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Abstract. Deep neural networks (DNNs) are able to predict a person’s
gender from retinal fundus images with high accuracy, even though this
task is usually considered hardly possible by ophthalmologists. There-
fore, it has been an open question which features allow reliable discrimi-
nation between male and female fundus images. To study this question,
we used a particular DNN architecture called BagNet, which extracts
local features from small image patches and then averages the class evi-
dence across all patches. The BagNet performed on par with the more
sophisticated Inception-v3 model, showing that the gender information
can be read out from local features alone. BagNets also naturally provide
saliency maps, which we used to highlight the most informative patches
in fundus images. We found that most evidence was provided by patches
from the optic disc and the macula, with patches from the optic disc
providing mostly male and patches from the macula providing mostly
female evidence. Although further research is needed to clarify the exact
nature of this evidence, our results suggest that there are localized struc-
tural differences in fundus images between genders. Overall, we believe
that BagNets may provide a compelling alternative to the standard DNN
architectures also in other medical image analysis tasks, as they do not
require post-hoc explainability methods.
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1 Introduction

In recent years, deep neural networks (DNNs) have achieved physician-level accu-
racy in various image-based medical tasks, e.g. in radiology [21], dermatology
[10], pathology [15] and ophthalmology [7,12]. Moreover, in some cases DNNs
have been shown to have good performance in tasks that are not straightforward
for physicians: for example, they can accurately predict the gender from retinal
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images [25]. As this task is typically not clinically relevant, ophthalmologists are
not explicitly trained for it. Nevertheless, the comparably poor performance of
ophthalmologists at this task suggests that gender differences in fundus images
are not obvious or salient. Even though saliency maps used by [25] and follow-up
studies [5,9] have tentatively pointed at the optic disc, the macula, and retinal
blood vessels as candidate regions for gender-related anatomical differences in
fundus images, conclusive evidence is still lacking. Therefore the high gender pre-
diction performance of DNNs has created lots of interest in the medical imaging
community as one hope for DNNs is to unravel biomarkers that are not eas-
ily found by humans. Here, we performed a proof of principle study to make
progress on the question of how DNNs are able to detect gender differences in
retinal fundus. Our contribution is twofold: we (1) introduced BagNets [3]—a
‘local” variant of the ResNet50 architecture [13]—as an interpretable-by-design
architecture for image analysis in ophthalmology and (2) used them to narrow
down the hypothesis space for question at hand.

We trained the BagNets on a large collection of retinal fundus images
obtained from the UK Biobank [27] (Fig.1la). BagNets use a linear classifier
on features extracted from image patches to compute local evidence for each
class, which is then averaged over space to form the final prediction, without
considering any global relationships. Thus, BagNets resemble ‘bag-of-features’
models popular before deep learning [23]. Despite this simple bag-of-features
approach, the BagNet performed on par with an Inception-v3 network in terms
of gender prediction accuracy, indicating that gender can be determined from the
local characteristics of the fundus image. Also, the BagNet architecture naturally
allowed to construct saliency maps to highlight the most informative regions for
gender prediction in the retina (Fig. 1b). We found that the macula contained
most distinctive female patches, while the optic disk contained male ones. In
addition, we showed that the decision of the BagNet was not simply caused
by some exclusively female or male patches in the images, but rather by a
change in both frequency and the degree of ‘femaleness’ or ‘maleness’ of individ-
ual patches. Overall, we argue that BagNets can be useful in medical imaging
applications including both disease diagnosis and biomarker discovery, thanks
to interpretability provided by their local architecture. Our code is available at
https://github.com/berenslab/genderBagNets.

2 Related Work

Previous work on gender prediction from fundus images have used either stan-
dard DNN architectures or simple logistic regression on top of expert-defined
features. For example, [25] trained Inception-v3 networks on the UK Biobank
dataset to predict cardiovascular risk factors from fundus images and found that
DNNs were also capable of predicting the patient’s gender (AUC = 0.97). A
similar network was used by [9]. In both studies, the authors computed post-
hoc saliency maps to study the features driving the network’s decisions. In a
sample of 100 attention maps, [25] found that the optic disc, vessels, and other
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Fig. 1. A sketch of the gender prediction via BagNet33. (a) Example fundus image
from the UK Biobank. The optic disc is the bright spot on the right, the macula is the
slightly darker spot in the middle and the blood vessels are extending from the optic
disc in darker red. (b) The BagNet33 extracts 2048-dimensional feature vectors from
33 x 33 patches and stores them in the penultimate layer. Via spatial average pooling
and a linear classifier, it then forms the final predictions for the gender. The same
linear classifier can be applied directly to the feature representation in the penultimate
layer to compute the local evidence, which can be visualized as a saliency map. Plotted
with PlotNeuralNet [14].

nonspecific parts of the images were frequently highlighted. However, this seems
to be the case for almost all the dependent variables and it is very hard to
derive testable hypotheses for gender specific differences. Likewise, [9] manually
inspected a sample of occlusion maps and concluded that DNNs may use geomet-
rical properties of the blood vessels at the optic disc for predicting gender. More
recently, [5] demonstrated that DNNs can predict gender not only from retinal
fundus images but also from OCT scans, where the foveal pit region seemed most
informative based on gradient-based saliency maps. Taking a different approach,
[29] used expert-defined image features in a simple logistic regression model.
Although the performance of their model was worse (AUC = 0.78), they found
various color-intensity-based metrics and the angle between certain retinal arter-
ies to be significant predictors, but most effect sizes were small.

BagNets provide a compromise between linear classifiers operating on expert-
defined features [29] and high-performing DNNs [5,9,25], which require complex
post-hoc processing for interpretability [2,22]. In BagNets, a saliency map is also
straightforward to compute by design, and it has been shown to provide more
information about the location of class evidence than auxiliary interpretabil-
ity methods [3]. Such native evidence-based maps returned by BagNets are
interpretable as is, while standard saliency maps require fine-tuning and post-
processing for compelling visualizations [2]. Thanks to these benefits, BagNets
have also been used in the context of histopathological microscopy [24].
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Table 1. Gender prediction performances of DNNs

TRAINING | VALIDATION | TEST CLINICAL

Acc. | AUC | Acc. | AUC | Acc. | AUC | Acc. | AUC
InceptionV3]92.99 | 0.98 | 83.87 0.92 |82.97|0.91 |62.07|0.78
BagNet33 193.44/0.98 | 85.48 0.93 |85.26|0.93 |72.41|0.70
BagNet17 86.66 1 0.94 |[82.30/0.90 |82.11/0.90 |37.93|0.51
BagNet9 82.41/0.92 |79.95|0.89 |80.57|0.90 |41.38|0.45

3 Methods

3.1 Data and Preprocessing

The UK Biobank [27] offers a large-scale and multi-modal repository of health-
related data from the UK. From this, we obtained records of over 84, 000 subjects
with 174,465 fundus images from both eyes and multiple visits per participant.
Male and female subjects constituted 46% and 54% of the data, respectively. As
a substantial fraction of the images were not gradable due to image quality issues
(artefacts, high contrast, or oversaturation), we used the EyeQual networks [6]
to filter out poor images. 47,939 images (47% male, 53% female) passed the
quality check by the EyeQual ensemble. We partitioned them into the training,
validation and test sets with 75%, 10% and 15% of subjects, respectively, making
sure that all images from each subject were allocated to the same set.

Additionally, we obtained 29 fundus images from patients (11 male, 18 female,
all older than 47 years) at the University Eye Hospital with permission of the
Institutional Ethics Board. We used these additional images as an independent
test set. For all images, we applied a circular mask to capture the 95% central
area and to remove camera artifacts at the borders.

3.2 Network Architecture and Training

We used BagNets [3] (Fig. 1b) and standard Inception-v3 [28] network as imple-
mented in Keras [4]. In a BagNet, neurons in the final layer have a receptive field
restricted to ¢ X ¢ pixels, where we used ¢ € {9,17,33}. The convolutional stack
in the network extracts a 2048-dimensional feature vector for each ¢ x ¢ image
patch. Patches were implicitly defined, with a stride for convolutions of 8 pixels
for ¢ = 33. Therefore local features were extracted for each patch on a 24 x 24
grid (Fig. 1b). A linear classifier combined these 2048 features to obtain the local
class evidence which was then averaged across all image patches (average pooling
layer).

All networks had been pretrained on ImageNet [26] by their respective devel-
opers. For our binary classification problem, we replaced the 1000-way softmax
output layer with a single logistic output neuron (Fig. 1b). We initially trained
only the output layer using the fundus images for 10 epochs. This was followed
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by fine-tuning all layers for 100 epochs. We used stochastic gradient descent
(SGD) with the learning rate set to 0.01 and the batch size to 16. We used data
augmentation via random rotations and flips, width and height shifts, random
brightness, and random zooming operations. We picked the best epoch from
the [95,100] range based on the validation performance. We evaluated the final
performance on both the test set and the data from the University Eye Hospital.

3.3 Generation of Saliency Maps

To compute saliency maps, we applied the weights w in the final classification
layer of BagNet33 to the feature vectors, e.g. x, in its penultimate layer (Fig. 1b),
yielding the local evidence (logits) for each patch via w-x = >, w;x;. We clipped
the resulting values to [—75, 75] for visualization purposes. The resulting saliency
maps were 24 x 24 (Fig. 2).

3.4 Embedding of Image Patches

To explore which image patches were informative for classification, we used t-
Stochastic Neighborhood Embeddings (t-SNE) [20], a non-linear dimensionality
reduction method. To embed the feature representations of >1,000,000 image
patches extracted from the fundus images, we used FIt-SNE implementation
[19] with uniform affinity kernel in the high-dimensional space across 15 nearest
neighbours. We used PCA initialization to better preserve the global structure
of the data and improve the reproducibility [16]. We used a heavy-tailed kernel
k(d) =1/(1 + d?/a)® with o = 0.5 to emphasize cluster structure [17].

4 Results

We trained BagNets with three different receptive field sizes to predict patient’s
gender from retinal fundus images based on the UK Biobank data. We evaluated
their performances using prediction accuracy and the Area Under the Receiver
Operating Characteristic curve (AUC) and compared to an Inception-v3 net-
work (Table 1). BagNet33 and Inception-v3 performed on par with each other,
while BagNet17 and BagNet9 performed worse. BagNet33 and Inception-v3 also
generalized better to a new clinical dataset, albeit with a substantial drop in
performance. Together, this suggests that the 33 x 33 patches captured the rele-
vant information for gender prediction better than smaller patches. Thus, for the
remainder of the paper, we will focus our analysis on the BagNet33 (referring to
it simply as BagNet).

We inspected saliency maps for gender prediction computed by evaluating
the classifier on each feature representation in the penultimate layer (Fig. 2, top).
In a typical male example, we found that the optic disc provided high evidence
for the male class, along with more scattered evidence around the major blood
vessels. For a typical female example, high evidence was found for the female
class in the macula. Averaging the saliency maps across all correctly classified
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Class evidence

Fig. 2. Saliency maps obtained by BagNet showing class evidence for each of the image
patches on a 24 x24 grid. Top row shows exemplary test images along with their saliency
maps. Middle row shows the average saliency maps for correctly classified male and
female patients. Bottom row shows the average fundus images corresponding to the
middle row.

male/female test images confirmed that the BagNet relied on the optic disc and
the blood vessels to identify male images and on the macula to identify female
ones (Fig. 2, middle).

Interestingly, the individual and the average saliency maps also showed that
the optic disc patches tended to always provide male evidence, to some extent
even in correctly classified female images. Similarly, the macula patches tended
to provide female evidence, even in correctly classified male images. The BagNet
could nevertheless achieve high classification performance after averaging the
class evidence across all patches.

As a sanity check, we show the averaged fundus images across all correctly
classified male/female images in the bottom row of Fig. 2. These average images
are nearly identical across genders, demonstrating that it is not the location, the
size, or the shape of the optic disc or macula that drive the BagNet predictions.

To further explore the structure of local image features informative about
gender, we embedded the 2048-dimensional feature representation of each image
patch into 2D using t-SNE and colored them by the provided class evidence
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Fig. 3. Visualization of image patches and associated class evidence via t-SNE. 213,696
patches extracted from 371 correctly classified test images (using training set images
yielded a similar embedding; not shown). Four patches with high evidence (two male,
two female) are shown from each of the four highlighted clusters. The fraction of male
patches in each of these clusters is given below the corresponding exemplary patches.
The colors show the logit class evidence. Note that the color does not indicate the
correct label of each patch.
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(Fig.3). We found that most image patches provided only weak evidence for
either class, but some distinct clusters of patches had consistently high logits.
We further explored these clusters and found that they consistently showed the
optic disk with blood vessels (a and ¢) or the macula (b and d), in line with
the saliency maps computed above (Fig. 2). However, even though the clusters a
and b consistently provided evidence for the male class, patches in these clusters
occurred in true female and male fundus images alike (67% and 62% patches from
male images, respectively). Similarly, clusters ¢ and d provided evidence for the
female class but yet came from male and female fundus images (39% and 45%
patches from male images, respectively).

This raised the question of whether the BagNet’s decisions were mostly driven
by (i) male/female images having individual patches with stronger male/female
evidence; or (ii) male/female images having a larger number of patches with
male/female evidence (Fig.4). We found that both factors played a role in deter-
mining the final gender predictions, but the fraction of male/female patches
seemed to be a stronger factor: Cohen’s d = 1.82 and d = 1.63 for the difference
in fraction of male (logit value >50) and female (logit value < —50) patches
between genders, vs. d = 0.77 and d = 0.76 for the difference in the logit value
of the most male and the most female patch. Thus, female images contained
more patches providing strong female class evidence, and vice versa for male
fundus images.
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Fig.4. Two factors determine the gender predictions of the BagNet: the maximal
strength of evidence and the frequency of strong evidence. (a) Kernel density estimate
of all male (red) and female (blue) test set images. Horizontal axis: fraction of male
patches, defined as having logit values above 50. Vertical axis: the absolute logit value
of the most male patch. (b) The same for patches providing female evidence (logit
values below —50).

5 Discussion

In summary, we argued that the BagNet architecture is particularly suitable for
medical image analysis, thanks to its built-in interpretability. Here we used Bag-
Nets to investigate the high accuracy of DNNs in gender prediction from retinal
fundus images. BagNet33 achieved a performance similar to Inception-v3 despite
having a much simpler architecture and using only local image features for pre-
diction. This suggested that local features are sufficient for gender prediction
and the global arrangement of these features is not essential for this task.

In BagNets, saliency maps can be readily computed without auxiliary
gradient-based methods or layer-wise relevance propagation [22]. We used the
native saliency maps of BagNets and a two-dimensional t-SNE embedding of
image patches to identify the most informative regions for the gender prediction
task in fundus images. This allowed us to go beyond the previous reports [9,25]
and for the first time to provide conclusive evidence that the optic disk region
contains features used to inform a male prediction and the macula region for a
female prediction. We found that both the frequency of informative male/female
patches and—albeit to a lesser degree—the strength of the most informative
male/female patches were important factors for gender prediction by BagNets.

It is, however, not the case that the optic disc in males is substantially larger
than in females, as can be seen in the average fundus images shown in Fig. 2.
The relative optic disc and macula sizes, shapes, brightness levels, etc. seem all
to be roughly the same for both genders. Instead, our results suggest structural
but localized differences in the male and female retinas, mainly within the optic
disc and macula regions. This is supported by the previous findings showing that
the retinal nerve fibre layer in the optic disk is slightly thicker in females [18§]
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and that the macula is slightly thinner [5] and wider [8] in females. However,
these previously reported gender differences have small to moderate effect sizes
(Cohen’s d = 0.11, d = 0.52, and d = 0.17 respectively for the comparisons refer-
enced above; computed here based on reported means and standard deviations)
and it is unclear if they alone can explain the BagNet performance.

Therefore, future work is needed to understand what exactly it is that allows
the network to assign high male evidence to the optic disc patches from male
patients and high female evidence to the optic disc patches from female patients.
In this sense, the results presented here do not provide the final solution to
the gender prediction mystery. Nevertheless, we believe that our results make a
step in the right direction as they demonstrate structural but localized gender
differences and reduce the problem complexity down to specific small patches of
the fundus image that can be further analyzed separately.

We believe that BagNets may also be more widely applicable for clinically
relevant diagnostic tasks involving medical images in ophthalmology and beyond,
provided that they are coupled with reliable uncertainty estimation [1]. In many
cases, pathologies often manifest in localized regions, which can be readily picked
up by BagNets. For example, BagNets could be used to further explore clinically
relevant changes underlying progressive diseases such as diabetic retinopathy.
The interpretable architecture of BagNets may increase the trust of clinicians
and patients, which is a critical issue for adoption of deep learning algorithms
in medical practice [11].
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