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Figure 1. We propose the first open-vocabulary method for the segmentation of 3D human. It infers 3D segmentation by rendering
multi-view images and leveraging pre-trained vision-language models. The figure displays the input text prompts and the corresponding
segmentation results for 3D humans from various datasets. Our method supports arbitrary queries and generates non-overlapping masks in
the 3D model. See Figure 7 and Figure 8 for more results.

Abstract

3D part segmentation is still an open problem in the field
of 3D vision and AR/VR. Due to limited 3D labeled data,
traditional supervised segmentation methods fall short in
generalizing to unseen shapes and categories. Recently, the
advancement in vision-language models’ zero-shot abilities
has brought a surge in open-world 3D segmentation meth-
ods. While these methods show promising results for 3D
scenes or objects, they do not generalize well to 3D hu-
mans. In this paper, we present the first open-vocabulary
segmentation method capable of handling 3D human. Our
framework can segment the human category into desired
fine-grained parts based on the textual prompt. We design a
simple segmentation pipeline, leveraging SAM to generate
multi-view proposals in 2D and proposing a novel Human-
CLIP model to create unified embeddings for visual and tex-
tual inputs. Compared with existing pre-trained CLIP mod-
els, the HumanCLIP model yields more accurate embed-

dings for human-centric contents. We also design a simple-
yet-effective MaskFusion module, which classifies and fuses
multi-view features into 3D semantic masks without com-
plex voting and grouping mechanisms. The design of decou-
pling mask proposals and text input also significantly boosts
the efficiency of per-prompt inference. Experimental results
on various 3D human datasets show that our method out-
performs current state-of-the-art open-vocabulary 3D seg-
mentation methods by a large margin. In addition, we show
that our method can be directly applied to various 3D rep-
resentations including meshes, point clouds, and 3D Gaus-
sian Splatting.

1. Introduction

The advancements in 3D technologies have led to an in-
creased demand for automated analysis of 3D shapes.

1Equal Contribution.



Among the related tasks, 3D part segmentation plays a piv-
otal role in supporting a wide spectrum of applications, in-
cluding robotics and AR/VR.

With the introduction of deep neural networks [32, 33,
40, 46, 51] and labeled 3D datasets [6, 45], 3D part segmen-
tation has seen remarkable progress in recent years through
supervised training. Nonetheless, creating 3D datasets is
expensive and time-consuming. Compared with image data,
current 3D part-annotated datasets are orders of magnitude
smaller in scale. Within the limited 3D data, the human
category represents only a tiny fraction. Existing human
parsing methods have been trained to segment clothed data
[2, 3, 30] or underlying body parts [4, 39], but they fall
short of generalizing to unseen models and classes. Thus,
enabling machines with the ability to parse objects into se-
mantic parts and generalize to new categories still remains
difficult, especially for human-related data, which usually
contain more complex geometry with richer semantic at-
tributes than general 3D objects.

Recent developments in vision-language learning gave
rise to many 2D image-based models [25, 34] with excep-
tional zero-shot generalization capabilities. Many works
seek to transfer 2D knowledge to 3D through pre-trained
image-language models. [1, 28, 50, 54, 55] leverage these
models through multi-view rendering and aggregate the in-
formation in 3D for the final segmentation result. Another
line [43] focuses on distilling the information for a better
3D model. While these methods have shown promising im-
provements in object data, they have not exhibited the same
quality of results on 3D human data.

In this paper, we aim to bring the open-vocabulary 3D
part segmentation performance to human data. We intro-
duce the first framework for 3D human parsing that seman-
tically segments whatever parts you want and supports vari-
ous 3D representations, including meshes, point clouds, and
3D Gaussians [21]. Inspired by [9], we formulate the seg-
mentation task as a mask classification problem. Firstly,
we generate class-agnostic instance mask proposals on ren-
dered images through a pre-trained 2D segmentation model,
SAM [22]. Secondly, we propose a novel HumanCLIP
model that encodes each mask into embeddings within the
CLIP feature space. Compared to the vanilla CLIP model
[34], HumanCLIP produces more accurate text-aligned em-
beddings for human-related cases, enhancing the precision
of the final segmentation. Since mask proposals are class-
agnostic and independent between views, we propose a
novel MaskFusion module that simultaneously classifies the
semantic labels given the text prompt and fuses the multi-
view inconsistent masks to generate 3D semantic segmen-
tation for the input. It decouples the mask proposal step
from reliance on text prompts, thereby enhancing inference
efficiency. In summary, our contributions mainly include:
• We introduce the first open-vocabulary framework that

segments fine-grained parts for 3D humans.
• We present a HumanCLIP model capable of extracting

discriminative CLIP embeddings for human-centric data.
• We propose a MaskFusion module that simultaneously

classifies semantic labels and converts multi-view 2D
proposals into 3D segmentation, which significantly en-
hances inference efficiency.

• Our framework shows state-of-the-art performance on
five 3D human datasets and shows compatibility with var-
ious 3D representations including 3D Gaussian Splatting.

2. Related Works
2.1. 3D Human Part Segmentation

The 3D human part segmentation field is largely driven by
the advancement of 3D neural networks as well as the la-
beled dataset. [19, 30, 42] train point cloud [32, 33, 40]
or mesh segmentation networks [13, 17, 37] through di-
rect supervision or leveraging the unclothed human para-
metric templates or physical simulation of garments. [39]
curates synthetic data to boost the performance on body
parts. Datasets such as SIZER [41], MGN [3], and CTD
[8], provide coarse clothing labels from 3D scans of clothed
humans, but having only three categories and less varia-
tions of poses limit their applications. [2] presents Close-D
which consists of 18 garment categories. To the best of our
knowledge, it is the most comprehensive dataset up-to-date.
However, due to the still limited size, none of these meth-
ods show generalizable ability and cannot segment labels
outside of the predefined taxonomy.

2.2. Open-Vocabulary 3D Segmentation

In recent years, large vision language models [20, 34] have
grown popular due to their ability to perform zero-shot
recognition. As a result, many works have incorporated
these models [12, 14, 24, 26] to conduct open-vocabulary
2D segmentation. To transfer the knowledge into 3D, some
methods [18, 50, 55] apply CLIP to depth maps for zero-
shot object classification and segmentation. For scene-scale
data, CLIP2Scene [7] and CLIP2 [49] train an additional
3D encoder with a contrastive loss. Although these models
have shown their effectiveness on general 3D scenes or ob-
jects, we find that they do not work well for 3D humans. As
one of the most important categories, a framework tailored
for open-vocabulary 3D human parsing is demanded.
CLIP Embeddings. CLIP [34] is one of the most widely
used vision-language models in both 2D and 3D open-world
segmentation approaches. Due to being trained with natural
images, the vanilla CLIP does not perform well on special
input subsets, such as masked images or fashion images.
Many approaches try to adapt CLIP models to new tasks.
[5, 11] presents fine-tuned CLIP on fashion data. [26] pro-
pose the Mask-adapted CLIP. AlphaCLIP [38] adds an ad-



Figure 2. Overview of the proposed framework. Given a 3D human model, it is first rendered to obtain multi-view 2D images. The images
are then fed to SAM to generate class-agnostic 2D masks and unprojected to obtain binary 3D masks. Additionally, each pair of image and
2D masks are fed to the human-centric mask-based text-aligned image encoder to obtain CLIP embeddings for each mask. Simultaneously,
the input class texts are fed to the text encoder to obtain corresponding text embeddings. The 3D mask proposals, mask embeddings, and
text embeddings are fed to the mask fusion module to obtain the final segmentation result.

ditional alpha channel as input so that it composes both
regional and global information for better understanding.
While AlphaCLIP provides better embeddings than CLIP
for a region of interest, we observe that it is still inadequate
to distinguish human body parts and garments.

3. Proposed Method
3.1. Overview

The overview of the proposed framework is shown in Figure
2. We assume a point-based 3D shape with size P as the
input. Given the 3D human model and K semantic text
prompts, the goal is to parse the 3D human into segments
that semantically correspond to the input prompts.

Inspired by recent achievements in 2D and 3D segmen-
tation methods [10, 12, 36, 39, 52], we formulate the se-
mantic segmentation task as mask classification, originated
from MaskFormer [9]. To bridge 3D data with 2D pre-
trained models, we render the input from V predefined cam-
era views. Segment-Anything-Model (SAM) [22] is lever-
aged to generate mask proposals for each view (Section
3.2). We introduce the novel HumanCLIP model, which
encodes these proposals into embeddings within the uni-
fied CLIP feature space (Section 3.3). To lift 2D labels into
3D, it is usually required to assign “super points” and have
carefully designed voting and grouping. In this work, we
present a simple MaskFusion module. It takes HumanCLIP

encoded text prompts and simultaneously performs classi-
fication and multi-view aggregation without the need for
complex operations (Section 3.5). Note that the generation
of mask proposals and embeddings is performed just once
per model. Subsequently, segmentation can be executed in
just a few milliseconds per prompt, significantly enhancing
efficiency compared to previous methods.

3.2. Multi-view Mask Proposals

We choose SAM [22] to generate mask proposals on multi-
view rendered images. SAM demonstrates remarkable
zero-shot capabilities in image segmentation. From the pre-
defined camera poses, we render the 3D human into V RGB
images Ii ∈ RH×W×3 where i ∈ [1, V ] is the index of the
view. Each image Ii is then independently fed into SAM
in the ”segment everything” mode to generate Ni class-
agnostic overlapping masks:

[m2D
i,1 , ...,m

2D
i,Ni

] = SAM(Ii) (1)

where m2D
i,j is the j-th 2D mask generated by SAM from the

i-th view. This results in a total of N =
∑V

i=1 Ni binary 2D
masks at a varying granularity of whole, part, and subpart.

Each 2D mask m2D
i,j is then unprojected to 3D using the

camera parameters of view i to construct the corresponding
3D proposal m3D

i,j .
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Figure 3. AlphaCLIP Image Encoder.

3.3. HumanCLIP Encoding

We propose HumanCLIP to generate proposal embeddings
with size C, where C is the embedding dimension of a CLIP
model. The unified image-text feature space of CLIP allows
the framework to perform open-vocabulary mask classifica-
tion. Each 2D mask m2D

i,j with its corresponding image Ii
is fed to the image encoder to get the proposal embedding
qi,j ∈ RC .

It is well-discussed that the vanilla pre-trained CLIP en-
coder does not perform well on specialty-formed inputs
[26, 28], including masked and cropped images. Moreover,
masking or cropping an image results in the loss of cru-
cial contextual information, which is essential to the under-
standing of the specific area in an image. Therefore, we
adopt the design of AlphaCLIP [38] to build our image en-
coder. As shown in Figure 3, the encoder accepts an addi-
tional alpha channel as input, which highlights the region of
interest on the original rendered images. The input mask is
processed with a parallel convolution layer to the RGB im-
age and combined to go through a series of attention blocks
to produce the final mask embedding in CLIP feature space.
To further mitigate the domain gap, we finetune the encoder
on a dataset of over 1.3 million RGBA region-text pairs
with human-centric contents. We visualize the image-text
alignment before and after fine-tuning in Figure 4. The pre-
trained AlphaCLIP model fails to provide well-aligned em-
beddings for small parts such as the glasses as well as to
distinguish left and right parts. The proposed HumanCLIP
model generates more discriminative mask embeddings, fa-
cilitating the downstream classification tasks.

3.4. Region-Text Pair Generation

To tailor the image encoder for processing human-centric
data, we finetune the model with region-text pair data. A
straightforward method to acquire this data is utilizing 2D
human segmentation datasets, where segmentation maps
and category names directly form region-text pairs. Al-
though efficient, this method yields less diverse masks and
less informative captions. Therefore, we devise a pipeline
to augment the training data. We source images from LIP
[15], ATR [27], DeepFashion [29], and CIHP [16] datasets

(a) AlphaCLIP

face glasses left shoe right shoe

(b) HumanCLIP

face glasses left shoe right shoe

Figure 4. Comparison between (a) pre-trained AlphaCLIP and (b)
the proposed HumanCLIP. The plots show the cosine similarity be-
tween the embedding of the masked region corresponding to face,
glasses, left shoe, and right shoe and their text embeddings.

a man a stool a black long-
sleeved shirt yellow pants black sneakers

a green jacket blue jeans navy blue shoes a brown belt a backpack

Figure 5. Example of mask-caption pairs generated by utilizing
KOSMOS-2 and SAM.

and employ KOSMOS-2 [31] and SAM [22] to automati-
cally generate masks and corresponding captions for these
images. An example of the generated pairs is depicted in
Figure 5. Compared with the original labels, it provides
more descriptive captions and introduces novel masks for
objects that humans typically interact with, such as as ‘a
stool’. Further details of the data generation process are
presented in the supplementary.

3.5. 3D Semantic Segmentation

To obtain the segmentation result with the desired seman-
tic labels, our pipeline accepts K text prompts correspond-
ing to the labels per inference. These texts are fed to the
HumanCLIP text encoder to obtain CLIP text embeddings
W ∈ RK×C . Then, the proposed MaskFusion module
semantically classifies and synthesizes multi-view embed-
dings into 3D segmentation masks. Specifically, we utilize
the correlations between the text embeddings and the mask
embeddings to build correspondences and fuse the indepen-
dent 3D masks.

Recap the N 3D mask proposals generated in Section.
3.2. The proposals and their embeddings are stacked to get
M ∈ RP×N and Q ∈ RN×C respectively. We compute



Table 1. Statistics of region-text pairs used for HumanCLIP train-
ing. Each mask is accompanied by a descriptive caption.

Dataset Images Original Masks Generated Masks Total Masks
LIP 30462 173578 91505 265083
ATR 17706 175604 87698 263302

DeepFashion 12701 100632 43404 144036
CIHP 28280 647072 63616 710688

HumanCLIP 89149 1096886 286223 1383109

the classification logits P ∈ RN×K by taking the cosine
similarity between each mask embedding and each text em-
bedding:

Pn,k =
Qn ·Wk

||Qn||||Wk||
(2)

It is used to guide the grouping of raw masks, which are
class-agnostic and inconsistent across views.

In the final step, for each 3D point, we aggregate the
class scores from the associated masks to get the final 3D
segmentation result Y ∈ RP×K . Y is computed as the
simple weighted average of 3D masks M based on the clas-
sification logits P:

Y = M×P (3)

We decouple the procedures for mask proposal and for
text classification. Therefore, it is not guaranteed that each
text input is valid for the 3D model. To ensure that only
existed classes are segmented in the final result, we set a
threshold τ on the final segmentation logits. If the maxi-
mum logits of a point fall below τ , the point is attributed to
an ‘other’ class.

4. Experiments
4.1. Implementation Details

Segment Anything Model. When applying SAM in our
framework for both 3D segmentation and training data gen-
eration, we adopt the ViT-H model checkpoint. To create
the mask proposals, we feed a rendered image of resolu-
tion 512×512 in the “segment everything” mode where we
sample 64 points along each side of the image.
HumanCLIP. We initialize the HumanCLIP image encoder
with the AlphaCLIP ViT-L/14 checkpoint, which is pre-
trained on GRIT-20m dataset [31] with an image resolution
of 224 × 224. The model is then finetuned on the curated
HumanCLIP dataset, in which the images combines four
2D human parsing datasets: LIP [15], ATR [27], DeepFash-
ion [29], and CIHP [16]. We utilize both the ground truth
segmentation maps and the augmented region-text pairs de-
scribed in Section 3.4, resulting in approximately 1.38 mil-
lion RGBA-caption pairs for training. The distribution of
images and masks across these datasets is detailed in Table
1. We keep the text encoder frozen and finetune the image
encoder for a total of 3 epochs with a batch size of 18.

Table 2. Comparison of CLIP, AlphaCLIP, and HumanCLIP on
mask classification accuracy of the LIP [15] and CCP [47] dataset.

Model LIP CCP
CLIP 22.12 21.75

AlphaCLIP 27.86 22.51
HumanCLIP 79.98 52.96

(a) CLIP (b) AlphaCLIP (c) HumanCLIP

Figure 6. Comparison of (a) CLIP, (b) AlphaCLIP and (c) Hu-
manCLIP’s t-SNE [44] visualizations of the mask embeddings for
categories in the LIP dataset.

4.2. Effectiveness of HumanCLIP

Embedding Space. In Figure 6 we draw the t-SNE [44]
projection of the mask embeddings extracted by CLIP, Al-
phaCLIP, and HumanCLIP on the LIP dataset. For CLIP
and AlphaCLIP, significant overlap among embeddings of
different categories is observed, complicating accurate class
distinction based on text. In contrast, our proposed Human-
CLIP forms more well-defined clusters for each class, en-
hancing the discriminativeness of the features.
Mask Classification. To further assess the effectiveness of
the proposed HumanCLIP model in accurately embedding
human parts, we conducted a mask classification task com-
paring it with the vanilla CLIP and pre-trained AlphaCLIP
models. In this task, we first feed each ground truth image
and mask to the image encoder to extract the mask embed-
ding and then compute the cosine similarity with the text
embedding for each class. For the CLIP models, the im-
age segment cropped from the ground truth mask is input to
the encoder to generate image embeddings. Classification is
determined by the highest similarity score. The results, dis-
played in Table 2, show classification accuracy on the LIP
[15] and CCP [47] datasets, which feature 19 and 54 classes
respectively. The results indicate that both CLIP and Alpha-
CLIP models underperform, attributed to their lack of train-
ing on specific human parts data. AlphaCLIP shows slight
improvements over CLIP as it provides better mask-wise
embeddings. It is evident that the proposed HumanCLIP
significantly outperforms both models in correctly classify-
ing each mask based on the extracted embeddings.

4.3. Comparison with Open-Vocabulary 3D Seg-
mentation Methods

Methods. To the best of our knowledge, there is no method
dedicated to open-vocabulary 3D human parsing. Hence,
we conduct comparisons with four general 3D segmenta-



Table 3. Comparison with open-set 3D segmentation methods. OA, mAcc, and mIoU are the overall accuracy, mean class accuracy, and
mean Intersection over Union respectively. For each metric, a higher value is better. The best results are shown in bold.

Model MGN SIZER CTD THuman2.0 PosedPro Average
OA mAcc mIoU OA mAcc mIoU OA mAcc mIoU OA mAcc mIoU OA mAcc mIoU OA mAcc mIoU

PointCLIP V2 21.41 24.15 13.31 44.80 34.42 20.92 11.06 13.68 5.94 3.46 14.51 1.77 6.67 13.53 2.33 17.48 20.06 8.85
SATR 84.72 77.30 67.17 82.00 81.97 67.38 78.55 86.20 64.98 56.05 34.31 20.60 51.61 43.28 22.43 70.59 64.61 48.51

PartSLIP 90.03 86.53 78.63 84.94 82.18 70.79 75.11 71.20 55.46 77.46 44.94 33.70 70.38 34.61 24.80 74.58 63.89 52.68
PartSLIP++ 91.41 87.98 81.14 86.63 83.49 72.93 80.73 76.06 62.36 82.00 49.82 38.96 70.80 35.07 24.99 82.31 66.48 56.08

Ours 94.61 95.03 88.78 91.24 90.73 82.55 93.29 93.21 83.36 89.88 69.40 54.50 80.23 46.37 37.27 89.85 78.95 69.29

Figure 7. Examples of promptable segmentation.

tion approaches: PointCLIP v2 [55], SATR [1], PartSLIP
[28], and PartSLIP++ [54]. PointCLIP v2 applies CLIP to
multi-view depth maps for zero-shot 3D classification, part
segmentation, and object detection. SATR applies the GLIP
model [25] to rendered images and aggregates the multi-
view bounding predictions for each prompt to yield a seg-
mented mesh. It shows capabilities under unclothed human
setting. PartSLIP also applies GLIP but for low-shot point
cloud segmentation. This is then enhanced by PartSLIP++
which incorporates SAM and an EM algorithm.
Datasets. For quantitative evaluation, we benchmark the
models on five labeled 3D human datasets: MGN [3],
SIZER [41], CTD [8], THuman2.0 [48], and Posed Pro
[35]. These dataset contain a total of 3, 9, 12, 12, and 19
classes respectively.
Quantitative Comparison. In Table 3, we show the quan-
titative comparison of our model with the four open-set 3D
segmentation methods. We first notice that PointCLIP v2
performs poorly across all of the datasets. Since they apply
CLIP to rendered depth maps, which differs greatly from
real-world images that it was originally trained on, Point-
CLIP v2 is unable to effectively transfer the zero-shot ca-
pabilities to 3D. Among the other three methods, perfor-
mance is generally best on the MGN dataset, which has the
fewest classes, and declines as the number of classes in-
creases. Across all datasets, it is evident that our proposed
framework outperforms by a large margin in all metrics.
Visual Comparison. In Figure 8, we show the visual com-
parison of various methods on the same five 3D human
datasets. Akin to the numerical results, PointCLIPv2 fails to

generate reasonable segmentation results. SATR and Part-
SLIP are able to get a coarse segmentation: the boundaries
between various segments are unclear. PartSLIP++ shows
improved boundaries but still struggles with specific areas
like ‘hair’ and ‘face’. In contrast, our method delivers the
most precise segmentation results.

4.4. Promptable Segmentation

The design of our MaskFusion module allows users to seg-
ment whatever they want, as highlighted in Figure 7. Be-
yond conducting a full segmentation of the entire body, our
framework can precisely segment only the user-specified
items. It also effectively recognizes and accurately seg-
ments unseen categories, such as “uniform number” and
“smartphone holder”.

4.5. Run-time Efficiency

Rendering 3D data into multi-view images for processing
has raised efficiency concerns in applications. Our ap-
proach, which decouples mask proposal generation from
textual prompt processing, offers a significant efficiency
advantage over previous methods. The mask embedding
serves as an attribute of the 3D model, which can be gener-
ated beforehand. During the segmentation phase, only the
text encoder and MaskFusion module are active. In con-
trast, for [1, 28, 54], the GLIP model relies on text prompts
to generate bounding boxes and masks, requiring the entire
pipeline to be executed for each segmentation attempt.

Table 4 displays the inference times for various methods
when executed on a system equipped with a single 24GB
RTX 4090 graphics card. We compare the inference time
for a one-time only run, which executes all modules from
start to finish, and the average time for 100 inferences of
the same model, during which we reuse any pre-generated
information where possible. For instance, we do not reren-
der multi-view images for the subsequent inferences. The
results of our approach show a significant decrease in aver-
age cost as the number of inferences increases. The most
time-consuming step in our framework is the “segment ev-
erything” mode of SAM. However, this is only necessary
once for multiple text inputs, making our model efficient
for subsequent inferences. In scenarios common to the
open-vocabulary setting, where there is a fixed amount of
3D assets but varying information is required based on user
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Figure 8. Qualitative analysis of segmentation results with (c) PointCLIPv2, (d) SATR, (e) PartSLIP, (f), PartSLIP++ on the 3D scans from
MGN, SIZER, CTD, THuman, and PosedPro datasets.

Table 4. Comparison of inference times. We compare the average
time cost in seconds assuming one-time inference only and 100
inference calls.

PointCLIPv2 SATR PartSLIP PartSLIP++ Ours
One-time Inference 7.62 54.18 32.46 88.41 105.72
Average Inference 1.27 27.69 26.08 74.55 1.06

queries, our method offers considerable advantages.

4.6. 3D Gaussian Splatting Segmentation

Our framework design is compatible with various point-
based 3D representations, including the popular 3D Gaus-
sian Splatting [21] format. We follow the standard proto-
col to generate 3DGS for each model in the THuman2.0
dataset. As demonstrated in Figure 9 our method can gen-
erate reasonable segmentation results, making it a general-

hair        skin        t-shirt        pants        watch        shoes

Figure 9. Segmentation of 3D Gaussian Splatting.

izable solution for segmenting 3DGS. This approach elim-
inates the need to optimize per-Gaussian semantic labels
[23] or high-dimensional features [53] during the resource-
intensive training stage.
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Figure 10. Visual comparison of (a) PartSLIP, (b) PartSLIP++, and
(c) Ours on our in-the-wild point cloud dataset.

4.7. In-the-wild Segmentation

Our method demonstrates no significant domain gap in real-
world noisy scenarios. Figure 10 shows a visual comparison
with PartSLIP and PartSLIP++ on two point clouds cap-
tured by consumer-level RGB-D sensors, where the surface
is at relatively low definition and the model is incomplete.
In the first example, all methods are able to accurately seg-
ment the clothing, but our method shows the best segmen-
tation ability of the book. For the second example, both
PartSLIP and PartSLIP++ are unable to segment the ‘skin’
and ‘glasses’ categories. In contrast, our method can accu-
rately segment these classes as well as the small area for the
watch. More details are explained in the supplementary.

5. Ablation Study

HumanCLIP in Segmentation. Table 2 and Figure 6
present the advantage of HumanCLIP in extracting discrim-
inative embeddings on human-related mask-caption data.
We further ablate the module within our framework to as-
sess its contribution to overall performance. Figure 11 il-
lustrates the segmentation results when replacing the Hu-
manCLIP with pre-trained AlphaCLIP model. In the exam-
ple on the left, while AlphaCLIP accurately segments areas
such as the jacket, pants, and hands, it struggles to distin-
guish the inner layer of clothing. In the example on the
right, AlphaCLIP results in noisy segmentation across the
legs and the right side of the body. Conversely, using Hu-
manCLIP enables precise segmentation of body parts and
clothing, as well as neighboring objects like a binder.
Number of views. To evaluate how the number of views
affects the segmentation quality, we increase the number of
views from 2 to 16 and compare the performance on the
CTD dataset. The results are shown in Table 5. We observe
that as we increase the number of views, the segmentation

AlphaCLIP HumanCLIP AlphaCLIP HumanCLIP

hair
face
jacket
dress shirt
necktie
belt
hands
pants
shoes

hair
face
left arm
right arm
shirt
pants
high heels
binder

Figure 11. Visual comparison with AlphaCLIP in 3D human seg-
mentation on the RenderPeople dataset.

Table 5. Effect of the number of views on the segmentation quality.

Metrics Number of Views
2 4 8 10 16

Accuracy 91.48 92.31 93.29 93.44 93.71
mAcc. 91.43 92.09 93.21 93.49 93.61
mIoU. 80.49 81.43 83.36 83.87 84.24

quality improves as it can better mitigate noisy mask pro-
posals from affecting the final result. However, more views
also require more time to preprocess, so we select 8 views
to strike a good balance between quality and efficiency. It’s
important to note that all comparison methods utilize more
than 8 views. The difference in the number of views does
not confer an advantage to our method.
Limitations. One limitation of this method is the slow run-
time for a single inference caused by applying SAM to ev-
ery view. This can make it difficult to apply our method to
dynamic 3D humans. Another limitation is that we have to
manually adjust the threshold to conduct promptable seg-
mentation for different text inputs. In future works, we plan
on applying our method to generate labeled data to train a
model that can efficiently compute in 3D space.

6. Conclusion
In this paper, we present the first open-vocabulary method
for 3D human segmentation. We introduce a novel Hu-
manCLIP model and a MaskFusion module, which effi-
ciently transfer the knowledge from 2D pre-trained vision-
language models to the segmentation of 3D human data.
Our method can seamlessly conduct semantic segmentation
based on arbitrary user-defined text queries. The experi-
mental results show that our method outperforms existing
open-vocabulary 3D segmentation methods on five 3D hu-
man datasets. Additionally, we show that our method can
be directly applied to various 3D representations including
points clouds, meshes, and 3D Gaussian Splatting.
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