ap-563

proaches to geocoding allow more complex match-564

ing of place names to geospatial locations, but typ-565

ically rely on discretizing the Earth’s surface into566

tiles to constrain the size of the network’s output567

space. For the neural networks to achieve the fine-568

grained level of geocoding available in geocoding569

databases, they may need to consider hierarchical570

output spaces (e.g., Kulkarni et al. (2020)) or com- 571

positional output spaces (e.g., Laparra and Bethard 572

(2020)) that can express the necessary level of de- 573

tail without exploding the output space. 574

Another key direction of future research will be 575

the structure and evaluation of geocoding datasets. 576

Most existing datasets and systems treat geocod- 577

ing as a problem of identifying points rather than 578

polygons (see column 4 of table 1 and column 5 579

of table 2). Yet the vast majority of real places 580

in geospatial databases are complex polygons (as 581

in fig. 2), not simple points. More polygon-based 582

datasets are needed, especially ones like GeoCoDe 583

(Laparra and Bethard, 2020) that include complex 584

descriptions of locations (e.g., between the towns 585

of Adrano and S. Maria di Licodia) and not just 586

explicit place names (e.g., Paris). The current state- 587

of-the-art for complex geographical description 588

geocoding is rule-based, but more polygon-based 589

datasets will drive algorithmic research that can 590

improve upon these rule-based systems with some 591

of the insights gained from deep neural network 592

approaches to explicit place name geocoding. 593

Finally, geocoding evaluation is still an open 594

research area. Future research will likely extend 595

some of the new polygon-based evaluation met- 596

rics. For example, using polygon precision and 597

recall would give credit to a geocoding system 598

that predicted the GeoNames entry Nakhon Sawan 599

even if the annotated data used the entry Changwat 600

Nakhon Sawan, since the polygons of these two 601

place names are nearly identical. 602

8 Conclusion 603

After surveying a decade of work on geocoding, 604

we have identifed several trends. First, combining 605

contextual features with geospatial database infor- 606

mation makes geocoders more powerful. Second, 607

like much of NLP, geocoders have moved from rule- 608

based systems to feature-based machine-learning 609

systems to deep-learning systems. Third, the older 610

rank-then-rerank approaches, combining informa- 611

tion retrieval and supervised classification, are be- 612

ing replaced by direct classification approaches, 613

where the Earth’s surface is discretized into many 614

small tiles. Finally, the field of geocoding is just 615

beginning to look beyond a point-based view of 616

locations to a more realistic polygon-based view. 617
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