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ABSTRACT

Diffusion models have emerged as a powerful tool across diverse domains. How-
ever, their purely data-driven nature can produce samples that deviate from
domain-governing constraints. We introduce a plug-and-play, Reinforcement
Learning framework that operates in the latent space of pre-trained diffusion
models to optimize initial noise samples. Our approach, motivated by the near-
spherical geometry of high-dimensional Gaussian distributions, employs a novel
rotation-matrix-based scheme for efficient latent space exploration. This steers the
model toward more feature-preserving outputs, guided by task-specific rewards
computed on the final samples. We evaluate our method on two diffusion mod-
els: one trained on solutions of the Darcy Flow PDE and another on a synthetic
dataset with complex structural features. Across both settings, our framework
yields significant improvements in sample quality, achieving a ∼25% relative re-
duction in PDE residual and up to a ∼44% relative improvement on the synthetic
dataset’s feature-alignment metric, compared to the vanilla diffusion models. Fi-
nally, we show that rotation-matrix-based exploration significantly outperforms
unconstrained exploration, validating our geometry-aware approach and establish-
ing a more effective method for latent space control.

1 INTRODUCTION

Deep generative models, particularly diffusion (Song et al., 2021) and Latent Diffusion Models
(LDM) (Rombach et al., 2022) have emerged as remarkably powerful tools for learning complex
data distributions. Their success has been more prominent in image synthesis, where they have rev-
olutionized computer vision and content creation. However, their applicability extends far beyond
the visual arts, with successful deployments in scientific and engineering domains such as 3D mod-
eling (Hu et al., 2024), audio synthesis (Prenger et al., 2019; Yamamoto et al., 2020; Kong et al.,
2021), molecular generation (Gómez-Bombarelli et al., 2018; De Cao & Kipf, 2018; Zang & Wang,
2020; Sun et al., 2021; Xu et al., 2022), protein design (Repecka et al., 2021; Kozlova et al., 2023;
Watson et al., 2023) , physics simulation (Jiang et al., 2021; Won et al., 2022; Holzschuh et al.,
2023) and recently material design (Zeni et al., 2025).

Despite their impressive capabilities, a key limitation of these purely data-driven models is their
tendency to produce samples that may not adhere to known, domain-governing constraints. This is
particularly critical in scientific applications where outputs must satisfy physical laws, mathematical
principles, or structural requirements. Furthermore, many applications benefit from steering the
generative process towards a specific, desirable region of the output distribution for downstream
tasks. Prominent examples include generating solutions to Partial Differential Equations (PDEs),
where outputs must remain consistent with physical principles; designing 3D models with strict
geometric tolerances; or creating novel proteins that adhere to fundamental biochemical constraints.

To address this, several techniques for guiding generative models have been proposed. These range
from costly fine-tuning the model’s weights or incorporating constraints directly into the training
objective, to Latent Space Optimization (LSO). LSO has emerged as a flexible, post-hoc alternative
that operates on the initial noise vectors of a pre-trained, frozen generative model, often guided
by reward signals to align outputs with specific objectives like human preferences. Nevertheless,
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within the current LSO landscape, we identify two significant gaps. First, most existing methods
are computationally expensive, requiring iterative optimization and multiple full denoising passes to
generate a single sample, which creates a substantial bottleneck at inference time. Second, current
approaches often treat the latent space as a generic Euclidean space, overlooking the near-spherical
geometry of high-dimensional Gaussian noise. We posit that failing to account for this inherent
structure leads to inefficient exploration and can degrade sample quality.

In this work, we propose a novel framework to address these shortcomings. Our main contributions
are:

• We introduce Rotational Latent Space Optimization (RLSO), a novel, geometry-aware,
modular exploration technique for the latent space of frozen diffusion models. RLSO
leverages rotation matrices to preserve the norm of latent vectors, respecting the inherent
geometry of the Gaussian prior.

• We formulate the optimization of the initial noise as a Reinforcement Learning (RL)
problem, allowing us to amortize the optimization cost. This enables the generation of
constraint-aligned samples with only a single denoising pass at inference time, drastically
improving efficiency.

• We provide a validation of our approach on two distinct use-cases from vastly different
domains, demonstrating its versatility and effectiveness in improving sample quality.

Our experiments show that our geometry-aware RLSO framework significantly outperforms stan-
dard, unconstrained exploration. Furthermore, we demonstrate that the modularity of our approach
can be leveraged to control the trade-off between generalization and computational efficiency, es-
tablishing a new and effective paradigm for latent space control in diffusion models.

2 RELATED WORK

High-Dimensional Rotations The study of the theory and the application of Rotations in dimen-
sions higher than three originates in the 18th century, but the literature remains limited and lacks
a unified taxonomy. While some applications have successfully used the Rodrigues’ formula (Ro-
drigues, 1840) or Cayley’s transform (Cayley, 2009; 1846), for our work we use rotation matrices
as a representation of rotations. Specifically, we follow Schoute (1892)’s theoretical generalization
of Euler (1776)’s Principal Rotation Theorem to n dimensions:

Any displacement of a rigid body about a fixed point in n dimensions can be achieved for n even
by n

2 simple rotations in mutually orthogonal planes about the fixed point and for n odd by n−1
2

such rotations. Furthermore the rotations commute.

In practice, we rely on Mortari (2001), who provides a formula to construct simple rotations. By
using the properties of the eigen-analysis of rotation matrices and a n-dimensional extension to the
vector cross product Mortari (1997), this formulation allows us to uniquely identify a rotation matrix
by defining a rotation angle and a principal plane of rotation.

Latent Space of Diffusion Models We define the latent space of a Diffusion model as the Gaus-
sian space X0 ∼ N (0, I) containing all possible initial noise samples x0 ∈ Rc×N× N , where c is
the number of channels and N is the latent dimension. In higher dimensions (N >> 1), due to
the Concentration of Measure Phenomenon (Wainwright, 2019) and the Gaussian Annulus Theorem
(Blum et al., 2020), the expected length of Gaussian samples is concentrated around the square root
of its dimensions d, i.e. in a thin shell of a n-sphere with radius

√
d. This means that a gaussian

space behaves more akin to a hyper-spherical space than an euclidean one.

Though underexplored, this phenomenon has been described (Arvanitidis et al., 2018; Chen et al.,
2018) and exploited, either by exploring the latent space with norm-regularization techniques or
Spherical Linear Interpolation (Videau et al., 2023; Samuel et al., 2023; Bodin et al., 2024; Sacchetto
et al., 2024). The works of Park et al. (2023) and Jin et al. (2025) advance in this direction and use
geodesic shooting for latent space exploration and Rodrigues’ formula-based rotation for guidance,
respectively.

2
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We note that, while our work focuses on diffusion models specifically, this interpretation is valid for
any kind of generative model that possesses a Gaussian latent space.

Latent Space Optimization Latent space Optimization, or Noise Optimization, is a rapidly grow-
ing field that encompasses all algorithms and techniques which aim to optimize the input noise (or
some intermediary latent space) of frozen, pre-trained generative models. A common approach is to
optimize latent samples with classic optimization techniques, either by selecting the best candidate
out of a population (Karthik et al., 2023) or by backpropagating the gradients through the full de-
noising process (Samuel et al., 2023; Wallace et al., 2023; Samuel et al., 2024; Karunratanakul et al.,
2024). Alternatively, Eyring et al. (2024) use a one-step diffusion model. These do achieve signifi-
cant improvements, but have two significant drawbacks: backpropagating the gradients through the
denoising process may be costly and importantly they add significant computational overhead at
inference time, because they need to run the denoising process multiple times.

On the other hand, this issue can also be mitigated by training an auxiliary model to optimize the
latent samples, so that only one pass through the auxiliary model and the denoising process is re-
quired at inference time. Lu et al. (2023) use an auxiliary model to predict the values of an energy
function to guide the sampling process, Ahn et al. (2024) train a model in the latent space to mimic
Classifier-Free Guidance, while Venkatraman et al. (2025) train a model to substitute the sampler by
learning the reverse denoising process of high-reward samples. Most similarly to our work, Eyring
et al. (2025) recently proposed to train a LoRA network to predict latent samples that denoise into
high-reward samples.

While these papers presents similarities to our work, namely training auxilary models to generate
optimized latent samples for pre-trained diffusion models, our approach introduces several key dif-
ferences. Instead of relying on penalizing terms for out-of-distribution latent samples, our rotation-
matrix-based exploration strategy offers a principled and geometry-aware method for generating op-
timized latent samples that remain both in-distribution and semantically linked to the original latent
sample. Moreover, this exploration strategy allows for modular control over the direction and angle.
In contrast to Ahn et al. (2024) and Eyring et al. (2025), our use of Policy Gradient training enables
compatibility with arbitrary reward functions, even when their gradients are intractable. Compared
to Venkatraman et al. (2025), who train a large U-Net diffusion model, our approach is far more
lightweight, requiring an order of magnitude fewer parameters. Finally, we validate our method be-
yond text-to-image models and human preference alignment, demonstrating its effectiveness across
diverse domains.

Approaches whose noise optimization is an inherent part of training the main model naturally do not
suffer from this issue, like Hu et al. (2025) who train the encoder of their encoder-decoder structure
as a RL-policy in the latent space or Wagenmaker et al. (2025) who train a RL policy for robot
control tasks that outputs actions in the latent space. Finally, Zhang et al. (2025) expand on the work
of Lu et al. (2023) by integrating the energy-function guidance in the training of the main model.

3 METHODOLOGY

3.1 LATENT DIFFUSION MODEL

To serve as the engine and the benchmark of our experiments, we train an Unconditional Latent
Diffusion model (Rombach et al., 2022) from scratch on two datasets from different domains: solu-
tions of the Darcy Flow Partial Differential Equations (PDE) and an ad-hoc synthetic image dataset.
Both provide computable metrics that measure how much a sample violates the dataset validity
constraints. Henceforth, we will refer to such metrics as residual error. A residual error of zero
corresponds to a valid sample.

3.1.1 DARCY FLOW

Here we use the dataset created by Bastek et al. (2025), based partially on the work of Jacobsen
et al. (2025): it is a dataset of 10000 solutions of the steady-state 2D Darcy-flow PDEs, which de-
scribe fluid movement through a porous medium. Each of the samples is generated by sampling the
permeability field K(ξ) from a Gaussian random field on a 64 × 64 grid and solving for the pres-
sure distribution p(ξ) with a finite-differences, least-squares linear solver. This results in samples
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(K, p) ∈ R2×64×64. The per-grid-cell residual error is calculated based on the physical law of mass
conservation as follows:

R(K, p) = ∇(K∇p) + f. (1)

where K is the permeability field, p is the pressure field, and f is the source function. A scalar
residual error for one sample x0 is then obtained as the mean absolute residual error:

ϵ(x0) =
1

n2

n∑
i=1

n∑
j=1

|Rij(K, p)| (2)

where n = 64 and Rij(K, p) is the residual error at grid cell (i, j). We refer to Bastek et al. (2025)
for further details.

3.1.2 VORONOI

Deshpande et al. (2024) introduce several synthetic datasets to benchmark image-synthesis gener-
ative models. These datasets, which the authors call Stochastic Context Models (SCM), contain
images with different features, constraint, and rules that can be recovered after generation. They
also provide scripts to compute a variety of quality metrics based on these features. For our experi-
ments, we select the Voronoi SCM and simplify it slightly, using 64x64 instead of 256x256 images
and restricting it to the class of images containing 16 regions. Hence creating a dataset of 10000
grayscale images. Out of a selection of the quality metrics introduced by the authors we define our
own residual error:

ϵ(x0) =
µ1

A
+

σ1

2B
+

µ2

Γ
+

σ2

2∆
+ τ + ρ+ 1.5η, (3)

where µ1 and σ1 are measures of the straightness of region edges, µ2 and σ2 are measures of the
intra-region grayscale variance, τ and ρ are Kendall’s and Spearman’s rank correlation coefficients
between the region’s and the target grayscale values, and η is the error in region count. Furthermore,
A = 0.0962016, B = 0.116852, Γ = 50, and ∆ = 20 are empirically set constants.

The implementation of the latent diffusion model was adapted from (von Platen et al., 2022) and
modified to include a Variational Autoencoder (VAE) with KL loss (Kingma & Welling, 2013). We
employ DDIM (Song et al., 2020) as our sampler. Architecture and training details are listed in the
appendix A.1.

3.2 ROTATION MATRIX

Theoretical Framework We define a parameter description of n-dimensional rotations that both
encompasses all mathematic properties of rotation and offers modularity for managing the tradeoff
between generalization capabilities and computational efficiency. To this end, we adopt the theoreti-
cal framework described in chapter 2, which posits that a general rotation in even dimensions can be
described by n

2 mutually orthogonal planes (the rotation planes) and corresponding n
2 angles. Based

on this framework, Lounesto (2001) identifies three special classes of rotations. These are:

• single rotations: only one plane of rotation with angle θ ̸= 0.

• double rotations: two planes of rotation with angles α ̸= θ ̸= 0.

• isoclinic rotation: two planes of rotation with angles α = θ ̸= 0.

In his paper, (Mortari, 2001, eq. 18) provides a formula for a rotation matrix that describes a single
rotation as a function of the rotation angle and the vectors spanning the plane of rotation:

R(P,Φ) = In + (cosΦ− 1)PPT + P

[
0 −1
1 0

]
PT sinΦ (4)

Where Φ is the angle of rotation and P = [p1 p2] ∈ Rn×2 is a matrix whose columns form an
orthogonal basis for the plane of rotation. Using the fact that a general rotation can be expressed as

4
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a product of n
2 simple rotations, we extend equation 4 for rotation matrices of general rotations.

Rgen =

n
2∏

i=1

R(Pi,Φi) (5)

Where
[
P1 P2 . . . Pn

2

]
∈ Rnxn is an orthonormal basis of Rn and

[
Φ1 Φ2 . . . Φn

2

]
∈ Rn

are the rotation angles. We note that equation 5 simplifies to equation 4 for only one Φi ̸= 0.

Vector Rotation Let v ∈ Sn−1 ⊂ Rn a point on the surface of the sphere Sn−1 and v̂ = v
∥v∥ its

corresponding unit vector. let t ∈ Tv(S
n−1) be a non-zero unit vector in the tangent space at v. To

rotate v towards t along a geodesic by an angle Φ we can use equation 4 with P := [v̂ t]:
vrot = R([v̂ t] ,Φ)v (6)

where vrot is the rotated vector.

Now let w be a second vector in the tangent space at v, orthogonal to t. To perform a double rotation
on v in the directions of t and w, we can use 5:

vrot = R([v̂ t] ,Φ1)R([v̂ w] ,Φ2)v (7)
Similarly, we can construct rotations with any number of planes and angles, up to a general rotation.
For the purposes of this work, we restrict the rotations to paths along geodesics (or combinations
thereof). This has two key advantages:

1. We can describe the rotation of a vector with k n-dimensional direction vectors and k
angles, i.e. k(n− 1) parameters. For a simple rotation, this is equivalent to other retraction
methods.

2. Because random vectors in high dimensions are always almost orthogonal (Diaconis &
Freedman, 1984), this constraint helps prevent the optimization from exploring rotations
that have little to no effect on the vector’s position.

This formulation provides significant modularity. Unlike common exploration techniques such as
Backprojection or the exponential map, our approach decouples the angle and direction of rotation.
This allows for fine-grained control over the scope and nature of the directional exploration. Fur-
thermore, by enabling precise manipulation of the number and angles of rotation planes, our method
facilitates the construction of more complex rotational transformations than previously possible.

A note on meaningful change Because residual errors are computed on the entire sample, we are
primarily interested in transformations substantially that affect a large portion of a latent vector’s
dimensions. However, simple rotations do not consistently achieve this. For example, individual
Givens rotations (Givens, 1958), i.e. rotations confined to hyperplanes spanned by coordinate axes,
only modify the corresponding coordinate pair. They therefore induce negligible change in high-
dimensional settings, causing the LDM to denoise the transformed latent sample into one nearly
identical to the original, except for a small localized change. At the opposite extreme, one can
show that rotations defined by planes spanned by vectors maximally distant from the coordinate
axes impact the greatest number of dimensions of an n-dimensional vector. To restrict exploration
to rotations that meaningfully change latent vectors, we construct a set of fixed directions in tan-
gent space. Specifically, we select the columns of a Hadamard matrix, as they are simultaneously
maximally distant from all coordinate hyperplanes and mutually orthogonal Tadej & Życzkowski
(2006). For our setting, we project these column vectors onto the tangent space of the sphere at and
normalize them.

3.3 REINFORCEMENT LEARNING

The RL Problem is defined as a Markov decision process (MDP) characterized by the tuple
(S,A, P, r, γ); where S is the state space, A is the action space, P (s′|s, a) is the system transi-
tion probability, r(s, a) is the reward, and γ ∈ (0, 1) is the discount factor. The goal of the RL
algorithm is to find an optimal policy π∗(a|s) that maximizes the expected cumulative discounted
reward:

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γtr(st, at)

]
(8)
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Figure 1: Darcy flow samples (Experiment 3): permeability K (top) and pressure p (bottom).

Observation Space the observation space is equal for all experiments. At each time-step t the
Agent receives observation st = vec(x0) ∈ Rc×d2 ∼ N (0, I), which is a latent sample with its
spatial dimensions flattened, where d = 16 is the latent dimension and c is the number of channels,
i.e. c = 2 for the Darcy Flow dataset and c = 1 for the Voronoi dataset.

Reward Function We define the reward function as the negative residual of the respective dataset:

r(s, a) = −ϵ(x0) (9)

where x0 = s and ϵ(x0) is computed according to Equation 2 for the Darcy Flow dataset and
according to Equation 3 for the Voronoi dataset. An episode terminates either upon reaching a
predefined reward threshold or after 15 time-steps. The reward threshold is set at τ = −0.4 for the
Darcy Flow dataset and at τ = −1.3 for the Voronoi dataset.

The action space varies depending on the experiment and is discussed in section 4. To train the agent,
we employ Proximal Policy Optimization (PPO) (Schulman et al., 2017), a state-of-the art on-policy
policy optimization algorithm. While the goal of the policy is not necessarily to find trajectories
to optimal samples, but rather to identify them in one or a few steps, this setup effectively mimics
a multi-armed bandit problem. Nonetheless, we choose PPO due to its superior ability to handle
high-dimensional and partially continuous observation and action spaces, which are required in our
experiments.

4 EXPERIMENTS

The experimental setup aims to validate three main hypotheses:

Hypothesis 1 Reinforcement learning is a viable paradigm for performing amortized, gradient-free
optimization in the latent space of frozen diffusion models.

Hypothesis 2 Exploration techniques that account for the inherent spherical geometry of Gaussian
latent spaces significantly outperform naive approaches.

Hypothesis 3 An exploration technique that enables control over the trade-off between general-
ization capabilities and computational efficiency (i.e., the number of parameters) offers significant
advantages.

To this end, we conducted three analogous experiments on each dataset, as well as one additional ex-
periment solely on the Darcy Flow dataset. The only variable between experiments within the same
dataset is the action space of the RL agent; all other aspects, including the observation space, reward
function, weights of the frozen latent diffusion model, architecture, and training parameters, remain
unchanged. For all experiments, we applied the same transformation to both channels. Since the
channels encode spatial information, this approach ensures that the transformations do not disrupt
the spatial relationships learned by the VAE.
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Figure 2: Voronoi samples generated by Experiment 2 (top) and by Experiment 3 (bottom)

4.1 EXPERIMENT 1 - UNCONSTRAINED EXPLORATION

The actions lie in the space [w] ∈ Rn2

, where w is a single perturbation vector that is summed to all
channels. Hence, the next state is computed as st+1 = st + 1c ⊗w, where 1c ∈ Rc is a vector of
ones corresponding to the number of channels, and ⊗ denotes the outer product, ensuring that w is
added to each channel of st.

4.2 EXPERIMENT 2 - ROTATION MATRIX I

The actions lie in the space [t̂,Φ], where t̂ ∈ Ts(S
d2−1) ⊂ Rd2

is a unit vector in the tangent space
of the sphere at s and Φ ∈ [0, π] is a rotation angle. The next state is then computed according to
equation 6 on both channels:

st+1 =

[
R
([
ŝt,1 t̂

]
,Φ

)
st,1

R
([
ŝt,1 t̂

]
,Φ

)
st,2

]
where st,i denotes channel i of st, , and R is the rotation matrix as defined in Equation 4.

4.3 EXPERIMENT 3 - ROTATION MATRIX II

Therefore, the actions lie in the space (i,Φ), where i ∈ 1, . . . , d2 and Φ = kπ
79 , for k ∈ 0, . . . , 79.

The next state is then computed according to equation 6:

st+1 =

[
R
([
ŝt,1 ĥj

]
,Φ

)
st,1

R
([
ŝt,1 ĥj

]
,Φ

)
st,2

]
where ĥj is th ith column of the Hadamard matrix, Φ the discretized angle, st,i denotes channel i of
st, and R is the rotation matrix as defined in Equation 4.

4.4 EXPERIMENT 4 - DOUBLE ROTATION

In experiments two and three, we have computed the rotation only from one channel and have
applied it to both. In this experiment, we compute the rotation from both channels. We essentially
perform a isoclininc, double rotation with two planes of rotations: Span(st1 , ĥi) and Span(st2 , ĥi).
We use the same action space as in experiment 3 and the next state is then computed according to
equation 7:

st+1 =

[
R
([
ŝt,1 ĥj

]
,Φ

)
R(

[
ˆst,2 ĥj

]
,Φ)st,1

R
([
ŝt,1 ĥj

]
,Φ

)
R(

[
ˆst,2 ĥj

]
,Φ)st,2

]
where ĥj is th ith column of the Hadamard matrix, Φ the discretized angle, st,i denotes channel i of
st, and R is the rotation matrix as defined in Equation 5.

7
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Figure 3: Darcy Flow: RL training K (left) and residual error comparison (right)

5 RESULTS AND DISCUSSION

5.1 DARCY FLOW

Figure 3 presents the results of the four experiments conducted on the Darcy Flow dataset. The left
subfigure highlights two key findings: Firstly, our geometry-aware exploration technique consis-
tently outperforms unconstrained exploration, thereby validating hypothesis 2. Second, restricting
the search directions to a predefined set led to faster and, in some cases, higher convergence. Fur-
thermore, by leveraging the chosen theoretical framework of n-dimensional rotations, and using the
underexplored concepts of double and isoclinic rotations, we were able to further enhance explo-
ration performance, validating hypothesis 3. The right subfigure provides evidence for hypothesis 1:
our framework achieved a ∼25% relative reduction in PDE residual compared to the vanilla LDM
and obtained an absolute PDE residual comparable to state-of-the-art models, as reported by Bastek
et al. (2025).

Figure 4 shows the distribution of permeability and pressure values for 1,000 samples drawn from
the training data, the latent diffusion model (LDM), and experiment 3. The LDM closely matches
the distribution of the training data, although with a slight shift. The RL optimizer corrects this
shift but also narrows the distribution. These findings illustrate a common trend in deep generative
learning: a trade-off between sample quality and sample diversity. Nevertheless, the modularity of
our exploration technique enables control over this trade-off, for example, by adjusting the number
of search directions or the maximum angle of rotation, further validating hypothesis 3. Finally,
Figure 1 displays Darcy flow samples generated using the setup described in experiment 3.
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Figure 4: Darcy Flow: Distribution of permeability K (left) and pressure p (right)
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5.2 VORONOI

Figure 5 presents the results of the three experiments conducted on the Voronoi dataset. The find-
ings closely parallel those from the Darcy Flow experiments: geometry-aware exploration consis-
tently outperforms unconstrained exploration, resulting in an approximate ∼10% relative reduction
in residual error for experiment 2 and an approximate ∼44% relative reduction for experiment 3. In
this case, the trade-off between sample quality and diversity becomes more pronounced, as visual
inspection revealed a slightly increased tendency towards mode collapse. See Figure 2 for further
illustration.
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Figure 5: Voronoi: RL training K (left) and residual error comparison (right)

6 CONCLUSION

In this paper, we introduced Rotational Latent Space Optimization (RLSO) with Reinforcement
Learning (RL), a novel framework that leverages reinforcement learning for efficient, geometry-
aware guidance of pre-trained diffusion models. Our experiments, conducted across two diverse sci-
entific domains, demonstrate that respecting the spherical geometry of the latent space via rotational
exploration yields significantly higher-quality samples compared to unconstrained optimization.

Moreover, by amortizing the optimization process with an RL agent, our method generates
constraint-aligned samples in a single denoising pass, eliminating the substantial computational
overhead of iterative LSO techniques. We have shown that this approach is a viable and effective
paradigm for improving sample quality wherever a guiding reward signal is available, establishing a
new path for efficient latent space control

6.1 OUTLOOK

Our approach shows strong potential, though several aspects present opportunities for further ex-
ploration. First, as an LSO method, RLSO is inherently shaped by the expressive capacity of the
underlying diffusion model. It is particularly effective at identifying optimal latent codes within
the learned data manifold, but it cannot introduce features entirely outside the model’s training
distribution. Second, scalability of the RL agent becomes increasingly important as latent space
dimensionality grows with larger models. While our rotational method’s modularity helps address
this by enabling optimization in lower-dimensional subspaces, future work could investigate more
sample-efficient and scalable RL algorithms tailored for high-dimensional continuous control.

In addition, our experiments focused on isoclinic double and simple rotations, but a broader investi-
gation of alternative rotation types may yield new insights into how different geometric transforma-
tions influence optimization performance. Looking ahead, extending RLSO to constraint-intensive
domains such as molecular generation or engineering design represents a promising avenue. Fur-
thermore, exploring hybrid strategies that combine geometry-aware exploration with complementary
forms of guidance may enable multi-objective optimization, allowing generation to simultaneously
respect physical constraints and adapt to stylistic or textual prompts.
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A APPENDIX

A.1 HYPERPARAMETERS

Hyperparameter Value
In-, output channels (Darcy Flow) 2, 2

In-, output channels (Voronoi) 1, 1

ResNet blocks per down-/up-sampling 2
ResNet block normalization Group Normalization
ResNet block activation function SiLU
Attention block normalization LayerNorm
Feature map resolutions [64, 64, 128, 256]

Attention head dimension 32

Table 1: Diffusion model architecture

Hyperparameter Value
Latent channels (Darcy Flow) 2

Latent channels (Voronoi) 1

Latent dimension 16× 16

Down block type, number DownEncoderBlock2D, 3
Up block number, number UPDecoderBlock2D, 3
Block output channels [64, 64, 64]

Table 2: VAE architecture

Hyperparameter Value
Actor Hidden layers [2048, 2048]

Critic Hidden Layers [2048, 2048]

Dropout Rate 0.3

Learning Rate Linear Schedule [1 · 10−6, 1 · 10−7]

GAE Lambda 0.9

Table 3: PPO hyperparameters

A.2 LLM USAGE

We used a large language model only for minor editing, such as correcting typos, fixing grammatical
errors, and limited rephrasing.
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