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Abstract

Geocoding, the task of converting unstructured
text to structured spatial data, has recently seen
progress thanks to a variety of new datasets,
evaluation metrics, and machine-learning algo-
rithms. We provide a comprehensive survey
to review, organize and analyze recent work
on geocoding (also known as toponym resolu-
tion) where the text is matched to geospatial
coordinates and/or ontologies. We summarize
the findings of this research and suggest some
promising directions for future work.

1 Introduction

Geocoding, also called toponym resolution or to-
ponym disambiguation, is the subtask of geopars-
ing that disambiguates place names in text. The
goal of geocoding is, given a textual mention of a
location, to choose the corresponding geospatial co-
ordinates, geospatial polygon, or entry in a geospa-
tial database. Geocoders must handle place names
(known as toponyms) that refer to more than one ge-
ographical location (e.g., Paris can refer to a town
in the state of Texas in the United States, or the cap-
ital city of France), and geographical locations that
may be referred to by more than one name (e.g.,
Leeuwarden and Ljouwert are two names for the
same city in the Netherlands), as shown in fig. 1.
Geocoding plays a critical role in tasks such as
tracking the evolution and emergence of infectious
diseases (Hay et al., 2013), analyzing and searching
documents by geography (Bhargava et al., 2017),
geospatial analysis of historical events (Tateosian
et al., 2017), and disaster response mechanisms
(Ashktorab et al., 2014; de Bruijn et al., 2018).
Prior surveys (Leidner, 2007; Gritta et al., 2017)
predate modern neural network approaches to
geocoding. The number of geocoding datasets has
also doubled since 2017, and new geocoding algo-
rithms have been introduced with each new dataset.
The field would thus benefit from a comprehensive

survey and critical evaluation of the currently avail-
able datasets, evaluation metrics, and geocoding
algorithms. Our contributions are:

* the first survey to review deep learning ap-
proaches to geocoding

» comprehensive coverage of geocoding sys-
tems, which increased by 50% in the last 4
years

» comprehensive coverage of annotated geocod-
ing datasets, which increased by 100% in the
last 4 years

2 Background

An early work on geocoding, Amitay et al. (2004),
identifies two important types of ambiguity: A
place name may also have a non-geographic mean-
ing, such as Turkey the country vs. furkey the ani-
mal, and two places may have the same name, such
as the San Jose in California and the San Jose in
Costa Rica. The former is a challenge during geo-
tagging, i.e., finding the place names, while the lat-
ter is a challenge during geocoding, i.e., matching
the place names to geospatial coordinates, geospa-
tial polygons, or entries in a geospatial database.

To the best of our knowledge, the first formal
survey of geocoding is the PhD thesis of Leidner
(2007). The thesis found that most geocoding meth-
ods were based on combining natural language pro-
cessing techniques, such as lexical string matching
or word sense matching, with geographic heuristics,
such as spatial-distance minimum and population
maximum. Most geocoders studied in this thesis
were rule-based.

Gritta et al. (2017) reviewed both geotagging
and geocoding, while proposing a new dataset,
WikToR. The survey portion of this article com-
pared a variety of datasets for geoparsing, explored
heuristics of rule-based and feature-based machine
learning-based geocoders, summarized evaluation
metrics, and classified common errors cases from
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Figure 1: An illustrative example of geocoding challenges. One toponym (Paris) can refer to more than one
geographical location (a town in the state of Texas in the United States or the capital city of France in Europe), and
a geographical location may be referred to by more than one toponym (Leeuwarden and Ljouwert are two names

for the same city in the Netherlands).

several geocoders (misspellings, case sensitivity,
processing fictional and historical text presents,
etc.). Gritta et al. (2017) concluded that future
geoparsers would need to utilize semantics and
context, not just syntax and word forms as the
geocoders of the time.

Geocoding research since these previous sur-
veys has changed in several important ways. It
has indeed incorporated more semantics, especially
through new deep learning methods. It has pivoted
from generating database entries to directly gener-
ating geospatial polygons. And some of the most
recent work goes beyond explicit place names to
inferring polygons for place descriptions like be-
tween the towns of Adrano and S. Maria di Licodia
(Laparra and Bethard, 2020).

3 Methodology

We searched for literature using the Google Scholar
and Semantic Scholar search engines. We re-
trieved papers matching any of the keyword queries:
geocoding, geoparsing, geolocation, toponym res-
olution, toponym disambiguation, or spatial infor-
mation extraxtion. We manually excluded papers
that matched these keywords but were not about
geocoding. For example, we excluded papers that
tried to match a full document or microblog post
to a single location, rather than trying to match
each individual place name to a location. We also
filtered most papers published before 2010, as they
have been covered thoroughly by prior surveys,
though we still included influential older papers

that were highly cited by the papers we collected
via the process above. In total, we reviewed more
than 60 papers and included more than 30 of them
in this survey.

4 Geocoding Datasets

Many geocoding corpora have been proposed,
drawn from different domains, linking to differ-
ent geographic databases, with different forms of
geocoding labels, and with varying sizes in terms
of both articles/messages and toponyms. Table 1
summarizes these datasets, and the following sec-
tions walk through some of the dimensions over
which the datasets vary.

4.1 Domains

The news domain is the most common target for
geocoding corpora, covering sources like broad-
cast conversation, broadcast news, and news mag-
azines. Examples include the ACE 2005 English
SpatialML Annotations (ACS, Mani et al., 2010)!,
the Local Global Lexicon (LGL, Lieberman et al.,
2010), CLUST (Lieberman and Samet, 2011), TR-
NEWS (Kamalloo and Rafiei, 2018), GeoVirus
(Grittaet al., 2018), and GeoWebNews (Gritta et al.,
2019). Though all these datasets include news text,
they vary in what toponyms are included. For ex-
ample, LGL is based on local and small U.S. news
sources with most toponyms smaller than a U.S.
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Geographic

Articles /

Corpus Domain Database Label Type Messages Toponyms
ACS, Mani et al. (2010) News GeoNames Point 428 4783
LGL, Lieberman et al. (2010) News GeoNames Point & GeoNamesID 588 4783
CLUST, Lieberman and Samet (2011) News GeoNames Point & GeoNamesID 1082 11564
Zhang and Gelernter (2014) Twitter GeoNames Point & GeoNamesID 956 1393
WOTR, DeLozier et al. (2016) Historical OpenStreetMap Point & Polygon 9653 10380
WikTOR, Gritta et al. (2017) Wikipedia GeoNames Point 5000 25000
TR-NEWS, Kamalloo and Rafiei (2018) News GeoNames Point & GeoNamesID 118 1274
GeoCorpora, Wallgriin et al. (2018) Twitter GeoNames Point & GeoNamesID 211 2966
GeoVirus, Gritta et al. (2018) News GeoNames Point 229 2167
GeoWebNews, Gritta et al. (2019) News GeoNames Point & GeoNamesID 200 5121
SemEval2019, Weissenbacher et al. (2019) Scientific GeoNames Point & GeoNamesID 150 8360
GeoCoDe, Laparra and Bethard (2020) Wikipedia OpenStreetMap Polygon 360187 360187

Table 1: Summary of geocoding datasets covered by this survey, sorted by year of creation.

state, while GeoVirus focuses on news about global
disease outbreaks and epidemics with larger, often
country-level, toponyms.

Web text is also a common target for geocoding
corpora. Wikipedia Toponym Retrieval (WikToR;
Gritta et al., 2017) and GeoCoDe (Laparra and
Bethard, 2020) are both based on Wikipedia pages.
ACS, mentioned above, also includes newsgroup
and weblog data. And social media, specifically
Twitter, is the target for the Zhang and Gelernter
(2014) dataset and GeoCorpora (Wallgriin et al.,
2018). These corpora vary as widely as the inter-
net text upon which they are based. For example,
GeoCoDe and WikToR include the first paragraphs
of Wikipedia articles, while Zhang and Gelernter
(2014) and GeoCorpora contain Twitter messages
with place names that were highly ambiguous and
mostly unambiguous, respectively.

Other geocoding domains are less common, but
have included areas such as historical documents
and scientific journal articles. The Official Records
of the War of the Rebellion (WOTR; DeLozier
et al., 2016) corpus annotates historical toponyms
of the U.S. Civil War. The SemEval-2019 Task 12
dataset (Weissenbacher et al., 2019) is based on
scientific journal papers from PubMed Central®.

4.2 Geographic Databases

All geocoding corpora rely on some database of
geographic knowledge, sometimes also called a
gazetteer or ontology. Such a database includes
canonical names for places along with their ge-
ographic attributes such as latitude/longitude or
geospatial polygon, and may include other infor-
mation, such as population or type of place.

https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

Most geocoding corpora have used GeoNames>

as their geographic database, including ACS, LGL,
CLUST, the Zhang and Gelernter (2014) corpus,
WikToR, TR-NEWS, GeoCorpora, GeoVirus, Ge-
oWebNews, and the SemEval-2019 Task 12 corpus.
GeoNames is a crowdsourced database of geospa-
tial locations, with almost 7 million entries and a
variety of information such as feature type (country,
city, river, mountain, etc.), population, elevation,
and positions within a political geographic hierar-
chy. The freely available version of GeoNames
contains only a (latitude, longitude) point for each
location, with the polygons only available with a
premium data subscription, so most corpora based
on GeoNames do not use geospatial polygons.

Geocoding corpora where recognizing geospa-
tial polygons is important have typically turned
to OpenStreetMap*. OpenStreetMap is another
crowdsourced database of geospatial locations,
which contains both (latitude, longitude) points
and geospatial polygons for its locations. WOTR
and GeoCoDe are based on OpenStreetMap.

4.3 Geospatial Label Types

Three different types of geospatial labels have been
considered in geocoding corpora: database entries,
(latitude, longitude) points, and polygons. All cor-
pora except WTOR and GeoCoDe assign to each
place name the (latitude, longitude) point that rep-
resents its geospatial center on the globe. Many
of the GeoNames-based corpora (LGL, CLUST,
TR-NEWS, GeoCorpora, GeoWebNews, and the
SemEval-2019 Task 12 corpus) also assign to each
place name its GeoNames database ID. The WTOR
corpus assigns to each place name a point or a poly-

*https://www.geonames.org/
*https://www.openstreetmap.org/
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Biancavilla is a town in the
southern Italy.

Figure 2: The red-shaded area is the polygon label for
Biancavilla, which is defined by the set of its boundary
coordinates retrieved from OpenStreetMap.

gon, and GeoCoDe assigns to each place name only
apolygon. Figure 2 shows an example of a polygon
annotation from GeoCoDe.

5 Geocoding Evaluation Metrics

Geocoding systems are evaluated on geocoding
corpora using metrics that depend on the corpus’s
geospatial label type.

5.1 Database entry correctness metrics

When the target label type is a geospatial database
entry ID, common evaluation metrics for multi-
class classification tasks are applied. These metrics
can also be used for corpora with (latitude, longi-
tude) point labels by breaking the globe down into
a discrete grid of geospatial tiles, and treating each
geospatial tile like a database entry.

Accuracy is the number of place names where
the system has predicted the correct database entry,
divided by the number of place names. Accuracy is
sometimes also called Precision@1 or P@1 when
there is only one correct answer (as in the case for
current geocoding datasets) and when the ranking-
based system is turned into a classifier by taking
the top-ranked result as its prediction (the current
standard for geocoding evaluation).

U

Accuracy 0]
where U is the set of all human-annotated place
names, U is the set of place names where the sys-
tem has predicted correctly or the top-1 ranked
result is correct.

5.2 Point distance metrics

When the target label type is a (latitude, longi-
tude) point, common evaluation metrics attempt to
measure the distance between the system-predicted
point and the human-annotated point.

Mean error distance calculates the mean over
all predictions of the distance between each system-
predicted and human-annotated point:

> dis(ls(u), In(w))

U

where U is the set of all human-annotated place
names, [s(u) is the system-predicted (latitude, lon-
gitude) point for place name w, () is the human-
annotated (latitude, longitude) point for place name
u, and dis is the distance between the two points
on the surface of the globe. This metric is sensitive
to outliers, and in realistic scenarios the distribu-
tion of error distance is not normal. Gritta et al.
(2017) found that the bulk of errors are triggered
by roughly 20% of the places and the errors from
the remaining places are relatively low.

MeanErrorDist =

Median Error Distance is defined in a similar
way to mean error distance, but takes the median
of the error distances rather than the mean. This
metric has fewer problems with outliers than mean
error distance.

Accuracy @k km/miles measures the fraction of
system-predicted (latitude, longitude) points that
were less than k km/miles away from the human-
annotated (latitude, longitude) points. Formally:

Hulu € U A dis(ls(u),lp(u)) <=k}
U]

where U, [, [}, and dis are defined as above, and
k is a hyper-parameter. The value of k may be hard
to select, but many researchers have adopted 161
as the value of k, that is using Accuracy @161 km
(Cheng et al., 2010).

Area Under the Curve (AUC) calculates the
area under the curve of the distribution of geocod-
ing error distances. A geocoding system is better if
the area under the curve is smaller. Formally:

AccQk =

A E Di
AUC = 1n ctual Error Distance

MazxPossible Errors
where Actual ErrorDistance is the area under
the curve, and MaxPossibleErrors is the far-
thest distance between two places on earth. The



value of AUC is between 0 and 1 and the differ-
ence between two small errors (such as 10 and 20
km) is more significant than the same difference
between two large errors (such as 110 and 120 km).
This makes AUC more popular than Accuracy @k
km/miles (Jurgens et al., 2015).

5.3 Polygon-based metrics

When the target label type is a polygon, eval-
uation metrics attempt to compare the overlap
between the system-predicted polygon and the
human-annotated polygon.

Polygon-based precision and recall were pro-
posed by Laparra and Bethard (2020) based on
the intersection of system-predicted and human-
annotated geometries. Formally:

1 S; N H;
Precision = — M

|S| ey area(S;)
1 area(S; N H;)
Recall = —— §° 2reaill i)
ced |H | ‘ezI:JI area(H;)

where the S is the system-predicted set of polygons
and H is the human-annotated set of polygons.

6 Geocoding Systems

Table 2 summarizes the approaches of geocoders
over the last decade. These models have differ-
ent approaches to the prediction problem, ranging
from ranking to classification to regression. They
implement their predictive models with technology
ranging from hand-constructed rules and heuristics,
to feature-based machine-learning models, to deep
learning (i.e., neural network) models that learn
their own features.

6.1 Prediction Types

Ranking is the most common approach to
making geospatial predictions (Edinburgh Parser,
Grover et al., 2010; Tobin et al., 2010; Mar-
tins et al., 2010; Lieberman et al., 2010; Lieber-
man and Samet, 2011; MG, Freire et al., 2011;
CLAVIN, Berico Technologies, 2012; Lieberman
and Samet, 2012; WISTR, Speriosu and Baldridge,
2013; GeoTxt, Karimzadeh et al., 2013; Zhang and
Gelernter, 2014; CBH, SHS, Kamalloo and Rafiei,
2018; DM_NLP, Wang et al., 2019). For exam-
ple, most rule-based systems index their geospatial

database with a search system such as Lucene,

Shttps://lucene.apache.org/

and query that index to produce a ranked list of
candidate database entries. This ranked list may
be further re-ranked based on other features such
as population or proximity. The type of scores
using in re-ranking include binary classification
score (MG, Freire et al., 2011; Lieberman and
Samet, 2012; WISTR, Speriosu and Baldridge,
2013; Zhang and Gelernter, 2014; CBH, SHS, Ka-
malloo and Rafiei, 2018; DM_NLP, Wang et al.,
2019), regression distance (Martins et al., 2010)
and heuristics based on information in the geospa-
tial database (Edinburgh Parser, Grover et al., 2010;
Tobin et al., 2010; Lieberman et al., 2010; Lieber-
man and Samet, 2011; CLAVIN, Berico Technolo-
gies, 2012; GeoTxt, Karimzadeh et al., 2013).

Classification is commonly used in making
geospatial predictions when the Earth’s surface has
been discretized into tiny areas (Topocluster, De-
Lozier et al., 2015; CamCoder, Gritta et al., 2018;
Cardoso et al., 2019; MLG, Kulkarni et al., 2020).
For example, CamCoder divides the Earth’s surface
into 7,823 tiles, and then changes the geospatial
label of each toponym to the tile containing its co-
ordinate. CamCoder then directly predicts one of
7823 classes for each toponym mention.

Regression is sometimes used for geospatial pre-
dictions when the label type is a (latitude, longi-
tude) point or a polygon (Cardoso et al., 2019; La-
parra and Bethard, 2020). For example, Laparra
and Bethard (2020) predict a set of coordinates (i.e.,
a polygon) by applying operations over reference
geometries, where the operations take sets of coor-
dinates as inputs and produce sets of coordinates as
outputs. Regression approaches to geocoding are
rare because directly predicting coordinates over
the entire surface of the Earth is challenging.

6.2 Features and Heuristics

All geocoding systems combine string matching
(exact string matching, Levenshtein distance, etc.)
with other features and/or heuristics (population,
words in nearby context, etc.). Details of such
features are described in this section.

String match checks whether the place name
matches any names in the geospatial database (Ed-
inburgh Parser, Grover et al., 2010; Tobin et al.,
2010; Martins et al., 2010; Lieberman et al.,
2010; Lieberman and Samet, 2011; MG, Freire
et al., 2011; CLAVIN, Berico Technologies, 2012;
GeoTxt, Karimzadeh et al., 2013; Zhang and Gel-
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. e Database Polygon
GeoCoder Implementation Prediction Type Independent based
Edinburgh Parser, Grover et al. (2010) Rule-based Ranking No No
Tobin et al. (2010) Rule-based Ranking No No
Martins et al. (2010) Machine Learning Ranking No No
Lieberman et al. (2010) Rule-based Ranking No No
Lieberman and Samet (2011) Rule-based Ranking No No
MG, Freire et al. (2011) Machine Learning Ranking No No
CLAVIN, Berico Technologies (2012) Rule-based Ranking No No
Lieberman and Samet (2012) Machine Learning Ranking No No
GeoTxt, Karimzadeh et al. (2013) Rule-based Ranking No No
WISTR, Speriosu and Baldridge (2013) Machine Learning Ranking No No
Zhang and Gelernter (2014) Machine Learning Ranking No No
Topocluster, DeLozier et al. (2015) Machine Learning Classification Yes No
CBH, SHS Kamalloo and Rafiei (2018) Machine Learning Ranking No No
CamCoder, Gritta et al. (2018) Deep Learning Classification No No
DM_NLP, Wang et al. (2019) Machine Learning Ranking No No
Cardoso et al. (2019) Deep Learning  Classification & Regression Yes No
MLG, (Kulkarni et al., 2020) Deep Learning Classification Yes No
Laparra and Bethard (2020) Rule-based Regression Yes Yes

Table 2: Summary of geocoding systems covered by this survey, sorted by year of creation.

ernter, 2014; CBH, SHS, Kamalloo and Rafiei,
2018; DM_NLP, Wang et al., 2019). String match-
ing can be done exactly, or approximately with
edit distances metrics like Levenshtein Distance.
For example, GeoTxt calculates the Levenshtein
Distance between the place name mentioned in
text and each candidate entry from the geospatial
database, and selects the candidate with the lowest
edit distance.

Population looks at the size of the population
associated with candidate database entry, typically
preferring more populous entries to less populous
ones (Edinburgh Parser, Grover et al., 2010; Tobin
et al., 2010; Martins et al., 2010; Lieberman et al.,
2010; Lieberman and Samet, 2011; MG, Freire
et al., 2011; Lieberman and Samet, 2012; CLAVIN,
Berico Technologies, 2012; GeoTxt, Karimzadeh
etal., 2013; Zhang and Gelernter, 2014; CBH, SHS,
Kamalloo and Rafiei, 2018; CamCoder, Gritta et al.,
2018; DM_NLP, Wang et al., 2019). For example,
when the Edinburgh Parser geocodes the text I love
Paris. I love France! it resolves Paris to PARIS,
FRANCE instead of PARIS, TX, U.S. since the
former has a greater population in the geospatial
database.

Type of place looks at the geospatial feature type
(country, city, river, populated place, facilities, etc.)
of a candidate database entry, typically preferring
the more geographically prominent ones (Edin-
burgh Parser, Grover et al., 2010; Tobin et al., 2010;
Martins et al., 2010; Lieberman et al., 2010; Lieber-
man and Samet, 2011; MG, Freire et al., 2011;
CLAVIN, Berico Technologies, 2012; Lieberman

and Samet, 2012; GeoTxt, Karimzadeh et al., 2013;
TRAWL, Speriosu and Baldridge, 2013; Zhang and
Gelernter, 2014; CBH, SHS, Kamalloo and Rafiei,
2018; DM_NLP, Wang et al., 2019). For example,
Tobin et al. (2010) prefers “populated places” than
to facilities” such as farms and mines, when there
are multiple candidate geospatial labels.

Words in the nearby context are used to disam-
biguate ambiguous place names (Lieberman and
Samet, 2012; WISTR, Speriosu and Baldridge,
2013; Zhang and Gelernter, 2014; Topocluster,
DeLozier et al., 2015; CBH, SHS, Kamalloo and
Rafiei, 2018; DM_NLP, Wang et al., 2019Cam-
Coder, Gritta et al., 2018; Cardoso et al., 2019;
MLG, Kulkarni et al., 2020). Ways of using these
context words range from simple to complex. For
example, WISTR (Speriosu and Baldridge, 2013)
uses a simple context window of 20 words on each
side of the target place name, and thereby benefits
from location-oriented words such as uptown and
beach. In contrast, Zhang and Gelernter (2014)
searches for common country and state names in
other nearby location expressions, in essence, re-
solving these mostly unambiguous place names to
help resolve the target place name.

One sense per referent is a heuristic that as-
sumes that all occurrences of a unique place name
in the same document will refer to the same
geographical database entry (Edinburgh Parser,
Grover et al., 2010; Tobin et al., 2010; Lieberman
et al., 2010; Lieberman and Samet, 2011; GeoTxt,
Karimzadeh et al., 2013; CBH, SHS, Kamalloo and
Rafiei, 2018 DM_NLP, Wang et al., 2019). For ex-



ample, after each time that Lieberman et al. (2010)
resolves a place name to a geospatial label, it prop-
agates the same resolution to all identical place
names in the remainder of the document.

Spatial minimality is a heuristic that assumes
that place names in a text tend to refer to geospatial
regions that are in close spatial proximity to each
other (Edinburgh Parser, Grover et al., 2010; Tobin
et al., 2010; Lieberman et al., 2010; Lieberman and
Samet, 2011; CLAVIN, Berico Technologies, 2012;
SPIDER, Speriosu and Baldridge, 2013; Topoclus-
ter, DelLozier et al., 2015; CBH, SHS, Kamalloo
and Rafiei, 2018;). For example, when Lieberman
et al. (2010) geocodes the text 96 miles south of
Phoenix, Arizona, just outside of Tucson, it takes
Tucson as an “anchor” toponym and resolves that
first to get a target region. Then for Phoenix, it
selects the geospatial label that is most geographi-
cally proximate to the target region.

6.3 Implementation Types

Rule-based systems use hand-crafted rules and
heuristics to predict a geospatial label for a place
name (Edinburgh Parser, Grover et al., 2010; To-
bin et al., 2010; Lieberman et al., 2010; Lieber-
man and Samet, 2011; CLAVIN, Berico Technolo-
gies, 2012; GeoTxt, Karimzadeh et al., 2013; La-
parra and Bethard, 2020). The rule bases range
in size from 2 to more than 200 rules, and rules
may be formalized in rule grammars or defined
more informally and provided as code. For exam-
ple, Lieberman et al. (2010) uses a rule (defined
via code) to identify place names in comma groups,
such as groups of prominent places (e.g., "New
York, Chicago and Los Angeles”, all major cities
in the U.S.), and then resolves all toponyms in
the group by applying a heuristic uniformly across
the entire group. As another example, Laparra
and Bethard (2020) use 219 synchronous gram-
mar rules to parse a target polygon from reference
polygons by constructing a tree of geometrical op-
erators (e.g., BETW EEN (p1, p2) calculates the
region between geolocation polygons p; and po).

Feature-based machine-learning systems use
many of the same features and heuristics of rule-
based systems, but provide these as input to a su-
pervised classifier which then makes the prediction
of a geospatial label (Martins et al., 2010; MG,
Freire et al., 2011; Lieberman and Samet, 2012;
WISTR, Speriosu and Baldridge, 2013; Zhang and
Gelernter, 2014; Topocluster, DeLozier et al., 2015;

CBH, SHS, Kamalloo and Rafiei, 2018; DM _NLP,
Wang et al., 2019). They typically operate in a
two-step rank-then-rerank framework, where first
an information retrieval system produces candi-
date geospatial labels, then a supervised machine-
learning model produces a probability or distance
for each candidate, and the candidates are reranked
by these scores. Common classification algorithms
include logistic regression (WISTR, Speriosu and
Baldridge, 2013), support vector machines (Mar-
tins et al., 2010; Zhang and Gelernter, 2014),
random forests (MG, Freire et al., 2011; Lieber-
man and Samet, 2012), and stacked LightGBMs
(DM _NLP, Wang et al., 2019). For example, Mar-
tins et al. (2010) train a support vector machine
regression model using features such as the pop-
ulation and the number of alternative names for
candidates.

Deep learning systems have approached to-
ponym resolution as a one-step classification prob-
lem, by dividing the Earth’s surface intoa N x N
grid, where the neural network attempts to map
place names and their features to one of these
N x N categories (CamCoder, Gritta et al., 2018;
Cardoso et al., 2019; MLG, Kulkarni et al., 2020).
Each system has a unique neural architecture for
combining inputs to make predictions, typically
based on either convolutional neural networks
(CNN5s) or recurrent neural networks (RNNs).

CamCoder (Gritta et al., 2018) was the first deep
learning based-geocoder, and combines both lex-
ical and geospatial database features. Its lexical
model separately encodes three kinds of input with
CNNs: context words (a window of 200 words, lo-
cation mentions excluded), location mentions (con-
text words excluded) and the target place name.
Its geospatial model produces a vector representa-
tion using a geospatial label’s population (from the
database) as its prior probability. CamCoder con-
catenates the output of the lexical and geospatial
models for the final classification. This architecture
is illustrated in fig. 3.

MLG (Kulkarni et al., 2020), is also a CNN-
based geocoder, but it does not use population or
other geospatial database information, and is thus
database independent. It captures lexical features
in a similar manner to CamCoder, but takes advan-
tage of the S2 geometry® to represent its geospatial
output space in hierarchical grid-cells from coarse
to fine-grained. MLG can predict the geospatial

*https://s2geometry.io/
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Figure 3: The architecture of CamCoder. The lexical
model learns representations for the context words, lo-
cation mentions, and the target place name, while the
geospatial model (called MapVec) draws population in-
formation from the geospatial database.

label of a place name at multiple S2 levels by mutu-
ally maximizing both precision and generalization
of predictions.

Cardoso et al. (2019) proposed a RNN-based
database-independent geocoder that uses Hi-
erarchical Equal Area isoLatitude Pixelisation
(HEALPix)(Gorski et al., 2005) instead of S2 ge-
ometry to discretize the Earth’s surface. It con-
siders three inputs: the place name, local context
(50 words around the place name), and larger con-
text (paragraph or 500 words around the place
name). These are encoded using a Long Short-
Term Memory (LSTM) network with Elmo embed-
dings(Peters et al., 2018), a kind of pre-trained con-
textual word embedding. The three embeddings for
the three inputs are concatenated and used for two
types of prediction: the class of HEALPix region,
and the coordinates of the centroid of the HEALPix
class. This joint learning approach allows the two
tasks to be mutually promoted and restricted.

7 Future Directions

A key direction of future research will be output
representations. Many past geocoders focused on
mapping place names to geospatial database entries
(see column 4 of table 2). This was convenient,
enabling fast resolution by applying standard in-
formation retrieval models to propose candidate
entries from the database, but was limited by the
simple types of matching that information retrieval
systems could perform. Modern deep learning ap-
proaches to geocoding allow more complex match-
ing of place names to geospatial locations, but typ-
ically rely on discretizing the Earth’s surface into
tiles to constrain the size of the network’s output
space. For the neural networks to achieve the fine-
grained level of geocoding available in geocoding
databases, they may need to consider hierarchical

output spaces (e.g., Kulkarni et al. (2020)) or com-
positional output spaces (e.g., Laparra and Bethard
(2020)) that can express the necessary level of de-
tail without exploding the output space.

Another key direction of future research will be
the structure and evaluation of geocoding datasets.
Most existing datasets and systems treat geocod-
ing as a problem of identifying points rather than
polygons (see column 4 of table 1 and column 5
of table 2). Yet the vast majority of real places
in geospatial databases are complex polygons (as
in fig. 2), not simple points. More polygon-based
datasets are needed, especially ones like GeoCoDe
(Laparra and Bethard, 2020) that include complex
descriptions of locations (e.g., between the towns
of Adrano and S. Maria di Licodia) and not just
explicit place names (e.g., Paris). The current state-
of-the-art for complex geographical description
geocoding is rule-based, but more polygon-based
datasets will drive algorithmic research that can
improve upon these rule-based systems with some
of the insights gained from deep neural network
approaches to explicit place name geocoding.

Finally, geocoding evaluation is still an open
research area. Future research will likely extend
some of the new polygon-based evaluation met-
rics. For example, using polygon precision and
recall would give credit to a geocoding system
that predicted the GeoNames entry Nakhon Sawan
even if the annotated data used the entry Changwat
Nakhon Sawan, since the polygons of these two
place names are nearly identical.

8 Conclusion

After surveying a decade of work on geocoding,
we have identifed several trends. First, combining
contextual features with geospatial database infor-
mation makes geocoders more powerful. Second,
like much of NLP, geocoders have moved from rule-
based systems to feature-based machine-learning
systems to deep-learning systems. Third, the older
rank-then-rerank approaches, combining informa-
tion retrieval and supervised classification, are be-
ing replaced by direct classification approaches,
where the Earth’s surface is discretized into many
small tiles. Finally, the field of geocoding is just
beginning to look beyond a point-based view of
locations to a more realistic polygon-based view.
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