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ABSTRACT

Deep neural network (DNN) classifiers are often overconfident, producing
miscalibrated class probabilities. In high-risk applications like healthcare,
practitioners require fully calibrated probability predictions for decision-making.
That is, conditioned on the prediction vector, every class’ probability should
be close to the predicted value. Most existing calibration methods either lack
theoretical guarantees for producing calibrated outputs, reduce classification
accuracy in the process, or only calibrate the predicted class. This paper proposes
a new Kernel-based calibration method called KCal. Unlike existing calibration
procedures, KCal does not operate directly on the logits or softmax outputs
of the DNN. Instead, KCal learns a metric space on the penultimate-layer
latent embedding and generates predictions using kernel density estimates on
a calibration set. We first analyze KCal theoretically, showing that it enjoys a
provable full calibration guarantee. Then, through extensive experiments across
a variety of datasets, we show that KCal consistently outperforms baselines as
measured by the calibration error and by proper scoring rules like the Brier Score.
Our code is available at https://github.com/zlin7/KCal.

1 INTRODUCTION

The notable successes of Deep Neural Networks (DNNs) in complex classification tasks, such as
object detection (Ouyang & Wang, 2013), speech recognition (Deng et al., 2013), and medical diagno-
sis (Qiao et al., 2020; Biswal et al., 2017), have made them essential ingredients within various critical
decision-making pipelines. In addition to the classification accuracy, a classifier should ideally also
generate reliable uncertainty estimates represented in the predicted probability vector. An influential
study (Guo et al., 2017) reported that modern DNNs are often overconfident or miscalibrated, which
could lead to severe consequences in high-stakes applications such as healthcare (Jiang et al., 2012).

Calibration is the process of closing the gap between the prediction and the ground truth distribution
given this prediction. For a K-classification problem, with covariates X ∈ X and the label Y ∈ Y =
[K], denote our classifier X 7→ ∆K−1 as p̂ = [p̂1, . . . , p̂K ], with ∆K−1 being (K-1)-simplex. Then,
Definition 1. (Full Calibration (Vaicenavicius et al., 2019)) p̂ is fully-calibrated if ∀k ∈ [K]:

∀q = [q1, . . . , qK ] ∈ ∆K−1,P{Y = k|p̂(X) = q} = qk. (1)

It is worth noting that Def. (1) implies nothing about accuracy. In fact, ignoring X and simply
predicting π, the class frequency vector, results in a fully calibrated but inaccurate classifier. As a
result, our goal is always to improve calibration while maintaining accuracy. Another important
requirement is that p̂ ∈ ∆K−1. Many binary calibration methods such as Zadrozny & Elkan (2001;
2002) result in vectors that are not interpretable as probabilities, and have to be normalized.

Many existing works only consider confidence calibration (Guo et al., 2017; Zhang et al., 2020;
Wenger et al., 2020; Ma & Blaschko, 2021), a much weaker notion than that encapsulated by Def. (1)
and only calibrates the predicted class (Kull et al., 2019; Vaicenavicius et al., 2019).
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Definition 2. (Confidence Calibration) p̂ is confidence-calibrated if:

∀q ∈ [0, 1],P{Y = argmax
k

p̂k(X)|max
k

p̂k(X) = q} = q. (2)
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Figure 1: Reliability diagrams
for confidence calibration (top)
and Seizure (bottom). The pop-
ular temperature scaling (right)
only calibrates the confidence,
leaving Seizure poorly calibrated.
See Figure 2 and the Appendix
for complete reliability diagrams.

However, confidence calibration is far from sufficient. Doctors
need to perform differential diagnoses on a patient, where mul-
tiple possible diseases should be considered with proper probabil-
ities for all of them, not only the most likely diagnosis. Figure 1
shows an example where the confidence is calibrated, but pre-
diction for important classes like Seizure is poorly calibrated. A
classifier can be confidence-calibrated but not useful for such
tasks if the probabilities assigned to most diseases are inaccurate.

Recent research effort has started to focus on full calibration, for
example, in Vaicenavicius et al. (2019); Kull et al. (2019); Wid-
mann et al. (2019). We approach this problem by leveraging the la-
tent neural network embedding in a nonparametric manner. Non-
parametric methods such as histogram binning (HB) (Zadrozny
& Elkan, 2001) and isotonic regression (IR) (Zadrozny & Elkan,
2002), are natural for calibration and have become popular. Gupta
& Ramdas (2021) recently showed a calibration guarantee for HB.
However, HB usually leads to noticeable drops in accuracy (Patel
et al., 2021), and IR is prone to overfitting (Niculescu-Mizil &
Caruana, 2005). Unlike existing methods, we take one step back
and train a new low-dimensional metric space on the penultimate-

layer embeddings of DNNs. Then, we use a kernel density estimation-based classifier to predict
the class probabilities directly. We refer to our Kernel-based Calibration method as KCal. Unlike
most calibration methods, KCal provides high probability error bounds for full calibration under
standard assumptions. Empirically, we show that with little overhead, KCal outperforms all existing
calibration methods in terms of calibration quality, across multiple tasks and DNN architectures,
while maintaining and sometimes improving the classification accuracy.

Summary of Contributions:

• We propose KCal, a principled method that calibrates DNNs using kernel density estimation on the
latent embeddings.

• We present an efficient pipeline to train KCal, including a dimension-reducing projection and a
stratified sampling method to facilitate efficient training.

• We provide finite sample bounds for the calibration error of KCal-calibrated output under standard
assumptions. To the best of our knowledge, this is the first method with a full calibration guarantee,
especially for neural networks.

• In extensive experiments on multiple datasets and state-of-the-art models, we found that KCal
outperforms existing calibration methods in commonly used evaluation metrics. We also show that
KCal provides more reliable predictions for important classes in the healthcare datasets.

The code to replicate all our experimental results is submitted along with supplementary materials.

2 RELATED WORK

Research on calibration originated in the context of meteorology and weather forecasting (see Murphy
& Winkler (1984) for an overview) and has a long history, much older than the field of machine
learning (Brier, 1950; Murphy & Winkler, 1977; Degroot & Fienberg, 1983). We refer to Filho et al.
(2021) for a holistic overview and focus below on methods proposed in the context of modern neural
networks. Based on underlying methodological similarities, we cluster them into distinct categories.

Scaling: A popular family of calibration methods is based on scaling, in which a mapping is learned
from the predicted logits to probability vectors. Confidence calibration scaling methods include
temperature scaling (TS) (Guo et al., 2017) and its antecedent Platt scaling (Platt, 1999), an ensemble
of TS (Zhang et al., 2020), Gaussian-Process scaling (Wenger et al., 2020), combining a base
calibrator (TS) with a rejection option (Ma & Blaschko, 2021). Matrix scaling with regularization
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was also used to perform full calibration (Kull et al., 2019). While some scaling-based methods can
be data-efficient, there are no known theoretical guarantees for them to the best of our knowledge.

Binning: Another cluster of solutions relies on binning and its variants, and includes uniform-
mass binning (Zadrozny & Elkan, 2001), scaling before binning (Kumar et al., 2019), and mutual-
information-maximization-based binning (Patel et al., 2021). Isotonic regression (Zadrozny & Elkan,
2002) is also often interpreted as binning. Uniform-mass binning (Zadrozny & Elkan, 2001) has
a distribution-free finite sample calibration guarantee (Gupta & Ramdas, 2021) and asymptotic
convergent ECE estimation (Vaicenavicius et al., 2019). However, in practice, binning tends to
decrease accuracy (Patel et al., 2021; Guo et al., 2017). Binning can also be considered a member
of the broader nonparametric calibration family of methods. Such methods also include Gaussian
Process Calibration (Wenger et al., 2020), which however also only considers confidence calibration.

Loss regularization: There are also attempts to train a calibrated DNN to begin with. Such methods
typically add a suitable regularizer to the loss function (Karandikar et al., 2021; Mukhoti et al., 2020;
Kumar et al., 2018), which can sometimes result in expensive optimization and reduction in accuracy.

Use of Kernels: Although not directly used for calibration, kernels have also been used for uncertainty
quantification for deep learning classification. In classification with rejection, the k-nearest-neighbors
algorithm (kNN), closely related to kernel-based methods, has been used to provide a “confidence
measure” which is used to make a binary decision (i.e., whether to reject or to predict) (Papernot &
McDaniel, 2018; Jiang et al., 2018). Recently, continuous kernels have also been used to measure
calibration quality or used as regularization during training (Widmann et al., 2019; Kumar et al., 2018).
Zhang et al. (2020) introduced a kernel density estimation (KDE) proxy estimator for estimating
ECE. However, it uses a un-optimized kernel over ∆K−1, and shows the KDE-ECE estimator (but
not the calibration map) is consistent. To the best of our knowledge, use of trained KDE to calibrate
predictions hasn’t been proposed before. Further, we also provide a bound on the calibration error.

3 KCAL: KERNEL-BASED CALIBRATION

In this section, we formally introduce KCal, study its calibration properties theoretically, and present
crucial implementation details and comparisons with other methods. Specifically, in Section 3.1, we
discuss how to construct (automatically) calibrated predictions for test data using a calibration set Scal.
Doing so requires a well-trained kernel and metric space, and we describe a procedure to train such a
kernel in Section 3.2. In Section 3.3, we show that an appropriate shrinkage rate of the bandwidth
ensures that the KCal prediction is automatically calibrated. Sections 3.4 provides implementation
details. Finally, in Section 3.5, we compare and contrast KCal with existing methods.

3.1 CLASSIFICATION WITH KERNEL DENSITY ESTIMATION

Following the calibration literature, we first require a holdout calibration set Scal = {Xi, Yi}Ni=1. In
KCal, we fix a kernel function ϕ̂ which is learned (the learning procedure is described in Section 3.2).
For a new datum XN+1, the class probability p̂k(XN+1) takes the following form:

p̂k(XN+1; ϕ̂,Scal) =

∑
(x,y)∈Sk

cal
ϕ̂(x,XN+1)∑

(x,y)∈Scal
ϕ̂(x,XN+1)

, (3)

where Skcal := {(x, y) ∈ Scal|y = k}. The notation p̂k(XN+1; ϕ̂,Scal) emphasizes the dependence
on ϕ̂ and Scal. However, we will use p̂k(XN+1) when the dependence is clear from context.

Remarks: What we have described is essentially the classical nonparametric procedure of applying
kernel density estimation for classification. For a moment, suppose we know the true density function
fk of Pk (the distribution of all the data in class k), and the proportion of class k, denoted πk (such
that

∑
k∈[K] πk = 1). Then, for any particular x0, using the Bayes rule we get:

P{Y = k|X = x0} =
fk(x0)πk∑

k′∈[K] fk′(x0)πk′
. (4)

Now, replacing fk with the kernel density estimate f̂k(x0) := (
∑

(x,y)∈Sk
cal
ϕ̂b(x, x0))/|Skcal|, and the

class proportion πk with π̂k := |Skcal|/|Scal| we get back Eq. (3).
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3.2 TRAINING

For good performance under the kernel density framework, it is crucial to employ an appropriate
kernel function ϕ̂, which in turn relies on the choice of the underlying metric. Therefore, we train a
metric space on top of the penultimate layer embeddings of deep learning models.

To begin, we assume a deep neural network is already trained on Strain = {Xtrain
i , Y train

i }Mi=1. We
place no limitations on the form of loss function, optimizer, or the model architecture. However, we
do require the neural net to compute an embedding before a final prediction layer, which is always
the case in modern classification models. We denote the embedding function from X 7→ Rh as f .

Given a base “mother kernel” function ϕ, such as the Radial Basis Function (RBF) kernel, we denote
the kernel with bandwidth b as ϕb :=

1
bϕ(

·
b ). We parameterize the learnable kernel as:

ϕ̂(x, x′) := ϕ̂Π,f ,b(x, x
′) := ϕb(Π(f(x))−Π(f(x′))). (5)

where Π : Rh 7→ Rd is a dimension-reducing projection parameterized by a shallow MLP (Sec-
tion 3.4). Since the inference time is linear in d, letting d < h also affords computational benefits.

Given that the embedding function f(x) from the neural network is fixed, the only learnable entities
are b and Π. In the training phase, we fix b = 1, and train Π using (stochastic) gradient descent
and log-loss. The specific value of b does not matter since it can be folded into Π. Let us denote
Sktrain = {(x, y) ∈ Strain : y = k}. In each iteration, we randomly sample two batches of data from
Strain - the prediction data, denoted as SBtrain, to evaluate Π, and “background” data for each k, denoted
as Bk, from Sktrain \ SBtrain to construct the KDE classifier. Then, the prediction for any xj is given by

p̂k(xj ; ϕ̂,Strain \ SB
train) :=

( ∑
(x,y)∈Bk

|Sk
train \ SB

train|
|Bk| ϕ̂(x, xj)

)
/
( ∑
k′,(x,y)∈Bk′

|Sk′
train \ SB

train|
|Bk′ |

ϕ̂(x, xj)
)

(6)

where ϕ̂ is shorthand for ϕ̂Π,f ,b=1 defined in Eq. (5).

Algorithm 1 Overview of KCal
Input:
Strain: {(Xtrain

i , Y train
i )}Mi=1 used to train the NN

Scal: {(Xi, Yi)}Ni=1 calibration set
f : Embedding function X → Rh (trained NN)
XN+1: Unseen datum for prediction
Training (of the projection Π):

Denote Sktrain := {(x, y) ∈ Strain|y = k}.
Denote ϕb as a base kernel function (e.g. RBF)
with bandwidth b.
repeat

Sample SBtrain = {(xj , yj)}Bj=1 from Strain.
Compute p̂(xj) via Eq. (6).
Loss l← 1

B

∑B
j=1 LogLoss(p̂(xj), yj).

Update Π with (stochastic) gradient descent.
until the loss l does not improve.
Set ϕ̂b ← ϕ̂Π,f ,b for inference.

Inference:
Denote Skcal := {(x, y) ∈ Scal|y = k}.
Tune b∗ on Scal by minimizing log loss.

p̂k(XN+1)←
∑

(x,y)∈Sk
cal

ϕ̂b∗ (x,XN+1)∑
(x,y)∈Scal

ϕ̂b∗ (x,XN+1)
.

The log-loss is given formally by

L = − 1

B

∑
(x,y)∈SB

train

log p̂y(x; ϕ̂,Strain \ SB
train).

Finally, we pick a b = b∗ on the calibration set
Scal using cross-validation. This is because b
should be chosen contingent on the sample size
(Section 3.3). Choosing b can be done efficiently
(Section 3.4). Algorithm 1 summarizes the steps
we explicated upon so far.

3.3 THEORETICAL
ANALYSIS: CALIBRATION COMES FREE

In the previous section, we have only described
a procedure to improve the prediction accuracy
for p̂ on Strain. This section will show that cali-
bration comes free with the p̂ obtained using
Algorithm 1. In particular, we show that as
the sample-size for each class in Scal increases,
p̂ converges to the true frequency vector of Y
given the prediction. For smoother presentation,
we only state the relevant claims in what follows.
Detailed proofs are presented in the Appendix.

To begin, we make a few standard assumptions, such as in Chacón & Duong (2018), including:

• (∀k) The density on the embedded space, Π(f(X|Y = k)), denoted as fΠ◦f ,k, is square integrable
and twice differentiable, with all second order partials bounded, continuous, and square integrable.

• ϕ is spherically symmetric, with a finite second moment.
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Lemma 3.1 and 3.2 focus on an arbitrary class k and ignore the subscript k to the density f for
readability. We denote the size |Skcal| = m. Intuitively, due to the bias-variance trade-off, a suitable
bandwidth b will depend on m: A small b reduces bias, but with the finite m, a smaller b also leads to
increased variance. Thus, b should go to 0 “slowly”, which is formally stated below:
Lemma 3.1. For almost all x, if bdm→∞ and b→ 0 as m→∞, then we have

∥f̂Π◦f ,k(x)− fΠ◦f ,k(x)∥2
P→ 0 as m → ∞. (7)

Here f̂Π◦f ,k is the estimated fΠ◦f ,k using Scal. Recall that d is the dimension of Π(f(X )). We will
call such a bandwidth b admissible, and we sometimes write b(m) to emphasize the dependence on
m. The following lemma gives the optimal admissible bandwidth:

Lemma 3.2. The optimal bandwidth is b = Θ(m− 1
d+4 ), which leads to the fastest decreasing MSE

(i.e. E[∥f̂Π◦f ,k(x)− fΠ◦f ,k(x)∥2]) of O(m− 4
d+4 ).

Now we are in a position to present the main theoretical results. In the following, m denotes the rarest
class’s count (m := mink{|Skcal|}. Theorem 3.3 provides a bound between p̂ and the true conditional
probability vector on the embedded space p(Π(f(X))):

Theorem 3.3. Fixing x such that the density of Π(f(x)) is positive, with b(m) = Θ(m− 1
d+4 ), for

any λ ∈ (0, 2):
P{|p̂k(x)− pk(Π(f(x)))| > (3K + 1)Cm

−λ
d+4 } ≤ Ke−Bm

4−2λ
d+4 (8)

where pk(Π(f(x))) := P{Y = k|Π(f(X)) = Π(f(x))} (9)

for some constant B and C. As a corollary, p̂(x)
almost surely→ p(Π(f(x))) as m→∞.

Next, we bound the full calibration error with additional standard assumptions. More specifically, we
use and build upon the main uniform convergence result for classical KDE presented in Jiang (2017),
to obtain Theorem 3.4:
Theorem 3.4. Assume fΠ◦f ,k is α-Hölder continuous and bounded away from 0 for any k. For an
admissible b(m) with shrinkage rate Θ(( logm

m )
1

d+2α ), for some constants B and C we have:

P{sup
X,k

|p̂k(X)− P{Y = k|p̂(X)}| > (3K + 1)C(
logm

m
)

α
d+2α } ≤ K(m−1 +m−B 2α

d+2α
m

d
d+2α

). (10)

We now proceed to present details pertaining to the efficient implementation of KCal.

3.4 IMPLEMENTATION TECHNIQUES

Efficient Training: As might be immediately apparent, utilizing algorithm 1 for prediction using
full Strain \ SBtrain can be an expensive exercise. In order to afford a training speedup, we consider
a random subset from Strain \ SBtrain using a modified stratified sampling. Specifically, we take m

random samples from each Sktrain, denoted as Sk,mtrain , and replace the right-hand side of Eq. 6 with:( ∑
(x,y)∈Sk,m

train

|Sk
train|
m

ϕ̂(x, x0)
)
/
( ∑

k′∈[K],(x,y)∈Sk′,m
train

|Sk′
train|
m

ϕ̂(x, x0)
)
. (11)

The re-scaling term |Sk
train|
m is crucial to get an unbiased estimate of f̂kπ̂k. The stratification employed

makes the training more stable, while also reducing the estimation variance for rarer classes (more
details in Appendix B). The overall complexity is now O(KmdhB) per batch. In all experiments,
we used m = 20 and B = 64.

Form of Π: While there is considerable freedom in choosing a suitable form for Π, we parameterize
Π with a two layer MLP with a skip connection. Consequently, Π can reduce to linear projection
when sufficient, and be more expressive when necessary. We also experimented with using only a
linear projection, the results for which are included in the appendix. We fix the output dimension to
d = min{dim(f), 32}, except for ImageNet (d = 128).

Bandwidth Selection: Finally, to find the optimal bandwidth using Scal, we use Golden-Section
search (Kiefer, 1953) to find the log-loss-minimizing b∗. This takes O(log ub−lb

tol ) steps where [lb, ub]
is the search space, and tol is the tolerance. Essentially, we assume that the loss is a convex function
with respect to b, permitting an efficient search (see Appendix H, which presents empirical evidence
that the convexity assumption is valid across datasets).

5



Published as a conference paper at ICLR 2023

3.5 COMPARISONS WITH EXISTING CALIBRATION METHODS

Most existing calibration methods discussed in Section 2 and KCal all utilize a holdout calibration
set. However, unlike KCal, existing works usually fix the last neural network layer. KCal, on the
other hand, “takes a step back”, and replaces the last prediction layer with a kernel density estimation
based classifier. Since the DNN f is fixed regardless of whether we use the original last layer or not,
we are really comparing a KDE classifier (KCal) with linear models trained in various ways, after
mapping all the data with f . Note that this characterization is true for most existing methods, with a
few exceptions (e.g., those summarized under “loss regularization” in Section 2).

Employing a KDE classifier affords some clear advantages such as a straightforward convergence
guarantee and some interpretability1. Furthermore, KCal can also be improved in an online fashion, a
benefit especially desirable in certain high-stakes applications such as in healthcare. For example, a
hospital can calibrate a trained model prior to deployment using its own patient data (which is usually
not available to train the original model) as it becomes available.

Another important advantage of KCal is concerning normalization. In fact, simultaneously calibrating
all classes while satisfying the constraint that p̂ ∈ ∆K−1 is a distinguishing challenge for multi-class
calibration. Many calibration methods perform one-vs-rest calibration for each class, and require a
separate normalization step at test time (Zadrozny & Elkan, 2001; 2002; Patel et al., 2021; Gupta et al.,
2021). This creates a gap between training and testing and could lead to drastic drop in performance
(Section 4). On the other hand, KCal automatically satisfies p̂ ∈ ∆K−1, and the normalization is
consistent during training and testing.

A disadvantage of KCal is the need to remember the Π(f(Scal)) used to generate the KDE prediction.
This is however mitigated to a large extent by the dimension reduction step, which already reduces
the computational overhead significantly2. For example, in one of our experiments on CIFAR-100,
there are 160K (5K images, d = 32) scalars to remember, which is only 0.2% of the parameters
(85M+) of the original DNN (ViT-base-patch16). Moreover, KDE inference is trivial to parallelize on
GPUs. There is also a rich, under-explored, literature to further speed up the inference. Examples
include, KDE merging (Sodkomkham et al., 2016), Dual-Tree (Gray & Moore, 2003), and Kernel
Herding (Chen et al., 2010). These methods can easily be used in conjunction with KCal.

4 EXPERIMENTS

4.1 DATA AND NEURAL NETWORKS

We utilize two sets of data: computer vision benchmarks on which previous calibration methods were
tested, and health monitoring datasets where full calibration is crucial for diagnostic applications.
Table 1 summarizes the datasets and their splits.

Table 1: Dataset summary: Splits and number of classes (K).

Dataset IIIC IIIC(pat) ISRUC ISRUC(pat) PN2017 C10 C100 SVHN ImageNet

Train 103,818 1,936 61,841 69 15,087 45,000, 45,000 65,931 1,281,167
Calibration 1,787 77 1,372 6 253 5,000 5,000 7,326 25,000
Test 33,953 684 26,070 24 4,813 10,000 10,000 26,032 25,000
K 6 6 5 5 4 10 100 10 1,000

Benchmark data Following Kull et al. (2019), we use multiple image benchmark datasets, including
CIFAR-10, CIFAR-100, and SVHN (Krizhevsky, 2009; Netzer et al., 2011). We reserve 10% of
the training data as the calibration set. We fine-tune pretrained ViT (Dosovitskiy et al., 2021) and
MLP-Mixer (Mixer) (Tolstikhin et al., 2021) from the timm library (Wightman, 2019). We chose ViT
and Mixer because they are the state-of-the-art neural architectures in computer vision, and accuracy
should come before calibration quality. We also included the ImageNet dataset (Deng et al., 2009)
and use the pretrained Inception ResNet V2 (Szegedy et al., 2017) following Patel et al. (2021).

Health monitoring data We also use three health monitoring datasets for diagnostic tasks: IIIC (Jing
et al., 2021), an ictal-interictal-injury-continuum (IIIC) patterns classification dataset; ISRUC (Kha-
lighi et al., 2016), a sleep staging (classification) dataset using polysomnographic (PSG) recordings;

1That is, one could understand how the prediction is made by examining similar samples.
2Experiments about the effect of d on performance and overhead are provided in the Appendix.
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PN2017 (2017 PhysioNet Challenge) (Clifford et al., 2017; Goldberger et al., 2000), a public electro-
cardiogram (ECG) dataset for rhythm (particularly Atrial Fibrillation) classification. For the training
set, we follow Hong et al. (2019); Jing et al. (2021) for PN2017 and IIIC, and used 69 patients’
data for ISRUC. For the remaining data, 5% is used as the calibration set and 95% for testing. We
perform additional experiments after splitting into training/calibration/test sets by patients for IIIC
and ISRUC3, marked as the “pat” version in tables. The calibration/test split is 20/80 in “IIIC (pat)”
and “ISRUC (pat)” because the number of patients is small. For IIIC and ISRUC, we follow the
standard practice and train a CNN (ResNet) on the spectrogram (Biswal et al., 2017; Ruffini et al.,
2019; Yuan et al., 2019; Yang et al., 2022). For PN2017, we used a top-performing model from the
2017 PhysioNet Challenge, MINA (Hong et al., 2019).

Table 2: Accuracy in % (↑ means higher=better). Accuracy numbers lower than the uncalibrated
predictions are in dark red and the best are in bold (both at p=0.01). KCal typically improves or
maintains the accuracy.

Accuracy ↑ UnCal TS DirCal I-Max Focal Spline IOP GP MMCE KCal

IIIC (pat) 58.68±1.42 58.68±1.42 63.17±1.42 57.20±1.32 54.35±1.64 58.51±1.32 58.68±1.42 58.68±1.42 58.05±1.37 61.67±2.22
IIIC 58.53±0.06 58.53±0.06 63.80±0.10 56.96±0.14 54.41±0.05 58.36±0.20 58.53±0.06 58.52±0.06 58.06±0.04 66.32±0.21
ISRUC (pat) 75.11±0.77 75.11±0.77 75.57±0.91 75.54±0.68 73.79±0.72 75.11±0.79 75.11±0.77 75.11±0.76 76.26±0.59 76.13±0.89
ISRUC 74.66±0.08 74.66±0.08 76.08±0.16 75.15±0.07 73.34±0.09 74.69±0.09 74.66±0.08 74.66±0.09 75.95±0.07 77.45±0.16
PN2017 54.67±0.14 54.67±0.14 60.00±0.22 57.55±0.39 13.78±0.13 55.11±0.84 55.15±1.48 54.69±0.15 51.90±0.07 60.36±0.61
C10 (ViT) 98.94±0.05 98.94±0.05 98.94±0.05 98.94±0.05 98.76±0.06 98.94±0.05 98.94±0.05 98.94±0.06 98.93±0.07 98.98±0.09
C10 (Mixer) 98.17±0.08 98.17±0.08 98.03±0.09 98.13±0.08 96.98±0.08 98.17±0.08 98.17±0.08 98.16±0.08 98.15±0.06 98.14±0.06
C100 (ViT) 92.09±0.16 92.09±0.16 92.08±0.14 91.95±0.17 91.21±0.12 92.09±0.16 92.09±0.16 92.09±0.16 92.41±0.17 92.37±0.15
C100 (Mixer) 87.53±0.20 87.53±0.20 87.24±0.22 87.10±0.21 86.49±0.23 87.53±0.20 87.53±0.20 87.51±0.20 88.13±0.25 87.55±0.16
SVHN (ViT) 95.93±0.05 95.93±0.05 95.93±0.05 95.85±0.06 95.70±0.08 95.93±0.05 95.93±0.05 95.93±0.05 96.48±0.04 96.42±0.05
SVHN (Mixer) 95.85±0.04 95.85±0.04 95.98±0.04 95.85±0.05 95.24±0.04 95.85±0.04 95.85±0.04 95.85±0.05 95.58±0.05 96.10±0.04
ImageNet 80.44±0.24 80.44±0.24 79.55±0.24 80.34±0.28 – 80.22±0.27 80.44±0.24 80.44±0.24 – 79.64±0.24

Table 3: Class-wise ECE in 10−2 (↓ means lower=better). The best accuracy-preserving method is in
bold (p=0.01). The lowest but not accuracy-preserving number is underscored. KCal almost always
achieves the lowest class-wise ECE, while maintaining accuracy.

CECE ↓ UnCal TS DirCal I-Max Focal Spline IOP GP MMCE KCal

IIIC (pat) 8.07±0.27 8.97±0.85 5.13±1.48 9.23±0.98 8.99±0.53 8.56±0.62 8.33±0.50 7.95±0.64 7.12±0.43 4.68±1.27
IIIC 7.96±0.02 8.96±0.52 2.24±0.13 8.76±0.26 8.78±0.02 8.43±0.21 8.01±0.25 7.52±0.23 6.70±0.25 2.03±0.26
ISRUC (pat) 4.48±0.24 4.69±0.76 4.18±0.90 8.56±1.00 9.23±0.21 4.68±0.46 4.60±0.60 4.64±0.43 4.08±0.36 3.82±1.24
ISRUC 4.49±0.02 5.17±0.77 2.71±0.40 9.22±0.85 9.05±0.03 4.73±0.15 4.67±0.36 4.67±0.27 4.10±0.22 1.90±0.28
PN2017 12.17±0.07 12.31±0.23 4.30±0.47 9.92±1.16 17.31±0.09 8.61±0.73 12.09±0.34 12.17±0.07 12.35±0.39 4.25±1.26
C10 (ViT) 3.19±0.01 0.76±0.04 0.83±0.06 0.68±0.05 4.82±0.07 0.90±0.04 0.81±0.06 0.74±0.06 1.11±0.27 0.74±0.07
C10 (Mixer) 3.11±0.02 1.45±0.12 1.23±0.10 1.24±0.17 6.70±0.03 1.28±0.09 1.30±0.07 1.21±0.07 1.43±0.19 1.17±0.10
C100 (ViT) 5.90±0.05 5.27±0.20 4.64±0.13 4.96±0.17 5.53±0.06 4.41±0.14 4.72±0.12 4.65±0.16 4.27±0.23 4.32±0.10
C100 (Mixer) 5.39±0.04 5.82±0.17 5.25±0.14 5.79±0.24 5.72±0.05 4.92±0.18 5.34±0.23 5.09±0.15 5.26±0.19 4.62±0.10
SVHN (ViT) 3.37±0.01 2.31±0.56 1.22±0.06 2.64±0.20 5.89±0.03 1.34±0.05 1.39±0.06 1.40±0.05 1.47±0.11 1.23±0.10
SVHN (Mixer) 3.20±0.01 3.06±0.61 1.21±0.12 2.64±0.17 5.59±0.02 1.45±0.09 1.44±0.06 1.46±0.06 1.64±0.13 1.40±0.08
ImageNet 2.96±0.02 3.25±0.07 5.60±0.23 2.82±0.19 – 2.17±0.06 2.30±0.14 2.42±0.06 – 1.94±0.04

Table 4: ECE in 10−2 (↓ means lower=better). The best accuracy-preserving method is in bold
(p=0.01). The lowest but not accuracy-preserving number is underscored. KCal is usually on par or
better than the best baseline.

ECE ↓ UnCal TS DirCal I-Max Focal Spline IOP GP MMCE KCal

IIIC (pat) 9.32±1.01 5.00±2.75 2.92±1.59 10.52±4.05 7.53±0.55 4.58±2.04 4.57±2.14 3.86±1.63 6.33±3.28 4.34±1.35
IIIC 9.28±0.03 4.45±1.52 1.39±0.19 10.16±0.81 7.25±0.05 3.20±0.64 3.50±0.41 1.80±0.49 4.78±2.24 2.62±0.59
ISRUC (pat) 3.59±0.32 2.73±1.53 2.97±0.97 8.86±1.39 14.88±0.43 1.98±0.35 2.45±1.36 2.00±0.53 2.12±0.93 2.78±1.25
ISRUC 3.46±0.06 3.82±1.69 2.27±0.69 9.58±1.23 14.70±0.06 1.50±0.53 2.71±0.96 2.09±0.74 2.12±1.03 1.36±0.41
PN2017 16.70±0.22 16.99±0.73 5.64±0.75 10.40±1.35 24.63±0.13 6.84±2.09 16.07±2.03 16.66±0.21 13.49±1.07 4.78±1.48
C10 (ViT) 9.15±0.05 0.75±0.11 0.40±0.04 0.51±0.07 7.17±0.07 0.39±0.08 0.39±0.04 0.21±0.06 0.42±0.29 0.40±0.05
C10 (Mixer) 9.04±0.06 1.06±0.12 0.61±0.07 0.91±0.14 12.53±0.06 0.36±0.06 0.66±0.09 0.34±0.10 0.91±0.44 0.59±0.09
C100 (ViT) 11.64±0.14 2.77±0.46 0.74±0.16 3.28±0.22 9.97±0.09 1.08±0.18 1.07±0.19 0.88±0.11 1.05±0.30 1.50±0.32
C100 (Mixer) 13.71±0.15 3.03±0.34 1.06±0.28 4.75±0.27 14.35±0.21 1.25±0.29 1.70±0.66 1.08±0.26 1.93±0.49 3.07±0.49
SVHN (ViT) 10.10±0.05 2.43±2.72 0.60±0.07 2.05±0.18 12.17±0.08 0.74±0.10 0.62±0.08 0.64±0.07 0.72±0.21 0.64±0.12
SVHN (Mixer) 10.29±0.04 3.19±2.55 0.66±0.05 2.13±0.10 11.09±0.06 0.78±0.11 0.60±0.08 0.72±0.06 0.72±0.28 0.73±0.10
ImageNet 3.21±0.15 3.52±0.13 4.30±0.68 7.97±0.35 – 1.10±0.20 1.31±0.47 0.87±0.12 – 1.43±0.34

4.2 BASELINES METHODS

We compare KCal with the multiple state-of-the-art calibration methods, including Temperature
Scaling (TS) (Guo et al., 2017), Dirichlet Calibration (DirCal) (Kull et al., 2019), Mutual-
information-maximization-based Binning (I-Max) (Patel et al., 2021), Gaussian Process Calibration
3PN2017 did not provide patient IDs, so we cannot split by patient.
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Table 5: Brier Score in 10−2 (↓ means lower=better). The best accuracy-preserving methods are in
bold (p=0.01). The lowest but not accuracy-preserving number is underscored.

Brier ↓ UnCal TS DirCal I-Max Focal Spline IOP GP MMCE KCal

IIIC (pat) 21.30±0.25 20.70±0.69 18.94±0.55 21.09±1.29 21.48±0.19 20.43±0.50 20.52±0.58 20.33±0.42 21.11±0.71 19.33±0.78
IIIC 21.35±0.01 20.62±0.27 18.33±0.04 20.83±0.19 21.46±0.01 20.21±0.09 20.39±0.09 20.05±0.08 20.86±0.26 17.54±0.10
ISRUC (pat) 15.26±0.25 15.20±0.31 15.37±0.38 16.25±0.49 18.55±0.18 15.11±0.26 15.16±0.31 15.16±0.29 14.69±0.22 14.97±0.29
ISRUC 15.46±0.03 15.50±0.19 15.07±0.09 16.62±0.33 18.77±0.01 15.31±0.05 15.39±0.10 15.35±0.06 14.91±0.08 14.28±0.08
PN2017 26.61±0.05 26.74±0.27 22.44±0.15 24.58±0.59 17.79±0.03 23.28±0.37 26.39±0.69 26.61±0.05 26.41±0.44 22.56±0.28
C10 (ViT) 1.76±0.03 0.89±0.06 0.78±0.04 0.84±0.04 1.75±0.03 0.79±0.04 0.79±0.04 0.78±0.04 0.85±0.10 0.75±0.05
C10 (Mixer) 2.29±0.03 1.48±0.07 1.42±0.05 1.46±0.08 4.16±0.04 1.39±0.04 1.40±0.05 1.37±0.04 1.45±0.16 1.34±0.04
C100 (ViT) 6.94±0.08 5.35±0.15 5.17±0.10 5.48±0.14 6.93±0.07 5.19±0.09 5.18±0.10 5.14±0.09 4.81±0.10 5.01±0.08
C100 (Mixer) 10.15±0.11 7.94±0.17 7.82±0.12 8.23±0.17 10.91±0.08 7.76±0.12 7.82±0.15 7.72±0.13 7.38±0.16 7.61±0.09
SVHN (ViT) 3.99±0.03 3.03±0.34 2.78±0.04 2.99±0.07 5.03±0.03 2.80±0.03 2.79±0.04 2.79±0.04 2.43±0.02 2.49±0.03
SVHN (Mixer) 4.03±0.03 3.21±0.36 2.77±0.03 3.04±0.04 5.06±0.04 2.84±0.03 2.81±0.04 2.81±0.04 3.03±0.02 2.68±0.03
ImageNet 11.15±0.14 11.20±0.15 12.03±0.21 11.93±0.18 – 10.68±0.13 10.69±0.13 10.67±0.12 – 11.14±0.10

Table 6: Ranks for different evaluation metrics. The best rank is underscored. In general, KCal
consistently outperforms baselines on Accuracy, CECE and Brier, and the difference between most
methods on ECE is small.

Ranking UnCal TS DirCal I-Max Focal Spline IOP GP MMCE KCal

ECE 8.42±1.43 6.68±1.11 3.33±1.80 7.73±1.55 9.39±0.95 3.51±1.06 4.25±1.35 2.91±1.66 4.52±0.98 3.84±1.35
Accuracy 5.03±1.30 5.03±1.30 4.53±2.69 6.41±2.36 9.99±0.03 5.56±0.93 5.01±1.27 5.64±1.16 4.74±3.30 2.70±2.01
CECE 6.99±1.95 7.41±1.60 3.31±2.08 6.82±2.67 9.46±0.61 4.59±2.06 5.12±1.13 4.37±1.27 4.69±1.99 1.83±0.76
Brier 8.18±1.52 6.91±0.85 3.86±2.08 7.42±1.06 8.98±2.67 4.23±1.05 4.88±1.24 3.89±1.83 4.11±2.89 2.05±1.17
Average 7.16 6.51 3.76 7.09 9.46 4.47 4.81 4.20 4.51 2.61

(GP) (Wenger et al., 2020), Intra Order-preserving Calibration (IOP) (Rahimi et al., 2020), Splines-
based Calibration (Spline) (Gupta et al., 2021), Focal-loss-based calibration (Focal) (Mukhoti
et al., 2020), MMCE-based calibration (MMCE) (Kumar et al., 2018).

4.3 EVALUATION METRICS

We report standard evaluation metrics: Accuracy, class-wise expected calibration error (CECE) (Kull
et al., 2019; Patel et al., 2021; Nixon et al., 2019), expected calibration error (ECE) (Guo et al.,
2017), and Brier score (Brier, 1950). CECE is typically used as a proxy to evaluate full calibration
quality, because directly binning basing on the entire vector p̂ requires exponentially (in K) many
bins. Similar to Patel et al. (2021); Nixon et al. (2019), we ignore all predictions with very small
probabilities (less than max{0.01, 1

K }). ECE, on the other hand, only measures confidence calibration
(Def 2). For both ECE and CECE, we use the “adaptive” version with equal number of samples
in each bin (with 20 bins), because this is shown to measure the calibration quality better than the
equal-width version (Nixon et al., 2019). Brier score can be viewed as the sum of a “calibration”
term, and a “refinement” term measuring how discriminative a model is (Kull & Flach, 2015). Here
we focus on the brier score of the top class. We refer to (Guo et al., 2017; Kull et al., 2019; Nixon
et al., 2019) for further discussion on these metrics.

4.4 RESULTS

The results are presented in Tables 2, 3, 4 and 5. All experiments are repeated 10 times by reshuffling
calibration and test sets, and the standard deviations are reported. For ImageNet, we skipped Focal
and MMCE because the base NN is given and these methods require training from scratch. Due to
space constraints, we include ablation studies in the Appendix.

In general, KCal has the best CECE, accuracy and Brier score, and is highly competitive in terms
of ECE as well. Note that KCal is also the only method with provable calibration guarantee. TS is
effective in controlling overall ECE but shows little improvement on CECE over UnCal. DirCal
often ranks high for the calibration quality but tends to decrease accuracy as K increases. DirCal’s
performance also has a higher cost: Every experiment requires training over hundreds of models
with SGD and taking the best ensemble, accounting for most of the experiment computation cost
in this paper. The amount of tuning suggested for good performance indicates sensitivity to the
choice of hyper-parameters, which we have indeed observed to be the case. Spline, IOP and GP
are similar to DirCal on vision datasets, but generally perform worse on the healthcare datasets.

8



Published as a conference paper at ICLR 2023

In Patel et al. (2021), I-Max lowers ECE and CECE significantly. However, it has a critical issue
- it does not produce a valid probability vector4. Once normalized, as reported in our experiments,
the performance worsens. Since calibrating all the classes simultaneously is the distinguishing
challenge in multiclass classification, we interpret the observation as: If this normalization constraint
is removed, the “optimization problem” (to lower calibration error) is much simpler, but the results
are invalid hence unusable probability vectors. Spline also requires a re-normalization step, but
its performance stays consistent. Focal is worse than the UnCal in many experiments. While
calibration performance may improve by combing Focal with other methods, the drop in accuracy
is harder to overcome5. We also observed that for healthcare datasets, being able to tune on a different
set of patients boosts the performance significantly. This is reflected in the accuracy gain for DirCal
and KCal, and suggests that the embeddings/logits are quite transferable, but the prediction criteria
itself can vary from patient to patient.

Finally, we summarize the rankings of all datasets in Table 6. It is clear that KCal consistently
improves calibration quality for all classes and maintains or improves accuracy. And if we look at
only the confidence prediction (Brier or ECE), KCal is still highly competitive.
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Figure 2: Reliability diagrams for the predicted class (top) and Seizure (bottom) in IIIC. All methods
calibrate confidence well, but only KCal achieves reasonable calibration quality for Seizure.

4.5 CASE STUDY FOR SEIZURE PREDICTION

We show the reliability diagrams (Kull et al., 2019; Guo et al., 2017) on the IIIC dataset to illustrate
the importance of full calibration in Figure 2. We include both the the predicted class (confidence
calibration) and Seizure. More reliability diagrams can be found in the Appendix, and the results
are consistent for all classes. The un-calibrated predictions have large gaps for both confidence and
Seizure. Most baselines provide calibrated confidence calibration, but fail to calibrated the output for
the rare class Seizure. KCal, on the other hand, achieves the most consistent results. We note again
that since all competing classes must be considered together for any clinical decision, full calibration
is indispensable in medical applications.

5 CONCLUSION

This paper proposed KCal, a learned-kernel-based calibration method for deep learning models.
KCal consists of a supervised dimensionality reduction step on the penultimate layer neural network
embedding to improve efficiency. A KDE classifier using the calibration set is employed in this new
metric space. As a natural consequence of the construction, KCal provides a calibrated probability
vector prediction for all classes. Unlike most existing calibration methods, KCal is also provably
asymptotically fully calibrated with finite sample error bounds. We also showed that empirically, it
outperforms existing state-of-the-art calibration methods in terms of accuracy and calibration quality.
Moreover, KCal is more robust to distributional shift, which is common in high-risk applications
such as healthcare, where calibration is far more crucial. The major limitation of KCal is the need
to store the entire calibration set, which is a small overhead with the dimension reduction step and
potential improvements.
4It generates a vector whose sum ranges from 0.4 to 2.0 in our experiments. The range is wider for a larger K.
5In PN2017, rare classes are oversampled during training (Hong et al., 2019). While this did not cause issues for
other calibration methods, the distributional shift at test time seems catastrophic for Focal.
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