
Published as a conference paper at ICLR 2023

TRANSFER NAS WITH
META-LEARNED BAYESIAN SURROGATES

Gresa Shala1, Thomas Elsken2, Frank Hutter1,2 & Josif Grabocka1
1 Department of Computer Science, University of Freiburg
{shalag,fh,grabocka}@cs.uni-freiburg.de
2Bosch Center for Artificial Intelligence
thomas.elsken@de.bosch.com

ABSTRACT

While neural architecture search (NAS) is an intensely-researched area, approaches
typically still suffer from either (i) high computational costs or (ii) lack of robust-
ness across datasets and experiments. Furthermore, most methods start searching
for an optimal architecture from scratch, ignoring prior knowledge. This is in
contrast to the manual design process by researchers and engineers that leverage
previous deep learning experiences by, e.g., transferring architectures from previ-
ously solved, related problems. We propose to adopt this human design strategy and
introduce a novel surrogate for NAS, that is meta-learned across prior architecture
evaluations across different datasets. We utilize Bayesian Optimization (BO) with
deep-kernel Gaussian Processes, graph neural networks for obtaining architecture
embeddings and a transformer-based dataset encoder. As a result, our method
consistently achieves state-of-the-art results on six computer vision datasets, while
being as fast as one-shot NAS methods.

1 INTRODUCTION

While deep learning has removed the need for manual feature engineering, it has shifted this manual
work to the meta-level, introducing the need for manual architecture engineering. The natural next
step is to also remove the need to manually define the architecture. This is the problem tackled by the
field of neural architecture search (NAS).

Even though NAS is an intensely-researched area, there is still no NAS method that is both generally
robust and efficient. Blackbox optimization methods, such as reinforcement learning (Zoph & Le,
2017), evolutionary algorithms (Real et al., 2019), and Bayesian optimization (Ru et al., 2021; White
et al., 2021) work reliably but are slow. On the other hand, one-shot methods (Liu et al., 2019; Dong
& Yang, 2019b) often have problems with robustness (Zela et al., 2020), and the newest trend of
zero-cost proxies often does not provide more information about an architecture’s performance than
simple statistics, such as the architecture’s number of parameters (White et al., 2022).

An understudied path towards efficiency in NAS is to transfer information across datasets. This idea
is naturally motivated by how researchers and engineers tackle new deep learning problems: they
leverage the knowledge they obtained from previous experimentation and, e.g., re-use architectures
designed for one task and apply or adapt them to a novel task. While a few NAS approaches in this
direction exist (Wong et al., 2018; Lian et al., 2020; Elsken et al., 2020; Wistuba, 2021; Lee et al.,
2021; Ru et al., 2021), they typically come with one or more of the following limitations: (i) they
are only applicable to settings with little data, (ii) they only explore a fairly limited search space
or even can just choose from a handful of pre-selected architecture, or (iii) they can not adapt to
data seen at test-time. One approach to obtain efficient NAS methods that has been overlooked in
the literature so far is to exploit the common formulation of NAS as a hyperparameter optimization
(HPO) problem (Bergstra et al., 2013; Domhan et al., 2015; Awad et al., 2021) and draw on the
extensive literature on transfer HPO (Wistuba et al., 2016; Feurer et al., 2018a; Perrone & Shen,
2019; Salinas et al., 2020; Wistuba & Grabocka, 2021). In contrast to standard transfer HPO methods
that meta-learn parametric surrogates from a pool of source datasets (Wistuba et al., 2016; Feurer
et al., 2018a; Wistuba & Grabocka, 2021), in this work we explore the direction of meta learning

1

Published as a conference paper at ICLR 2023

surrogates by contextualizing them on the dataset characteristics (a.k.a. meta-features) (Vanschoren,
2018; Jomaa et al., 2021a; Rivolli et al., 2022).

In this work, we present an efficient Bayesian Optimization (BO) method with a novel deep-kernel
surrogate that yields a new NAS method which combines the best of both worlds: the reliability of
blackbox optimization at a computational cost in the same order of magnitude as one-shot approaches.
Concretely, we propose a BO method for NAS that leverages dataset-contextualized surrogates
for transfer learning. Following Lee et al. (2021), we use a graph encoder (Zhang et al., 2019) to
encode neural architectures and an attention-based dataset encoder (Lee et al., 2019) to obtain context
features. We then use deep kernel learning (Wilson et al., 2016) to obtain meta-learned kernels for
the joint space of architectures and datasets, allowing us to use the full power of BO for efficient
NAS. This approach solves two key issues of Lee et al. (2021), which is closest to our work: (i) a lack
of trading-off exploration vs. exploitation and (ii) the lack of exploiting new function evaluations
on a test task, blindly following what has been observed during meta training. As a result, our
surrogates are optimized for efficiently transferring architectures for a new target dataset based on its
meta-features. To sum up, our contributions are as follows:

• Inspired by manual architecture design, we treat NAS as a transfer or few-shot learning prob-
lem. We leverage ideas from transfer HPO to meta-learn a kernel for Bayesian Optimization,
which encodes both architecture and dataset information.

• We are the first to combine deep-kernel Gaussian Processes (GPs) with a graph neural
network encoder, a transformer-based dataset encoder, the first to apply BO with deep GPs
to NAS, and the first to do all of this in a transfer NAS setting.

• Our resulting method outperforms both state-of-the-art blackbox NAS methods as well as
state-of-the-art one-shot methods across six computer vision benchmarks.

To foster reproducibility, we make our code available at https://github.com/TNAS-DCS/
TNAS-DCS. We address the points in the “NAS Best Practices Checklist” in Appendix F.

2 RELATED WORK

NAS is an intensely-researched field, with over 1000 papers published in the last two years alone1.
We therefore limit our discussion of NAS to the most related fields of Bayesian optimization for
NAS and meta learning approaches for NAS. For a full discussion of the NAS literature, we refer the
interested readers to a series of surveys by Elsken et al. (2019), Wistuba et al. (2019) and Ren et al.
(2020), and for an introduction to BO to Shahriari et al. (2016); Hutter et al. (2019).

Bayesian optimization (BO) for NAS. As BO is commonly used in hyperparameter optimization
(HPO), one can simply treat architectural choices as categorical hyperparameters and re-use, e.g.,
tree-based HPO methods that can natively handle categorical choices well (Bergstra et al., 2013;
Domhan et al., 2015; Falkner et al., 2018). While Gaussian Processes (GPs) are more typically applied
to continuous hyperparameters, they can also be used for NAS by creating an appropriate kernel;
such kernels for GP-based BO can be manually engineered (Swersky et al., 2013; Kandasamy et al.,
2018; Ru et al., 2021). A recent alternative is to exploit (Bayesian) neural networks for BO (Snoek
et al., 2015; Springenberg et al., 2016; White et al., 2021). However, while these neural networks are
very expressive, they require more data to fit well than GPs and thus are outperformed by GP-based
approaches when only a few function evaluations can be afforded. In this work, we combine the
sample efficiency of GPs and the expressive power of neural networks, by using deep GPs combined
with a graph neural network encoder.

Meta learning for NAS. To mitigate the computational infeasibility of starting NAS methods from
scratch for each new task, several approaches have been proposed along the lines of meta and transfer
learning. Most of these warm-start the weights of architectures in a target task Wong et al. (2018);
Lian et al. (2020); Elsken et al. (2020); Wistuba (2021). Ru et al. (2021) extracts architectural motifs
that can be reused on other datasets. Most related to our work is MetaD2A (Lee et al., 2021), where
the authors propose to generate candidate architectures and rank them conditioned directly on a task,
utilizing a meta-feature extractor (Lee et al., 2019). However, there are two key differences in our

1See list at: https://www.automl.org/automl/literature-on-neural-architecture-search

2

https://github.com/TNAS-DCS/TNAS-DCS
https://github.com/TNAS-DCS/TNAS-DCS
https://www.automl.org/automl/literature-on-neural-architecture-search

Published as a conference paper at ICLR 2023

Dataset
encoding

Architecture
encoding

GP

Bayesian
optimization

Joint encoding
Task

Meta-learned

Figure 1: Illustration of TNAS . We employ a GNN ψ to encode architectures, a transformer ϕ to
encode a dataset, and an MLP ξ to merge the encodings. This joint encoding is then fed into a GP
surrogate used within BO. All encodings are meta-learned.

work: (i) the performance predictor of MetaD2A is not probabilistic and thus can not naturally trade-
off exploration vs. exploitation but rather only exploits what has been observed during meta-training.
(ii) During the meta testing phase, MetaD2A simply proposes N architectures for a new task, trains
the top-K (as estimated by the performance predictor) out of N architectures and returns the best. In
particular, the performance of the K evaluated architectures is not used as feedback for MetaD2A
and thus the method never adapts to function evaluations on the test task, blindly following what
has been observed during meta training. This can cause problems for new tasks which are poorly
correlated with the meta training data. And, indeed, MetaD2A stagnates on several of the datasets in
our experimental analysis. In contrast, our approach, dubbed TNAS (transferrable NAS), uses the
function evaluations from meta testing to update the surrogate employed within our BO framework,
thus allowing to adapt to the meta testing scenario.

Meta & transfer learning for HPO There are many approaches to achieve meta or transfer learning
in HPO, see, e.g., the survey by Vanschoren (2019) or Feurer et al. (2018b, Section 7). One particularly
promising approach is to employ Deep Kernel Learning (Wilson et al., 2016) which strives to learn
the kernel function by using a neural network to transform the input to a latent representation, which
is then used in a kernel function. Wistuba & Grabocka (2021) and Jomaa et al. (2021b) utilized a
deep kernel for transfer learning in HPO. While numerical hyperparameters can be encoded using
an MLP, we adapt this approach to NAS by using a graph neural network to encode architectures as
inputs; we also extend it by encoding datasets into a latent embedding and learning a deep kernel that
spans the combined space of architectures and datasets.

3 PROPOSED METHOD

We consider the following problem: given a history of Q datasets, where for each dataset D(q)

we have already evaluated a set of neural network architectures x(q)1 , . . . , x
(q)
n with corresponding

performance (e.g., accuracy) y(q)1 , . . . , y
(q)
n . For a new dataset D(new), we want to quickly discover

an optimal architecture by leveraging information from the history of datasets. We build upon the
state-of-the-art few-shot Bayesian optimization (BO) framework by Wistuba & Grabocka (2021),
which was proposed to address a similar problem: transferring optimal hyperparameter configurations
across datasets. The authors propose to learn a deep kernel across tasks, which is then used for a
Gaussian process (GP) surrogate in the typical BO setup.

However, while hyperparameter configurations can typically be presented by an N-dimensional vector,
it is less clear how to represent neural network architectures. Simply representing architectures as
vectors and plugging them into an off-the-shelf GP kernel is likely sub-optimal. In fact, White et al.
(2020) have shown that the type of architecture representation substantially impacts the performance
of a downstream NAS algorithm. To address this issue, we employ graph neural networks (GNNs) to
obtain a learnable representation of neural networks. GNNs are a common choice in NAS as neural
networks architectures can be naturally represented as graphs (Siems et al., 2020; White et al., 2020;
Wen et al., 2020; Dudziak et al., 2020).

3

Published as a conference paper at ICLR 2023

Furthermore, while we could directly feed this architecture encoding into the GP’s kernel, we argue
that the kernel should also be conditioned on the characteristics of a dataset in order to meaningfully
asses (dis-)similarities between architectures. To motivate this, consider the question “What makes
two architectures similar?”. We argue that two architectures are not similar only because they share
some similar sub-graph components (which will be represented by the GNN encoding), but also
because they achieve similar performance on the target dataset. Following this line of reasoning,
we condition the deep kernel on the characteristics (meta-features) of a dataset (Vanschoren, 2018).
In a similar fashion as for the architecture encoding, we again use a learnable representation of
datasets via employing a set transformer, as also done by (Lee et al., 2019). The architecture and
dataset encoding are then processed by a fully-connected neural network, whose output serves as the
input for an off-the-shelf kernel function, e.g., a Matérn kernel, which is finally used to compute the
distance of two (architecture, dataset) datapoints. This results in an end-to-end learnable encoding
of the problem, and the parameters of the GNN, transformer and fully-connected neural network
are meta-learned in a similar fashion as in Wistuba & Grabocka (2021). We refer to Figure 1 for an
overview of our framework.

In the following subsection, we discuss the details of the different components.

3.1 BAYESIAN OPTIMIZATION WITH DEEP KERNEL GAUSSIAN PROCESSES

We start by introducing Gaussian Processes, which represents the surrogate of our method within
Bayesian optimization (BO). In a typical hyperparameter optimization (HPO) setup, the inputs x ∈ X
represent hyperparameter configurations, and the target y ∈ Y denotes the performance of a machine
learning method when trained with the hyperparameter configuration x. Consider the training
D = {(xi, yi)}ni=1 and testing D∗ = {(x∗i , y∗i)}n

∗

i=1 splits of a dataset of evaluated hyperparameters.
In that context, GPs are non-parametric models that assume a prior over functions, and approximate
the target y ∈ Y ⊆ R+ given the features x ∈ X ⊆ RL. The estimation of the target variable y∗ for

the test instances x∗ is also jointly Gaussian as
[
y
y∗

]
∼ N

(
0,

(
K(x, x) K(x, x∗)
K(x, x∗)T K(x∗, x∗)

))
. Each

respective block of the covariance matrix is the result of applying a kernel function k : X ×X → R+

on pairs of instances, e.g., K(x, x∗)i,j := k(xi, x
∗
j). The estimated posterior mean and covariance of

GPs (Rasmussen & Williams, 2006) for the target y∗ of the test instances x∗ is given as follows:
E[y∗ | x∗, x, y] = K(x∗, x)K(x, x)−1y (1)

cov[y∗ | x∗, x] = K(x∗, x∗)−K(x, x∗)TK(x, x)−1K(x, x∗). (2)

We refer to, e.g., Murphy (2012) for the derivation. GPs are lazy models that rely on the similarity
of the test instances to the training instances via kernel functions k, such as the Matérn kernel.
Unfortunately, typical kernels used with GPs are designed manually and rely on sub-optimal assump-
tions (Cowen-Rivers et al., 2020), which deteriorates the GP’s performance. A promising direction
for designing powerful and efficient kernel functions that adapt to a learning task is Deep Kernel
Learning (Wilson et al., 2016), where kernels are represented as trainable neural networks. A mapping
ξ : X → RL projects the features to a latent representation, where similar instances are co-located.

The embedding ξ for the deep kernel of our GPs is a fully-connected neural network, that takes as
input the encoding of the architecture ψ as well as the dataset encoding ϕ. In detail, the L-dimensional
architecture encoding ψ is fused with the K-dimensional dataset encoding ϕ and processed through a
fully connected neural network ξ : RK+L → RM , where the last layer has M neurons. We re-use
both the GNN-based architecture encoding and the transformer-based dataset encoding from Lee
et al. (2021), thus we only briefly describe it below and refer to Lee et al. (2021) for details.

The architecture encoding ψ consists of a directed acyclic graph encoder (Zhang et al., 2019) to
obtain the encoding for the architectures. By using one GRU cell to traverse the topological order of
the DAG in the direction from the input to the output, and another GRU cell to pass through the DAG
in the backward direction, we obtain latent representations of the graph which are then put through a
fully-connected neural network layer to obtain the encoding for the architecture.

The dataset encoding ϕ consists of two stacked Set-Transformer (Lee et al., 2019) architectures.
The first Set-Transformer layer captures the interaction between randomly sampled data points of
the same class, whereas the second one captures the interactions between the different classes of the
dataset. The resulting output of the second Set-Transformer layer represents the dataset encoding.

4

Published as a conference paper at ICLR 2023

We tuned the dimensionality of the embedding of the dataset encoder and graph encoder, as well as
the architecture of the feed-forward neural network of our method using the multi-fidelity Bayesian
optimization method BOHB (Falkner et al., 2018) on the meta-training dataset; please refer to
Appendix A for details.

Putting it all together, the kernel/similarity between two architectures, specifically x evaluated on
dataset D, and x′ evaluated on dataset D′, is:

k (x,D,x′,D′;w) = k

(
ξ
([
ψ(x;w(ψ)), ϕ

(
D;w(ϕ)

)]
;w(ξ)

)
,

ξ
([
ψ(x′;w(ψ)), ϕ

(
D′;w(ϕ)

)]
;w(ξ)

)
;w(k)

)
with w(ξ) being the parameters of the neural network ξ, w(ψ) the parameters of the architecture
encoding ψ, w(ϕ) the parameters of the dataset encoding ϕ, and w(k) additional parameters of
the kernel function. We denote the cumulative parameters as w :=

(
w(ξ), w(ψ), w(ϕ), w(k)

)
. All

parameters are jointly meta-learned to maximize the marginal likelihood (Wistuba & Grabocka,
2021), as will be discussed in the next section.

3.2 META-LEARNING DEEP-KERNEL GP SURROGATES

Recall that we assume we are given a set of Q datasets, where on each dataset Dq we have Nq ∈ N+

evaluated architectures. We denote the n-th architecture evaluated on the q-th dataset as xq,n and
its validation accuracy as yq,n. The meta-dataset of all the evaluations on all the datasets is defined
asM :=

⋃Q
q=1

⋃Nq

n=1 {(xq,n, yq,n,Dq)}. By x := (x1,1, . . . , xQ,Nq
),y := (y1,1, . . . , yQ,Nq

) and
D := (D1, . . . ,DQ) we denote vectors containing all the architectures, accuracies and datasets.

The parameters w of the deep kernel are optimized jointly by maximizing the log marginal likelihood
of the GP surrogate on the meta training dataset:

argmax
w

log p (y | x,D ; w) (3)

∝ argmin
w

yTK−1(x,D;w) y + log |K(x,D;w)|.

Algorithm 1 Meta-learning our deep-kernel GPs

1: Require: meta-datasetM; learning rates ηSGD, ηREP ;
inner update steps v.

2: while not converged do
3: Sample mini-batch fromM:

x = [x1, . . . , xk], y = [y1, . . . , yk], D = [D1, . . . ,Dk]
4: L(w) = yTK−1(x,D;w)y + log |K(x,D;w)|
5: w′ ← w
6: for j = 1 to v do
7: w′ ← w′ − ηSGD∇w′L(w′)
8: Update w ← w − ηREP (w − w′)

In practice, we resort to sampling
mini-batches and employ stochas-
tic gradient descent, following estab-
lished practices (Wilson et al., 2016;
Wistuba & Grabocka, 2021; Patacchi-
ola et al., 2020). As all components
of our method are differentiable, our
approach is end-to-end differentiable.

For updating the meta-parameters w,
we use the meta-learning algorithm
REPTILE (Nichol et al., 2018), due
to its simplicity compared to, e.g.,
MAML (Finn et al., 2017). Our method’s pseudocode is shown in Algorithm 1. The procedure
samples a mini-batch of (architecture, dataset) pairs with corresponding validation accuracy (line 3).
We sample datasets and architectures uniformly at random from the meta-training dataset. Then we fit
the surrogate to estimate the accuracies y of architectures x on a dataset D using SGD by minimizing
Equation 3 (lines 4-7). Finally, we use REPTILE (Nichol et al., 2018) to update w (line 8).

3.3 META-TESTING

Once the optimal w are found, we plug in the meta-learned kernel for a GP, with the posterior and
use vanilla Bayesian Optimization (BO) to quickly identify the optimal configuration in the new
response surface. Note that by employing BO in the meta-testing phase, TNAS adapts to the test task
by updating the posterior of the GP surrogate with function evaluations from the test task (remember
equations 1, 2). We offer a more detailed description of the BO loop in Appendix C.

5

Published as a conference paper at ICLR 2023

0 10 20 30 40 5091

92

93

94

Ac
cu

ra
cy

CIFAR10

0 10 20 30 40 5068

69

70

71

72

73

74 CIFAR100

0 5 10 15 20

99.60

99.65

99.70

99.75

MNIST

0 5 10 15 20
GPU hours

30

40

50

60

Ac
cu

ra
cy

AIRCRAFT

0 5 10 15 20
GPU hours

25

30

35

40

PETS

0 5 10 15 20 25
GPU hours

96.0

96.1

96.2

96.3

96.4

96.5

96.6 SVHN

RS GP-UCB BANANAS NASBOWL HEBO TNAS

Figure 2: Comparing TNAS to random search (RS) and the four different Bayesian optimization
methods on six image datasets.

4 EXPERIMENTAL SETUP

We follow the experimental setup as Lee et al. (2021) for the NAS-Bench-201 (Dong & Yang, 2020)
and MobileNetV3 search spaces. On the NAS-Bench-201 search space, we also use the same meta
datasets as Lee et al. (2021). It consists of 4230 meta-training datasets derived from ImageNet.
For each of these datasets, the accuracy of one (different) architecture from the NAS-Bench-201
search space is given. For the evaluation of our method and the baselines, we use six popular
computer vision datasets: CIFAR-10, CIFAR-100, SVHN, Aircraft, Oxford IIT Pets, and MNIST. For
CIFAR-10 and CIFAR-100, we query the performances of architectures from the NAS-Bench-201
benchmark, whereas for the other four datasets we train the suggested architectures from scratch
using the NAS-Bench-201 pipeline (as these are not available in the benchmark). We ran three trials
for each experiment and report the mean and standard deviations.

4.1 BASELINES

Classic HPO. A simple baseline is Random Search (RS) (Bergstra & Bengio, 2012). RS samples
architectures uniformly at random from the search space and returns the top preforming one. Another
simple yet powerful baseline is Bayesian Optimization with a vanilla GP surrogate (Snoek et al., 2012).
We use the Matérn 5/2 kernel and rely on the GPytorch (Gardner et al., 2018) implementation. We
tried both Expected Improvement (EI) and Upper Confidence Bound (UCB) as acquisition functions,
with UCB performing better in our experiments. We also compare to HEBO (Cowen-Rivers et al.,
2020), a black-box HPO method that performs input and output warping to mitigate the effects of
heteroscedasticity and non-stationarity on HPO problems. HEBO won the 2020 NeurIPS blackbox
optimization challenge (Turner et al., 2021). We use the implementation provided by the authors.

HPO for NAS. White et al. (2021) proposed a BO method for NAS that uses an ensemble of fully-
connected neural networks as a surrogate, named BANANAS. Moreover, BANANAS uses a path
encoding for the neural architectures, which serves as an input to the ensemble. When applied to a
new test task, BANANAS starts the neural architecture search from scratch. NASBOWL (Ru et al.,
2021) is a GP-based BO method for NAS and utilizes the Weisfeiler-Lehman kernel (Shervashidze
et al., 2011). We use the implementations provided by the authors for BANANAS and NASBOWL.

State-of-the-art in NAS. One-shot methods have recently shown strong empirical performance for
NAS. We compare to GDAS (Dong & Yang, 2019b), SETN (Dong & Yang, 2019a), PC-DARTS (Xu

6

Published as a conference paper at ICLR 2023

0 10 20 30 40 50

88

90

92

94

Ac
cu

ra
cy

CIFAR10

0 10 20 30 40 50

60.0

62.5

65.0

67.5

70.0

72.5

CIFAR100

0 5 10 15 20

99.60

99.65

99.70

99.75

MNIST

0 5 10 15 20
GPU hours

30

40

50

60

Ac
cu

ra
cy

AIRCRAFT

0 5 10 15 20
GPU hours

25

30

35

40

PETS

0 10 20 30 40
GPU hours

95.4

95.6

95.8

96.0

96.2

96.4

96.6
SVHN

MetaD2A TNAS SETN GDAS PC-DARTS DrNAS

Figure 3: Comparison of TNAS to state-of-the-art NAS methods.

et al., 2020) and DrNAS (Chen et al., 2021). For these methods, we compare to published results
from the literature for six computer vision datasets.

Transfer NAS. We compare to the most related transfer NAS method, MetaD2A (Lee et al., 2021),
which is a transfer learning NAS method with a dataset-contextualized neural network generator and
performance predictor. The neural network generator and performance predictor are meta-trained
on the same source datasets that we also use. When applied to a test task, MetaD2A generates 500
candidate architectures conditioned on the test dataset and then selects the top architectures based on
its performance predictor. We use the implementation provided by MetaD2A’s authors.

5 RESEARCH HYPOTHESES AND EXPERIMENTAL RESULTS

Our experiments are designed to validate the following research hypotheses for our approach, dubbed
TNAS :

Hypothesis 1: TNAS is more efficient than classical HPO methods applied to NAS as well as HPO
methods specifically adapted to NAS and outperforms them in terms of anytime-performance, while
achieving strong final performance.

Hypothesis 2: TNAS is competitive with one-shot approaches in terms of runtime.

In summary, we validate our claim from the introduction:

Hypothesis 3: TNAS achieves the consistency of blackbox optimization algorithms (such as classical
HPO methods) while being as efficient as one-shot methods.

Results for Hypothesis 1. In Figure 2, we compare the performance of TNAS, with several HPO
baselines. For all methods, we use the 5 top-performing architectures from the meta-training dataset
as a starting point. In that sense, all these baselines are “transfer learning” by being initialized with the
best architectures on the meta-training dataset. On all of the datasets except CIFAR100, TNAS finds
top-performing architectures faster than all the baselines and achieves stronger anytime performance.
Furthermore, on all benchmarks, TNAS eventually performs best.

Results for Hypothesis 2. We demonstrate that with our meta-learned deep kernel within Bayesian
Optimization, the search time can be significantly reduced, to the same order as one-shot approaches.
Figure 3 shows the performance of both TNAS and MetaD2A compared to state-of-the-art NAS

7

Published as a conference paper at ICLR 2023

CI
FA

R1
0

CI
FA

R1
00

M
NI

ST

AI
RC

RA
FT

PE
TS

SV
HN

5

10

Ra
nk

SETN
GDAS
PC-Darts
DrNAS

RS
GP
BANANAS
NASBOWL

HEBO
MetaD2A
TNAS

(a) Ranking of TNAS across benchmarks.

5 10 15 20 25 30
GPU hours

2

4

6

8

10

Av
er

ag
e

Ra
nk

SETN
GDAS
PC-Darts
DrNAS

RS
GP
BANANAS
NASBOWL

HEBO
MetaD2A
TNAS

(b) Ranking (averaged across benchmarks) over the
course of runtime.

Figure 4: Consistency of TNAS compared to baselines.

methods. Except for CIFAR10 and CIFAR100, TNAS clearly outperforms the NAS baselines by the
time the one-shot approaches finish the search. On CIFAR10, TNAS achieves similar performance as
the baselines, while it is slightly inferior on CIFAR100 for some baselines and only overtakes them
given more time. We refer to Table 3 in the appendix for concrete numbers. We can furthermore
observe the drawbacks of MetaD2A discussed earlier: (i) MetaD2A does not trade-off exploration vs.
exploitation but rather only exploits what has been observed during meta-training and (ii) MetaD2A
does not use evaluations on the new target dataset as feedback and never adapts. As a result, MetaD2A
stagnates on several of the datasets.

Results for Hypothesis 3. In Figure 4, we show that TNAS consistently achieves strong results,
while the existing state-of-the-art NAS baselines have much higher variance - their ranking changes
across benchmarks. Furthermore, the figure shows how the ranking evolves over the course of running
of the methods (by means of runtime in GPU hours). The analysis indicates that TNAS consistently
achieves the best performance, for both small and large computational budgets, in particular also
when compared to MetaD2A.

5.1 ABLATING OUR DESIGN CHOICES

1 25 50
GPU hours

92.5

93.0

93.5

94.0

94.5

Ac
cu

ra
cy

CIFAR10

1 25 50
GPU hours

70

71

72

73

74
CIFAR100

TNAS (no Set Encoder) TNAS (no Graph Encoder) TNAS

Figure 5: Ablation of the components of TNAS .

We empirically analyse our design choices, namely the graph and dataset encoder and demonstrate a
lift in performance compared to ceteris paribus ablations that do not employ these designs.

Concretely, we ablate our method’s components and test them on CIFAR-10 and CIFAR-100,
reporting the result in Figure 5. TNAS (no Set Encoder) shows the performance of our method using
a graph encoder, but no set-encoder (i.e., without using any dataset meta-features). TNAS (no Graph
Encoder) shows the performance of our method using the dataset encoding in combination with a
matrix encoding for the architectures (i.e., no graph encoder). TNAS outperforms the other variations;
thus, we conclude that using both the learnable dataset meta-features and a graph neural network
encoding is the most robust surrogate design. This finding validates the design choices of our method.

8

Published as a conference paper at ICLR 2023

1 25 50 75 100
Trials

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

Ac
cu

ra
cy

Random K init

RANDOM1+MetaLearning
RANDOM2+MetaLearning
RANDOM3+MetaLearning
RANDOM4+MetaLearning
RANDOM5+MetaLearning

1 25 50 75 100
Trials

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

Ac
cu

ra
cy

Top K init (from meta-training set)

TOP1+MetaLearning
TOP2+MetaLearning
TOP3+MetaLearning
TOP4+MetaLearning
TOP5+MetaLearning

1 25 50 75 100
Trials

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

Ac
cu

ra
cy

MetaLearning vs NoMetaLearning

TOP5+MetaLearning
RANDOM5+MetaLearning
TOP5 (NoMetaLearning)
RANDOM5 (NoMetaLearning)

1 25 50 75 100
Trials

67

68

69

70

71

72

73

74

Ac
cu

ra
cy

Random K init

RANDOM1+MetaLearning
RANDOM2+MetaLearning
RANDOM3+MetaLearning
RANDOM4+MetaLearning
RANDOM5+MetaLearning

1 25 50 75 100
Trials

67

68

69

70

71

72

73

74

Ac
cu

ra
cy

Top K init (from meta-training set)

TOP1+MetaLearning
TOP2+MetaLearning
TOP3+MetaLearning
TOP4+MetaLearning
TOP5+MetaLearning

1 25 50 75 100
Trials

67

68

69

70

71

72

73

74

Ac
cu

ra
cy

MetaLearning vs NoMetaLearning

TOP5+MetaLearning
RANDOM5+MetaLearning
TOP5 (NoMetaLearning)
RANDOM5 (NoMetaLearning)

Figure 6: Ablation of the initial design and the initialization of our method on CIFAR-10 (top row)
and CIFAR-100 (bottom row). Left: using up to 5 random architectures; middle: using up to 5 top
architectures from the meta-training set; right: ablating the comparison of (i) a meta-learned surrogate
and a randomly initialized one with (ii) a random initial design and an initial design from the top 5
architectures from the meta-training set.

We also empirically evaluated (i) whether there is actually a benefit in meta-learning the surrogate,
and (ii) our method’s performance with different initial architectures. Remember that as an initial
design for our method, we used the top-5 performing architectures from the meta-training dataset.
As alternatives, we consider values other than 5 and also start from randomly sampled architectures.
We also turn-off meta-learning. The plots for these experiments are shown in Figure 6, evaluated on
CIFAR-10 and CIFAR-100. The results suggest that both design choices are beneficial.

6 CONCLUSIONS AND FUTURE WORK

NAS is an intensely researched task and in essence is an instance of the hyperparameter optimiza-
tion (HPO) problem. In this work, we exploited this relationship and, motivated by state-of-the-art
transfer HPO methods, adapted deep Gaussian Process (GP) surrogates to capture architecture repre-
sentations. Furthermore, we proposed a novel conditioning of the deep GP on dataset meta-features
to enable transferring well-performing architectures from source datasets with similar meta-features.
We empirically motivated the impact of each component of our proposed method through extensive
ablations. In addition, we showed that our novel deep GPs with dataset meta-features and architecture
encodings achieve the highest accuracy on six computer vision datasets compared to a broad range
of HPO methods, BO methods for NAS, and one-shot NAS methods. Lastly, we demonstrated that
proxy architecture evaluations allow our method to discover more accurate architectures within the
same search time one-shot NAS methods require.

Future work. A deep surrogate in principle allows us to capture the interaction between architectures
and hyperparameter configurations. The NAS literature at the moment underexplores the impact of
hyperparameters on the performance of an architecture. In fact, it is commonly known that the same
architecture would perform differently if the training pipeline is altered, for example by changing
the learning rate, the number of epochs, or the degree of regularization. Our previously-defined
surrogate can be trivially extended to model the interaction of architecture embeddings, the dataset
meta-features and hyperparameter configurations. We have not explored this direction empirically
due to the lack of available NAS meta-datasets that vary both architectures and hyperparameters but
would like to do in the future.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

We acknowledge Hadi Jomaa as a contributor to this paper on the level of a co-author. We would like to
acknowledge the grant awarded by the Eva-Mayr-Stihl Stiftung. In addition, this research was funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant number
417962828. In addition, Josif Grabocka acknowledges the support of the BrainLinks-BrainTools
center of excellence.

Reproducibility Statement. To foster reproducibility, we make our code available at https:
//github.com/TNAS-DCS/TNAS-DCS. We give details on our experimental protocol in the
“NAS Best Practices Checklist” in Appendix F.

REFERENCES

Noor Awad, Neeratyoy Mallik, and Frank Hutter. Dehb: Evolutionary hyberband for scalable, robust
and efficient hyperparameter optimization. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence (IJCAI’21), 2021.

J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In Proceedings of the 30th
International Conference on International Conference on Machine Learning - Volume 28, 2013.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 13:281–305, 2012.

Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Dr{nas}:
Dirichlet neural architecture search. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=9FWas6YbmB3.

Alexander I Cowen-Rivers, Wenlong Lyu, Zhi Wang, Rasul Tutunov, Hao Jianye, Jun Wang, and
Haitham Bou Ammar. Hebo: Heteroscedastic evolutionary bayesian optimisation. arXiv preprint
arXiv:2012.03826, 2020. winning submission to the NeurIPS 2020 Black Box Optimisation
Challenge.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. In Proceedings of the
24th International Conference on Artificial Intelligence, IJCAI’15, 2015.

Xuanyi Dong and Yi Yang. One-shot neural architecture search via self-evaluated template network.
2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019a.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1761–1770, 2019b.

Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations (ICLR), 2020. URL https:
//openreview.net/forum?id=HJxyZkBKDr.

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas
Lane. Brp-nas: Prediction-based nas using gcns. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
10480–10490. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/768e78024aa8fdb9b8fe87be86f64745-Paper.pdf.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal
of Machine Learning Research, 20(55):1–21, 2019.

Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. Meta-learning of neural
architectures for few-shot learning. In CVPR, pp. 12362–12372, 2020. URL https://doi.
org/10.1109/CVPR42600.2020.01238.

10

https://github.com/TNAS-DCS/TNAS-DCS
https://github.com/TNAS-DCS/TNAS-DCS
https://openreview.net/forum?id=9FWas6YbmB3
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://proceedings.neurips.cc/paper/2020/file/768e78024aa8fdb9b8fe87be86f64745-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/768e78024aa8fdb9b8fe87be86f64745-Paper.pdf
https://doi.org/10.1109/CVPR42600.2020.01238
https://doi.org/10.1109/CVPR42600.2020.01238

Published as a conference paper at ICLR 2023

S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient hyperparameter optimization at
scale. In J. Dy and A. Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning (ICML’18), volume 80, pp. 1437–1446. Proceedings of Machine Learning Research,
2018.

Matthias Feurer, Benjamin Letham, and Eytan Bakshy. Scalable meta-learning for bayesian optimiza-
tion. CoRR, abs/1802.02219, 2018a.

Matthias Feurer, Benjamin Letham, Frank Hutter, and Eytan Bakshy. Practical transfer learning for
bayesian optimization, 2018b. URL https://arxiv.org/abs/1802.02219.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 1126–1135, 2017.

Jacob R. Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, and Andrew Gordon Wilson.
Gpytorch: Blackbox matrix-matrix gaussian process inference with GPU acceleration. In Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 7587–7597,
2018.

F. Hutter, L. Kotthoff, and J. Vanschoren (eds.). Automated Machine Learning: Methods, Systems,
Challenges, volume 5. 2019. Available for free at http://automl.org/book.

Hadi S. Jomaa, Lars Schmidt-Thieme, and Josif Grabocka. Dataset2vec: learning dataset meta-
features. Data Min. Knowl. Discov., 35(3):964–985, 2021a.

Hadi Samer Jomaa, Sebastian Pineda Arango, Lars Schmidt-Thieme, and Josif Grabocka. Transfer
learning for bayesian hpo with end-to-end landmark meta-features. In Fifth Workshop on Meta-
Learning at the Conference on Neural Information Processing Systems, 2021b.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. In Advances in
Neural Information Processing Systems, 2018.

Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid neural architecture search by learning to
generate graphs from datasets. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=rkQuFUmUOg3.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, pp. 3744–3753, 2019.

Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou Huang, and
Shenghua Gao. Towards fast adaptation of neural architectures with meta learning. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=r1eowANFvr.

M. Lindauer and F. Hutter. Best practices for scientific research on neural architecture search. Journal
of Machine Learning Research, 21:1–18, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=S1eYHoC5FX.

K. Murphy. Machine learning: a probabilistic perspective. The MIT Press, Cambridge, MA, 2012.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. CoRR,
abs/1803.02999, 2018.

Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael F. P. O’Boyle, and Amos J.
Storkey. Bayesian meta-learning for the few-shot setting via deep kernels. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

11

https://arxiv.org/abs/1802.02219
https://openreview.net/forum?id=rkQuFUmUOg3
https://openreview.net/forum?id=r1eowANFvr
https://openreview.net/forum?id=r1eowANFvr
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX

Published as a conference paper at ICLR 2023

Valerio Perrone and Huibin Shen. Learning search spaces for bayesian optimization: Another view
of hyperparameter transfer learning. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pp. 12751–12761, 2019.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT Press, 2006. ISBN 026218253X.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. Proceedings of the AAAI Conference on Artificial Intelligence, pp.
4780–4789, 2019.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang.
A comprehensive survey of neural architecture search: Challenges and solutions. arXiv preprint
arXiv:2006.02903, 2020.

Adriano Rivolli, Luís P.F. Garcia, Carlos Soares, Joaquin Vanschoren, and André C.P.L.F. de Carvalho.
Meta-features for meta-learning. Knowledge-Based Systems, 240:108101, 2022. ISSN 0950-7051.
doi: https://doi.org/10.1016/j.knosys.2021.108101. URL https://www.sciencedirect.
com/science/article/pii/S0950705121011631.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture
search via bayesian optimisation with weisfeiler-lehman kernels. In International Conference on
Learning Representations, 2021.

David Salinas, Huibin Shen, and Valerio Perrone. A quantile-based approach for hyperparameter
transfer learning. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, pp. 8438–8448, 2020.

B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. de Freitas. Taking the human out of the loop:
A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(77):
2539–2561, 2011.

Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hutter. Nas-
bench-301 and the case for surrogate benchmarks for neural architecture search. NeurIPS 4th
Workshop on Meta-Learning, 2020.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, 2012.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Md. Mostofa Ali Patwary, Prabhat, and Ryan P. Adams. Scalable bayesian optimization using
deep neural networks. In Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, pp. 2171–2180, 2015.

J. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with robust Bayesian
neural networks. In D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett (eds.),
Proceedings of the 29th International Conference on Advances in Neural Information Processing
Systems (NeurIPS’16), 2016.

K. Swersky, D. Duvenaud, J. Snoek, F. Hutter, and M. Osborne. Raiders of the lost architecture:
Kernels for Bayesian optimization in conditional parameter spaces. In NeurIPS Workshop on
Bayesian Optimization in Theory and Practice (BayesOpt’13), 2013.

R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and I. Guyon. Bayesian
optimization is superior to random search for machine learning hyperparameter tuning: Analysis
of the black-box optimization challenge 2020. arXiv:2104.10201 [cs.LG], 2021.

J. Vanschoren. Meta-learning. In Hutter et al. (2019), chapter 2, pp. 35–61. Available for free at
http://automl.org/book.

12

https://www.sciencedirect.com/science/article/pii/S0950705121011631
https://www.sciencedirect.com/science/article/pii/S0950705121011631

Published as a conference paper at ICLR 2023

Joaquin Vanschoren. Meta-learning: A survey. CoRR, abs/1810.03548, 2018.

Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm (eds.), Computer Vision – ECCV 2020, pp. 660–676, Cham, 2020. Springer
International Publishing. ISBN 978-3-030-58526-6.

Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A study on encodings for neural archi-
tecture search. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 20309–20319. Curran Associates, Inc.,
2020.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. 2021.

Colin White, Mikhail Khodak, Renbo Tu, Shital Shah, Sébastien Bubeck, and Debadeepta Dey. A
deeper look at zero-cost proxies for lightweight nas. In ICLR Blog Track, 2022. URL https://
iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/. https://iclr-
blog-track.github.io/2022/03/25/zero-cost-proxies/.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel learning.
In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
volume 51 of Proceedings of Machine Learning Research, 2016.

Martin Wistuba. Xfernas: Transfer neural architecture search. In Frank Hutter, Kristian Kersting,
Jefrey Lijffijt, and Isabel Valera (eds.), Machine Learning and Knowledge Discovery in Databases,
pp. 247–262, Cham, 2021. Springer International Publishing. ISBN 978-3-030-67664-3.

Martin Wistuba and Josif Grabocka. Few-shot bayesian optimization with deep kernel surrogates. In
International Conference on Learning Representations, 2021.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Two-stage transfer surrogate model
for automatic hyperparameter optimization. In Machine Learning and Knowledge Discovery in
Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23,
2016, Proceedings, Part I, pp. 199–214, 2016.

Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A survey on neural architecture search.
arXiv preprint arXiv:1905.01392, 2019.

Catherine Wong, Neil Houlsby, Yifeng Lu, and Andrea Gesmundo. Transfer learning with neu-
ral automl. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
bdb3c278f45e6734c35733d24299d3f4-Paper.pdf.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=BJlS634tPr.

A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter. Understanding and robustifying
differentiable architecture search. In Proceedings of the International Conference on Learning
Representations (ICLR’20), 2020. Published online: iclr.cc.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A variational
autoencoder for directed acyclic graphs. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In Proceedings
of the 5th International Conference on Learning Representations (ICLR 2017), 2017.

13

https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/
https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/
https://proceedings.neurips.cc/paper/2018/file/bdb3c278f45e6734c35733d24299d3f4-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/bdb3c278f45e6734c35733d24299d3f4-Paper.pdf
https://openreview.net/forum?id=BJlS634tPr
https://openreview.net/forum?id=BJlS634tPr
iclr.cc

Published as a conference paper at ICLR 2023

A HYPERPARAMETER OPTIMIZATION FOR GNN AND SET TRANSFORMER
ARCHITECTURES

We tuned the dimensionality of the embedding of the dataset encoder and graph encoder (Embedding
dims.), the architecture of the feed-forward neural network of our method (Num. layers, Num. units
in layer 1, Num. units in layer 2, Num. units in layer 3, Num. units in layer 4), and the learning rate
of the joint meta-training using BOHB (Falkner et al., 2018) on the meta-training dataset.

Hyperparameter Range
Embedding dims. {8, 16, 20, 28, 32, 48, 56}
Num. layers [1, 4] (integer)
Num. units in layer 1 [16, 512] (log space)
Num. units in layer 2 [16, 512] (log space)
Num. units in layer 3 [16, 512] (log space)
Num. units in layer 4 [16, 512] (log space)
Learning rate [10−6, 10−1] (log space)

Table 1: The hyperparameter space for tuning our method with BOHB (Falkner et al., 2018).

B ARCHITECTURE ENCODING IN TNAS

To encode the architectures, we use a directed acyclic graph encoder Zhang et al. (2019). It takes
architectures represented as a graph as input, and provides as output vector representations for those
architectures. Following Zhang et al. (2019), the graph encoder consists of two GRU cells and
a fully-connected neural network layer. Each GRU cell traverses the graph representation of the
architecture in opposite directions to the other. The output of both cells is then concatenated and
input through the fully-connected layer, which outputs the vector representation that will be used as
an encoding for the architecture. We meta-train the graph encoder, as well as the dataset encoder,
jointly with the embedding of the deep kernel during meta-training to maximize the log marginal
likelihood of the GP surrogate.

C BAYESIAN OPTIMIZATION WITH TNAS

Once we meta-train our surrogate on the meta-training set using Algorithm 1, we use it at meta-testing
time in a Bayesian optimization (BO) loop. First, we evaluate the top-5 architectures from the
meta-training set on the test dataset. Once the GP is fit to these architectures and their respective
accuracies, we use EI as the acquisition function to find the next architecture to evaluate. In the
NASBench201 search space, we repeat this BO loop for a total of 100 evaluations for CIFAR10 and
CIFAR100, whereas for SVHN, Aircraft, Pets, and MNIST, we do 40 evaluations. In the MobilenetV3
search space we do 50 evaluations for each of the datasets.

For maximizing the acquisition function in order to find the next candidate architecture, we either
exhaustively evaluate the entire search space (in the case of small search spaces such as NAS-Bench-
201), or simply sample K architectures randomly and pick the best (in the case of the MobileNet V3
space, K = 104).

D COMPARISON OF TNAS AND METAD2A

We refer to Table 2 for a comparison of the key ingredients of Lee et al. (2021) and our approach.

14

Published as a conference paper at ICLR 2023

predictor candidate architecture generation test-time adaptation

Lee et al. (2021) (dataset, architecture) encoding, GNN-based architecture generator, noMLP (deterministic prediction) select top-K based on predictor

Ours (dataset, architecture) encoding, BO, maximize yes, adapt GP predictor
MLP, GP (probabilistic prediction) acquisition function w.r.t. new candidate evaluations

Table 2: Comparison of our work to Lee et al. (2021).

E COMPARISON OF TNAS TO SOTA NAS METHODS AND MOBILENET V3
SPACE

Table 3: Accuracy of our method (TNAS) in terms of time and accuracy compared to state-of-the-art
NAS methods on the NASBench201 search space.

Data Method GPU days Accuracy

CIFAR-10

SETN 0.40 87.64±0.00

GDAS 0.34 93.61±0.09

PC-DARTS 0.17 93.66±0.17

DrNAS 0.30 94.36±0.00

arch2vec 1.38 91.41±0.22

MetaD2A 2.08 94.37±0.00

TNAS 2.18 94.37±0.00

CIFAR-100

SETN 0.73 59.09±0.24

GDAS 0.64 70.70±0.30

PC-DARTS 0.28 66.64±2.34

DrNAS 0.45 73.51±0.00

arch2vec 1.38 73.35±0.32

MetaD2A 2.08 73.51±0.15

TNAS 2.18 73.51±0.00

MNIST

SETN 0.87 99.69±0.04

GDAS 0.76 99.64±0.04

PC-DARTS 0.35 99.66±0.04

DrNAS 0.57 99.59±0.02

MetaD2A 0.83 99.71±0.02

TNAS 0.89 99.78±0.00

Aircraft

SETN 0.46 44.84 ±3.96

GDAS 0.46 53.52±0.48

PC-DARTS 0.29 26.33±3.40

DrNAS 0.65 46.08±7.00

MetaD2A 0.83 57.71±0.72

TNAS 0.89 59.51±0.0

Pets

SETN 0.35 25.17±1.68

GDAS 0.33 24.02±2.75

PC-DARTS 0.28 25.31±1.38

DrNAS 0.31 26.73±2.61

MetaD2A 0.83 39.04±0.72

TNAS 0.89 43.24±0.0

SVHN

SETN 1.61 96.02±0.04

GDAS 1.46 95.57±0.04

PC-DARTS 0.99 95.40±0.04

DrNAS 1.24 96.30±0.02

MetaD2A 1.08 96.44±0.05

TNAS 1.18 96.57±0.00

15

Published as a conference paper at ICLR 2023

0 1 2
GPU hours

74

75

76

Ac
cu

ra
cy

CIFAR100

0 1 2
GPU hours

92

93

94

95

CIFAR10

0 1 2
GPU hours

14

15

16

17
AIRCRAFT

0 1 2
GPU hours

88.5

89.0

89.5

90.0

90.5
PETS

MetaD2A TNAS

Figure 7: Comparison of TNAS to MetaD2A on the MobileNetV3 search space.

0 10 20
GPU hours

99.0

99.2

99.4

99.6

99.8

Ac
cu

ra
cy

MNIST

0 10 20
GPU hours

20

30

40

50

60
AIRCRAFT

0 10 20
GPU hours

30

35

40

PETS

0 10 20
GPU hours

95.5

96.0

96.5

SVHN

MetaD2A TNAS

Figure 8: Comparison of TNAS to MetaD2A in terms of the accuracy of the suggested architectures
to evaluate on the NASBench201 search space. For MetaD2A the architectures generated by its
architecture generator are evaluated sequentially based on MetaD2A’s predictor ranking. TNAS
adapts during the BO loop iterations, and thus suggests architectures conditioned on the previous
evaluations.

0 1 2
GPU hours

68

70

72

74

76

Ac
cu

ra
cy

CIFAR100

0 1 2
GPU hours

90
91
92
93
94
95

CIFAR10

0 1 2
GPU hours

5

10

15

AIRCRAFT

0 1 2
GPU hours

82

84

86

88

90
PETS

TNAS MetaD2A

Figure 9: Comparison of TNAS to MetaD2A in terms of the accuracy of the suggested architectures
to evaluate on the MobileNetV3 search space.

16

Published as a conference paper at ICLR 2023

F NAS BEST PRACTICE CHECKLIST

We now describe how we addressed the individual points of the NAS best practice checklist (Lindauer
& Hutter, 2020).

1. Best Practices for Releasing Code

For all experiments you report:
(a) Did you release code for the training pipeline used to evaluate the final architectures?

The code for the training pipeline for the architectures can be found in the repo we
provide.

(b) Did you release code for the search space? We used the NAS-Bench-201 search space
in our experiments, the description and code for which is publicly available.

(c) Did you release the hyperparameters used for the final evaluation pipeline, as well
as random seeds? We the NAS-Bench-201 pipeline and hyperparameters as our final
evaluation pipeline. We release it as well as the random seeds in the repo we provide.

(d) Did you release code for your NAS method? The code for our NAS method can be
found in https://anonymous.4open.science/r/TNAS-DCS-CC08.

(e) Did you release hyperparameters for your NAS method, as well as random seeds? The
hyperparameters for our NAS method, as well as random seeds for the experiments can
be found in the repo we provide.

2. Best practices for comparing NAS methods
(a) For all NAS methods you compare, did you use exactly the same NAS benchmark,

including the same dataset (with the same training-test split), search space and code for
training the architectures and hyperparameters for that code?? Yes, for fair comparison
we made sure to use the same evaluation pipeline for all NAS methods we compare.

(b) Did you control for confounding factors (different hardware, versions of DL libraries,
different runtimes for the different methods)? We ran all the methods on the same
hardware and the same environment to control for confounding factors.

(c) Did you run ablation studies? We ran extensive ablation studies on the components of
our method.

(d) Did you use the same evaluation protocol for the methods being compared? Yes.
(e) Did you compare performance over time? Yes.
(f) Did you compare to random search? Performance comparison to random search as

well as other baselines can be found in Figure 2.
(g) Did you perform multiple runs of your experiments and report seeds? For each of the

experiments we performed three runs with different seeds (333, 444, 555).
(h) Did you use tabular or surrogate benchmarks for in-depth evaluations? We used

NAS-Bench-201 as a tabular benchmark.
3. Best practices for reporting important details

(a) Did you report how you tuned hyperparameters, and what time and resources this
required? We use BOHBFalkner et al. (2018) to tune the hyperparameters of our
method. We ran BOHB with three different random seeds for 24 hours.

(b) Did you report the time for the entire end-to-end NAS method (rather than, e.g., only
for the search phase)? Yes.

(c) Did you report all the details of your experimental setup? The details of our experimen-
tal setup can be found in Section 4.

17

https://anonymous.4open.science/r/TNAS-DCS-CC08

	Introduction
	Related Work
	Proposed Method
	Bayesian optimization with deep kernel Gaussian processes
	Meta-learning deep-kernel GP Surrogates
	Meta-testing

	Experimental Setup
	Baselines

	Research Hypotheses and Experimental Results
	Ablating our Design Choices

	Conclusions and Future Work
	Hyperparameter optimization for GNN and set transformer architectures
	Architecture encoding in TNAS
	Bayesian Optimization with TNAS
	Comparison of TNAS and MetaD2A
	Comparison of TNAS to SOTA NAS methods and MobileNet V3 space
	NAS Best Practice Checklist

