ROTATIONS ON LATENT HYPERSPHERES: A GEOMETRY-AWARE GUIDING FRAMEWORK FOR DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models have emerged as a powerful tool across diverse domains. However, their purely data-driven nature can produce samples that deviate from domain-governing constraints. We introduce a plug-and-play, Reinforcement Learning framework that operates in the latent space of pre-trained diffusion models to optimize initial noise samples. Our approach, motivated by the nearspherical geometry of high-dimensional Gaussian distributions, employs a novel rotation-matrix-based scheme for efficient latent space exploration. This steers the model toward more feature-preserving outputs, guided by task-specific rewards computed on the final samples. We evaluate our method on two diffusion models: one trained on solutions of the Darcy Flow PDE and another on a synthetic dataset with complex structural features. Across both settings, our framework yields significant improvements in sample quality, achieving a $\sim 25\%$ relative reduction in PDE residual and up to a \sim 44% relative improvement on the synthetic dataset's feature-alignment metric, compared to the vanilla diffusion models. Finally, we show that rotation-matrix-based exploration significantly outperforms unconstrained exploration, validating our geometry-aware approach and establishing a more effective method for latent space control.

1 Introduction

Deep generative models, particularly diffusion (Song et al., 2021) and Latent Diffusion Models (LDM) (Rombach et al., 2022) have emerged as remarkably powerful tools for learning complex data distributions. Their success has been more prominent in image synthesis, where they have revolutionized computer vision and content creation. However, their applicability extends far beyond the visual arts, with successful deployments in scientific and engineering domains such as 3D modeling (Hu et al., 2024), audio synthesis (Prenger et al., 2019; Yamamoto et al., 2020; Kong et al., 2021), molecular generation (Gómez-Bombarelli et al., 2018; De Cao & Kipf, 2018; Zang & Wang, 2020; Sun et al., 2021; Xu et al., 2022), protein design (Repecka et al., 2021; Kozlova et al., 2023; Watson et al., 2023) , physics simulation (Jiang et al., 2021; Won et al., 2022; Holzschuh et al., 2023) and recently material design (Zeni et al., 2025).

Despite their impressive capabilities, a key limitation of these purely data-driven models is their tendency to produce samples that may not adhere to known, domain-governing constraints. This is particularly critical in scientific applications where outputs must satisfy physical laws, mathematical principles, or structural requirements. Furthermore, many applications benefit from steering the generative process towards a specific, desirable region of the output distribution for downstream tasks. Prominent examples include generating solutions to Partial Differential Equations (PDEs), where outputs must remain consistent with physical principles; designing 3D models with strict geometric tolerances; or creating novel proteins that adhere to fundamental biochemical constraints.

To address this, several techniques for guiding generative models have been proposed. These range from costly fine-tuning the model's weights or incorporating constraints directly into the training objective, to Latent Space Optimization (LSO). LSO has emerged as a flexible, post-hoc alternative that operates on the initial noise vectors of a pre-trained, frozen generative model, often guided by reward signals to align outputs with specific objectives like human preferences. Nevertheless,

within the current LSO landscape, we identify two significant gaps. First, most existing methods are computationally expensive, requiring iterative optimization and multiple full denoising passes to generate a single sample, which creates a substantial bottleneck at inference time. Second, current approaches often treat the latent space as a generic Euclidean space, overlooking the near-spherical geometry of high-dimensional Gaussian noise. We posit that failing to account for this inherent structure leads to inefficient exploration and can degrade sample quality.

In this work, we propose a novel framework to address these shortcomings. Our main contributions are:

- We introduce Rotational Latent Space Optimization (RLSO), a novel, geometry-aware, modular exploration technique for the latent space of frozen diffusion models. RLSO leverages rotation matrices to preserve the norm of latent vectors, respecting the inherent geometry of the Gaussian prior.
- We formulate the optimization of the initial noise as a Reinforcement Learning (RL)
 problem, allowing us to amortize the optimization cost. This enables the generation of
 constraint-aligned samples with only a single denoising pass at inference time, drastically
 improving efficiency.
- We provide a validation of our approach on two distinct use-cases from vastly different domains, demonstrating its versatility and effectiveness in improving sample quality.

Our experiments show that our geometry-aware RLSO framework significantly outperforms standard, unconstrained exploration. Furthermore, we demonstrate that the modularity of our approach can be leveraged to control the trade-off between generalization and computational efficiency, establishing a new and effective paradigm for latent space control in diffusion models.

2 RELATED WORK

High-Dimensional Rotations The study of the theory and the application of Rotations in dimensions higher than three originates in the 18th century, but the literature remains limited and lacks a unified taxonomy. While some applications have successfully used the Rodrigues' formula (Rodrigues, 1840) or Cayley's transform (Cayley, 2009; 1846), for our work we use rotation matrices as a representation of rotations. Specifically, we follow Schoute (1892)'s theoretical generalization of Euler (1776)'s *Principal Rotation Theorem* to n dimensions:

Any displacement of a rigid body about a fixed point in n dimensions can be achieved for n even by $\frac{n}{2}$ simple rotations in mutually orthogonal planes about the fixed point and for n odd by $\frac{n-1}{2}$ such rotations. Furthermore the rotations commute.

In practice, we rely on Mortari (2001), who provides a formula to construct simple rotations. By using the properties of the eigen-analysis of rotation matrices and a n-dimensional extension to the vector cross product Mortari (1997), this formulation allows us to uniquely identify a rotation matrix by defining a rotation angle and a principal plane of rotation.

Latent Space of Diffusion Models We define the latent space of a Diffusion model as the Gaussian space $\mathcal{X}_0 \sim \mathcal{N}(\mathbf{0}, I)$ containing all possible initial noise samples $x_0 \in \mathbb{R}^{c \times N \times N}$, where c is the number of channels and N is the latent dimension. In higher dimensions (N >> 1), due to the *Concentration of Measure Phenomenon* (Wainwright, 2019) and the *Gaussian Annulus Theorem* (Blum et al., 2020), the expected length of Gaussian samples is concentrated around the square root of its dimensions d, i.e. in a thin shell of a n-sphere with radius \sqrt{d} . This means that a gaussian space behaves more akin to a hyper-spherical space than an euclidean one.

Though underexplored, this phenomenon has been described (Arvanitidis et al., 2018; Chen et al., 2018) and exploited, either by exploring the latent space with norm-regularization techniques or Spherical Linear Interpolation (Videau et al., 2023; Samuel et al., 2023; Bodin et al., 2024; Sacchetto et al., 2024). The works of Park et al. (2023) and Jin et al. (2025) advance in this direction and use geodesic shooting for latent space exploration and Rodrigues' formula-based rotation for guidance, respectively.

We note that, while our work focuses on diffusion models specifically, this interpretation is valid for any kind of generative model that possesses a Gaussian latent space.

Latent Space Optimization Latent space Optimization, or Noise Optimization, is a rapidly growing field that encompasses all algorithms and techniques which aim to optimize the input noise (or some intermediary latent space) of frozen, pre-trained generative models. A common approach is to optimize latent samples with classic optimization techniques, either by selecting the best candidate out of a population (Karthik et al., 2023) or by backpropagating the gradients through the full denoising process (Samuel et al., 2023; Wallace et al., 2023; Samuel et al., 2024; Karunratanakul et al., 2024). Alternatively, Eyring et al. (2024) use a one-step diffusion model. These do achieve significant improvements, but have two significant drawbacks: backpropagating the gradients through the denoising process may be costly and importantly they add significant computational overhead at inference time, because they need to run the denoising process multiple times.

On the other hand, this issue can also be mitigated by training an auxiliary model to optimize the latent samples, so that only one pass through the auxiliary model and the denoising process is required at inference time. Lu et al. (2023) use an auxiliary model to predict the values of an energy function to guide the sampling process, Ahn et al. (2024) train a model in the latent space to mimic Classifier-Free Guidance, while Venkatraman et al. (2025) train a model to substitute the sampler by learning the reverse denoising process of high-reward samples. Most similarly to our work, Eyring et al. (2025) recently proposed to train a LoRA network to predict latent samples that denoise into high-reward samples.

While these papers presents similarities to our work, namely training auxilary models to generate optimized latent samples for pre-trained diffusion models, our approach introduces several key differences. Instead of relying on penalizing terms for out-of-distribution latent samples, our rotation-matrix-based exploration strategy offers a principled and geometry-aware method for generating optimized latent samples that remain both in-distribution and semantically linked to the original latent sample. Moreover, this exploration strategy allows for modular control over the direction and angle. In contrast to Ahn et al. (2024) and Eyring et al. (2025), our use of Policy Gradient training enables compatibility with arbitrary reward functions, even when their gradients are intractable. Compared to Venkatraman et al. (2025), who train a large U-Net diffusion model, our approach is far more lightweight, requiring an order of magnitude fewer parameters. Finally, we validate our method beyond text-to-image models and human preference alignment, demonstrating its effectiveness across diverse domains.

Approaches whose noise optimization is an inherent part of training the main model naturally do not suffer from this issue, like Hu et al. (2025) who train the encoder of their encoder-decoder structure as a RL-policy in the latent space or Wagenmaker et al. (2025) who train a RL policy for robot control tasks that outputs actions in the latent space. Finally, Zhang et al. (2025) expand on the work of Lu et al. (2023) by integrating the energy-function guidance in the training of the main model.

3 Methodology

3.1 LATENT DIFFUSION MODEL

To serve as the engine and the benchmark of our experiments, we train an Unconditional Latent Diffusion model (Rombach et al., 2022) from scratch on two datasets from different domains: solutions of the Darcy Flow Partial Differential Equations (PDE) and an ad-hoc synthetic image dataset. Both provide computable metrics that measure how much a sample violates the dataset validity constraints. Henceforth, we will refer to such metrics as *residual error*. A residual error of zero corresponds to a valid sample.

3.1.1 DARCY FLOW

Here we use the dataset created by Bastek et al. (2025), based partially on the work of Jacobsen et al. (2025): it is a dataset of 10000 solutions of the steady-state 2D Darcy-flow PDEs, which describe fluid movement through a porous medium. Each of the samples is generated by sampling the permeability field $K(\xi)$ from a Gaussian random field on a 64×64 grid and solving for the pressure distribution $p(\xi)$ with a finite-differences, least-squares linear solver. This results in samples

 $(K,p) \in \mathbb{R}^{2 \times 64 \times 64}$. The per-grid-cell residual error is calculated based on the physical law of mass conservation as follows:

$$R(K,p) = \nabla(K\nabla p) + f. \tag{1}$$

 where K is the permeability field, p is the pressure field, and f is the source function. A scalar residual error for one sample x_0 is then obtained as the mean absolute residual error:

$$\epsilon(x_0) = \frac{1}{n^2} \sum_{i=1}^n \sum_{i=1}^n |R_{ij}(K, p)|$$
 (2)

where n = 64 and $R_{ij}(K, p)$ is the residual error at grid cell (i, j). We refer to Bastek et al. (2025) for further details.

3.1.2 Voronoi

176 3 177 I 178 a

Deshpande et al. (2024) introduce several synthetic datasets to benchmark image-synthesis generative models. These datasets, which the authors call Stochastic Context Models (SCM), contain images with different features, constraint, and rules that can be recovered after generation. They also provide scripts to compute a variety of quality metrics based on these features. For our experiments, we select the Voronoi SCM and simplify it slightly, using 64x64 instead of 256x256 images and restricting it to the class of images containing 16 regions. Hence creating a dataset of 10000 grayscale images. Out of a selection of the quality metrics introduced by the authors we define our own residual error:

$$\epsilon(x_0) = \frac{\mu_1}{A} + \frac{\sigma_1}{2B} + \frac{\mu_2}{\Gamma} + \frac{\sigma_2}{2\Delta} + \tau + \rho + 1.5\eta,$$
 (3)

where μ_1 and σ_1 are measures of the straightness of region edges, μ_2 and σ_2 are measures of the intra-region grayscale variance, τ and ρ are Kendall's and Spearman's rank correlation coefficients between the region's and the target grayscale values, and η is the error in region count. Furthermore, A=0.0962016, B=0.116852, $\Gamma=50$, and $\Delta=20$ are empirically set constants.

The implementation of the latent diffusion model was adapted from (von Platen et al., 2022) and modified to include a Variational Autoencoder (VAE) with KL loss (Kingma & Welling, 2013). We employ DDIM (Song et al., 2020) as our sampler. Architecture and training details are listed in the appendix A.1.

3.2 ROTATION MATRIX

Theoretical Framework We define a parameter description of n-dimensional rotations that both encompasses all mathematic properties of rotation and offers modularity for managing the tradeoff between generalization capabilities and computational efficiency. To this end, we adopt the theoretical framework described in chapter 2, which posits that a general rotation in even dimensions can be described by $\frac{n}{2}$ mutually orthogonal planes (the rotation planes) and corresponding $\frac{n}{2}$ angles. Based on this framework, Lounesto (2001) identifies three special classes of rotations. These are:

• single rotations: only one plane of rotation with angle $\theta \neq 0$.

• double rotations: two planes of rotation with angles $\alpha \neq \theta \neq 0$.

• isoclinic rotation: two planes of rotation with angles $\alpha = \theta \neq 0$. In his paper, (Mortari, 2001, eq. 18) provides a formula for a rotation matrix that describes a single

rotation as a function of the rotation angle and the vectors spanning the plane of rotation:
$$R(P,\Phi) = I_n + (\cos\Phi - 1)PP^T + P\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}P^T\sin\Phi \tag{4}$$

Where Φ is the angle of rotation and $P = [\mathbf{p_1} \quad \mathbf{p_2}] \in \mathbb{R}^{n \times 2}$ is a matrix whose columns form an orthogonal basis for the plane of rotation. Using the fact that a general rotation can be expressed as

a product of $\frac{n}{2}$ simple rotations, we extend equation 4 for rotation matrices of general rotations.

$$R_{\text{gen}} = \prod_{i=1}^{\frac{n}{2}} R(P_i, \Phi_i) \tag{5}$$

Where $\begin{bmatrix} P_1 & P_2 & \dots & P_{\frac{n}{2}} \end{bmatrix} \in \mathbb{R}^{nxn}$ is an orthonormal basis of \mathbb{R}^n and $\begin{bmatrix} \Phi_1 & \Phi_2 & \dots & \Phi_{\frac{n}{2}} \end{bmatrix} \in \mathbb{R}^n$ are the rotation angles. We note that equation 5 simplifies to equation 4 for only one $\Phi_i \neq 0$.

Vector Rotation Let $\mathbf{v} \in S^{n-1} \subset \mathbb{R}^n$ a point on the surface of the sphere S^{n-1} and $\hat{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ its corresponding unit vector. let $\mathbf{t} \in T_{\mathbf{v}}(S^{n-1})$ be a non-zero unit vector in the tangent space at \mathbf{v} . To rotate \mathbf{v} towards \mathbf{t} along a geodesic by an angle Φ we can use equation 4 with $P := [\hat{\mathbf{v}} \quad \mathbf{t}]$:

$$\mathbf{v_{rot}} = R([\hat{\mathbf{v}} \quad \mathbf{t}], \Phi)\mathbf{v} \tag{6}$$

where \mathbf{v}_{rot} is the rotated vector.

Now let w be a second vector in the tangent space at v, orthogonal to t. To perform a double rotation on v in the directions of t and w, we can use 5:

$$\mathbf{v_{rot}} = R([\hat{\mathbf{v}} \quad \mathbf{t}], \Phi_1) R([\hat{\mathbf{v}} \quad \mathbf{w}], \Phi_2) \mathbf{v}$$
 (7)

Similarly, we can construct rotations with any number of planes and angles, up to a general rotation. For the purposes of this work, we restrict the rotations to paths along geodesics (or combinations thereof). This has two key advantages:

- 1. We can describe the rotation of a vector with k n-dimensional direction vectors and k angles, i.e. k(n-1) parameters. For a simple rotation, this is equivalent to other retraction methods.
- 2. Because random vectors in high dimensions are always almost orthogonal (Diaconis & Freedman, 1984), this constraint helps prevent the optimization from exploring rotations that have little to no effect on the vector's position.

This formulation provides significant modularity. Unlike common exploration techniques such as Backprojection or the exponential map, our approach decouples the angle and direction of rotation. This allows for fine-grained control over the scope and nature of the directional exploration. Furthermore, by enabling precise manipulation of the number and angles of rotation planes, our method facilitates the construction of more complex rotational transformations than previously possible.

A note on meaningful change Because residual errors are computed on the entire sample, we are primarily interested in transformations substantially that affect a large portion of a latent vector's dimensions. However, simple rotations do not consistently achieve this. For example, individual Givens rotations (Givens, 1958), i.e. rotations confined to hyperplanes spanned by coordinate axes, only modify the corresponding coordinate pair. They therefore induce negligible change in high-dimensional settings, causing the LDM to denoise the transformed latent sample into one nearly identical to the original, except for a small localized change. At the opposite extreme, one can show that rotations defined by planes spanned by vectors maximally distant from the coordinate axes impact the greatest number of dimensions of an n-dimensional vector. To restrict exploration to rotations that meaningfully change latent vectors, we construct a set of fixed directions in tangent space. Specifically, we select the columns of a Hadamard matrix, as they are simultaneously maximally distant from all coordinate hyperplanes and mutually orthogonal Tadej & Życzkowski (2006). For our setting, we project these column vectors onto the tangent space of the sphere at and normalize them.

3.3 REINFORCEMENT LEARNING

The RL Problem is defined as a Markov decision process (MDP) characterized by the tuple (S,A,P,r,γ) ; where S is the state space, A is the action space, P(s'|s,a) is the system transition probability, r(s,a) is the reward, and $\gamma \in (0,1)$ is the discount factor. The goal of the RL algorithm is to find an optimal policy $\pi^*(a|s)$ that maximizes the expected cumulative discounted reward:

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$
 (8)

Figure 1: Darcy flow samples (Experiment 3): permeability K (top) and pressure p (bottom).

Observation Space the observation space is equal for all experiments. At each time-step t the Agent receives observation $s_t = \text{vec}(x_0) \in \mathbb{R}^{c \times d^2} \sim \mathcal{N}(0, I)$, which is a latent sample with its spatial dimensions flattened, where d=16 is the latent dimension and c is the number of channels, i.e. c=2 for the Darcy Flow dataset and c=1 for the Voronoi dataset.

Reward Function We define the reward function as the negative residual of the respective dataset:

$$r(s,a) = -\epsilon(x_0) \tag{9}$$

where $x_0 = s$ and $\epsilon(x_0)$ is computed according to Equation 2 for the Darcy Flow dataset and according to Equation 3 for the Voronoi dataset. An episode terminates either upon reaching a predefined reward threshold or after 15 time-steps. The reward threshold is set at $\tau = -0.4$ for the Darcy Flow dataset and at $\tau = -1.3$ for the Voronoi dataset.

The action space varies depending on the experiment and is discussed in section 4. To train the agent, we employ Proximal Policy Optimization (PPO) (Schulman et al., 2017), a state-of-the art on-policy policy optimization algorithm. While the goal of the policy is not necessarily to find trajectories to optimal samples, but rather to identify them in one or a few steps, this setup effectively mimics a multi-armed bandit problem. Nonetheless, we choose PPO due to its superior ability to handle high-dimensional and partially continuous observation and action spaces, which are required in our experiments.

4 EXPERIMENTS

The experimental setup aims to validate three main hypotheses:

Hypothesis 1 Reinforcement learning is a viable paradigm for performing amortized, gradient-free optimization in the latent space of frozen diffusion models.

Hypothesis 2 Exploration techniques that account for the inherent spherical geometry of Gaussian latent spaces significantly outperform naive approaches.

Hypothesis 3 An exploration technique that enables control over the trade-off between generalization capabilities and computational efficiency (i.e., the number of parameters) offers significant advantages.

To this end, we conducted three analogous experiments on each dataset, as well as one additional experiment solely on the Darcy Flow dataset. The only variable between experiments within the same dataset is the action space of the RL agent; all other aspects, including the observation space, reward function, weights of the frozen latent diffusion model, architecture, and training parameters, remain unchanged. For all experiments, we applied the same transformation to both channels. Since the channels encode spatial information, this approach ensures that the transformations do not disrupt the spatial relationships learned by the VAE.

Figure 2: Voronoi samples generated by Experiment 2 (top) and by Experiment 3 (bottom)

4.1 EXPERIMENT 1 - UNCONSTRAINED EXPLORATION

The actions lie in the space $[w] \in \mathbb{R}^{n^2}$, where w is a single perturbation vector that is summed to all channels. Hence, the next state is computed as $\mathbf{s}_{t+1} = \mathbf{s}_t + \mathbf{1}_c \otimes \mathbf{w}$, where $\mathbf{1}_c \in \mathbb{R}^c$ is a vector of ones corresponding to the number of channels, and \otimes denotes the outer product, ensuring that w is added to each channel of \mathbf{s}_t .

4.2 EXPERIMENT 2 - ROTATION MATRIX I

The actions lie in the space $[\hat{t}, \Phi]$, where $\hat{t} \in T_s(S^{d^2-1}) \subset \mathbb{R}^{d^2}$ is a unit vector in the tangent space of the sphere at s and $\Phi \in [0, \pi]$ is a rotation angle. The next state is then computed according to equation 6 on both channels:

$$\mathbf{s}_{t+1} = \begin{bmatrix} R \begin{pmatrix} \begin{bmatrix} \hat{\mathbf{s}}_{t,1} & \hat{\mathbf{t}} \end{bmatrix}, \Phi \end{pmatrix} \mathbf{s}_{t,1} \\ R \begin{pmatrix} \begin{bmatrix} \hat{\mathbf{s}}_{t,1} & \hat{\mathbf{t}} \end{bmatrix}, \Phi \end{pmatrix} \mathbf{s}_{t,2} \end{bmatrix}$$

where $s_{t,i}$ denotes channel i of s_t , and R is the rotation matrix as defined in Equation 4.

4.3 EXPERIMENT 3 - ROTATION MATRIX II

Therefore, the actions lie in the space (i, Φ) , where $i \in 1, \ldots, d^2$ and $\Phi = \frac{k\pi}{79}$, for $k \in 0, \ldots, 79$. The next state is then computed according to equation 6:

$$\mathbf{s}_{t+1} = \begin{bmatrix} R\left(\begin{bmatrix} \hat{\mathbf{s}}_{t,1} & \hat{\mathbf{h_j}} \end{bmatrix}, \Phi\right) \mathbf{s}_{t,1} \\ R\left(\begin{bmatrix} \hat{\mathbf{s}}_{t,1} & \hat{\mathbf{h_j}} \end{bmatrix}, \Phi\right) \mathbf{s}_{t,2} \end{bmatrix}$$

where $\hat{\mathbf{h_j}}$ is th *i*th column of the Hadamard matrix, Φ the discretized angle, $\mathbf{s_{t,i}}$ denotes channel *i* of s_t , and R is the rotation matrix as defined in Equation 4.

4.4 EXPERIMENT 4 - DOUBLE ROTATION

In experiments two and three, we have computed the rotation only from one channel and have applied it to both. In this experiment, we compute the rotation from both channels. We essentially perform a isoclinine, double rotation with two planes of rotations: $Span(\mathbf{s_{t_1}}, \hat{\mathbf{h_i}})$ and $Span(\mathbf{s_{t_2}}, \hat{\mathbf{h_i}})$. We use the same action space as in experiment 3 and the next state is then computed according to equation 7:

$$\mathbf{s}_{t+1} = \begin{bmatrix} R\left(\begin{bmatrix} \hat{\mathbf{s}}_{t,1} & \hat{\mathbf{h}_j} \end{bmatrix}, \Phi\right) R\left(\begin{bmatrix} \mathbf{s}_{t,2} & \hat{\mathbf{h}_j} \end{bmatrix}, \Phi\right) \mathbf{s}_{t,1} \\ R\left(\begin{bmatrix} \hat{\mathbf{s}}_{t,1} & \hat{\mathbf{h}_j} \end{bmatrix}, \Phi\right) R\left(\begin{bmatrix} \mathbf{s}_{t,2} & \hat{\mathbf{h}_j} \end{bmatrix}, \Phi\right) \mathbf{s}_{t,2} \end{bmatrix}$$

where $\hat{\mathbf{h_j}}$ is th *i*th column of the Hadamard matrix, Φ the discretized angle, $\mathbf{s_{t,i}}$ denotes channel *i* of s_t , and R is the rotation matrix as defined in Equation 5.

Figure 3: Darcy Flow: RL training K (left) and residual error comparison (right)

5 RESULTS AND DISCUSSION

5.1 DARCY FLOW

430

Figure 3 presents the results of the four experiments conducted on the Darcy Flow dataset. The left subfigure highlights two key findings: Firstly, our geometry-aware exploration technique consistently outperforms unconstrained exploration, thereby validating hypothesis 2. Second, restricting the search directions to a predefined set led to faster and, in some cases, higher convergence. Furthermore, by leveraging the chosen theoretical framework of n-dimensional rotations, and using the underexplored concepts of double and isoclinic rotations, we were able to further enhance exploration performance, validating hypothesis 3. The right subfigure provides evidence for hypothesis 1: our framework achieved a $\sim\!\!25\%$ relative reduction in PDE residual compared to the vanilla LDM and obtained an absolute PDE residual comparable to state-of-the-art models, as reported by Bastek et al. (2025).

Figure 4 shows the distribution of permeability and pressure values for 1,000 samples drawn from the training data, the latent diffusion model (LDM), and experiment 3. The LDM closely matches the distribution of the training data, although with a slight shift. The RL optimizer corrects this shift but also narrows the distribution. These findings illustrate a common trend in deep generative learning: a trade-off between sample quality and sample diversity. Nevertheless, the modularity of our exploration technique enables control over this trade-off, for example, by adjusting the number of search directions or the maximum angle of rotation, further validating hypothesis 3. Finally, Figure 1 displays Darcy flow samples generated using the setup described in experiment 3.

Figure 4: Darcy Flow: Distribution of permeability K (left) and pressure p (right)

•

5.2 Voronoi

Figure 5 presents the results of the three experiments conducted on the Voronoi dataset. The findings closely parallel those from the Darcy Flow experiments: geometry-aware exploration consistently outperforms unconstrained exploration, resulting in an approximate $\sim\!10\%$ relative reduction in residual error for experiment 2 and an approximate $\sim\!44\%$ relative reduction for experiment 3. In this case, the trade-off between sample quality and diversity becomes more pronounced, as visual inspection revealed a slightly increased tendency towards mode collapse. See Figure 2 for further illustration.

Figure 5: Voronoi: RL training K (left) and residual error comparison (right)

6 CONCLUSION

In this paper, we introduced Rotational Latent Space Optimization (RLSO) with Reinforcement Learning (RL), a novel framework that leverages reinforcement learning for efficient, geometry-aware guidance of pre-trained diffusion models. Our experiments, conducted across two diverse scientific domains, demonstrate that respecting the spherical geometry of the latent space via rotational exploration yields significantly higher-quality samples compared to unconstrained optimization.

Moreover, by amortizing the optimization process with an RL agent, our method generates constraint-aligned samples in a single denoising pass, eliminating the substantial computational overhead of iterative LSO techniques. We have shown that this approach is a viable and effective paradigm for improving sample quality wherever a guiding reward signal is available, establishing a new path for efficient latent space control

6.1 Outlook

Our approach shows strong potential, though several aspects present opportunities for further exploration. First, as an LSO method, RLSO is inherently shaped by the expressive capacity of the underlying diffusion model. It is particularly effective at identifying optimal latent codes within the learned data manifold, but it cannot introduce features entirely outside the model's training distribution. Second, scalability of the RL agent becomes increasingly important as latent space dimensionality grows with larger models. While our rotational method's modularity helps address this by enabling optimization in lower-dimensional subspaces, future work could investigate more sample-efficient and scalable RL algorithms tailored for high-dimensional continuous control.

In addition, our experiments focused on isoclinic double and simple rotations, but a broader investigation of alternative rotation types may yield new insights into how different geometric transformations influence optimization performance. Looking ahead, extending RLSO to constraint-intensive domains such as molecular generation or engineering design represents a promising avenue. Furthermore, exploring hybrid strategies that combine geometry-aware exploration with complementary forms of guidance may enable multi-objective optimization, allowing generation to simultaneously respect physical constraints and adapt to stylistic or textual prompts.

REFERENCES

- Donghoon Ahn, Jiwon Kang, Sanghyun Lee, Jaewon Min, Minjae Kim, Wooseok Jang, Hyoungwon Cho, Sayak Paul, SeonHwa Kim, Eunju Cha, et al. A noise is worth diffusion guidance. *arXiv* preprint arXiv:2412.03895, 2024.
- Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature of deep generative models. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=SJzRZ-WCZ.
- Jan-Hendrik Bastek, WaiChing Sun, and Dennis Kochmann. Physics-informed diffusion models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=tpYeermigp.
- Avrim Blum, John Hopcroft, and Ravindran Kannan. *Foundations of data science*. Cambridge University Press, 2020.
- Erik Bodin, Henry Moss, and Carl Henrik Ek. Linear combinations of latents in diffusion models: interpolation and beyond. *arXiv e-prints*, pp. arXiv–2408, 2024.
- Arthur Cayley. Sur quelques propriétés des déterminants gauches. de Gruyter, 1846.
- Arthur Cayley. *On the Motion of Rotation of a Solid Body*, pp. 28–35. Cambridge Library Collection Mathematics. Cambridge University Press, 2009.
 - Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and Patrick Smagt. Metrics for deep generative models. In *International Conference on Artificial Intelligence and Statistics*, pp. 1540–1550. PMLR, 2018.
 - Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs. *arXiv preprint arXiv:1805.11973*, 2018.
 - Rucha Deshpande, Mark A. Anastasio, and Frank J. Brooks. A method for evaluating deep generative models of images for hallucinations in high-order spatial context. *Pattern Recognition Letters*, 186:23–29, 2024. doi: https://doi.org/10.1016/j.patrec.2024.08.023.
 - Persi Diaconis and David Freedman. Asymptotics of graphical projection pursuit. *The annals of statistics*, pp. 793–815, 1984.
 - Leonhard Euler. Formulae generales pro translatione quacunque corporum rigidorum. *Novi Commentarii academiae scientiarum Petropolitanae*, pp. 189–207, 1776.
 - Luca Eyring, Shyamgopal Karthik, Karsten Roth, Alexey Dosovitskiy, and Zeynep Akata. ReNO: Enhancing one-step text-to-image models through reward-based noise optimization. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=MXY0qsGgeO.
 - Luca Eyring, Shyamgopal Karthik, Alexey Dosovitskiy, Nataniel Ruiz, and Zeynep Akata. Noise hypernetworks: Amortizing test-time compute in diffusion models. *arXiv preprint* arXiv:2508.09968, 2025.
- Wallace Givens. Computation of plain unitary rotations transforming a general matrix to triangular form. *Journal of the Society for Industrial and Applied Mathematics*, 6(1):26–50, 1958.
- Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of molecules. *ACS central science*, 4(2):268–276, 2018.
- Benjamin Holzschuh, Simona Vegetti, and Nils Thuerey. Solving inverse physics problems with score matching. *Advances in Neural Information Processing Systems*, 36, 2023.

Jing Hu, Chengming Feng, Shu Hu, Ming-Ching Chang, Xin Li, Xi Wu, and Xin Wang. Rlministyler: Light-weight rl style agent for arbitrary sequential neural style generation. In James Kwok (ed.), *Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence*, pp. 1116–1124. International Joint Conferences on Artificial Intelligence Organization, 2025. doi: 10.24963/ijcai.2025/125.

- Jingyu Hu, Ka-Hei Hui, Zhengzhe Liu, Ruihui Li, and Chi-Wing Fu. Neural wavelet-domain diffusion for 3d shape generation, inversion, and manipulation. *ACM Trans. Graph.*, 43(2), 2024. doi: 10.1145/3635304.
- Christian Jacobsen, Yilin Zhuang, and Karthik Duraisamy. Cocogen: Physically consistent and conditioned score-based generative models for forward and inverse problems. *SIAM Journal on Scientific Computing*, 47(2):C399–C425, 2025. doi: 10.1137/24M1636071.
- Yifeng Jiang, Tingnan Zhang, Daniel Ho, Yunfei Bai, C Karen Liu, Sergey Levine, and Jie Tan. Simgan: Hybrid simulator identification for domain adaptation via adversarial reinforcement learning. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2884–2890. IEEE, 2021.
- Cheng Jin, Zhenyu Xiao, Chutao Liu, and Yuantao Gu. Angle domain guidance: Latent diffusion requires rotation rather than extrapolation. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=DidTLeezyp.
- Shyamgopal Karthik, Karsten Roth, Massimiliano Mancini, and Zeynep Akata. If at first you don't succeed, try, try again: Faithful diffusion-based text-to-image generation by selection. *arXiv* preprint arXiv:2305.13308, 2023.
- Korrawe Karunratanakul, Konpat Preechakul, Emre Aksan, Thabo Beeler, Supasorn Suwajanakorn, and Siyu Tang. Optimizing diffusion noise can serve as universal motion priors. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1334–1345, 2024.
- Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint* arXiv:1312.6114, 2013.
- Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffusion model for audio synthesis. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=a-xFK8Ymz5J.
- Elizaveta Kozlova, Arthur Valentin, Aous Khadhraoui, and Daniel Nakhaee-Zadeh Gutierrez. Proteinflow: a python library to pre-process protein structure data for deep learning applications. *bioRxiv*, pp. 2023–09, 2023.
- Pertti Lounesto. Clifford algebras and spinors. In *Clifford algebras and their applications in mathematical physics*, pp. 25–37. Springer, 2001.
- Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.
- Daniele Mortari. n-dimensional cross product and its application to the matrix eigenanalysis. *Journal of Guidance, Control, and Dynamics*, 20(3):509–515, 1997.
- Daniele Mortari. On the rigid rotation concept in n-dimensional spaces. *The Journal of the astronautical sciences*, 49:401–420, 2001.
- Yong-Hyun Park, Mingi Kwon, Junghyo Jo, and Youngjung Uh. Unsupervised discovery of semantic latent directions in diffusion models. *arXiv preprint arXiv:2302.12469*, 2023. doi: 10.48550/arXiv.2302.12469.
- Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based generative network for speech synthesis. In *ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 3617–3621. IEEE, 2019.

- Donatas Repecka, Vykintas Jauniskis, Laurynas Karpus, Elzbieta Rembeza, Irmantas Rokaitis, Jan Zrimec, Simona Poviloniene, Audrius Laurynenas, Sandra Viknander, Wissam Abuajwa, et al. Expanding functional protein sequence spaces using generative adversarial networks. *Nature Machine Intelligence*, 3(4):324–333, 2021.
 - Olinde Rodrigues. Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. *Journal de mathématiques pures et appliquées*, 5:380–440, 1840.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, New Orleans, USA, 2022. IEEE Computer Society.
 - Luca Sacchetto, Stefan Röhrl, and Klaus Diepold. Iterative visual interaction with latent diffusion models. In Helmut Degen and Stavroula Ntoa (eds.), *Artificial Intelligence in HCI*, pp. 411–421, Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-60606-9.
 - Dvir Samuel, Rami Ben-Ari, Nir Darshan, Haggai Maron, and Gal Chechik. Norm-guided latent space exploration for text-to-image generation. *Advances in Neural Information Processing Systems*, 36:57863–57875, 2023.
 - Dvir Samuel, Rami Ben-Ari, Simon Raviv, Nir Darshan, and Gal Chechik. Generating images of rare concepts using pre-trained diffusion models. In *Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence*, AAAI'24. AAAI Press, 2024. ISBN 978-1-57735-887-9. doi: 10.1609/aaai.v38i5.28270.
 - PH Schoute. Le déplacement le plus général dans l'espace à n dimensions. Brill, 1892.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020.
 - Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=StlgiarCHLP.
 - Ruoxi Sun, Hanjun Dai, Li Li, Steven Kearnes, and Bo Dai. Towards understanding retrosynthesis by energy-based models. *Advances in Neural Information Processing Systems*, 34:10186–10194, 2021.
 - Wojciech Tadej and Karol Życzkowski. A concise guide to complex hadamard matrices. *Open Systems & Information Dynamics*, 13(2):133–177, 2006.
 - Siddarth Venkatraman, Mohsin Hasan, Minsu Kim, Luca Scimeca, Marcin Sendera, Yoshua Bengio, Glen Berseth, and Nikolay Malkin. Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=94c9hu6Fsv.
 - Mathurin Videau, Nickolai Knizev, Alessandro Leite, Marc Schoenauer, and Olivier Teytaud. Interactive latent diffusion model. In *Proceedings of the Genetic and Evolutionary Computation Conference*, pp. 586–596, Portugal, Lisbon, 2023. ACM. doi: 10.1145/3583131.3590471.
- Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul, Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/diffusers, 2022.

- Andrew Wagenmaker, Yunchu Zhang, Mitsuhiko Nakamoto, Seohong Park, Waleed Yagoub, Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with latent space reinforcement learning. In 9th Annual Conference on Robot Learning, 2025. URL https://openreview.net/forum?id=jU7AbGq3se.
 - Martin J. Wainwright. *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.
 - Bram Wallace, Akash Gokul, Stefano Ermon, and Nikhil Naik. End-to-end diffusion latent optimization improves classifier guidance. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7246–7256, 2023. doi: 10.1109/ICCV51070.2023.00669.
 - Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.
 - Jungdam Won, Deepak Gopinath, and Jessica Hodgins. Physics-based character controllers using conditional vaes. *ACM Transactions on Graphics (TOG)*, 41(4):1–12, 2022.
 - Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric diffusion model for molecular conformation generation. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=PzcvxEMzvQC.
 - Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel wavegan: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 6199–6203. IEEE, 2020.
 - Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In *Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 617–626. ACM, 2020.
 - Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Zilong Wang, Aliaksandra Shysheya, Jonathan Crabbé, Shoko Ueda, et al. A generative model for inorganic materials design. *Nature*, 2025.
 - Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline reinforcement learning. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=HA0oLUvuGI.

A APPENDIX

A.1 HYPERPARAMETERS

Hyperparameter	Value
In-, output channels (Darcy Flow)	2,2
In-, output channels (Voronoi) 1, 1	
ResNet blocks per down-/up-sampling 2	
ResNet block normalization Group Normalization	
ResNet block activation function SiLU	
Attention block normalization LayerNorm	
Feature map resolutions	[64, 64, 128, 256]
Attention head dimension	32

Table 1: Diffusion model architecture

Hyperparameter	Value
Latent channels (Darcy Flow)	2
Latent channels (Voronoi)	1
Latent dimension	16×16
Down block type, number	DownEncoderBlock2D, 3
Up block number, number	UPDecoderBlock2D, 3
Block output channels	[64, 64, 64]

Table 2: VAE architecture

Hyperparameter	Value
Actor Hidden layers	[2048, 2048]
Critic Hidden Layers	[2048, 2048]
Dropout Rate	0.3
Learning Rate	Linear Schedule $[1 \cdot 10^{-6}, 1 \cdot 10^{-7}]$
GAE Lambda	0.9

Table 3: PPO hyperparameters

A.2 LLM USAGE

We used a large language model only for minor editing, such as correcting typos, fixing grammatical errors, and limited rephrasing.