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Abstract:  Nonprehensile manipulation is crucial for handling objects that are
too thin, large, or otherwise ungraspable in unstructured environments. While
conventional planning-based approaches struggle with complex contact modeling,
learning-based methods have recently emerged as a promising alternative. How-
ever, existing learning-based approaches face two major limitations: they heavily
rely on multi-view cameras and precise pose tracking, and they fail to generalize
across varying physical conditions, such as changes in object mass and table fric-
tion. To address these challenges, we propose the Dynamics-Adaptive World Ac-
tion Model (DyWA), a novel framework that enhances action learning by jointly
predicting future states while adapting to dynamics variations based on histori-
cal trajectories. By unifying the modeling of geometry, state, physics, and robot
actions, DyWA enables more robust policy learning under partial observability.
Compared to baselines, our method improves the success rate by 31.5% using
only single-view point cloud observations in the simulation. Furthermore, DyWA
achieves an average success rate of 68% in real-world experiments, demonstrat-
ing its ability to generalize across diverse object geometries, adapt to varying table
friction, and robustness in challenging scenarios such as half-filled water bottles
and slippery surfaces.
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1 Introduction

Non-prehensile manipulation—such as pushing, sliding, and toppling—extends robotic capabilities
beyond traditional grasping, enabling task execution under geometric, clutter, or workspace con-
straints. While planning-based methods [1, 2, 3, 4] have shown success, they rely on precise object
properties (e.g., mass, friction, CAD models), which are rarely available in the real world.

Recent learning-based approaches [5] shift toward end-to-end policy learning from visual input,
demonstrating stronger generalization. For instance, HACMan [6] and CORN [7] exploit vision-
based RL or distillation to acquire contact-rich skills. However, these methods remain geometry-
centric and shows poor robustness under dynamic variations such as friction or mass changes.

To achieve generalization across dynamic variations, we argue that contact-rich manipulation fun-
damentally requires world modeling: policies must not only output actions but also internalize how
interactions shape future states. Under this lens, existing teacher-student distillation frameworks fall
short—while the privileged RL teacher can exploit full dynamics, the student policy trained from
partial observations suffers due to (1) single-view partial point cloud observation, (2) Markovian
policies collapsing over multiple dynamics, and (3) weak supervision limited to action imitation.

To address this, we introduce Dynamics-adaptive World Action Model (DyWA). DyWA explic-
itly integrates world modeling into action learning:(i) a dynamics adaptation module infers latent
physical properties from observation-action history, (ii) action prediction is reformulated as joint
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Figure 1: Our World Action Model processes the embeddings of the current observation (partial
point cloud, end-effector pose, and joint state) and the goal point cloud (transformed from the initial
partial observation) to predict the robot action and next state. Additionally, an adaptation module
encodes historical observations and actions, decoding them into the dynamics embedding that con-
ditions the model via FiLM. A pre-trained RL teacher policy (right) supervises both the action and
adaptation embedding using privileged full point cloud and physics parameter embeddings.

prediction of actions and future states, providing richer supervision, and (iii) Feature-wise Linear
Modulation (FiLM) bridges inferred dynamics with policy learning.

We benchmark DyWA against strong baselines on CORN, varying camera and tracking settings.
DyWA improves success by 31.5% in simulation, and in real-world tests achieves 68% success
across diverse geometries, frictional conditions, and mass distributions (e.g., half-filled bottles). We
further demonstrate DyWA’s compatibility with VLMs for challenging thin/wide-object scenarios.

2 Method

2.1 Task Formulation

Following HACMan and CORN, we focus on the task of 6D object rearrangement via non-prehensile
manipulation. The robot’s objective is to execute a sequence of non-prehensile actions (i.e., pushing,
flipping) to move an object on the table to a target 6D pose. We define the goal pose G as a 6DoF
transformation relative to the object’s initial pose, assuming both are stable on the table. The task
state S at timestep ¢ is represented by the relative transformation between the object’s current pose
and the goal pose. Observations include the partial point cloud F;, joint states .J;, and end-effector
pose E;.

2.2 Pipeline Overview

Our training pipeline follows a standard teacher-student distillation framework. Due to the diffi-
culty of obtaining high-quality demonstrations for our task, we first train a state-based RL policy
with additional privileged information—i.e., the full object point cloud, task state, and physical pa-
rameters—as the teacher policy. For consistency, we adopt the same reward design as CORN, as
elaborated in the supplementary material. To obtain a vision-based policy suitable for real-world
deployment, we introduce our Dynamics-adaptive World Action Model, which serves as the student
policy distilled from the teacher policy. Unlike the teacher, our student model relies solely on limited
observations that are feasible to obtain in real-world settings.

In the following sections, we detail the design of the world action model (Sec. 2.3) and the dynamics
adaptation mechanism (Sec. 2.4). To enable adaptive force interaction in this contact-rich manipula-
tion, we further incorporate a variable impedance controller (Sec. 2.5). Once trained (Sec. 2.6), our
model can be transferred from simulation to the real world in a zero-shot manner, without requiring
real-world fine-tuning.



2.3 World Action Model

Definition. A world action model refers to a policy model that jointly predicts actions and forecasts
the corresponding future states. Although the current action is not provided as an explicit input, the
model exhibits world model characteristics by implicitly conditioning on the current policy action
prediction.

Observation and Goal Encoding. Our model takes observation and goal description as input,
encoding different modalities using individual encoders. For the partial point cloud observation, we
process it using a simplified PointNet++ [8] to obtain f'. The architectural details are provided
in the supplementary material. For robot proprioception, we separately encode joint positions and
velocities (ffj] ) and the end-effector pose (ftE ) using shallow MLPs. For the Goal Description, instead
of relying on the unknown task state S;, we construct a visual goal representation by transforming
the initial point cloud Fy to the goal pose, yielding P = GUF,. This goal point cloud is then
encoded using the shared network with the observation point cloud encoder.

State-based World Modeling. We enforce the end-to-end model that jointly makes action deci-
sions and predicts their outcomes, creating a synergistic learning process that, in turn, improves
action learning. Specifically, the observation and goal embeddings are processed through MLPs to
produce both the action A; and the next task state Sy, with supervision signals separately derived
from the teacher policy and simulation outcomes. Our object-centric world model represents the
environment using task state S; instead of high-dimensional visual signals, enabling the policy to
focus on task-relevant dynamics. To represent rotations, we adopt the 9D representation [9, 10], and
define the world model loss as:

Lyotd = | Tes1 — Tea ]2 + |Res1 — Regalls (D

where Ty,; € R? and Ryy1 € SO(3) are the predicted translation and rotation, while T;,; € R3
and f{t+1 € SO(3) denote the ground-truth transformation obtained from simulation outcomes
after action execution. Additionally, we employ an imitation loss, defined as the L2 loss between
the predicted action and the teacher action:

£imitati0n = ||1AZ9 - A§||2 (2)

2.4 Dynamics Adaptation

To enhance the world model’s ability to adapt to diverse dynamics, we extract abstract representa-
tions of environmental variations from historical trajectories. Our approach distills teacher knowl-
edge regarding full point cloud and physical parameter into an adaptation embedding, which is
subsequently decoded into the dynamics embedding. This embedding then conditions the world
action model through a learnable feature-wise linear modulation mechanism.

Adaptation Embedding. We design an adaptation module that processes sequential observation-
action pairs to compensate for missing geometry and physics knowledge in the current partial
observation. Specifically, at each timestep, we concatenate the observation embeddings f° =
{fF, £/, fE} with the previous action embedding f{ ;, where the action embedding is obtained
via a shallow MLP. We construct an input sequence of L past observation-action tuples which is
then processed by a 1D CNN-based adaptation module, for extracting a compact adaptation embed-
ding:

z; = Embed ([conca‘c(fto_i_17 ff_i_2)}f:1> (3)

To ensure meaningful representation learning, we supervise the adaptation embedding using the
concatenation of the full point cloud embedding and physics embedding from the teacher encoder.
Geo,Phy
t

Lagapt = |12 — concat(£7°°, £ S



Dynamics Conditioning. Once the adaptation embedding is obtained, we decode it into the dy-
namics embedding, which serves as a conditioning input for the world action model via Feature-wise
Linear Modulation (FiLM). FILM [11] dynamically modulates the intermediate feature representa-
tions of the world action model by applying learned scaling and shifting transformations, allowing
the model to adapt to varying dynamics. Each FiLM block consists of two shallow MLPs which
take the dynamics embedding as input and output the modulation parameters -y and (3 for each latent
feature f:

FiLM(f|v,8) =~f + B (5)

We integrate FiLM blocks densely in the early layers of the world action model while leaving the
final layers unconditioned. The technique that has proven highly effective in integrating language
guidance into vision encoders [12, 13]. In our case, this mechanism allows the dynamics embed-
ding to selectively influence feature representations, enabling adaptive adjustments to the model’s
behavior based on the underlying dynamics.

2.5 Action Space with Variable Impedance

To enable adaptive force interaction between the robot and object, we employ variable impedance
control [7] as the low-level action execution mechanism. This allows the robot to dynamically regu-
late the interaction force based on task demands. Specifically, the action space of our policy consists
of the subgoal residual of the end effector, AT,, € SFE(3), along with joint-space impedance pa-
rameters. The joint-space impedance is parameterized by positional gains (P € R7) and damping
factors (p € R7), where the velocity gains are computed as D = p/P. To execute the commanded
end-effector motion, we first solve for the desired joint position using inverse kinematics with the
damped least squares method [14]:

qa = qt + IK(AT,.) (6)

Then, the desired joint position g and impedance parameters K, D are applied to a joint-space
impedance controller to generate impedance-aware control commands for the robot. We utilize the
widely adopted Polymetis API [15] for implementation.

2.6 Training Protocol

The overall learning objective is formulated as the sum of the imitation loss, world model loss, and
adaptation loss:
L= [fimitation + Eworld + 'Cadapl (7)

We begin by training the teacher policy for 200K iterations in simulation using PPO. Subsequently,
we employ DAgger [16] to train the student policy under teacher supervision for 500K iterations.
To enhance robustness and generalization, we introduce domain randomization during training by
varying the object’s mass, scale, and friction, as well as the restitution properties of the object,
table, and robot gripper. The object scale is adjusted such that its largest diameter remains within
a predefined range. To further improve sim-to-real transfer, we inject small perturbations into the
torque commands, object point cloud, and goal pose when training the student policy.

3 Experiments

3.1 Benchmarking Tabletop Non-prehensile Rearrangement in Simulation

We evaluate our method alongside several baselines within a unified simulation environment to
enable a fair comparison of their performance. Although prior works [7, 6] have developed their
own simulation environments for training and validating non-prehensile manipulation policies, there
remains a lack of a standardized benchmark for evaluating both existing and future approaches. To
bridge this gap, we establish a comprehensive benchmark based on the CORN setting. Specifically,
we adopt the IsaacGym simulation environment and utilize 323-object asset from DexGraspNet
[18] for training. Additionally, we enrich the task setting by introducing an unseen object test set,



Known State (3 view) Unknown State (3 view) Unknown State (1 view)

Methods Action Type

Seen Unseen Seen Unseen Seen Unseen
HACMan [6] Primitive 3.8(42.2) 5.7(39.4) 3.0(23.6) 4.1(26.5) 1.5(17.9) 2.9(18.3)
CORN [7] Closed-loop 86.8 79.9 46.0 47.8 29.0 29.8
CORN (PN++) Closed-loop 87.3 84.3 76.1 75.7 50.7 494
Ours Closed-loop 87.9 85.0 85.8 82.3 82.2 75.0

Table 1: Quantitative results measured by success rate in the simulation benchmark. For HACMan,
we also reports its performance given 3 DoF planar goal(i.e.[Ax, Ay, Af]) in parentheses. Note that
the third track with unknown state and single view camera is the most realistic and challenging track
for fully comparison of each methods.

Methods WM. D.A. FiLM Seen Unseen
DAgger [16] X b 4 b 4 59.9 57.5
World Model v 'S X 616 594
RMA [17] X v X 656 579
Ours wo WM. X v v 700 637
Ours woFILM v/ v X 733 594
Ours v v v 822 750

Table 2: Ablation study on the most challenging evaluation track, i.e., unknown state with single-
view observation. W.M. means World Model and D.A. means Dynamics Adaptation.

consisting of 10 geometrically diverse objects, each scaled to five different sizes, resulting in a
total of 50 evaluation objects. Furthermore, we introduce two additional perception dimensions:
(i) single-view vs. multi-view (three-camera) observations and (ii) whether known object poses
for constructing the task state S;. Both the training and testing environments are fully randomized
w.r.t.dynamics properties including mass, friction, and restitution.

Task Setup. At the beginning of each episode, we randomly place the object in a stable pose
on the table. The robot arm is then initialized at a joint configuration uniformly sampled within
predefined joint bounds, positioned slightly above the workspace to prevent unintended collisions
with the table or object. Next, we sample a random 6D stable goal pose on the table, ensuring it is at
least 0.1 m away from the initial pose to prevent immediate success upon initialization. To guarantee
valid initial and goal poses for each object, we precompute a set of stable poses, as detailed in the
supplementary. An episode is considered successful if the object’s final pose is within 0.05 m and
0.1 radians of the target pose.

Baselines. We evaluate our approach against two state-of-the-art baselines: HACMan and CORN,
which represent primitive-based and closed-loop methods, respectively. Since HACMan was origi-
nally implemented in the MuJoCo simulator, we re-implemented it within our benchmark for a fair
comparison. However, because it requires strict per-point correspondence as input, its success rate
is extremely low in the unknown state setting. CORN shares the same simulation environment as
our method, allowing us to train and evaluate it directly with minimal modifications. To ensure a fair
comparison, we further enhanced CORN by replacing its shallow MLP-based point cloud encoder
with the same vision backbone as ours. Additionally, for settings where the current object pose
is unknown, we provided all methods with the same goal point cloud representation to maintain
consistency.

Results. As shown in Table 1, our method consistently outperforms all baselines across all three
evaluation tracks. In particular, we achieve a significant performance gain over previous approaches,
with at least a 31.5% improvement in success rate. Notably, the performance gap is most pro-
nounced in challenging scenarios involving unknown states and single-view observations, where
our method’s dynamics modeling capability plays a crucial role.



Normal Slippery Non-uniform Mass

Methods Avg.
Mug Bulldozer Card Book Dinosaur Chips Can Switch YCB-Bottle Half-full Bottle Coffee jar
CORN w tracking ~ 1/5 3/5 4/5 4/5 2/5 0/5 2/5 0/5 0/5 2/5 18/50 (36%)
Ours 3/5 4/5 4/5 4/5 3/5 2/5 4/5 3/5 4/5 3/5 34/50 (68%)

Table 3: Quantitative results in the real world. Each cell shows the number of successful trials out
of 5 attempts. Our method consistently achieves high success rates across diverse objects.

Methods H1 H2 us Ha
SR.T Avg. Time| S.R.T Avg.Time| S.R.T Avg Time] SR.T Avg Timel|
Ours w/o D.A. 3/5 65s 3/5 81s 4/5 96 s 3/5 124 s
Ours 4/5 45s 4/5 50s 4/5 49 s 4/5 51s

Table 4: Experiments on different surface friction, with progressive friction levels, 111 <po<p3<fi4.

Compared to HACMan, our approach benefits from its closed-loop execution and variable
impedance control, enabling more robust dexterous manipulation. While HACMan relies on pre-
defined motion primitives, its adaptability to complex geometries and variations in physics are lim-
ited. Moveover, our method surpasses CORN due to our adaptation mechanism refines the world
model based on historical trajectories, allowing the policy to adjust effectively to variations in object
properties such as mass, friction, and scale. These results highlight the effectiveness of our strong
generalization capabilities in diverse rearrangement tasks.

3.2 Ablation Study

We conduct ablation studies on the most challenging evaluation track, i.e., unknown state with
single-view observation. Our goal is to systematically analyze the contribution of each key module
to the overall performance.

Synergy between Next State Prediction and Action Learning. To analyze the optimization pro-
cess, we visualize the loss curve during training and compare the approach that uses only dynamics
adaptation (i.e., RMA) with that adding World Modeling. Our results show that during the dis-
tillation, simultaneous learning of the next state improves action loss convergence, confirming the
synergy between world modeling and action learning. Additionally, we discuss the integration of
the world model in the RL teacher policy, which is elaborated in the supplementary material.

On the Complementarity of Dynamics Adaptation and World Modeling. We investigate the
individual and combined effects of dynamics adaptation and world modeling. Our results (Table
2) show that using only the world model or dynamics adaptation, i.e.RMA, provides only marginal
improvements over the naive DAgger baseline, with success rates increasing by just 1.7% and 5.7%,
respectively. However, when both modules are used together, the performance jumps significantly
from 59.9% to 73.3%. This improvement can be attributed to the complementary nature of these
components. Without dynamics adaptation, the world model lacks sufficient information to reason
about the dynamic effects of interaction. Conversely, using only dynamics adaptation also provides
limited benefits due to the absence of a sufficiently structured learning target. These findings high-
light the complementarity of world modeling and dynamics adaptation, demonstrating that their
combination is a non-trivial yet highly effective design choice.

Effectiveness of FiLM Conditioning. We further evaluate the role of Feature-wise Linear Mod-
ulation (FiILM) in bridging adaptation embeddings and the world action model. Our results indicate
that FILM provides a more effective and structured conditioning mechanism than direct input con-
catenation. Specifically, incorporating FiLM into RMA boosts performance from 65.6% to 70.0%.
More notably, when all three modules (world modeling, dynamics adaptation, and FILM) are used
together, the success rate reaches 82.2%, with FILM contributing an additional 8.9% improvement.
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User: “Put the grip of the electric drill into a person's hand.”

Figure 3: By integrating with Vision-Language Models (VLMs), our goal-conditioned policy can be
executed based on natural language instructions.

We also discuss different methods for conditioning in the supplementary whose conclusion con-
sists with our claims. This reinforces FILM as a lightweight and effective choice for integrating
adaptation embeddings.

3.3 Real-World Experiments

To evaluate the real-world applicability of our method, we conduct experiments on a physical robot
setup. Our goal is to validate the zero-shot transferability of our policy from simulation to the real
world and compare its performance against prior methods.

Real-World Setup Our experimental setup is illustrated in the supplementary. We use a Franka
robot arm for action execution and a RealSense D435 camera positioned at a side view to capture
RGB-D images. We evaluate our approach on 10 unseen real-world objects, including both slip-
pery objects and those with non-uniform mass distribution such as a half-filled bottle. Before each
episode, we first place the object at the target goal pose and record its point cloud. Then, we reposi-
tion the object in a random stable pose and allow our policy to execute the manipulation task. Upon
completion, we use Iterative Closest Point (ICP) to measure the pose error between the final object
position and the recorded target pose. For symmetric objects where direct ICP alignment is ambigu-
ous, we relax the success criteria along the symmetric axes and compute errors only in translation
and relevant rotational components.

Generalization across Diverse Objects. We evaluate our model’s generalization ability by com-
paring it with CORN, which relies on an external tracking module for object pose estimation in
real-world experiments. As shown in Figure 2 and Table 3, our method achieves accurate manipula-
tion across diverse objects without external pose tracking, significantly outperforming CORN with
an average success rate of 68% versus 36%. CORN struggles with precise execution due to occlu-
sions in single-view partial point clouds and inaccuracies in real-world pose estimation. Addition-
ally, our model demonstrates robust performance on slippery objects and those with non-uniform
mass, where CORN fails. We validate the generalization ability of our model and compare our
method against CORN, which depends on an external tracking module to estimate object poses in
real-world experiments.
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Figure 4: Our policy helps grasping a thin card and broad cracker box.

Robustness to Surface Friction Variations. To assess the effectiveness of dynamics adaptation,
we conduct experiments on surfaces with varying friction coefficients. We select four tablecloths
with progressive friction levels, i.e.u1, i, tt3, 44 and use the bulldozer toy as the test object. Ad-
ditionally, we report the average execution time for successful episodes. As shown in Table 4, the
model without dynamics adaptation exhibits significant performance degradation when interacting
with surfaces of different friction levels, leading to erratic execution times. In contrast, our policy
with dynamics adaptation maintains consistent success rates while ensuring stable execution times
across all surface conditions. This highlights the robustness of our approach in handling diverse
real-world contact dynamics.

3.4 Applications

We present a practical manipulation system that integrates Vision-Language Models (VLMs), our
non-prehensile policy, and a grasping model [19]. By leveraging VLMs, our goal-conditioned pol-
icy can be executed based on natural language instructions. Specifically, we utilize SoFar [20], a
model capable of generating semantic object poses from language commands, to specify goals for
our policy. As shown in Figure 3, given the command “Put the grip of the electric drill into a per-
son’s hand”, SoFar generates the target transformation of the drill (e.g., rotation Af = 122° and
translation Az, Ay = [0.54,0.09]), which is then used as the goal for our policy. This enables nat-
ural, instruction-driven object handovers, highlighting the potential of our approach in human-robot
interaction.

Additionally, we showcase the system outperforms or complements traditional prehensile manipu-
lation. As illustrated in the third row of Figure 2, a standard pick-and-place strategy struggles to flip
a tiny switch due to gripper-table collisions, whereas our policy enables efficient rearrangement in
a single continuous motion. Furthermore, our policy serves as an effective pre-grasping step in the
system. As shown in Figure 4, certain objects are inherently difficult to grasp due to their geome-
try—for example, a thin card lying flat on a surface or a broad cracker box exceeding the gripper’s
maximum span. Our system can firstly reorient these objects into grasp-friendly configurations,
significantly improving grasp success rate.

4 Conclusion, Limitations, and Future Works

In this work, we present a novel policy learning approach that jointly predicts future states while
adapting dynamics from historical trajectories. Our model enhances generalizable non-prehensile
manipulation by reducing reliance on multi-camera setups and pose tracking modules while main-
taining robustness across diverse physical conditions. Extensive simulation and real-world experi-
ments validate the effectiveness of our approach. However, our method also has certain limitations
since it relies solely on point clouds as the visual input modality. It struggles with symmetric ob-
jects due to geometric ambiguity, and faces challenges with transparent and specular objects, where
raw depth is incomplete. A promising direction is to incorporate additional appearance information
[21, 22, 23, 24, 25, 26, 27] to provide richer visual cues.
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