
Published in Transactions on Machine Learning Research (12/2025)

Adversarial Vulnerability from On-Manifold Inseparability and
Poor Off-Manifold Convergence

Rajdeep Haldar rhaldar@purdue.edu
Department of Statistics, Purdue University

Yue Xing xingyue1@msu.edu
Department of Statistics and Probability, Michigan State University

Qifan Song qfsong@purdue.edu
Department of Statistics, Purdue University

Guang Ling guanglin@purdue.edu
Department of Statistics, Purdue University

Reviewed on OpenReview: https: // openreview. net/ forum? id= pa90uRZATF

Abstract

We introduce a new perspective on adversarial vulnerability in image classification: fragility
can arise from poor convergence in off-manifold directions. We model data as lying on
low-dimensional manifolds, where on-manifold directions correspond to high-variance, data-
aligned features and off-manifold directions capture low-variance, nuanced features. Standard
first-order optimizers, such as gradient descent, are inherently ill-conditioned, leading to slow
or incomplete convergence in off-manifold directions. When data is inseparable along the
on-manifold direction, robustness depends on learning these subtle off-manifold features, and
failure to converge leaves models exposed to adversarial perturbations.

On the theoretical side, we formalize this mechanism through convergence analyses of
logistic regression and two-layer linear networks under first-order methods. These results
highlight how ill-conditioning slows or prevents convergence in off-manifold directions,
thereby motivating the use of second-order methods which mitigate ill-conditioning and
achieve convergence across all directions. Empirically, we demonstrate that even without
adversarial training, robustness improves significantly with extended training or second-order
optimization, underscoring convergence as a central factor.

As an auxiliary empirical finding, we observe that batch normalization suppresses these
robustness gains, consistent with its implicit bias toward uniform-margin rather than max-
margin solutions.

By introducing the notions of on- and off-manifold convergence, this work provides a novel
theoretical explanation for adversarial vulnerability.

1 Introduction

Neural networks achieve high classification accuracy and generalize well to unseen examples drawn from
the training distribution (Liu et al., 2020). Yet, they exhibit a striking vulnerability: small, imperceptible
perturbations can drastically alter predictions (Szegedy et al., 2013; Goodfellow et al., 2014; Madry et al., 2017;
Carlini & Wagner, 2017). These perturbed inputs, known as adversarial examples, highlight fundamental flaws
in modern training and raise questions about the reliability of neural networks in safety-critical applications.

1

https://openreview.net/forum?id=pa90uRZATF

Published in Transactions on Machine Learning Research (12/2025)

While empirical progress has been rapid, yielding strong attacks and defenses, the theoretical foundations
for why adversarial examples exist have advanced more slowly. A principled understanding is critical for
developing models that are inherently robust and aligned with human perception.

The manifold hypothesis. One of the most compelling explanations is the manifold hypothesis, which
posits that real-world data lies on a low-dimensional manifold embedded in a high-dimensional space. Recent
works (Melamed et al., 2024; Haldar et al., 2024) show that redundant dimensions (e.g., background pixels in
images) make it possible to generate adversarial perturbations of arbitrarily small magnitude. This suggests
that robustness may be attainable if learning is confined to the manifold.

Implicit bias and robustness expectations. The implicit bias literature (Wei et al., 2019; Lyu &
Li, 2019; Lyu et al., 2021; Nacson et al., 2022) demonstrates that standard training often yields solutions
corresponding to KarushKuhnTucker (KKT) points of the maximum-margin problem. More generally, Rosset
et al. (2003) established that losses like logistic regression are inherently margin-maximizing, a property
extending to deep networks. These results suggest that in the absence of redundant dimensions, clean training
is expected to yield max-margin classifiers that possess reasonable robustness.

The puzzle. In practice, however, this expectation is not realized. Dimensionality reduction methods such
as PCA do not lead to the anticipated robustness gains (Alemany & Pissinou, 2020; Aparne et al., 2022),
while adding redundant dimensions consistently amplifies vulnerability. This raises fundamental questions:
Is clean training alone sufficient for robustness? And are there overlooked mechanisms that undermine the
robustness promised by implicit bias?

Our perspective. In this work, we identify such a mechanism. We argue that poor convergence in
off-manifold directions, caused by ill-conditioning of first-order optimization, is an additional and overlooked
source of adversarial vulnerability. Our theoretical framework is summarized in Figure 1. High-variance
features define on-manifold directions, while low-variance features define off-manifold directions. First-order
methods converge quickly in on-manifold directions but slowly off-manifold, leading to suboptimal boundaries
when separability relies on off-manifold features. This convergence gap explains why robustness does not
follow automatically from implicit bias, even in the absence of redundant dimensions.

Figure 1: Theoretical framework for adversarial vulnerability from a convergence perspective. (Left) Data
dimensionality can be characterized by the ratio of variances in feature directions: high-variance features
define on-manifold directions, while low-variance features define off-manifold directions. (Middle) First-order
methods suffer from ill-conditioning in off-manifold directions, leading to slow convergence. (Right) When
data is separable along the on-manifold direction, models quickly learn robust boundaries. When inseparable,
however, convergence failure in off-manifold directions causes suboptimal boundaries and increased adversarial
vulnerability.

2

Published in Transactions on Machine Learning Research (12/2025)

Mathematical intuition for dimensionality in terms of variance. We view variance ratios across
feature directions as a surrogate for the effective dimensionality of the data manifold. Intuitively, directions
with high variance capture the dominant structure of the data (on-manifold), while directions with very low
variance contribute little and can be regarded as off-manifold. As the variance in certain directions vanishes
relative to others, the data distribution effectively collapses to a lower-dimensional set. This provides a
natural way to formalize dimensionality beyond earlier notions based only on redundant versus useful features
(Haldar et al., 2024; Melamed et al., 2024). Our definition extends these ideas by characterizing on- and
off-manifold directions explicitly through variance ratios.

Illustrative examples. Figure 2 provides intuition for our framework. In a birdinsect classification task
(Fig. 2a), wing length serves as a high-variance, on-manifold feature that separates most birds from insects. A
classifier trained on this feature alone will perform well on the majority of examples, and thus naturally favors
it. However, overlap occurs: certain insects, such as moths, may have wings longer than some small birds,
such as hummingbirds. In this overlapped region, robustness requires exploiting a low-variance, off-manifold
featuresuch as the presence of a beak. Because off-manifold features are harder to learn due to slower
convergence, models that fail to capture them remain fragile.

This phenomenon is demonstrated in a synthetic experiment (Fig. 2b). When the data is separable along
the on-manifold direction, neural networks rapidly learn stable, robust decision boundaries. In contrast,
when the data is inseparable on-manifold, distinguishing classes requires reliance on off-manifold directions.
Here, convergence is markedly slower, and the learned boundaries remain suboptimal for many training
epochs despite high classification accuracy. Together, these examples highlight why models often default to
on-manifold features, yet robustness in overlapping regions critically depends on off-manifold learning, which
is precisely where first-order methods struggle.

(a) Real-world example. Binary classification between
birds and insects. The purple region shows overlap in
the on-manifold feature, where only the off-manifold
feature (beak vs. no-beak) separates the classes.

(b) Synthetic example. Neural network decision bound-
aries after T training epochs. Data distribution is (top)
inseparable on-manifold and (bottom) separable. Clean
accuracy is 100% for all T ≥ 102, yet convergence is fast
and slow across on- and off-manifold directions respec-
tively, which may lead to suboptimal decision boundary.

Figure 2: Illustrations of adversarial vulnerability arising from off-manifold convergence. (a) A real-world
case where overlap in the on-manifold feature requires reliance on off-manifold features. (b) A synthetic
example showing how first-order methods converge differently along on- vs. off-manifold directions.

Our contributions. We formalize the ideas described in Figs. 1 and 2 through parameter and loss
convergence results:

Theorem 1.1 (Informal version of Theorem 4.2). Convergence is faster and independent of dimensionality
in on-manifold directions, but slower in off-manifold directions. As dimensionality reduces, off-manifold
convergence becomes even slower.

3

Published in Transactions on Machine Learning Research (12/2025)

Theorem 1.2 (Informal version of Theorem 4.3). There exists an error threshold, determined by on-manifold
separability, that is quickly reached. Reducing error further depends on off-/on-manifold variance ratios and
is substantially slower.

Implications. These results clarify why clean training may give the illusion of convergence: models
can achieve high training accuracy after finite iterations, yet incomplete convergence across all directions
leaves them vulnerable to adversarial perturbations. Addressing convergence in off-manifold directions leads
to substantial robustness improvements, even without adversarial training. While this does not eliminate
adversarial vulnerability entirely, the gains are significant. Furthermore, second-order optimization methods,
which are immune to ill-conditioning, realize these improvements far more efficiently (Section 5), a finding
validated by our experiments (Section 6.2).

2 Related Works

Adversarial Vulnerability Explained via Manifold Hypothesis: Stutz et al. (2019) introduces the
distinction between on/off-manifold adversarial examples and their role in robustness and generalization.
Shamir et al. (2021) shows empirically that clean-trained classifiers align with a low-dimensional dimple-
manifold around the data, making them vulnerable to imperceptible perturbations. Zhang et al. (2022)
decomposes the adversarial risk into geometric components motivated by manifold structure. Haldar et al.
(2024); Melamed et al. (2024) theoretically establish a relationship between the dimension gap (induced by
low-dimension data manifold) and adversarial vulnerability.

Attack/Defense systems based on manifold hypothesis: Xiao et al. (2022) uses a generative model
to learn the manifold and create on-manifold attacks. Jha et al. (2018); Lindqvist et al. (2018); Lin et al.
(2020) have tried to learn the underlying manifold to detect and defend adversarial examples outside the data
manifold.

Implicit Bias and Robustness Frei et al. (2024) shows that the max-margin implicit bias of neural
networks isn’t the most robust model. However, the attack strength in this work is comparable to the signal
strength, and reduces to natural/on-manifold attack scenario mentioned in Haldar et al. (2024). These attacks
are perceptible by humans and of relatively large magnitude. We still expect natural robustness against
imperceptible or small-magnitude attacks in the absence of redundant dimensions, as discussed previously.
Min & Vidal (2024) shows that under poly-RelU activation, implicit bias is robust to larger attacks.

Optimization Dynamics and feature learning A growing body of work studies how training dynamics
influence robustness. Kalimeris et al. (2019) showes that SGD learns low-complexity functions before more
complex ones, while Ilyas et al. (2019), Hermann et al. argue that adversarial vulnerability arises due to
shortcut learning of more accessible non-robust features. Tsilivis & Kempe (2022) analyzes adversarial
robustness through the NTK spectrum, showing that robust features correspond to dominant eigen-directions
learned early in training. Rice et al. (2020) further demonstrates that adversarial training can overfit due to
optimization dynamics. Tanay & Griffin (2016) attribute adversarial examples to decision boundaries lying
close to the data manifold. Our framework offers a complementary explanation via convergence: even when
robust features are linearly separable and accessible, first-order methods converge slowly along low-variance
(off-manifold) directions due to ill-conditioning, thereby delaying robust solutions when the data isn’t separable
in the fast-converging manifold direction. Additionally, Tanner et al. (2025) and Javanmard & Soltanolkotabi
(2022) also provide data geometric arguments in studying robustness for adversarial training. In contrast,
our work strictly focuses on standard training and how the lack of convergence due to data geometry can
inherently limit robustness, despite the existence of a robust solution.

To the best of our knowledge, our work is the first to extend the notion of on/off manifold dimensions in
terms of feature variances rather than utility, and to draw connections between on-manifold separability,
ill-conditioning, and adversarial vulnerability.

4

Published in Transactions on Machine Learning Research (12/2025)

3 Problem Setup

This section describes the technical setting and assumptions used for our main results in section 4.2.

3.1 Notation

Throughout this paper, we will use the subscripts q, ⊥ to denote mathematical objects corresponding to
on-manifold and off-manifold, respectively. The notation 1d denotes the concatenated vector of ones of length
d. For any two vectors u, v such that ui ≤ vi ∀i, we can define a hypercube [u, v] such that if z ∈ [u, v]
then for each i, zi ∈ [ui, vi]. Denote Id as the identity matrix of d dimensions. Notation Ω(·) is the usual
asymptotic lower bound notation. For a, b ∈ R, a � b ⇐⇒ a ≤ b · c for some c > 0. Note that the notation
� also works for negative sequences a and b (i.e., a � b implies |b| � |a| when a and b are negative). Denote
� as the Hadamard product.

3.2 Assumption on Data Distribution

We denote the underlying signal of the data with x ∈ RD and its corresponding label as y ∈ {−1, +1}. We
study a binary classification problem with the data pair (x, y).

Our signal can be decomposed as x = (xq, x⊥), where xq ∈ Rd and x⊥ ∈ Rg are the on/off manifold components
respectively. Corresponding to each class, define d-dimensional hypercubes of side l as Iq

(−1) = [−(l−k)·1d, k ·
1d] and Iq

(+1) = [−k ·1d, (l−k) ·1d]. The parameter k controls the overlap between the two hyper-cubes in the
on-manifold direction. We assume that conditioned on the label the on-manifold signal is uniformly drawn from
such hyper-cubes xq|y ∼ U(Iq

(y)) with means µ
(y)
q = y(l−2k)

2 · 1d and covariance σ2
q · Id = l2

12 · Id respectively.
Similarly, define non-overlapping symmetric hyper-cubes I⊥

(y) = [µ(y)
⊥ −

√
3σ⊥ ·1g, µ

(y)
⊥ +

√
3σ⊥ ·1g] such that

I⊥
(−1) ∩ I⊥

(+1) = ∅, and x⊥|y ∼ U(I⊥
(y)) with means µ

(y)
⊥ and covariance σ2

⊥ · Ig. The class probabilities
themselves are binomial with probability π i.e. P (y = 1) = π and P (y = −1) = 1 − π. Also, ‖µ

(y)
⊥ ‖ < ∞ and

σ⊥/σq < 1.

To explain the above assumption, the data is essentially uniformly distributed over two high-dimensional
rectangles corresponding to each class. Due to the non-overlapping off-manifold distributions, the two
rectangles are linearly separable in the ambient D-dimensional space. However, there is an overlap in the
on-manifold distribution controlled by k. The x and x⊥ distributions are linearly separable, but xq is not for
k 6= 0. The ratio of the variances σ2

⊥/σ2
q < 1 characterizes the low-dimensional manifold structure. Our data

model is a high dimensional mathematical representation of Figures 1 (middle) and 2b.

Overlapping coefficient In order to formulate the extent of non-separability in the on-manifold distribution
we borrow the concept of overlapping coefficient (OVL) from traditional statistics. For any two probability
densities f1(x), f2(x) the overlapping coefficient is defined as ν =

∫
D min (f1(x), f2(x)) dx where D is the

support. Note that ν ∈ [0, 1], and essentially represents the probability of x being drawn from the minority
distribution. In the context of a naive Bayes classifier, ν represents the probability of misclassification
or area of conflict. We can quantify non-separability for the on-manifold distribution by computing ν =∫

min
(

U(Iq
(−1)), U(Iq

(+1)
)

dx = (k/l)d. As k increases, geometrically, our on-manifold hypercubes overlap
more, which is consistent with ν. Later, we will see how the non-separability of the on-manifold component
affects our classifier learning.

3.3 Models

For our binary classification problem, we work with the logistic loss `(z) = ln(1 + e−z). We will denote f(x, γ)
with real output as the score predicted by our classifier for a particular data point x and parameter vector γ.
The expected loss of the classifier over the data distribution is L(γ) = E

∼x,y
`(y · f(x, γ)). The clean training

is the optimization problem min
γ∈Γ

L(γ) where Γ is a compact parameter space. Let γ∗ = arg min
γ∈Γ

L(γ), then

5

Published in Transactions on Machine Learning Research (12/2025)

working with compact space ensures ‖γ∗‖ is finite and makes analysis tractable. This work considers the
linear model and the two-layer linear network.

3.3.1 Logistic Regression

In the linear setup, γ = θ where θ ∈ RD is the coefficient vector of logistic regression, f(x, θ) = θT x. We
implement a first-order gradient descent optimization scheme with step size α to obtain the minimizer in this
scenario. The tth iteration step is as follows:

θ(t+1) = θ(t) − α∇θL(θ(t)) (1)

Parameter components Corresponding to xq, x⊥ we have θq, θ⊥ such that θT x = θT
q xq + θT

⊥x⊥. Naturally,
the notion of on/off manifold components translates to θ = (θq, θ⊥).

3.3.2 Two-layer linear network

For the linear network, we over-parametrize the logistic regression case with θ = AT w, where A ∈ Rm×D

is a matrix representing the weights of the first layer with m-neurons, and w ∈ Rm represents the weights
of the output layer. γ = (vec A, w) and the model is f(x, γ) = wT Ax. The parameter space is the product
space Γ = A × W of the first and second layers.
As we are working with compact spaces, minimization over the product space is equivalent to sequential
minimization over the first and second layer, i.e.

min
γ∈A×W

L(γ) = min
w∈W

min
vec A∈A

L(γ)

Consequently, we can implement an alternating gradient descent (AGD) algorithm with step sizes α1, α2 to
obtain the minimizer. The tth step of AGD involves the following two gradient descent steps:

w-step: w(t+1) = w(t) − α1∇wL
(

w(t), A(t)
)

(2)

A-step: A(t+1) = A(t) − α2∇AL
(

w(t+1), A(t)
)

(3)

Identifiability issue For the two-layer model, the optimal parameter γ∗ = (vec A∗, w∗) isn’t unique,
however the corresponding logistic regression coefficient θ∗ = A∗T w∗ is unique and identifiable. The AGD
steps in equations (2, 3) induce a sequence in θ as well, with θ(2t) = A(t)T

w(t) and θ(2t+1) = A(t)T
w(t+1).

In the subsequent section, we can use this identification to tackle convergence rates of AGD in terms of θ
and the loss L(θ) = L (w, A). Furthermore, the notion of on/off manifold parameters can be extended in the
two-layer settings in terms of θ = AT w = (θq, θ⊥).

Orthogonalization For technical simplicity, we consider an orthogonalization step in addition to the w

and A-steps. That is, before the tth iteration, A(t) is column-orthogonalized such that A(t)T A(t) = ID, and
w(t) is recalibrated to preserve θ(t), i.e., A(t)T

w(t) keeps the same after orthogonalization. However, this
assumption is practical, as orthogonality improves generalizability and curbs vanishing gradient issues (Li
et al., 2019; Achour et al., 2022).

4 Main Results

4.1 Motivation

Consider the expected gradient and Hessian of the loss w.r.t. the identifiable parameter θ. Denote the score
as z = f(x, γ) and σ(v) = (1 + exp(−v))−1 as the standard sigmoid function.

∇θL(γ) = − E
∼x,y

yxσ(−y · z) (4)

∇2
θL(γ) = E

∼x,y
xxT σ(z)σ(−z) (5)

6

Published in Transactions on Machine Learning Research (12/2025)

Eq. (4) is the gradient over the distribution over x. Thus, for xq belonging to the well-separated region, the
gradients are accumulated constructively; in contrast, for all xq belonging to the overlapping region, gradients
from each class cancel out and accumulate destructively. This implies that as the overlapping or ν increases,
we expect weaker gradients for learning q direction.
Furthermore, Eq. (5) showcases the hessian/curvature of the loss w.r.t. θ. Notice that the curvature implicitly
depends on ExxT , which essentially captures the covariance structure of the data. The variance in the
q direction is controlled by σ2

q , inducing a larger curvature, compared to the variance in the ⊥ direction
which induces a small or flatter curvature. When implementing first-order gradient methods, the step size is
bounded by the inverse of the largest curvature σ−2

q ; As we want to change the parameters carefully, if the
loss is sensitive in certain directions. However, this leads to slower learning in the flatter region, in this case,
⊥ direction. Consequently, we expect faster convergence in the q direction and slower convergence in the ⊥
direction, leading to a suboptimal solution with poor margins that is vulnerable to adversarial examples.
Technically, at a very high level, we bound the loss Hessian based on variance matrices derived from the data
structure. Subsequently, we use Taylor expansions of the loss, Lipschitz smoothness, strong convexity and
PL-inequality-based arguments to derive parameter/loss convergence rates.
We formalize the prior intuitions in the following subsection with our main theorems.

4.2 Theorems

For both the logistic regression and two-layer linear network case, we denote the change in loss from θt → θt+1

as: ∆L(t) = L(θ(t+1)) − L(θ(t)). Furthermore, the change in loss contributed by the on/off manifold direction
is denoted by ∆qL(t) = L(θ(t+1)

q , θ
(t)
⊥) − L(θ(t)) and ∆⊥L(t) = L(θ(t)

q , θ
(t+1)
⊥) − L(θ(t)) respectively.

Theorem 4.1 (Progressive bounds). Suppose (x, y) follows data distribution described in Section 3.2, then
for the tth iterate of θ induced by GD (Eq. (1)), w-step (Eq. (2)) or A-step of AGD (Eq. (3)) we have:

∇θqL(θ(t)) = −(1 − ν)~c1 � 1d · l−k/2 + ν ~c2 � 1d · k/2 (6)

∇θ⊥L(θ(t)) = −π(~c3 � µ
(1)
⊥) + (1 − π)((1g − ~c6) � µ

(−1)
⊥) (7)

− (~c4 + ~c5) � 1g · σ⊥/4

Furthermore, for appropriate choice of step sizes α, α1, α2 � σ−2
q , we have:

∆qL(t) � −‖∇θqL(θ(t))‖2 · σ−2
q ; (8)

∆⊥L(t) � −‖∇θ⊥L(θ(t))‖2 · σ−2
q

∆L(t) � −‖∇θL(θ(t))‖2 · σ−2
q (9)

where ~ci are vectors dependent on t with all their elements positive and < 1;

As gradient norms and the variances are positive, Eq. (8) and Eq. (9) imply that at each step of GD or AGD,
the overall loss strictly decreases. In particular, the loss improves strictly in both ⊥, q directions.

Effect of ν Eq. (6) decomposes the gradient in the on-manifold direction into two components corresponding
to the well-separated and overlapping regions of the on-manifold distribution, respectively. Notice that the
two terms are competing with each other, and as ν (overlapping coefficient) initially increases, ‖∇θqL(θ(t))‖
tends to decrease due to cancellation. Hence, the loss improvement in q direction also diminishes (Eq. (8)).
With the extreme increase in ν even if ‖∇θqL(θ(t))‖ is large, the classifier becomes agnostic of the original
class direction, due to shift in the gradient direction favoring the overlapping component.
Theorem 4.2 (Parameter Convergence). Suppose (x, y) follows data distribution described in Section 3.2,
then for both the logistic regression and two-layer linear network, let T be the number of iterations w.r.t θ
induced by GD (Eq. (1)), or w-step (Eq. (2)) and A-step of AGD (Eq. (3)) with appropriate α, α1, α2 � σ−2

q ;
then:

1. ‖θ
(T)
q − θ∗

q ‖ ≤ δ, when T = Ω(log(‖θ(0) − θ∗
q ‖ · δ−1)).

2. ‖θ
(T)
⊥ − θ∗

⊥‖ ≤ δ, when T = Ω((σq/σ⊥)2 · log(‖θ(0) − θ∗
⊥‖ · δ−1)).

7

Published in Transactions on Machine Learning Research (12/2025)

Theorem 4.2 provides the convergence rate in terms of the identifiable parameter θ in both ⊥, q directions.
The convergence rate in the q-direction is independent of the dimensionality, whereas for ⊥-direction the
rate depends on (σ⊥/σq)−1. Note that as σ⊥/σq → 0 or σ⊥ = 0 (x⊥ follows a discrete distribution), the data
distribution of x becomes a d-dimensional manifold immersed in D-dimension space and the time required
for convergence in ⊥-direction blows to ∞.
Theorem 4.3 (Loss Convergence). Suppose (x, y) follows data distribution described in Section 3.2, then for
both the logistic regression and two-layer linear network, let T be the number of iterations w.r.t θ induced by
GD (Eq. (1)), or w-step (Eq. (2)) and A-step of AGD (Eq. (3)) with appropriate α, α1, α2 � σ−2

q . If θ∗ is
the optimal solution, then target error

(
L(θ(T)) − L(θ∗)

)
< δ can be achieved, when:

1. T = min(r1, r2) if δ > C;

2. T = r2 if δ < C,

where r1 = Ω(log(|L(θ(0))−L(θ∗)|·(δ−C)−1)), r2 = Ω((σq/σ⊥)2 ·log(|L(θ(0))−L(θ∗)|·δ−1)) and C = Ω(ν log 2).

Theorem 4.3 provides the convergence rates in terms of the loss. Additionally, it states that if the error
tolerance δ � C, we can have fast convergence rate r1 independent of dimensionality (σ2

⊥/σ2
q). However, for an

arbitrarily small δ < C, the convergence rate r2 can be significantly slower, controlled by the dimensionality
(σ⊥/σq) of the data. The threshold C = Ω(ν log 2) is essentially the minimum loss that can be attained by
only training θq (A.5). As δ → C, the rate r2 depended on dimensionality takes over.

Well separated on-manifold distribution Suppose there is no overlap, i.e., ν = 0, then Theorem 4.3
tells us that we can always have a fast convergence rate independent of dimensionality for any arbitrary
error-tolerance δ. The on-manifold coefficients are sufficient for perfect classification, corresponding to faster
convergence. In this scenario, as long as convergence in q direction is attained, the data is perfectly classifiable.
Hence, the classifier can achieve robustness just based on the on-manifold direction (Fig. 2b).

Illusion of convergence When ν is small, the model can attain fast convergence to a small loss value;
however, to perfectly classify the data distribution, convergence in both ⊥ and q direction is still required as
ν > 0 (Fig. 2ba). The model in this scenario will face adversarial vulnerability due to the poor convergence
in the ⊥ direction, even though the loss value is small.

5 Second-order optimization to address ill-conditioning

Our results in Section 4.2 show that slow convergence in clean training arises from the use of a step size
uniformly bounded by σ−2

q across both the q (on-manifold) and ⊥ (off-manifold) directions. A small step size
is necessary in the q direction, where curvature is large, to avoid overshooting. However, applying this same
bound to the ⊥ direction, where curvature is much smaller, leads to overly conservative updates and hence
slow convergence.

To eliminate this imbalance, the step size should adapt to the local curvature: in off-manifold directions, it
should scale with σ−2

⊥ , while in on-manifold directions it remains limited by σ−2
q . Such curvature-dependent

(variable) step-size limits yield convergence rates that are independent of the variance ratio σ⊥/σq (Remark A.1).

However, first-order methods cannot automatically adjust step sizes based on curvature and remain bounded
by a global Lipschitz constant of the overall gradienta well-known result in the optimization literature. Even
so-called adaptive first-order algorithms such as Adam or AdaGrad, which perform coordinate-wise scaling,
lack true curvature awareness: their effective step size is still constrained by this global constant (Barakat &
Bianchi, 2020, Theorem 2). Consequently, all first-order methods suffer from the same ill-conditioning, where
off-manifold updates remain limited by σ−2

q (Global Lipschitz constant in our framework). Now to actually
employ curvature-dependent step-size limits, we consider replacing the gradient descent step in Eq. (1) with a
Newton step: θ(t+1) = θ(t) −

(
∇2

θL(θ(t))
)−1 ∇θL(θ(t)). Here, the inverse Hessian plays the role of an adaptive

step size: sharp directions (large curvature) are traversed cautiously, while flat directions (small curvature)
are traversed liberally. Second-order methods therefore automatically induce curvature-dependent variable
step sizes, addressing ill-conditioning.

8

Published in Transactions on Machine Learning Research (12/2025)

Figure 3: Effect of dimensionality σ⊥/σq, on convergence. Number of optimization steps (top) and
wall-clock time (bottom) required to reach 100% clean accuracy (dashed) and 95% PGD-`2 robust accuracy
(solid) as the dimensionality varies. Left: data with on-manifold overlap (ν = 0.25). Right: no-overlap case
(ν = 0). Adam’s robust convergence (surrogate for optimality) becomes slow as σ⊥/σq → 0 in the overlap
regime due to ill-conditioning, whereas K-FAC mitigates this effect. In the ν = 0 setting, both optimizers
converge rapidly and show no dependence on dimensionality, since off-manifold convergence is unnecessary
for achieving the optimal boundary.

Practical approximations. Computing the inverse Hessian in the Newton update is computationally
prohibitive. In practice, one uses preconditioning matrices that approximate the inverse Hessian. Our
experiments employ Kronecker-Factored Approximate Curvature (KFAC) (Martens & Grosse, 2015), a
scalable natural-gradient method that approximates the Fisher information as a layerwise block matrix, and
further factorizes each block into a Kronecker product of two smaller matrices. KFAC is computationally
efficient, scales to large models, and is well-suited for distributed training.

Convergence guarantees. A natural question is whether second-order methods converge to the same
optima as first-order methods. Recent theoretical advances suggest they do. Du et al. (2019) showed that
gradient descent reliably finds global minima in sufficiently wide overparameterized networks. Zhang et al.
(2019a) extended this line, proving that natural gradient descent methods (a class of second-order methods)
converge to global minima as well, often with faster rates under reasonable assumptions. Moreover, they
show that KFAC, as an efficient approximation, retains these convergence guarantees. These results justify
our use of KFAC as a representative second-order method in our experiments.

6 Experiments

6.1 Simulation results

We empirically validate the consequences of Theorems 4.2, 4.3 and the effect of second-order KFAC optimiza-
tion, using models trained on the synthetic rectangular data distribution defined in Section 3.2 (visualized in
Fig. 2b). We consider two regimes: (i) a on-manifold overlap setting with ν = 0.25, and (ii) a no-overlap
setting with ν = 0, and train using both Adam (first-order) and K-FAC (second-order) optimization.

For each configuration, we measure the number of optimization steps and wall-clock time required to reach
100% clean accuracy and 95% robust accuracy under `2 Projected gradient descent (PGD)-attacks (Madry
et al., 2017) of strength ε ≈ |µ(1)

⊥ − µ
(−1)
⊥ | − 2

√
3 σ⊥, which corresponds to the effective separation between the

two class clusters in the off-manifold direction. In this setting, robust accuracy serves as a proxy for proximity
to the optimal decision boundary, as achieving robustness requires accurate alignment in the ⊥-direction.

9

Published in Transactions on Machine Learning Research (12/2025)

Theorem 4.2 predicts that convergence in the ⊥-direction becomes increasingly slow as σ⊥/σ‖ → 0, while
Theorem 4.3 implies that this slow direction affects overall loss convergence only when ν 6= 0. Consequently, in
the ν = 0.25 regime, first-order optimization requires substantially more iterations to reach a robust solution
as the dimensionality ratio decreases, since robust convergence necessitates precise off-manifold learning. In
contrast, K-FAC mitigates this slowdown by incorporating curvature information. 100% Clean accuracy,
however, is attained rapidly, reflecting fast convergence to a coarse loss level (Section 4.2, paragraph Illusion
of Convergence) dependent on the extend of overlap.

In the no-overlap case ν = 0, both clean and robust accuracy converge rapidly and remain insensitive to σ⊥/σq,
as the optimal classifier depends solely on the on-manifold component and does not require convergence in
the ⊥-direction. Figure 3 confirms these predictions: robust convergence under Adam deteriorates sharply as
σ⊥/σq → 0 in the overlap regime, while K-FAC remains stable, whereas no such degradation appears when
ν = 0. With this motivation, we will move on to real-life experiments, where we show that just by long
first-order training or second-order optimization we can significantly boost adversarial robustness in vision
datasets without any adversarial training.

6.2 Computer vision datasets

(a) PGD, MNIST: Adam vs. KFAC. (b) PGD, FMNIST: Adam vs. KFAC.

(c) APGD, MNIST, Adam. (d) APGD, MNIST, KFAC. (e) APGD, FMNIST, Adam.(f) APGD, FMNIST, KFAC.

(g) PGD, BatchNorm: MNIST (left) and FMNIST (right).

Figure 4: Robustness to `∞ attacks over training. Top: PGD robustness, where long training increases
robustness for first-order Adam and second-order KFAC reaches comparable or higher robustness much faster.
Middle: APGD robustness confirms the same trend for MNIST and Fashion-MNIST, with markedly quicker
gains under KFAC. Bottom: PGD robustness for BatchNorm models, where the robustness gains observed in
standard networks do not appear.

10

Published in Transactions on Machine Learning Research (12/2025)

Most computer vision datasets can be attributed to having a low-dimensional manifold structure (Pope et al.,
2021; Osher et al., 2017). According to our framework, if there is an overlap in the manifold dimensions, the
clean training is subjected to ill-conditioning, requiring considerable time to converge. Consequently, if a lack
of convergence leads to adversarial vulnerability, the robust accuracy should increase with enough training.
Our discussions in Section 5, imply that with a second-order optimization scheme like KFAC, this robustness
improvement should be much faster, and we could attain much more robust classifiers by just using clean
training. We use the cross-entropy loss in our experiments, which is a multiclass generalization of the logistic
loss we used in our theoretical setup.

We perform clean training on popular computer vision datasets MNIST (LeCun et al., 2010) and
FashionMNIST (Xiao et al., 2017) with a convolution neural network models (Tables 1, 3 ,LeCun et al.
(2015)) under two different optimization schemes first order and second order. We use the ADAM optimizer
(Kingma & Ba, 2014), which is considered one of the fastest first-order methods. We incorporate KFAC
preconditioned matrices for our second-order optimization into the existing ADAM update. We use pytorch
implementations (Pauloski et al., 2020; 2021) to compute the KFAC preconditioning.

At each training epoch, we subject the model to adversarial attacks to keep track of the model’s
robustness. We use `∞ Projected gradient descent (PGD)-attacks of strength ε to attack the models (Madry
et al., 2017). We choose very small step sizes to get best approximation of PGD attacks as possible. The
robust accuracy is evaluated on the test data unbeknownst to training for various choices of attack strength
ε, where ε = 0 corresponds to the clean test accuracy. We also conduct A-PGD attacks that automatically
choose the best step-sizes of PGD adaptively, and we get similar results regardless, consistent with the story
line. The total training is limited to 1000 epochs for illustrative purposes. We implement 10 runs for each
model to get the avg and std dev. After ∼ 10 epochs, the clean training loss is ∼ 0 in all scenarios. (For
additional details see appendix C, Code:1)

Figure 4 exhibits the results of our experiments described above for the MNIST and FMNIST datasets,
respectively. It is evident that irrespective of the order of optimization, the robustness of the clean-trained
model does increase with time under all attack strengths (ε) with time, as suggested by our theory. Even
though the clean test accuracy is stagnant around (ε = 0) is ∼ 100, ∼ 95% (MNIST, FMNIST resp.) for the
majority of the training, the adversarial robustness increases throughout. This validates our theory, suggesting
a lack of convergence in ⊥ direction leading to suboptimal classifiers that aren’t large margin. Attaining,
∼ 0 clean loss value and almost perfect test accuracy yet showcasing improvement in robustness throughout
excessive training aligns with our discussions in section 4.2 (Illusion of Convergence) and the motivating
illustration Fig 1 bottom right where the classifier is good enough on the data distribution, however, it hasn’t
attained convergence to optimal classifer and exhibits vulnerability. Additionally, the rate of robustness
improvement for the second-order optimization is much faster, for the same amount of training epochs.

(a) PGD, Standard. (b) PGD, BatchNorm. (c) APGD, Standard. (d) APGD, BatchNorm.

Figure 5: CIFAR-10 `∞ robustness over training for first-order optimization. PGD (left two) and APGD
(right two). Standard networks (no BatchNorm) show robustness gains with longer training, while BatchNorm
networks fail to exhibit similar improvements.

1https://github.com/rhaldarpurdue/Adversarial_Vulnerability_Convergence_code

11

https://github.com/rhaldarpurdue/Adversarial_Vulnerability_Convergence_code

Published in Transactions on Machine Learning Research (12/2025)

Moreover, we conduct a similar robustness experiment on the CIFAR10 dataset (Krizhevsky et al., 2009)
with ADAM training (Figure 5a and 5c). KFAC is designed to scale up in a distributed setting for larger
models. Although we couldnt provide the KFAC version for CIFAR10 due to limited access to a single GPU,
we conducted the first-order training for larger epochs to illustrate robustness improvement. We expect
a second-order optimization scheme would yield similar results but with much smaller training epochs, as
observed in the MNIST and FashionMNIST cases.

Unparalleled clean training performance Attaining ∼ 80 and ∼ 40% robust accuracy for ε = 0.3
(ADAM+KFAC in Fig 4) in MNIST and FMNIST datasets respectively just by clean training is unprecedented.
ε = 0.3 is a very large attack strength for these datasets, for context Madry et al. (2017) reports a robust
accuracy of only 3.5% for MNIST dataset undergoing clean training with the same attack strength. Similarly,
for CIFAR10 Fig 5a, we attain ∼ 60% robust accuracy for ε = 8/255 just using clean training. Traditional
literature reports 0% robust accuracy for clean-trained model and 47.04% accuracy for the PGD-based
adversarially trained model (Zhang et al., 2019b).

6.3 Vulnerability of Batch Normalization

Figures 5b, 5d, and 4g present experiments with architectures that include batch normalization (see Tables 2,
4 in the Appendix). Unlike standard networks, these models show no robustness improvement with extended
training, even when convergence is reached. These results suggest that batch-normalized networks do not
benefit from the convergence-driven robustness gains identified in Section 5.

This observation is consistent with the different implicit biases of the two architectures. Traditional ReLU
networks exhibit a bias toward maximum-margin classifiers, which naturally promotes robustness. By contrast,
batch-normalized networks have been shown to favor uniform-margin classifiers (Cao et al., 2023), which
lack the same robustness properties. Within our framework, this helps explain why the convergence benefits
we observe in standard models do not extend to batch-normalized ones.

Importantly, the vulnerability of batch normalization has also been noted in prior work, though from different
perspectives. Galloway et al. (2019) reported reduced robustness, attributing it to mean-field effects. Wang
et al. (2022) and Muhammad et al. (2023) showed that removing batch normalization improves robustness
even under adversarial training, suggesting the effect is intrinsic to BN rather than training specifics.

Taken together, these findings indicate that the lack of robustness gains in batch-normalized models is not
unique to our experiments, but part of a broader phenomenon. Our contribution is to situate this behavior
within a convergence-based framework, complementing earlier explanations and raising caution about the
default use of batch normalization in robustness-critical settings.

7 Discussion and Conclusion

We extend the notion of on and off-manifold dimensions to high and low-variance features. We explore
a framework where inseparability in the on-manifold direction between data classes causes adversarial
vulnerability due to slow learning in off-manifold direction from ill-conditioning. We present theoretical
results supporting this hypothesis for a binary classification problem on a toy data distribution motivated
by this concept. The theoretical analysis is done for the logistic regression case and 2-layer linear network
for mathematical tractability. We validate the implications of our framework via simulations and real life
experiments on MNIST, FMNIST, and CIFAR10 datasets with CNNs under a cross-entropy loss. Furthermore,
we advocate using second-order methods that inherently circumvent ill-conditioning and accelerate convergence
or continual long training for first-order method to reach closer to optimality, significantly boosting robust
accuracy just by clean training.

Adversarial Training. We also provide a convergence-based interpretation of adversarial training within
our framework and discuss how it implicitly mitigates off-manifold ill-conditioning by inflating variance in
low-variance directions. For clarity and space, we defer this discussion to Appendix B.

12

Published in Transactions on Machine Learning Research (12/2025)

References
El Mehdi Achour, François Malgouyres, and Franck Mamalet. Existence, stability and scalability of orthogonal

convolutional neural networks. Journal of Machine Learning Research, 23(347):1–56, 2022.

Sheila Alemany and Niki Pissinou. The dilemma between data transformations and adversarial robustness
for time series application systems. arXiv preprint arXiv:2006.10885, 2020.

Gupta Aparne, Andrzej Banburski, and Tomaso Poggio. Pca as a defense against some adversaries. Technical
report, Center for Brains, Minds and Machines (CBMM), 2022.

Anas Barakat and Pascal Bianchi. Convergence rates of a momentum algorithm with bounded adaptive step
size for nonconvex optimization. In Sinno Jialin Pan and Masashi Sugiyama (eds.), Proceedings of The
12th Asian Conference on Machine Learning, volume 129 of Proceedings of Machine Learning Research, pp.
225–240. PMLR, 18–20 Nov 2020. URL https://proceedings.mlr.press/v129/barakat20a.html.

Yuan Cao, Difan Zou, Yuanzhi Li, and Quanquan Gu. The implicit bias of batch normalization in linear
models and two-layer linear convolutional neural networks, 2023.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 ieee
symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima of
deep neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 1675–1685. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/du19c.html.

Spencer Frei, Gal Vardi, Peter Bartlett, and Nati Srebro. The double-edged sword of implicit bias: Gen-
eralization vs. robustness in relu networks. Advances in Neural Information Processing Systems, 36,
2024.

Angus Galloway, Anna Golubeva, Thomas Tanay, Medhat Moussa, and Graham W Taylor. Batch normaliza-
tion is a cause of adversarial vulnerability. In ICML 2019 Workshop on Identifying and Understanding
Deep Learning Phenomena, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

Rajdeep Haldar, Yue Xing, and Qifan Song. Effect of ambient-intrinsic dimension gap on adversarial
vulnerability. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), Proceedings of The 27th
International Conference on Artificial Intelligence and Statistics, volume 238 of Proceedings of Machine
Learning Research, pp. 1090–1098. PMLR, 02–04 May 2024. URL https://proceedings.mlr.press/
v238/haldar24a.html.

Katherine Hermann, Hossein Mobahi, Michael Curtis Mozer, et al. On the foundations of shortcut learning.
In The Twelfth International Conference on Learning Representations.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial examples are not bugs, they are features. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf.

Adel Javanmard and Mahdi Soltanolkotabi. Precise statistical analysis of classification accuracies for
adversarial training. The Annals of Statistics, 50(4):2127–2156, 2022.

Susmit Jha, Uyeong Jang, Somesh Jha, and Brian Jalaian. Detecting adversarial examples using data
manifolds. In MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM), pp. 547–552.
IEEE, 2018.

13

https://proceedings.mlr.press/v129/barakat20a.html
https://proceedings.mlr.press/v97/du19c.html
https://proceedings.mlr.press/v238/haldar24a.html
https://proceedings.mlr.press/v238/haldar24a.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf

Published in Transactions on Machine Learning Research (12/2025)

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz Barak, and
Haofeng Zhang. Sgd on neural networks learns functions of increasing complexity. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper_files/paper/2019/file/b432f34c5a997c8e7c806a895ecc5e25-Paper.pdf.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

Shuai Li, Kui Jia, Yuxin Wen, Tongliang Liu, and Dacheng Tao. Orthogonal deep neural networks. IEEE
transactions on pattern analysis and machine intelligence, 43(4):1352–1368, 2019.

Wei-An Lin, Chun Pong Lau, Alexander Levine, Rama Chellappa, and Soheil Feizi. Dual manifold adversarial
robustness: Defense against lp and non-lp adversarial attacks. Advances in Neural Information Processing
Systems, 33:3487–3498, 2020.

Blerta Lindqvist, Shridatt Sugrim, and Rauf Izmailov. Autogan: Robust classifier against adversarial attacks.
arXiv preprint arXiv:1812.03405, 2018.

Jinlong Liu, Guoqing Jiang, Yunzhi Bai, Ting Chen, and Huayan Wang. Understanding why neural networks
generalize well through gsnr of parameters. arXiv preprint arXiv:2001.07384, 2020.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. arXiv
preprint arXiv:1906.05890, 2019.

Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets: Margin
maximization and simplicity bias, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curvature.
In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Odelia Melamed, Gilad Yehudai, and Gal Vardi. Adversarial examples exist in two-layer relu networks for
low dimensional linear subspaces. Advances in Neural Information Processing Systems, 36, 2024.

Hancheng Min and René Vidal. Can implicit bias imply adversarial robustness? arXiv preprint
arXiv:2405.15942, 2024.

Awais Muhammad, Fahad Shamshad, and Sung-Ho Bae. Adversarial attacks and batch normalization: A
batch statistics perspective. IEEE Access, 11:96449–96459, 2023. doi: 10.1109/ACCESS.2023.3250661.

Mor Shpigel Nacson, Nathan Srebro, and Daniel Soudry. Stochastic gradient descent on separable data:
Exact convergence with a fixed learning rate, 2022.

Stanley Osher, Zuoqiang Shi, and Wei Zhu. Low dimensional manifold model for image processing. SIAM
Journal on Imaging Sciences, 10(4):1669–1690, 2017.

J. Gregory Pauloski, Zhao Zhang, Lei Huang, Weijia Xu, and Ian T. Foster. Convolutional Neural Network
Training with Distributed K-FAC. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’20. IEEE Press, 2020. ISBN 9781728199986. doi:
10.5555/3433701.3433826.

14

https://proceedings.neurips.cc/paper_files/paper/2019/file/b432f34c5a997c8e7c806a895ecc5e25-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/b432f34c5a997c8e7c806a895ecc5e25-Paper.pdf

Published in Transactions on Machine Learning Research (12/2025)

J. Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman, Kyle Chard, Ian Foster, and Zhao
Zhang. Kaisa: An Adaptive Second-Order Optimizer Framework for Deep Neural Networks. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’21, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384421. doi:
10.1145/3458817.3476152. URL https://doi.org/10.1145/3458817.3476152.

Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic dimension
of images and its impact on learning. arXiv preprint arXiv:2104.08894, 2021.

Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In Hal Daumé III
and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp. 8093–8104. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/rice20a.html.

Saharon Rosset, Ji Zhu, and Trevor Hastie. Margin maximizing loss functions. Advances in neural information
processing systems, 16, 2003.

Adi Shamir, Odelia Melamed, and Oriel BenShmuel. The dimpled manifold model of adversarial examples in
machine learning. arXiv preprint arXiv:2106.10151, 2021.

David Stutz, Matthias Hein, and Bernt Schiele. Disentangling adversarial robustness and generalization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6976–6987,
2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Thomas Tanay and Lewis Griffin. A boundary tilting persepective on the phenomenon of adversarial examples.
arXiv preprint arXiv:1608.07690, 2016.

Kasimir Tanner, Matteo Vilucchio, Bruno Loureiro, and Florent Krzakala. A high dimensional statistical model
for adversarial training: Geometry and trade-offs. In International Conference on Artificial Intelligence
and Statistics, pp. 2530–2538. PMLR, 2025.

Nikolaos Tsilivis and Julia Kempe. What can the neural tangent kernel tell us about adversarial robustness?
Advances in Neural Information Processing Systems, 35:18116–18130, 2022.

Haotao Wang, Aston Zhang, Shuai Zheng, Xingjian Shi, Mu Li, and Zhangyang Wang. Removing batch nor-
malization boosts adversarial training. In International Conference on Machine Learning, pp. 23433–23445.
PMLR, 2022.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and optimization
of neural nets vs their induced kernel. Advances in Neural Information Processing Systems, 32, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

Jiancong Xiao, Liusha Yang, Yanbo Fan, Jue Wang, and Zhi-Quan Luo. Understanding adversarial robustness
against on-manifold adversarial examples. arXiv preprint arXiv:2210.00430, 2022.

Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient descent for
over-parameterized neural networks. Advances in Neural Information Processing Systems, 32, 2019a.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. Theoretically
principled trade-off between robustness and accuracy. In International conference on machine learning, pp.
7472–7482. PMLR, 2019b.

Wenjia Zhang, Yikai Zhang, Xiaoling Hu, Mayank Goswami, Chao Chen, and Dimitris N Metaxas. A
manifold view of adversarial risk. In International Conference on Artificial Intelligence and Statistics, pp.
11598–11614. PMLR, 2022.

15

https://doi.org/10.1145/3458817.3476152
https://proceedings.mlr.press/v119/rice20a.html
https://proceedings.mlr.press/v119/rice20a.html

Published in Transactions on Machine Learning Research (12/2025)

A Proofs

In all our proofs, we assume that Rank(A) = D, as when Rank(A) < D, we can just work with a block of A
that is full rank. The gradient of w corresponding to the co-kernel of A will always be zero, and it doesn’t
affect any of the gradient descent steps pertaining to our analysis.

A.1 Reparametrization

Lemma A.1.1 (Reparametrization). For the tth iterate of w-step Eq. (2) and A-step of AGD Eq. (3)
there exist reparametrizations w̃(t) and Ã(t) such that θ(2t+1) = (θ(2t+1)

q , θ
(2t+1)
⊥) = (ã(t)

q , ã
(t)
⊥) and θ(2t) =

(θ(2t)
q , θ

(2t)
⊥) = (w̃(t)

q , w̃
(t)
⊥). Where w̃ = (w̃q, w̃⊥, w̃`), vec Ã = (ãq, ã⊥, ã`) and ∇Lw̃` = 0m−D, ∇Lã` =

0mD−D.

Proof. Recall that, for the two-layer linear network, γ = (vec A, w) and θ = AT w, with ∇θL(γ) =
− E

∼x,y
yxσ(−y · z) (Eq. (4)). Our reparametrization/change of basis will help us separate the components of

the first and second layer into q, ⊥, ` directions corresponding to the identifiable parameter θ = (θq, θ⊥). `
components correspond to redundant directions that don’t undergo any change in the AGD step.

A.1.1 w-step

In this step of AGD, the second layer is fixed to A(t). Given A = A(t), the gradient w.r.t. the first layer
parameter w is:

∇wL(θ(2t)) = −Eσ(−y · z)yAx (10)

A is a rectangular matrix (m × D; m ≥ D). Rank(A) ≤ D. Hence there exists a change of basis B ∈ Rm×m

such that A = B[e1 . . . eD] where ei is the standard basis in Rm with ith coordinate being 1, and rest 0. This
choice of standard basis for the Im(A) loses no generality as we can always have B̃ = BP which permutes
the basis in such a way so that the transformation adheres to the choice of a subset of the standard basis. In
general B =

[
A C

]
has to take this kind of form, for any choice of C ∈ Rm×m−D. Hence, the gradient

w.r.t.can be expressed as:

∇wL(θ(2t)) = −Eσ(−y · z)yB
(

x
0m−D

)
(11)

We can choose an appropriate full rank C outside the span of B to get an inverse transformation B−1. Note
in the case that Rank(A) < D we can just work with block inverse of the full rank part in B; as the gradient
of w corresponding to the co-kernel of A will always be zero, so it isn’t of interest.
Consider the reparametrization w̃(t) = BT w(t), with gradients:

∇w̃L(θ(2t)) = B−1∇wL = −Eσ(−y · z)yAx = −Eσ(−y · z)y
(

x
0m−D

)
(12)

Note that, θ(2t) = A(t)T
w(t) = (B[e1 . . . eD])T

w(t) = [e1 . . . eD]T w̃(t). Therefore, it follows that there exists
w̃q, w̃⊥ components corresponding to θq, θ⊥ at every t. Note that the remaining components w̃` are redundant
and have zero gradients.

∇w̃L(θ) = −Eσ(−y · z)y
(

x
0m−D

)
(13)

∇w̃qL(θ) = −Eσ(−y · z)yxq (14)
∇w̃⊥L(θ) = −Eσ(−y · z)yx⊥ (15)
∇w̃`L(θ) = 0m−D (16)

16

Published in Transactions on Machine Learning Research (12/2025)

A.1.2 A-step

In this step, the first layer is fixed to w(t+1). Given w = w(t+1), the gradient w.r.t. the second layer parameters
A is :

∇AL = −Eσ(−y · z)ywxT (17)
∇vec AL = −Eσ(−y · z)yw ⊗ x (18)

Consider the reparametrization Ã such that A(t) = UT Ã(t) =

u1
...

um


T

Ã. The columns are chosen using

Gram-Schmidt such that, u1 = w/‖w‖2 and 〈uj , w〉 = 0, ‖uj‖ = 1 for all j 6= 1. The gradient in the
re-parametrized space is then:

∇ÃL = −Eσ(−y · z)yUwxT = −Eσ(−y · z)ye1xT (19)
∇vec ÃL = −Eσ(−y · z)ye1 ⊗ x (20)

Note that,
θ(2t+1) = A(t)T

w(t+1) = (UT Ã(t))T
wt+1 = Ã(t)T

Uwt+1 = Ã(t)T

e1

. Therefore, it follows that there exists aq, a⊥ components for vec Ã corresponding to θq, θ⊥ at every t. Hence,
vec Ã = (aq, a⊥, a`) with:

∇aqL(θ) = −Eσ(−y · z)yxq (21)
∇a⊥L(θ) = −Eσ(−y · z)yx⊥ (22)
∇a`L(θ) = 0mD−D (23)

A.2 Hessian

Lemma A.2.1 (Lipschitz smoothness and Strong Convexity). For any value of γ in both logistic and
two-layer-linear setting. The loss Hessians w.r.t. identifiable parameter θ can be bounded as follows:

cl ·
(

σ2
q Id 0
0 σ2

⊥Ig

)
< ∇2

θL(γ) < cu ·
(

σ2
q Id 0
0 σ2

⊥Ig

)
(24)

clσ
2
⊥Ig < ∇2

θ⊥
L(γ) < cuσ2

⊥Ig (25)
clσ

2
q Id < ∇2

θq
L(γ) < cuσ2

q Id (26)

Here cl, cu > 0 are constants. Consequently, L(γ) is convex in θ, θq, θ⊥.

Proof. The Hessian of the loss w.r.t. the identifiable parameter θ is ∇2
θL(γ) = E

∼x,y
xxT σ(z)σ(−z) [Eq. (5)].

As our analysis is restricted to the compact space, σ(z) is strictly between 0 and 1, as σ(z) = 1/0 if and only
if θ = ±∞. Let cl > 0 be the lower bound of the entropy σ(z)σ(−z). Then, using positive definiteness and
integrating both sides (Here >, < between matrices corresponds to the difference being positive/negative
definite):

E
∼x,y

xxT cl < ∇2
θL(γ) < E

∼x,y
xxT

(Σx + E
∼x,y

x E
∼x,y

xT) · cl < ∇2
θL(γ) < Σx + E

∼x,y
x E

∼x,y
xT

Where Σx =
(

σ2
q Id 0
0 σ2

⊥Ig

)
is the covariance matrix. The vector outer-product ExExT has eigenvalues

‖µ‖2 = ‖Ex‖2
, 0, 0 . . . , 0. Hence, 0D ≤ ExExT ≤ ‖µ‖2ID. This implies that:

Σx · cl < ∇2
θL(γ) < Σx + ‖µ‖2ID

17

Published in Transactions on Machine Learning Research (12/2025)

For 0 < ‖µ‖, σq, σ⊥ < ∞. We have ‖µ‖ = cqσq = c⊥σ⊥

cl ·
(

σ2
q Id 0
0 σ2

⊥Ig

)
< ∇2

θL(γ) <

(
σ2
q Id 0
0 σ2

⊥Ig

)
+
(

c2
qσ2

q Id 0
0 c2

⊥σ2
⊥Ig

)
Then there exists constants cu = max{1 + c2

q , 1 + c2
⊥} such that

cl ·
(

σ2
q Id 0
0 σ2

⊥Ig

)
< ∇2

θL(γ) < cu ·
(

σ2
q Id 0
0 σ2

⊥Ig

)
clσ

2
⊥Ig < ∇2

θ⊥
L(γ) < cuσ2

⊥Ig

clσ
2
q Id < ∇2

θq
L(γ) < cuσ2

q Id

As the above Hessians are positive definite, convexity follows.

Proof of Theorem 4.1. A.3 Gradient Decomposition

From Eq. (4) ∇θL(γ) = − E
∼x,y

yxσ(−y · z). We will tackle the q / ⊥ components of the gradient separately.

A.3.1 On Manifold

Consider ∇θqL(γ) = − E
∼x,y

yxqσ(−y · z). ∇θqL can be decomposed into ∇θqL¬∅, ∇θqL∅, the gradients
arising from overlapping and non-overlapping distribution of xq, with probabilities ν, 1 − ν respectively. The
distribution of x corresponding to the non-overlapping part and overlapping part is xq|y,∅ ∼ U [0, (l −k) ·y ·1d]
and xq|y,¬∅ ∼ U [−k.y · 1d, 0) resp. One can validate this with the definition of ν (Section 3.2), xq|y,∅
contributes 0 in the computation of ν, while xq|y,¬∅ has non-zero contribution over the support.

∇θqL(γ) = − E
∼x,y

yxqσ(−y · z) = −(1 − ν) · E
∼x,y|∅

yxqσ(−y · z) − ν · E
∼x,y|¬∅

yxqσ(−y · z) (27)

E
∼x,y|∅

yxqσ(−y · z) = π · E
∼x|y=1,∅

xqσ(−z) + (1 − π) · E
∼x|y=−1,∅

−xqσ(z) (28)

E
∼x|y=1,∅

xqσ(−z) = [
∫ l−k

0
· · ·
∫ l−k

0
xqiσ(−z) · (l − k)−d] dx , i ∈ {1, . . . , d} (29)

= ~c1 � 1d.l−k/2 (30)

In Eq. (29) every integral is in a positive domain, with σ(−z) ∈ (0, 1) within the compact space. 0 <∫ l−k

0 xqi
σ(−θqi

xqi
) <

∫ l−k

0 xqi = l−k/2, component-wise we get Eq. (30) where 0 < ~c1i < 1 for i ∈ {1, . . . , d}.

E
∼x|y=−1,∅

−xqσ(z) = [
∫ 0

−(l−k)
· · ·
∫ 0

−(l−k)
−xqiσ(z) · (l − k)−d] dx , i ∈ {1, . . . , d}

= [
∫ −(l−k)

0
· · ·
∫ −(l−k)

0
xqiσ(z) · (l − k)−d] dx

= [
∫ l−k

0
· · ·
∫ l−k

0
xqiσ(−z) · (l − k)−d] dx

Eq. (29)= ~c1 � 1d.l−k/2 (31)

Substituting Eq. (30) and Eq. (31) in Eq. (28) we have:

E
∼x,y|∅

yxqσ(−y · z) = ~c1 � 1d.l−k/2 (32)

E
∼x|y=1,¬∅

xqσ(−z) = [
∫ 0

−k

· · ·
∫ 0

−k

xqiσ(−z) · k−d] dx , i ∈ {1, . . . , d} (33)

18

Published in Transactions on Machine Learning Research (12/2025)

Using analogous arguments as in Eq. (29)

= −~c2 � 1d.k/2 (34)

Similarly, we have
E

∼x|y=−1,¬∅
−xqσ(z) = −~c2 � 1d.k/2 (35)

Substitute Eq. (34) and Eq. (35) in

E
∼x,y|¬∅

yxqσ(−y · z) = π · E
∼x|y=1,¬∅

xqσ(−z) + (1 − π) · E
∼x|y=−1,¬∅

−xqσ(z) (36)

to get
E

∼x,y|¬∅
yxqσ(−y · z) = −~c2 � 1d.k/2 (37)

Using Eq. (32),Eq. (37) in Eq. (27) we have:

∇θqL(γ) = −(1 − ν) · ~c1 � 1d.l−k/2 + ν · ~c2 � 1d.k/2 (38)

A.3.2 Off Manifold

∇θ⊥L(γ) = − E
∼x,y

yx⊥σ(−y · z) = −π · E
∼x|y=1

x⊥σ(−z) − (1 − π) · E
∼x|y=−1

−x⊥σ(z) (39)

E
∼x|y=1

x⊥σ(−z) = [
∫ µ

(1)
q g

+
√

3σ⊥

µ
(1)
q g

−
√

3σ⊥

· · ·
∫ µ

(1)
q 1

+
√

3σ⊥

µ
(1)
q 1

−
√

3σ⊥

x⊥iσ(−z) · (2
√

3σ⊥)−g] dx , i ∈ {1, . . . , g} (40)

Let x⊥ = µ
(1)
⊥ + η, then

= [
∫ √

3σ⊥

−
√

3σ⊥

· · ·
∫ √

3σ⊥

−
√

3σ⊥

(µ(1)
⊥ + η)

i
σ(−z) · (2

√
3σ⊥)−g] dη

= ~c3 � µ
(1)
⊥ + [

∫ √
3σ⊥

0
· · ·
∫ √

3σ⊥

0
ηiσ(−z) · (2

√
3σ⊥)−g] dη

+ [
∫ 0

−
√

3σ⊥

· · ·
∫ 0

−
√

3σ⊥

ηiσ(−z) · (2
√

3σ⊥)−g] dη

= ~c3 � µ
(1)
⊥ + (~c4 + ~c5) � 1g · σ⊥/4 (41)

Also,

E
∼x|y=−1

−x⊥σ(z) = E
∼x|y=−1

−x⊥ + E
∼x|y=−1

x⊥σ(−z)

Following similar steps following Eq. (40) to Eq. (41)

= −µ
(−1)
⊥ + ~c6 � µ

(−1)
⊥ + (~c4 + ~c5) � 1g · σ⊥/4 (42)

Substituting Eq. (41), Eq. (42) in Eq. (39) we have:

∇θ⊥L(γ) = −π
(

~c3 � µ
(1)
⊥

)
− (1 − π)

(
−(1g − ~c6) � µ

(−1)
⊥

)
− (~c4 + ~c5) � 1g · σ⊥/4

19

Published in Transactions on Machine Learning Research (12/2025)

A.4 Progressive Bound

A.4.1 Loss change all directions

∆L(t) = L(θ(t+1)) − L(θ(t)). Using Taylor’s expansion of L(θ(t+1)) around θ(t) with Lipschitz smoothness
Eq. (24), we have:

L(θ(t+1)) < L(θ(t)) + ∇θL(θ(t))T (θ(t+1) − θ(t)) + cu

2 (θ(t+1) − θ(t))T

(
σ2
q Id 0
0 σ2

⊥Ig

)
(θ(t+1) − θ(t))

As σ⊥ < σq, we have:

L(θ(t+1)) < L(θ(t)) + ∇θL(θ(t))T (θ(t+1) − θ(t)) + cu

2 (θ(t+1) − θ(t))T σ2
q ID(θ(t+1) − θ(t))

1. For logistic case the gradient step is θ(t+1) = θ(t) − α∇θL(θ(t))

L(θ(t+1)) < L(θ(t)) − α‖∇θL(θ(t))‖2 + α2 cuσ2
q

2 ‖∇θL(θ(t))‖2

∆L(t) < −α‖∇θL(θ(t))‖2
(

1 − α ·
cuσ2

q
2

)
For step-size

α ≤ 1
cuσ2

q
(43)

∆L(t) < −(2cuσ2
q)−1‖∇θL(θ(t))‖2

2. For w−step Eq. (2) we have w(t/2+1) = w(t/2) − α1∇wL(θ(t)). From lemma A.1.1, section:A.1.1we
have reparametrization (θ, 0m−D) = w̃(t/2) = BT w(t/2). Note that B =

[
A(t/2) C

]
for some

specific choice of C. This induces a gradient descent step in w̃ or θ space as follows w̃(t/2+1) =
w̃(t/2) − α1BT B∇w̃L(θ(t)) or θ(t+1) = θ(t) − α1A(t/2)T A(t/2)∇θL(θ(t)). Hence, the Taylor expansion
can be written as:

L(θ(t+1)) < L(θ(t)) − α1∇θL(θ(t))T A(t/2)T
A(t/2)∇θL(θ(t)) + α2

1
cuσ2

q
2 ‖A(t/2)T

A(t/2)∇θL(θ(t))‖2

let λ̂A, λ̌A be the minimum/maximum eigen values of A(t/2)T A(t/2) respectively. Then :

L(θ(t+1)) < L(θ(t)) − α1λ̂A‖∇θL(θ(t))‖2 + α2
1

cuσ2
q

2 λ̌2
A‖∇θL(θ(t))‖2

∆L(t) < −α1 · λ̂A‖∇θL(θ(t))‖2

(
1 − α1 ·

λ̌2
Acuσ2

q

2λ̂A

)

For step-size
α1 ≤ (M · cuσ2

q)−1 (44)

Where λ̌2
A/λ̂A ≤ M for all t and some M < ∞ (compact space).

∆L(t) < −λ̂A · (2M · cuσ2
q)−1‖∇θL(θ(t))‖2

20

Published in Transactions on Machine Learning Research (12/2025)

3. For A−step Eq. (3) we have A(t+1/2) = A(t−1/2) − α2∇AL(θ(t)). From lemma A.1.1, section
A.1.2; vec A(t−1/2) = vec UT Ã(t−1/2) = (ID ⊗ UT) vec Ã(t−1/2). Let KT = (ID ⊗ UT)−1 = ID ⊗
Diag

(
‖w(t+1/2)‖2, 1, . . . , 1

)
U as UT Diag

(
‖w(t+1/2)‖2, 1, . . . , 1

)
U = Im. This induces a gradient

descent step in vec Ã or θ space as follows vec Ã(t+1/2) = vec Ã(t−1/2) − α2KT K∇ÃL(θ(t)) (where
KT K = ID ⊗ Diag

(
‖w(t+1/2)‖4, 1, . . . , 1

)
Im) or θ(t+1) = θ(t) − α2‖w(t+1/2)‖4∇θL(θ(t)). Following

analogous steps to the derivation for the logistic case (Item 1), with step size

α2 = (W · cuσ2
q)−1 (45)

, where ‖w(t+1/2)‖4 < W for all t. We get the following:

∆L(t) < −‖w(t+1/2)‖4 · (2 · Wcuσ2
q)−1‖∇θL(θ(t))‖2

A.4.2 Loss change on-manifold direction

∆qL(t) = L(θ(t+1)
q , θ

(t)
⊥) − L(θ(t)). Using Taylor’s expansion of L(θ(t+1)

q , θ
(t)
⊥) around θ(t) with Lipschitz

smoothness Eq. (26), we have:

L(θ(t+1)
q , θ

(t)
⊥) < L(θ(t)

q , θ
(t)
⊥) + ∇θqL(θ(t))T (θ(t+1)

q − θ
(t)
q) + cu

2 (θ(t+1)
q − θ

(t)
q)T σ2

q ID(θ(t+1)
q − θ

(t)
q)

1. Logistic case: From section A.4.1 Item 1 remember that the gradient step for logistic case is
θ(t+1) = θ(t) − α∇θL(θ(t)) with step size α ≤ 1

cuσ2
q
Eq. (43). Hence, θ

(t+1)
q = θ

(t)
q − α∇θqL(θ(t)).

∆qL(t) < −α‖∇θqL(θ(t))‖2 + α2 cu · σ2
q

2 ‖∇θqL(θ(t))‖2

As α ≤ 1
cuσ2

q

∆qL(t) < −(2cuσ2
q)−1‖∇θqL(θ(t))‖2

2. w-step: From section A.4.1 Item 2 remember that the gradient step induced in the identifiable
parameter θ, for w-step is θ(t+1) = θ(t) − α1A(t/2)T A(t/2)∇θL(θ(t)) with step size α1 ≤ (M ·
cuσ2

q)−1Eq. (44). Due to orthogonalization of the first layer, A(t/2)T A(t/2) = ID and λ̂A, λ̌A = 1
with M = 1. Hence, θ

(t+1)
q = θ

(t)
q − α1∇θqL(θ(t)) and α1 ≤ (cuσ2

q)−1. Now, mimicking the steps in
the logistic case, we have:

∆qL(t) < −(2cuσ2
q)−1‖∇θqL(θ(t))‖2

3. A-Step From section A.4.1 Item 3 remember that the gradient step induced in the identifiable param-
eter θ, for A-step is θ(t+1) = θ(t) − α2‖w(t+1/2)‖4∇θL(θ(t)) with step size α2 = (W · cuσ2

q)−1Eq. (45).
Hence, θ

(t+1)
q = θ

(t)
q − α2‖w(t+1/2)‖4∇θ∇θqL(θ(t)). Now, following identical the steps as in the logistic

case, w-step, we have:

∆qL(t) < −‖w(t+1/2)‖4 · (2 · Wcuσ2
q)−1‖∇θL(θ(t))‖2

21

Published in Transactions on Machine Learning Research (12/2025)

A.4.3 Loss change off-manifold directions

∆⊥L(t) = L(θ(t)
q , θ

(t+1)
⊥) − L(θ(t)). Using Taylor’s expansion of L(θ(t)

q , θ
(t+1)
⊥) around θ(t) with Lipschitz

smoothness Eq. (25), we have:

L(θ(t)
q , θ

(t+1)
⊥) < L(θ(t)

q , θ
(t)
⊥) + ∇θ⊥L(θ(t))T (θ(t+1)

⊥ − θ
(t)
⊥) + cu

2 (θ(t+1)
⊥ − θ

(t)
⊥)T σ2

⊥ID(θ(t+1)
⊥ − θ

(t)
⊥)

As σ⊥ < σq, we have:

L(θ(t)
q , θ

(t+1)
⊥) < L(θ(t)

q , θ
(t)
⊥) + ∇θ⊥L(θ(t))T (θ(t+1)

⊥ − θ
(t)
⊥) + cu

2 (θ(t+1)
⊥ − θ

(t)
⊥)T σ2

q ID(θ(t+1)
⊥ − θ

(t)
⊥)

Follow identical steps corresponding to off-manifold direction as in section A.4.2 to get:

(logistic step) ∆qL(t) < −(2cuσ2
q)−1‖∇θqL(θ(t))‖2

(w-step) ∆qL(t) < −(2cuσ2
q)−1‖∇θqL(θ(t))‖2

(A-step) ∆qL(t) < −‖w(t+1/2)‖4 · (2 · Wcuσ2
q)−1‖∇θL(θ(t))‖2

Lemma A.4.1. Let θ∗ = (θ∗
q , θ∗

⊥) be the optimal identifiable parameter minimizing L(γ) and θ(t) be the tth

iterate of θ induced by the optimization in logistic regression (Section 3.3.1) and 2-Linear Layer network
setup (Section 3.3.2), then for t2 > t1 and appropriate α, α1, α2 � σ−2

q we have:

L(θq, θ
(t2)
⊥) ≤ L(θq, θ

(t1)
⊥); ∀θq (46)

L(θ(t2)
q , θ⊥) ≤ L(θ(t1)

q , θ⊥); ∀θ⊥ (47)

In particular, we have component-wise progressive bounds as such:

L(θq, θ
(t+1)
⊥) − L(θq, θ

(t)
⊥) ≤ cp(2cuσ2

⊥)−1‖∇θ⊥L(θ(t))‖2 (48)

L(θ(t+1)
q , θ⊥) − L(θ(t)

q , θ⊥) ≤ cp(2cuσ2
q)−1‖∇θqL(θ(t))‖2 (49)

Proof. We will prove for the ⊥ direction; one can identically derive the result for the q direction. Suppose we do
T iteration of optimization; this induces a sequence in off-manifold parameters θ⊥. θ

(0)
⊥ → θ

(1)
⊥ → · · · → θ

(T)
⊥ .

Fixing the q parameter to general θq, apply Taylor expansion with Lipschitz smoothness (lemma A.2.1) to
the loss L(θq, θ

(t+1)
⊥) around the point (θq, θ

(t)
⊥):

L(θq, θ
(t+1)
⊥) ≤ L(θq, θ

(t)
⊥) + ∇θ⊥L(θq, θ

(t)
⊥)T (θ(t+1)

⊥ − θ
(t)
⊥) + cuσ2

⊥
2 ‖θ

(t+1)
⊥ − θ

(t)
⊥ ‖2

θ
(t+1)
⊥ − θ

(t)
⊥ = −ᾰ∇θ⊥L(θ(t)) (Eq. (54)) for some step-size ᾰ depending on the situation.

L(θq, θ
(t+1)
⊥) ≤ L(θq, θ

(t)
⊥) − ᾰ∇θ⊥L(θq, θ

(t)
⊥)T ∇θ⊥L(θ(t)) + ᾰ2 cuσ2

⊥
2 ‖∇θ⊥L(θ(t))‖2

(i)
≤ L(θq, θ

(t)
⊥) − ᾰ · c‖∇θ⊥L(θ(t))‖2 + ᾰ2 cuσ2

⊥
2 ‖∇θ⊥L(θ(t))‖2

≤ L(θq, θ
(t)
⊥) − ᾰ‖∇θ⊥L(θ(t))‖2

(
c − ᾰ

cuσ2
⊥

2

)
︸ ︷︷ ︸

(ii)
≥0

≤ L(θq, θ
(t)
⊥) − cp(2cuσ2

q)−1‖∇θ⊥L(θ(t))‖2

cp = c when c ≥ 1 and cp = 2c − 1 when c < 1.

22

Published in Transactions on Machine Learning Research (12/2025)

(i) : ∇θ⊥L(θq, θ
(t)
⊥) = − E

∼x,y
yx⊥σ(−y · z) = − E

∼x,y
yx⊥(1 + exp (yθT

q xq) · exp (yθ
(t)
⊥

T
x⊥))−1 Let r =

exp (yθT
q xq)·exp (−yθ

(t)
q

T
xq). Then ∇θ⊥L(θq, θ

(t)
⊥) = − E

∼x,y
yx⊥(1+r exp (yθ

(t)
q

T
xq)·exp (yθ

(t)
⊥

T
x⊥))−1 =

As r>0

−c · E
∼x,y

yx⊥(1 + exp (yθ
(t)
q

T
xq) · exp (yθ

(t)
⊥

T
x⊥))−1 = c · ∇θ⊥L(θ(t)) for some c > 0.

(ii) : If c ≥ 1 with ᾰ ≤ (cuσ2
q)−1 Eq. (55), then (ii) > 0. If 0 < c < 1, one can choose a strictly

smaller step size still satisfying the upper bound of Eq. (55) ᾰ ≤ c · (cuσ2
q)−1 < (cuσ2

q)−1 which makes
(ii) > 0.
As L(θq, θ

(t+1)
⊥) ≤ L(θq, θ

(t)
⊥), for all t using induction L(θq, θ

(t2)
⊥) ≤ L(θq, θ

(t1)
⊥) when t2 > t1. One can

identically show that L(θ(t2)
q , θ⊥) ≤ L(θ(t1)

q , θ⊥).

A.5 Convergence Theorems

Proof of Theorem 4.2. We start with the proof of ⊥ direction; one can derive the result for q mimicking
similar steps with minor alteration. θ∗ = (θ∗

q , θ∗
⊥) is the optimal identifiable parameter value which minimizes

the loss and takes T iteration of optimization.
Upper bound the Gradient norm by Loss difference: Using lemma A.4.1 with t2 = T, t1 = t + 1:

L(θ(t)
q , θ∗

⊥) ≤ L(θ(t)
q , θ

(t+1)
⊥)

Using lipschitz smoothness in ⊥ direction we have

≤ L(θ(t)
q , θ

(t)
⊥) + ∇θ⊥L(θ(t))T (θ(t+1)

⊥ − θ
(t)
⊥) + cuσ2

⊥
2 ‖θ

(t+1)
⊥ − θ

(t)
⊥ ‖2

Gradient descent steps induce updates in ⊥ of the form, θ
(t+1)
⊥ − θ

(t)
⊥ = −ᾰ∇θ⊥L(θ(t))

≤ L(θ(t)
q , θ

(t)
⊥) − ᾰ‖∇θ⊥L(θ(t))‖2

(
1 − ᾰ

cuσ2
⊥

2

)

=⇒ ‖∇θ⊥L(θ(t))‖2 ≤
(

L(θ(t)) − L(θ(t)
q , θ∗

⊥)
)(

1 − ᾰ
cuσ2

⊥
2

)−1

· ᾰ−1 (50)

Similarly, for the on-manifold direction

=⇒ ‖∇θqL(θ(t))‖2 ≤
(

L(θ(t)) − L(θ∗
q , θ

(t)
⊥)
)(

1 − αq
cuσ2

q
2

)−1

· ᾰ−1 (51)

Also, using strong convexity Eq. (25) we have:

L(θ(t)
q , θ∗

⊥) ≥ L(θ(t)) + ∇θ⊥L(θ(t))T (θ∗
⊥ − θ

(t)
⊥) + clσ

2
⊥

2 ‖θ∗
⊥ − θ

(t)
⊥ ‖2

∇θ⊥L(θ(t))T (θ(t)
⊥ − θ∗

⊥) ≥ L(θ(t)) − L(θ(t)
q , θ∗

⊥) + clσ
2
⊥

2 ‖θ∗
⊥ − θ

(t)
⊥ ‖2 (52)

Similarly, for the on-manifold direction, strong convexity leads to:

∇θqL(θ(t))T (θ(t)
q − θ∗

q) ≥ L(θ(t)) − L(θ∗
q , θ

(t)
⊥) +

clσ
2
q

2 ‖θ∗
q − θ

(t)
q ‖2 (53)

Also, from Eq. (43), Eq. (44), Eq. (45)

ᾰ =


α , α ≤ (cuσ2

q)−1 (logistic)
α1 , α1 ≤ (cuσ2

q)−1 (w-step)
α2‖w(t+1/2)‖4 , α2 ≤ (W · cuσ2

q)−1
, ‖w(t+1/2)‖4 < W, ∀t (A-step)

(54)

23

Published in Transactions on Machine Learning Research (12/2025)

ᾰ ≤ (cuσ2
q)−1 (55)

The parameter difference can be expressed in terms of the difference at the previous iteration:∥∥∥θ
(t+1)
⊥ − θ∗

⊥

∥∥∥2
= ‖θ

(t)
⊥ − ᾰ∇θ⊥L(θ(t)) − θ∗

⊥‖2

= ‖θ
(t)
⊥ − θ∗

⊥‖2 − 2ᾰ∇θ⊥L(θ(t))(θ(t)
⊥ − θ∗

⊥) + ᾰ2‖∇θ⊥L(θ(t))‖2

Substituting Eq. (52)

≤ ‖θ
(t)
⊥ − θ∗

⊥‖2 − 2ᾰ

(
L(θ(t)) − L(θ(t)

q , θ∗
⊥) + clσ

2
⊥

2 ‖θ
(t)
⊥ − θ∗

⊥‖2
)

+ ᾰ2‖∇θ⊥L(θ(t))‖2

Using Eq. (50)

≤ ‖θ
(t)
⊥ − θ∗

⊥‖2 − 2ᾰ

(
L(θ(t)) − L(θ(t)

q , θ∗
⊥) + clσ

2
⊥

2 ‖θ
(t)
⊥ − θ∗

⊥‖2
)

+
(

L(θ(t)) − L(θ(t)
q , θ∗

⊥)
)(

1 − ᾰ
cuσ2

⊥
2

)−1

· ᾰ

Using Eq. (55) and σ⊥/σq < 1

= ‖θ
(t)
⊥ − θ∗

⊥‖2 (1 − ᾰclσ
2
⊥
)

+
(

L(θ(t)
⊥ , θq) − L(θ∗

⊥, θq)
)

︸ ︷︷ ︸
≤0

·

(1 − ᾰ
cuσ2

⊥
2)−1︸ ︷︷ ︸

≤2

−2

 · ᾰ

Using Eq. (55) and cl < cu Eq. (24).

≤ ‖θ
(t)
⊥ − θ∗

⊥‖2
(

1 − clσ
2
⊥

cuσ2
q

)
︸ ︷︷ ︸

≤1

Suppose we have T total iterations then, inductively the equations accumulate over as:

‖θ
(T)
⊥ − θ∗

⊥‖2 ≤ ‖θ
(0)
⊥ − θ∗

⊥‖2
(

1 − clσ
2
⊥

cuσ2
q

)T

≤ ‖θ
(0)
⊥ − θ∗

⊥‖2 exp
(

−T
clσ

2
⊥

cuσ2
q

)
(56)

Hence, we require T ≥ cuσ2
q

clσ2
⊥

log
(

‖θ
(0)
⊥ −θ∗

⊥‖
δ

)
for O(δ) distance from θ∗

⊥.

Similarly, one can derive the bound for the q direction mimicking the exact steps as ⊥ direction but instead
using analogous equations Eq. (53),Eq. (51).

T ≥ cuσ2
q

cuσ2
q

log
(

‖θ
(0)
q −θ∗

q ‖
δ

)
= log

(
‖θ

(0)
q −θ∗

q ‖
δ

)
for O(δ) distance from θ∗

q .

Remark A.1. When deriving the bounds for ‖θ
(0)
q − θ∗

q ‖ vs ‖θ
(0)
⊥ − θ∗

⊥‖, the key point of difference is using
the same step size ᾰ � σ−2

q even though the strong convexity constants are different, ∝ σ2
q for q direction

and ∝ σ2
⊥ for ⊥ direction. This introduces the ratio σ⊥/σq in the ⊥ case, while for q case the step size and

strong-convexity parameter neutralize each other to 1. Hence, if we could enforce separate step size for ⊥, q
directions α⊥ � σ−2

⊥ , αq � σ−2
q . Then, we can get equivalent rates in both directions.

Proof of Theorem 4.3. We want to minimize the loss L(θ) = E
∼x,y

`(y · z). The minimum loss that can be
attained has a natural lower bound min

θ
L(θ) ≥ (1 − ν) · min

θ
E

∼x,y|∅
`(y · z) + ν min

θ
E

∼x,y|¬∅
`(y · z). Suppose

24

Published in Transactions on Machine Learning Research (12/2025)

we only optimize the loss w.r.t. θq and θ⊥ = 0, then a perfect classifier on q direction can distinguish xq
with probability 1 or 0 loss, but only with 1/2 probability on ⊥ direction. In this case, min

θq
L(θ) ≥ ν log 2. In

general, the classifier isn’t perfect, and θ⊥ can be fixed at some default value. Hence, the lower bound is
controlled by ν log 2 up to a constant min

θq
L(θ) ≥ C = Ω(ν log 2). Consider two cases when the loss tolerance

δ < C or > C.

Case 1: δ < C

From the progressive bounds in proof of Theorem 4.1 for any optimization iterate (logistic, w-step or A-step)
induced in the identifiable parameter θ, has a decremental loss:

L(θ(t+1)) − L(θ(t)) ≤ −(2cuσ2
q)−1‖∇θL(θ(t))‖2 (57)

−2clσ
2
⊥ ·
(

L(θ(t)) − L(θ∗)
)

≥ −‖∇θL(θ(t))‖2 (PL-inequality)

Proof of PL inequality: The Eq. (PL-inequality) is a consequence of strong convexity. Using strong convexity
in the space of identifiable parameter θ Lemma A.2.1,Eq. (24) we have:

L(θ) ≥ L(θ(t)) + ∇θL(θ(t))T (θ − θ(t)) + cl

2 (θ − θ(t))T

(
σ2
q Id 0
0 σ2

⊥Ig

)
(θ − θ(t))

L(θ) ≥ L(θ(t)) + ∇θL(θ(t))T (θ − θ(t)) + cl · σ2
⊥

2 ‖θ − θ(t)‖2

Minimizing both sides w.r.t θ, happens for θ = θ(t) − ∇θL(θ(t))(clσ
2
⊥)−1

L(θ∗) ≥ L(θ(t)) − ‖∇θL(θ(t))‖2(2clσ
2
⊥)−1

Hence, from the progressive bound, we have Eq. (57) :

L(θ(t+1)) ≤ L(θ(t)) − (2cuσ2
q)−1‖∇θL(θ(t))‖2

Subtracting L(θ∗) from both sides

L(θ(t+1)) − L(θ∗) ≤ L(θ(t)) − L(θ∗) − (2cuσ2
q)−1‖∇θL(θ(t))‖2

Using Eq. (PL-inequality)

L(θ(t+1)) − L(θ∗) ≤
(

L(θ(t)) − L(θ∗)
)

·
(

1 − clσ
2
⊥

cuσ2
q

)
Suppose we have T total iterations; then, inductively, the equations accumulate over as:

L(θ(T)) − L(θ∗) ≤
(

L(θ(0)) − L(θ∗)
)(

1 − clσ
2
⊥

cuσ2
q

)T

≤
(

L(θ(0)) − L(θ∗)
)

exp
(

−T
clσ

2
⊥

cuσ2
q

)
(58)

Hence, we require T ≥ cuσ2
q

clσ2
⊥

log
((

L(θ(0)) − L(θ∗)
)

δ−1) for O(δ) error tolerance. This is rate r2 in the thm
statement.

Case 2: δ > C

The rate r2 proved in the previous case is universal and holds for this case as well. However, we can obtain a
better rate in this scenario.
In this case, the loss can attain value δ solely by optimizing θq. Therefore, we will upper bound the original
gradient descent loss sequence by a loss sequence solely dependant on updates of θq, and we will see that

25

Published in Transactions on Machine Learning Research (12/2025)

because convergence is better on θq direction, we can get better rates.
Note that if L(θ) = C, then using Jensen’s inequality for convex functions: `(E

∼x,y
y · z) ≤ L(θ) = C.

ln (1 + exp(−EyθT x)) ≤ C

exp(−EyθT x) ≤ eC − 1

EyθT x ≥ ln(1
eC − 1)

Ey(〈θq , xq〉 + 〈θ⊥ , x⊥〉) ≥ ln(1
eC − 1)

π(〈θq , µ
(1)
q 〉 + 〈θ⊥ , µ

(1)
⊥ 〉) − (1 − π)(〈θq , µ

(−1)
q 〉 + 〈θ⊥ , µ

(−1)
⊥ 〉) ≥ ln(1

eC − 1)

Note that the above can always be satisfied by θq = c′ · µ
(1)
q − c′′ · µ

(−1)
q for appropriate choice of constants

c′, c′′. Hence for a fixed θ⊥ there always exists some θ̃q such that L(θ̃q, θ⊥) < C =⇒ L(θ̃q, θ⊥) − L(θ∗) < C.
This means fixing θ⊥ = θ

(0)
⊥ at initialization, there exists θ̃q as well which satisfies:

min
θq

L(θq, θ
(0)
⊥) − L(θ∗) ≤ L(θ̃q, θ

(0)
⊥) − L(θ∗) < C (59)

Using lemma A.4.1 we have:

L(θ(T)) ≤ L(θ(T)
q , θ

(0)
⊥)

Subtracting L(θ∗) both sides

L(θ(T)) − L(θ∗) ≤ L(θ(T)
q , θ

(0)
⊥) − L(θ∗)

= L(θ(T)
q , θ

(0)
⊥) − min

θq
L(θq, θ

(0)
⊥) + min

θq
L(θq, θ

(0)
⊥) − L(θ∗)

≤ (δ − C) + C = δ (60)

Hence, if we find a T for which L(θ(T)
q , θ

(0)
⊥) − min

θq
L(θq, θ

(0)
⊥) ≤ δ − C then we are done.

From lemma A.4.1,Eq. (49) we have a progressive bound on the off-manifold component as follows:

L(θ(t+1)
q , θ

(0)
⊥) ≤ L(θ(t)

q , θ
(0)
⊥) − cp(2cuσ2

q)−1‖∇θqL(θ(t))‖2 (61)

−2c′
pclσ

2
q ·
(

L(θ(t)
q , θ

(0)
⊥) − min

θq
L(θq, θ

(0)
⊥)
)

≥ −‖∇θqL(θ(t))‖2 (PL-inequality θq)

Proof of PL inequality: The Eq. (PL-inequality) is a consequence of strong convexity. Using strong convexity
w.r.t. θq Lemma A.2.1,Eq. (26) we have:

L(θq, θ
(0)
⊥) ≥ L(θ(t)

q , θ
(0)
⊥) + ∇θqL(θ(t)

q , θ
(0)
⊥)T (θq − θ

(t)
q) +

cl · σ2
q

2 ‖θq − θ
(t)
q ‖2

Minimizing both sides w.r.t θq, happens for θq = θ
(t)
q − ∇θqL(θ(t)

q , θ
(0)
⊥)(clσ

2
q)−1

min
θq

L(θq, θ
(0)
⊥) ≥ L(θ(t)

q , θ
(0)
⊥) − ‖∇θqL(θ(t)

q , θ
(0)
⊥)‖2(2clσ

2
q)−1

From arguments like (i) in proof of lemma A.4.1, we know c′
p‖∇θqL(θ(t)

q , θ
(0)
⊥)‖2 = ‖∇θqL(θ(t))‖2 for some

proportionality constant c′
p

min
θq

L(θq, θ
(0)
⊥) ≥ L(θ(t)

q , θ
(0)
⊥) − ‖∇θqL(θ(t))‖2(2c′

pclσ
2
q)−1

26

Published in Transactions on Machine Learning Research (12/2025)

Hence, from the progressive bound, we have Eq. (61) :

L(θ(t+1)
q , θ

(0)
⊥) ≤ L(θ(t)

q , θ
(0)
⊥) − cp(2cuσ2

q)−1‖∇θqL(θ(t))‖2

Subtracting min
θq

L(θq, θ
(0)
⊥) from both sides

L(θ(t+1)
q , θ

(0)
⊥) − min

θq
L(θq, θ

(0)
⊥) ≤ L(θ(t)

q , θ
(0)
⊥) − min

θq
L(θq, θ

(0)
⊥) − cp(2cuσ2

q)−1‖∇θqL(θ(t))‖2

Using Eq. (PL-inequality θq)

L(θ(t+1)
q , θ

(0)
⊥) − min

θq
L(θq, θ

(0)
⊥) ≤

(
L(θ(t)

q , θ
(0)
⊥) − min

θq
L(θq, θ

(0)
⊥)
)

·
(

1 −
cpclc

′
p

cu

)
Suppose we have T total iterations; then, inductively, the equations accumulate over as:

L(θ(T)
q , θ

(0)
⊥) − min

θq
L(θq, θ

(0)
⊥) ≤

(
L(θ(0)) − min

θq
L(θq, θ

(0)
⊥)
)(

1 −
cpclc

′
p

cu

)T

≤
(

L(θ(0)) − min
θq

L(θq, θ
(0)
⊥)
)

exp
(

−T
cpclc

′
p

cu

)
≤
(

L(θ(0)) − L(θ∗)
)

exp
(

−T
cpclc

′
p

cu

)
Hence, we require T ≥ cu

cpclc′
p

log
((

L(θ(0)) − L(θ∗)
)

(δ − C)−1) for L(θ(T)
q , θ

(0)
⊥) − min

θq
L(θq, θ

(0)
⊥) < δ − C.

Hence, validating the series of equations Eq. (60) and implying L(θ(T)) − L(θ∗) ≤ δ. This gives us the rate r1
in Theorem 4.3. Note that the rate r2 holds regardless of δ value. The final rate is the minimum of the two
rates.

B Convergence and Dimensionality Perspective on Adversarial Training

In practice, adversarial training (AT) is the dominant approach for inducing robustness in models (Goodfellow
et al., 2014; Madry et al., 2017). Whereas clean training minimizes the loss on the original data distribution,
AT minimizes the loss on a distribution of perturbed examples. These perturbations are controlled by a
parameter ε, which specifies the attack strength or radius around each training point. When ε is smaller than
the natural margin between classes, AT can be viewed as clean training on an expanded distribution that
covers an ε-ball around the original data.

From the perspective of our framework, this has a key implication. Even if the original data lies on a low-
dimensional manifold, the ε-ball expansion increases the effective dimensionality: off-manifold (low-variance)
directions are also perturbed, effectively inflating their variance. As a result, the variance ratio σ⊥/σ‖ increases
under AT compared to clean training.

By Theorems 4.2 and 4.3, this change directly improves convergence rates in off-manifold directions, making
it easier to reach solutions that depend on these features. This provides a convergence-based explanation for
why adversarial training can succeed in learning robust classifiers even when clean training cannot, despite the
fact that a robust classifier is also an optimal solution to the clean loss. In essence, AT alters the geometry
of the training distribution in a way that mitigates ill-conditioning, narrowing the gap between theoretical
optima and practical convergence.

C Additional Experimental Details

A learning rate of 10−3 with default ADAM parameters were used for clean training. For generating PGD
attacks a step size of 2

255 with bε · 255
2 c (ε is the attack strength) attack iterations and 1 restart was used. For

KFAC preconditioner, the default hyper-parameters were used.

27

Published in Transactions on Machine Learning Research (12/2025)

Compute resource: A single NVIDIA V100 gpu was used, requiring 2hrs, 3.5 hrs (MNIST, FMNIST 1000
epochs) per run for ADAM and ADAM+KFAC respectively. For CIFAR10 ADAM experiments it took 6 hrs
per run (4000 epochs). Attack time included.

Layers
Conv2d(1, 16, 4, stride=2, padding=1), ReLU
Conv2d(16, 32, 4, stride=2, padding=1), ReLU

Linear(32*7*7,100), ReLU
Linear(100, 10)

Table 1: NN architecture FMNIST/MNIST.

Layers
Conv2d(1, 16, 4, stride=2, padding=1), BatchNorm2d(16), ReLU
Conv2d(16, 32, 4, stride=2, padding=1), BatchNorm2d(32), ReLU

Linear(32*7*7,100), BatchNorm2d(100), ReLU
Linear(100, 10)

Table 2: NN architecture FMNIST/MNIST with BN.

Layers
Conv2d(3, 128, 5, padding=2), ReLU

Conv2d(128, 128, 5, padding=2),ReLU,
MaxPool2d(2,2), Conv2d(128, 256, 3, padding=1),ReLU,

Conv2d(256, 256, 3, padding=1),ReLU,
MaxPool2d(2,2), Flatten(),Linear(256*8*8,1024),ReLU,

Linear(1024, 512),ReLU
Linear(512, 10)

Table 3: NN architecture CIFAR10.

Layers
Conv2d(3, 128, 5, padding=2), ReLU

BatchNorm2d(128)
Conv2d(128, 128, 5, padding=2),ReLU,

BatchNorm2d(128),
MaxPool2d(2,2), Conv2d(128, 256, 3, padding=1),ReLU,

BatchNorm2d(256),
Conv2d(256, 256, 3, padding=1),ReLU,

BatchNorm2d(256),
MaxPool2d(2,2), Flatten(),Linear(256*8*8,1024),ReLU,

BatchNorm1d(1024)
Linear(1024, 512),ReLU

BatchNorm1d(512)
Linear(512, 10)

Table 4: NN architecture CIFAR10 with BN.

28

	Introduction
	Related Works
	Problem Setup
	Notation
	Assumption on Data Distribution
	Models
	Logistic Regression
	Two-layer linear network

	Main Results
	Motivation
	Theorems

	Second-order optimization to address ill-conditioning
	Experiments
	Simulation results
	Computer vision datasets
	Vulnerability of Batch Normalization

	Discussion and Conclusion
	Proofs
	Reparametrization
	w-step
	A-step

	Hessian
	Gradient Decomposition
	On Manifold
	Off Manifold

	Progressive Bound
	Loss change all directions
	Loss change on-manifold direction
	Loss change off-manifold directions

	Convergence Theorems

	Convergence and Dimensionality Perspective on Adversarial Training
	Additional Experimental Details

