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Abstract

AI agents are loosely defined as systems capable of executing complex, open-1

ended tasks. Many have raised concerns that these systems will present significant2

challenges to regulatory/legal frameworks, particularly in tort liability. However, as3

there is no universally accepted definition of an AI agent, concrete analyses of these4

challenges are limited, especially as AI systems continue to grow in capabilities.5

In this paper, we argue that by focusing on properties of AI agents rather than the6

threshold at which an AI system becomes an agent, we can map existing technical7

research to explicit categories of “foreseeable harms” in tort liability, as well as8

point to “reasonable actions” that developers can take to mitigate harms.9

1 Introduction10

AI agents are loosely defined in literature as AI systems capable of independently pursuing complex11

goals. Existing systems, like AutoGPT [48, 4], are being enhanced with more autonomy, and future12

agents will likely plan farther ahead, adapt and act in more complex settings. As AI agents promise13

to support humans across a wide range of tasks, the associated reduction in human control/oversight14

introduces notable risks and uncertainties for our legal system [18, 29]. While there is increasing15

interest in understanding how legal and regulatory frameworks apply to the governance of AI agents16

[28, 34, 12, 9, 41], the lack of a universally accepted definition of ‘AI agent’ limits concrete analysis.17

In this work, we argue that by focusing on key properties of current and future AI systems, rather than18

the threshold at which an AI system becomes an agent, we can already leverage Machine Learning19

(ML) and Human-Computer Interaction (HCI) literature to provide insights on key legal questions.20

Here, we focus on two questions in fault-based liability1, which imposes a general duty of care to21

avoid intentionally or negligently causing harm to others: "who is best able to prevent harms?" and22

"what is a reasonable duty of care?"23

In our analysis, we study on three properties (autonomy, complexity and adaptability) that measure the24

capabilities AI agents; we organise relevant actors for liability using the AI value-chain (consisting of25

foundation model developers upstream, application developers midstream and end-users downstream).26

We argue that the multitude of actors in the AI value-chain, along with the increasing capabilities of27

agents, makes it difficult to determine which actors control the outcomes of agent actions. Addressing28

these challenges, we draw on ML and HCI research to identify harms that can arise due to the29

1Some jurisdictions have passed or proposed specific legislation on liability for AI harms. For example,
the recently updated EU Product Liability Directive (European Parliament, 2024) now explicitly includes
software/AI systems; EU’s proposed AI Liability Directive and California’s Bill SB1047 all target AI systems.
However, traditional theories of liability still apply in most contexts.
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Figure 1: We map actors in the AI value chain to foreseeable challenges. Increasing agent capabilities
leads to challenges (e.g. autonomy can lead to users overrelying on AI), and different actors in the
chain have different degrees of control over challenges (e.g. HCI research implies that over-reliance
is foreseeable by application developers). This can help define duties of care for different actors.

autonomy, complexity and adaptability of agents; we then identify actors who can mitigate these30

harms (Figure 1). Together, these insights can help define duties of care along the AI value-chain 2.31

1.1 Key Definitions32

What is the AI Value Chain? We define the AI Value Chain as the sequence of steps leading to the33

deployment of an AI system in a specific setting. We organise the steps, as well as the actors, into34

layers that describe the changes made to the system. Consider the example of an AI agent deployed in35

a hospital that summarises patient health records for clinicians. At the Foundational Model Developer36

Layer, actors are developers who train and define the general capabilities of foundation models. In37

our example, the agent may be built upon Meta’s Meditron, a suite of open-source medical Large38

Language Models [10]. At the Application Layer, actors are developers who build infrastructures that39

allow AI systems to interface with the end-user and the environment. In our example, a third-party40

company may adapt the base-model, they may also build a system for the modified model to interface41

with hospital workers. At the End-User Layer, actors delegate tasks to an agent or use information42

from an agent to accomplish a specific goal. In our example, end-users are clinicians who make43

decisions for patient care informed by the summaries produced by the AI agent.44

In this paper, we focus on analysing which actors in the AI Value Chain can foresee and mitigate45

harms that arise when the final system is deployed. In our example, consider when the AI agent46

produces an inaccurate summary that leads to a patient receiving an incorrect treatment and thus47

suffering a negative health outcome. Could the developers upstream and the clinicians downstream48

have foreseen this harm? What could each set of actors have done to prevent it?49

What is liability law? Broadly, legal liability can arise from many areas of law, including contract50

law, criminal law, consumer protection law and tort law. We focus on tort liability3, which, in part,51

aims to ensure that victims of harmful actions are compensated, and that those responsible for causing52

harm are held responsible. Thus, tort liability is about corrective justice (ensuring that victims are53

adequately remedied), and about deterrence/harm prevention (motivating people to be careful because54

they can be held liable for harms they cause [46]). Based on such theories, tort liability should be55

placed with the person who, if acting reasonably, is able to prevent the harm.456

2We acknowledge that different jurisdictions have distinct tort law traditions, statutes, and case law. This
paper does not aim to discuss specific legal solutions for particular jurisdictions, but instead aims for a high-level
discussion on liability that may be relevant in multiple jurisdictions. We also recognize the existing legal
scholarship on tort law and AI - for a comprehensive overview see footnote 5 of [25]

3Mentions of ‘liability’ in this paper should thus be read as ‘tort liability’.
4From a policy perspective there can also be other motivations for placing tort liability with a certain actor.

For example, an actor with ‘deep pockets’ who can ensure compensation.
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Both common law and civil law systems have ‘theories of liability’, developed through a combination57

of jurisprudence (decisions by judges) and statutes (laws). Some common theories of liability include58

fault liability (which includes intentional torts or negligent torts), strict liability (liability not requiring59

‘fault’, usually for dangerous activities or goods), product liability (liability of manufacturers for60

defective products), and vicarious liability (liability for conduct of others). We focus on fault liability,61

in particular on negligence, although the lessons from this paper may also be relevant for other62

forms of tort liability or legal liability. Fault-based liability is the most general form of liability; it63

applies even in the absence of specific legislation. For the purposes of this paper, we are focusing on64

unintentional harms caused by AI agents, i.e. negligent torts.565

What is negligence? A ‘tortfeasor’ (person responsible for the harm) can be held liable for a negligent66

tort when they fail to take reasonable action to prevent a foreseeable harm. Negligence hinges on the67

concept of a breached ‘duty of care’, meaning that the potential tortfeasor did not take the reasonable68

care expected of them in a certain situation (e.g. failing to set up a warning sign when leaving open a69

hatch in the middle of a pedestrian walkway), and this failure leads to harm.70

The test is not whether that specific tortfeasor had foreseen the harm (that would absolve oblivious71

but culpable tortfeasors), but whether a ‘reasonable person’ in the position of the tortfeasor would72

have foreseen that this harm could happen. This ‘reasonableness standard’ translates into a ‘duty of73

care’. The duty of care is an objective standard informed by the actions of others: industry standards74

and best practices, academic research, statements by policymakers, and legal requirements [11].75

What’s Challenging in Applying Existing Tort Liability Rules to AI Systems? Value chains of AI76

systems tend to be complex, with many actors involved in different aspects of system development77

and deployment [5]. Under the current status quo, liability concentrates downstream towards the78

end-user [47, 11]. This may be problematic, as downstream actors are small players and may be less79

able to shoulder the liability compared to upstream big tech developers. Furthermore, downstream80

actors may have less expertise, capacity or ability (e.g. access to base-models) to meet the requisite81

duty of care [13]. Finally, AI systems may raise new risks, like immaterial harms that can result from82

social biases baked into AI systems, that are not currently addressed by tort liability [8, 25].83

What is an Agent? AI agents have been defined in different ways in literature. Generally speaking,84

definitions center around the capability of agents: such systems would have the ability to perceive and85

operate in complex environments, and to autonomously adapt their strategies and actions based on86

new input [35, 21, 40, 23, 15]. In this paper, we define an AI agent as an AI system that is deployed87

in a real-life decision making setting, and we focus on the capability of these system as measured by88

autonomy, adaptability and complexity. We focus on these properties as they significantly challenge89

humans’ ability to anticipate/prevent the harmful outcomes of AI agent actions.90

2 Diffusion of Liability Along the AI Value Chain91

We describe specific ways the autonomy, adaptability and complexity of AI agents may lead to92

harmful outcomes. Furthermore, for each actor in the AI value chain, we draw from current research93

to identify the degrees to which they may foresee and mitigate harms (summary in Figure 1).94

Autonomy. We focus on two levels of autonomy when AI agents interact with human users: (1) AI95

agents that support human decision-making, and (2) AI agents that operate under human supervision.96

AI agents with low autonomy include current decision-support tools that rely on humans for critical97

assessment of AI outputs. For example, AI agents have been deployed to support clinical decision98

making, such as by performing risk assessments of patients and recommending treatment [38].99

Clinicians using these systems need to determine whether or not the AI recommendations are valid or100

useful. However, literature in Human-Computer Interaction (HCI) demonstrates that humans have a101

strong propensity to over-rely on and over-trust AI assistants [22, 6].102

For AI agents with greater degrees of autonomy, a common design choice is to cast human users103

in supervisory roles, monitoring the system for errors and taking over during exceptional circum-104

stances [3]. In a clinical setting, this may look like an agent that automatically screens mammography105

for cancer, supervised by a clinical expert who monitors the system and steps in to perform manual106

5Liability is relatively straightforward for intentional harms, as it will usually be the person intentionally
causing the harm who ‘controlled the outcome’ and is liable.
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diagnosis in cases of errors and exceptions. Unfortunately, a large body of work in HCI shows us107

that humans struggle with vigilance (i.e. sustaining attention while performing monotonous tasks108

over long periods of time), thus making them poor supervisors of automated systems [1, 42, 37]. In109

exceptional cases where humans are required to take-over for the AI agent, the problem of vigilance110

amplifies the difficulty of control transfer: the human, having reduced prior involvement with the111

task, is likely to struggle with reacting appropriately and in a timely fashion to the situation [31].112

What are ‘foreseeable harms’: Overwhelmingly, literature on human factors in computing teaches us113

that naïve integration of agents into AI+human teams can exacerbate human error [2, 50]. That is,114

existing HCI research can help establish explicit and concrete categories of ‘foreseeable harms’, as115

well as point to ‘reasonable actions’ application developers can take to mitigate these harms.116

Who can prevent these harms: Design of human+AI interfaces happens in the Application Layer,117

where developers can leverage literature to address problematic ways end-users will interact with118

agents. For example, AI systems that provide continuous-support (rather than recommendation-centric119

support) have been shown to help users maintain situational awareness in human+AI teams [52].120

Adaptability. We focus on two common ways that agents adapt: (1) changing the system’s base-121

model at pre-deployment or model-update time, (2) personalising system output with specialised122

input at inference (i.e. decision-making) time.123

Many foundation models can be customised. Outside of open-source models, major developers like124

OpenAI, Google, Microsoft, Meta, Anthropic, and Amazon have existing or proposed mechanisms125

for downstream developers to adapt their models for specific applications through fine-tuning [33].126

That is, these models can be updated based on new data and interactions in order to learn new skills.127

However, unlike traditional software updates, which are designed to preserve existing functionality128

whilst adding new ones, updating AI models with new data can lead to (1) degradation of existing129

functionality [51] (for example, safety guardrails can be quickly by-passed with fine-tuning, providing130

user access to dangerous information); (2) unexpected new biases and failure modes, as new data131

interacts with existing ones on which the model was trained [45].132

Even when models in AI agents are fixed, the outputs of these systems can be personalised to133

individual or groups of end-users at inference-time, by including special information in system inputs.134

For example, language models can suggest personalised email subjects when shown user’s past135

emails [36]. However, personalising model outputs risks confirmation bias (selective reinforcement of136

users’ existing opinions) [39, 14]; it can even result in behaviours that can be categorised as deceptive,137

e.g. actively steering users away from or hiding contradictory information [20]. Furthermore, and138

perhaps surprisingly, personalisation can harm model performance. That is, personalising a model to139

a specific group of users can lower the model’s performance at a group level [43, 53]. For example,140

providing gender to language models when generating a recommendation letter can increase model141

hallucination as well as diminish language associated to “excellence" [44].142

What are ‘foreseeable harms’: Research shows that, for adaptable agents, anticipating harms based on143

pre-deployment functionalities cannot cover the range of harms that may result from post-deployment144

changes. Existing works that study AI models in the regimes of fine-tuning, continual learning and145

transfer learning can already help us anticipate emergent agent behaviours and associated risks.146

Who can prevent these harms: How much and in what ways an agent can adapt are design choices147

made both at the Foundation Model Developer Layer and the Application Layer. While safe and148

effective adaptation is an open research question, upstream developers have a responsibility to test149

agents for failures known to arise in adaptation, and disclose these risks to downstream actors.150

Complexity. We focus on two aspects of complexity: (1) complexity of the agent’s goals (specifically,151

its training objective), and (2) complexity of the agent’s decision setting (specifically, the length of152

the planning horizon and the effective size of the environment).153

Behaviours of AI agents are often determined by multiple objectives that may be in tension. For154

example, foundation models trained with human feedback implicitly balance potentially conflicting155

preferences of different users. Furthermore, there are tensions between social welfare goals (e.g.156

safety) and personalisation goals (e.g. open access to information for individual users). However,157

agents are often trained by maximising a single combination of multiple objectives, without explicitly158

managing trade-offs amongst them. Thus, the resulting agent can make unexpected and undesirable159

compromises [19], for example, by sacrificing safety in order to align with user preferences.160
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In addition to the multiple objectives, models in AI agents are frequently trained with “blackbox” and161

underspecified objectives. For example, foundation models are often fine-tuned with direct human162

feedback on model outputs [27], or with datasets of human annotated examples that encode human163

preference [24]. The objective implied by human feedback and annotated examples is not defined164

in closed-form, and hence cannot be directly inspected or interrogated. Furthermore, given a set of165

examples, there are often multiple plausible objectives that a model can infer that would cause it to166

generalize in dramatically different ways. Thus, training with implicit and underspecified objectives167

often leads to unexpected and undesirable agent behaviours [30, 26]. For example, an agent trained168

to interact with humans in more naturalistic and context-sensitive ways can learn, as unintended169

side-effects, to hold strong political opinions and to pursue potentially dangerous “subgoals” (e.g. to170

accumulate resources for the pursuit of current goal) [32].171

Even when training objectives of AI agents can be validated, it is hard to design interfaces that172

allow end-users to anticipate outcomes of agent actions, when actions take place over long planning173

horizons and in open environments. Existing works show that humans can even struggle to understand174

decisions of simple AI systems in single-shot decision settings [7]. As the planning horizons of agents175

increase, and as the size of the environment as well as the number of other agents in the environment176

grow, the sequence of agent decisions becomes too complex to directly inspect. For example, an open177

question is how to effectively summarise complex policies for sequential decision-making: simply178

enumerating the agent’s actions over the large number of possible states of the environment yields179

results that are uninterpretable to end-users [49, 16].180

What are ‘foreseeable harms’: A number of failures of AI models can be exposed by quantifying how181

trained models trade-off different task-relevant desiderata. There is also a large body of literature that182

can surface biases models learn from human data [17]. Finally, research on explainable AI (XAI), as183

well as HCI, can anticipate failures of Human+AI teams in complex decision settings.184

Who can prevent these harms: The complexity of an agent’s goals can be determined at the Founda-185

tional Model Developer Layer (where the capabilities of the base-model is determined) as well as at186

the Application Layer (where capabilities may be added). Upstream developers have a responsibility187

to explicitly prevent models from making undesirable trade-offs. The complexity of an agent’s188

decision setting is primarily determined at the Application Layer. Application developers need to189

design Human+AI interfaces guided by best practices in XAI and HCI.190

3 Implications for Policy & Technical Research191

Increasing capabilities of AI agents challenge human control when these systems are deployed in192

real-life. However, we argue that existing research in ML and HCI point to ways that actors in the193

AI value chain can already better foresee and mitigate potential harms. From the perspective of194

fault-based liability, actors at the Foundation Model Developer Layer have a responsibility to disclose195

models’ training objectives and understand trade-offs models make between different objectives.196

They have a responsibility to check for and mitigate known model biases that arise from data selection197

and training; they should also test for how biases affect models in common down-stream tasks.198

Safe-guards should be implemented against inappropriate and potentially unsafe types of model199

customisation. At the Application Layer, when customising models, developers have a responsibility200

to test for (and address) known model failures due to fine-tuning, as well as for unequal model201

performance when it is personalised to different end-users. Furthermore, when integrating models202

into Human+AI systems, they have a responsibility to anticipate/address known challenges in human-203

AI interactions. At the End-User Layer, users should understand the types of tasks the AI agent can204

safely perform. They should especially monitor the agent’s behaviour when it is used in a new setting.205

Upstream actors have a general responsibility to expose conditions under which the model has been206

tested, and how it scored on different evaluations. Transparency around evaluation settings helps207

downstream actors perform due diligence when choosing to deploy AI agents for a specific use-case.208

Call for interdisciplinary research. We see a need for more interdisciplinary research between core209

ML and HCI, to concretely connect properties of models (e.g. catastrophic forgetting, interference,210

reward hacking, pathologies arising from multi-objective optimization) to specific impacts on users’211

abilities to anticipate/mitigate harms of AI systems. We also see a need for more collaborations212

between policy/law makers and technical researchers to formalise regulatory/legal principles as213

technical desiderata (e.g. training procedures, objectives and metrics, socio-technical evaluations).214
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Impact Statement215

We argue that interdisciplinary collaboration between technical (especially between ML and HCI)216

researchers and policy/law makers is necessary for effectively and responsibly addressing emerging217

societal challenges due to complex AI systems. By involving ML and HCI researchers in policy/legal218

processes, policy and lawmakers can better understand capabilities and limitations of emerging219

technologies, enabling the development of regulations that are informed and effective. For the220

technical community, engagement with law/policy professionals opens avenues for shaping regulatory221

environments in which they operate. Collaborating with legal/policy experts ensures that ML systems222

are designed with compliance in mind, reducing the risk of costly redesigns or legal challenges. It223

also encourages the adoption of ethical best practices, fostering public trust in AI applications.224

A Appendix: Recommendations for Policymakers225

As AI agents grow in autonomy, complexity, and adaptability, assigning and determining liability226

for harms becomes increasingly challenging. In this paper, we have shown that interdisciplinary227

research, particularly at the intersection of Machine Learning (ML), Human-Computer Interaction228

(HCI), and law, can help us establish clearer liability frameworks. Achieving this, we believe that229

there are concrete actions that policymakers can take to create the foundation for more robust and230

nuanced research into AI liability. We recommend the following:231

Enhance visibility into AI agent development and deployment232

• Facilitate research access to agent usage data to better understand human-agent interactions,233

similar to research access provisions under the Digital Services Act (DSA)234

• Require identification systems for agents [? ] and logging mechanisms to verify AI agents’235

actions236

• Mandate stage- and context-specific evaluations and audits throughout the AI agent lifecycle237

through comprehensive auditing regimes238

• Establish mandatory incident reporting and information sharing protocols239

Strengthen technical governance capacity to support judicial assessment of liability240

• Ensure sufficient socio-technical expertise within regulatory agencies through targeted241

hiring, training programs, and continuous education initiatives242

• Explore flexible models such as scientific advisory boards or fellowship programs to source243

and integrate external expertise244

• Develop standardized methodologies for assessing AI system capabilities and limitations in245

legal contexts246

Establish and enforce a comprehensive duty of care for AI development and deployment247

• Incentivize the development and adoption of industry-wide standards, particularly focusing248

on safety measures and trust infrastructures249

• Support research to concretely connect properties of AI models (e.g., catastrophic forgetting,250

interference, reward hacking) to legal liability frameworks251

• Facilitate the public dissemination of new safety procedures and formally promulgate these252

standards through regulatory channels253
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