

000 ROTATIONS ON LATENT HYPERSPHERES: 001 002 A GEOMETRY-AWARE GUIDING FRAMEWORK FOR 003 DIFFUSION MODELS 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Diffusion models have emerged as a powerful tool across diverse domains. How-
014 ever, their purely data-driven nature can produce samples that deviate from
015 domain-governing constraints. We introduce a plug-and-play, Reinforcement
016 Learning framework that operates in the latent space of pre-trained diffusion
017 models to optimize initial noise samples. Our approach, motivated by the near-
018 spherical geometry of high-dimensional Gaussian distributions, employs a novel
019 rotation-matrix-based scheme for efficient latent space exploration. This steers the
020 model toward more feature-preserving outputs, guided by task-specific rewards
021 computed on the final samples. We evaluate our method on three diffusion mod-
022 els: one trained on solutions of the Darcy Flow PDE, one on a synthetic dataset
023 with complex structural features, and a text-conditioned one. Across all three set-
024 tings, our framework yields significant improvements in sample quality, achieving
025 a $\sim 25\%$ relative reduction in PDE residual, up to a $\sim 44\%$ relative improvement
026 on the synthetic dataset's feature-alignment metric, and up to a $\sim 80\%$ relative
027 improvement on human preference, compared to the vanilla diffusion models. Fi-
028 nally, we show that rotation-matrix-based exploration significantly outperforms
029 unconstrained exploration, validating our geometry-aware approach and establish-
030 ing a more effective method for latent space control.

031 1 INTRODUCTION

033 Deep generative models, particularly diffusion (Song et al., 2021) and Latent Diffusion Models
034 (LDM) (Rombach et al., 2022) have emerged as remarkably powerful tools for learning complex
035 data distributions. Their success has been more prominent in image synthesis, where they have rev-
036 olutionized computer vision and content creation. However, their applicability extends far beyond
037 the visual arts, with successful deployments in scientific and engineering domains such as 3D mod-
038 eling (Hu et al., 2024), audio synthesis (Prenger et al., 2019; Yamamoto et al., 2020; Kong et al.,
039 2021), molecular generation (Gómez-Bombarelli et al., 2018; De Cao & Kipf, 2018; Zang & Wang,
040 2020; Sun et al., 2021; Xu et al., 2022), protein design (Repecka et al., 2021; Kozlova et al., 2023;
041 Watson et al., 2023), physics simulation (Jiang et al., 2021; Won et al., 2022; Holzschuh et al.,
042 2023) and recently material design (Zeni et al., 2025).

043 Despite their impressive capabilities, a key limitation of these purely data-driven models is their
044 tendency to produce samples that may not adhere to known, domain-governing constraints. This is
045 particularly critical in scientific applications where outputs must satisfy physical laws, mathematical
046 principles, or structural requirements. Furthermore, many applications benefit from steering the
047 generative process towards a specific, desirable region of the output distribution for downstream
048 tasks. Prominent examples include generating solutions to Partial Differential Equations (PDEs),
049 where outputs must remain consistent with physical principles; designing 3D models with strict
050 geometric tolerances; or creating novel proteins that adhere to fundamental biochemical constraints.

051 To address this, several techniques for guiding generative models have been proposed. These range
052 from costly fine-tuning the model's weights or incorporating constraints directly into the training
053 objective, to Latent Space Optimization (LSO). LSO has emerged as a flexible, post-hoc alternative
that operates on the initial noise vectors of a pre-trained, frozen generative model, often guided

054 by reward signals to align outputs with specific objectives like human preferences. Nevertheless,
 055 within the current LSO landscape, we identify two significant gaps. First, most existing methods
 056 are computationally expensive, requiring iterative optimization and multiple full denoising passes to
 057 generate a single sample, which creates a substantial bottleneck at inference time. Second, current
 058 approaches often treat the latent space as a generic Euclidean space, overlooking the near-spherical
 059 geometry of high-dimensional Gaussian noise. We posit that failing to account for this inherent
 060 structure leads to inefficient exploration and can degrade sample quality.

061 In this work, we propose a novel framework to address these shortcomings. Our main contributions
 062 are:
 063

- 064 • We introduce Rotational Latent Space Optimization (RLSO), a novel, geometry-aware,
 065 modular exploration technique for the latent space of frozen diffusion models. RLSO
 066 leverages rotation matrices to preserve the norm of latent vectors, respecting the inherent
 067 geometry of the Gaussian prior.
- 068 • We formulate the optimization of the initial noise as a Reinforcement Learning (RL)
 069 problem, allowing us to amortize the optimization cost. This enables the generation of
 070 constraint-aligned samples with only a single denoising pass at inference time, drastically
 071 improving efficiency.
- 072 • We provide a validation of our approach on three distinct use-cases from vastly different
 073 domains, demonstrating its versatility and effectiveness in improving sample quality.

074 Our experiments show that our geometry-aware RLSO framework significantly outperforms stan-
 075 dard, unconstrained exploration. Furthermore, we demonstrate that the modularity of our approach
 076 can be leveraged to control the trade-off between generalization and computational efficiency, es-
 077 tablishing a new and effective paradigm for latent space control in diffusion models.
 078

079 2 RELATED WORK

081 **High-Dimensional Rotations** The study of the theory and the application of Rotations in dimen-
 082 sions higher than three originates in the 18th century, but the literature remains limited and lacks
 083 a unified taxonomy. While some applications have successfully used the Rodrigues' formula (Ro-
 084 drigues, 1840) or Cayley's transform (Cayley, 2009; 1846), for our work we use rotation matrices
 085 as a representation of rotations. Specifically, we follow Schoute (1892)'s theoretical generalization
 086 of Euler (1776)'s *Principal Rotation Theorem* to n dimensions:
 087

088 *Any displacement of a rigid body about a fixed point in n dimensions can be achieved for n even*
 089 *by $\frac{n}{2}$ simple rotations in mutually orthogonal planes about the fixed point and for n odd by $\frac{n-1}{2}$*
 090 *such rotations. Furthermore the rotations commute.*

091 In practice, we rely on Mortari (2001): by using the properties of the eigen-analysis of rotation
 092 matrices and an n-dimensional extension to the vector cross product (Mortari, 1997), the author
 093 provides a formula to construct simple rotations. This formulation allows us to uniquely identify a
 094 rotation matrix by defining a rotation angle and a principal plane of rotation.
 095

096 **Latent Space of Diffusion Models** We define the latent space of a Diffusion model as the Gaus-
 097 sian space $\mathcal{X}_0 \sim \mathcal{N}(\mathbf{0}, I)$ containing all possible initial noise samples $x_0 \in \mathbb{R}^{c \times N \times N}$, where c is
 098 the number of channels and N is the latent dimension. In higher dimensions ($N \gg 1$), due to
 099 the *Concentration of Measure Phenomenon* (Wainwright, 2019) and the *Gaussian Annulus Theorem*
 100 (Blum et al., 2020), the expected length of Gaussian samples is concentrated around the square root
 101 of its dimensions d , i.e. in a thin shell of an n-sphere with radius \sqrt{d} . This means that a gaussian
 102 space behaves more akin to a hyper-spherical space than an euclidean one.

103 Though underexplored, this phenomenon has been described (Arvanitidis et al., 2018; Chen et al.,
 104 2018) and exploited, either by exploring the latent space with norm-regularization techniques or
 105 Spherical Linear Interpolation (Videau et al., 2023; Samuel et al., 2023; Bodin et al., 2024; Sacchetto
 106 et al., 2024). The works of Park et al. (2023) and Jin et al. (2025) advance in this direction and use
 107 geodesic shooting for latent space exploration and Rodrigues' formula-based rotation for guidance,
 respectively.

108 We note that, while our work focuses on diffusion models specifically, this interpretation is valid for
 109 any kind of generative model that possesses a Gaussian latent space.
 110

112
 113 **Latent Space Optimization** Latent space Optimization, or Noise Optimization, is a rapidly growing
 114 field that encompasses all algorithms and techniques which aim to optimize the input noise (or
 115 some intermediary latent space) of frozen, pre-trained generative models. A common approach is to
 116 optimize latent samples with classic optimization techniques, either by selecting the best candidate
 117 out of a population (Karthik et al., 2023) or by backpropagating the gradients through the full de-
 118 noising process (Samuel et al., 2023; Wallace et al., 2023; Samuel et al., 2024; Karunratanakul et al.,
 119 2024). Alternatively, Eyring et al. (2024) use a one-step diffusion model. These do achieve signifi-
 120 cant improvements, but have two significant drawbacks: backpropagating the gradients through the
 121 denoising process may be costly and importantly they add significant computational overhead at
 122 inference time, because they need to run the denoising process multiple times (Wu et al., 2023).

123 On the other hand, this issue can also be mitigated by training an auxiliary model to optimize the
 124 latent samples, so that only one pass through the auxiliary model and the denoising process is re-
 125 quired at inference time. Lu et al. (2023) use an auxiliary model to predict the values of an energy
 126 function to guide the sampling process, Ahn et al. (2024) train a model in the latent space to mimic
 127 Classifier-Free Guidance, while Venkatraman et al. (2025) train a model to substitute the sampler by
 128 learning the reverse denoising process of high-reward samples. Most similarly to our work, Eyring
 129 et al. (2025) recently proposed to train a LoRA network to predict latent samples that denoise into
 130 high-reward samples.

131 While these papers presents similarities to our work, namely training auxiliary models to gener-
 132 ate optimized latent samples for pre-trained diffusion models, our approach introduces several key
 133 differences. Typically, the techniques employed to ensure that optimized latent samples remain
 134 Gaussian and within the *shell* range from adding a penalty term to the cost function (Eyring et al.,
 135 2024; 2025; Venkatraman et al., 2025), adding a small Gaussian perturbation to each update step
 136 (Karunratanakul et al., 2024), projecting back to the shell and adding small Gaussian perturbations
 137 (Wallace et al., 2023), or using small, regularized gradient steps (Karunratanakul et al., 2024). In-
 138 stead of relying on penalizing terms with high overhead or projecting back to the shell, which limits
 139 exploration and doesn't ensure Gaussianity on its own, our rotation-matrix-based exploration strat-
 140 egy offers a principled and geometry-aware method for generating optimized latent samples that
 141 automatically remain both in-distribution and semantically linked to the original latent sample.

142 Moreover, this exploration strategy allows for modular control over the direction and angle. In
 143 contrast to Ahn et al. (2024) and Eyring et al. (2025), our use of Policy Gradient training enables
 144 compatibility with arbitrary reward functions, even when their gradients are intractable. Compared
 145 to Venkatraman et al. (2025), who train a large U-Net diffusion model, our approach is far more
 146 lightweight, requiring an order of magnitude fewer parameters. Finally, we validate our method be-
 147 yond text-to-image models and human preference alignment, demonstrating its effectiveness across
 148 diverse domains.

149 Approaches whose noise optimization is an inherent part of training the main model naturally do not
 150 suffer from this issue, like Hu et al. (2025) who train the encoder of their encoder-decoder structure
 151 as an RL-policy in the latent space or Wagenmaker et al. (2025) who train an RL policy for robot
 152 control tasks that outputs actions in the latent space. Finally, Zhang et al. (2025) expand on the work
 153 of Lu et al. (2023) by integrating the energy-function guidance in the training of the main model.

154 3 METHODOLOGY

155 Our Approach employs a Reinforcement Learning Agent to navigate the latent space of a frozen, pre-
 156 trained Latent Diffusion Model. The agent is effectively trained to apply a rotational transformation
 157 to the initial Gaussian noise sample, before the LDM decodes it into a final sample (see Appendix
 158 A.2). To serve as engine and benchmark to our experiments we select two model architectures: an
 159 unconditional Latent Diffusion Model and a text-conditioned Latent Diffusion Model.
 160

162 3.1 LATENT DIFFUSION MODELS
163164 3.1.1 UNCONDITIONAL LATENT DIFFUSION MODEL
165

166 We train an unconditional Latent Diffusion model (Rombach et al., 2022) from scratch on two
167 datasets from different domains: solutions of the Darcy Flow Partial Differential Equations (PDE)
168 and an ad-hoc synthetic image dataset. Both provide computable metrics that measure how much
169 a sample violates the dataset validity constraints, i.e. a *residual error*. A residual error of zero
170 corresponds to a valid sample.

171 **Darcy Flow** Here we use the dataset created by Bastek et al. (2025), based partially on the work
172 of Jacobsen et al. (2025): it is a dataset of 10000 solutions of the steady-state 2D Darcy-flow PDEs,
173 which describe fluid movement through a porous medium. Each of the samples is generated by
174 sampling the permeability field $K(\xi)$ from a Gaussian random field on a 64×64 grid and solving
175 for the pressure distribution $p(\xi)$ with a finite-differences, least-squares linear solver. This results in
176 samples $(K, p) \in \mathbb{R}^{2 \times 64 \times 64}$. The per-grid-cell residual error is calculated based on the physical law
177 of mass conservation as follows:

$$178 \quad R(K, p) = \nabla(K \nabla p) + f. \quad (1)$$

179 where K is the permeability field, p is the pressure field, and f is the source function. A scalar
180 residual error for one sample x_0 is then obtained as the mean absolute residual error:

$$181 \quad \epsilon(x_0) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n |R_{ij}(K, p)| \quad (2)$$

184 where $n = 64$ and $R_{ij}(K, p)$ is the residual error at grid cell (i, j) . We refer to Bastek et al. (2025)
185 for further details.

186 **Voronoi** Deshpande et al. (2024) introduce several synthetic datasets to benchmark image-
187 synthesis generative models. These datasets, which the authors call Stochastic Context Models
188 (SCM), contain images with different features, constraint, and rules that can be recovered after
189 generation. They also provide scripts to compute a variety of quality metrics based on these features.
190 For our experiments, we select the Voronoi SCM and simplify it slightly, using 64x64 instead of
191 256x256 images and restricting it to the class of images containing 16 regions. Hence creating
192 a dataset of 10000 grayscale images. Out of a selection of the quality metrics introduced by the
193 authors we define our own residual error:

$$194 \quad \epsilon(x_0) = \frac{\mu_1}{A} + \frac{\sigma_1}{2B} + \frac{\mu_2}{\Gamma} + \frac{\sigma_2}{2\Delta} + \tau + \rho + 1.5\eta, \quad (3)$$

196 where μ_1 and σ_1 are measures of the straightness of region edges, μ_2 and σ_2 are measures of the
197 intra-region grayscale variance, τ and ρ are Kendall's and Spearman's rank correlation coefficients
198 between the region's and the target grayscale values, and η is the error in region count. Furthermore,
199 A , B , Γ , and Δ are normalizing constants. Specifically, $A = 0.0962016$ and $B = 0.116852$ are the
200 average μ_1 and σ_1 of the training dataset, respectively. $\Gamma = 50$ and $\Delta = 20$ are set such that $\sim 95\%$
201 of the non-zero values of the training dataset fall in the $[0, 1]$ range.

202 The implementation of the latent diffusion model was adapted from (von Platen et al., 2022) and
203 modified to include a Variational Autoencoder (VAE) with KL loss (Kingma & Welling, 2013). We
204 employ DDIM (Song et al., 2020) as our sampler. Architecture and training details are listed in the
205 Appendix A.

206 3.1.2 TEXT-CONDITIONED LATENT DIFFUSION MODEL
207

208 For the text-conditioned LDM, we use Stable Diffusion 1.5 (Rombach et al., 2022), integrated with
209 the 2-Step Hyper-SD LoRA (Ren et al., 2024) and the DDIM sampler (Song et al., 2020). As a
210 metric for sample quality, we employ Image Reward (Xu et al., 2023), a pre-trained text-to-image
211 human preference reward model that, given a generated image and its corresponding prompt, outputs
212 a human preference score. Differently to the experiments on the unconditional LDM, the human
213 preference score is not a residual since a higher score corresponds to a higher sample quality and
214 it has no theoretical upper bound. Therefore, we define the reward as the output of the human
215 preference reward model $G(x_0)$, shifted so that the majority of rewards are negative:

$$216 \quad r(x_0) = G(x_0) - 2 \quad (4)$$

216 3.2 ROTATION MATRIX
217

218 **Theoretical Framework** We define a parameter description of n-dimensional rotations that both
219 encompasses all mathematic properties of rotation and offers modularity for managing the tradeoff
220 between generalization capabilities and computational efficiency. To this end, we adopt the theoreti-
221 cal framework described in chapter 2, which posits that a general rotation in even dimensions can be
222 described by $\frac{n}{2}$ mutually orthogonal planes (the rotation planes) and corresponding $\frac{n}{2}$ angles. Based
223 on this framework, Lounesto (2001) identifies three special classes of rotations. These are:

- 224 • single rotations: only one plane of rotation with angle $\theta \neq 0$.
- 225 • double rotations: two planes of rotation with angles $\alpha \neq \theta \neq 0$.
- 226 • isoclinic rotation: two planes of rotation with angles $\alpha = \theta \neq 0$.

228 We extend this classification system to higher dimensions and introduce the n-fold rotation. In n
229 dimensions, there exists up to n-fold rotations. They can be isoclinic (if n is even) or as pseudo-
230 isoclinic (if n is odd) Richard et al. (2010). In his paper, (Mortari, 2001, eq. 18) provides a formula
231 for a rotation matrix that describes a single rotation as a function of the rotation angle and the vectors
232 spanning the plane of rotation:

$$234 R(P, \Phi) = I_n + (\cos \Phi - 1)PP^T + P \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} P^T \sin \Phi \quad (5)$$

236 Where Φ is the angle of rotation and $P = [\mathbf{p}_1 \ \mathbf{p}_2] \in \mathbb{R}^{n \times 2}$ is a matrix whose columns form an
237 orthogonal basis for the plane of rotation. Using the fact that a general rotation can be expressed as
238 a product of $\frac{n}{2}$ simple rotations, we extend equation 5 for rotation matrices of general rotations.

$$239 R_{\text{gen}} = \prod_{i=1}^{\frac{n}{2}} R(P_i, \Phi_i) \quad (6)$$

243 Where $[P_1 \ P_2 \ \dots \ P_{\frac{n}{2}}] \in \mathbb{R}^{n \times n}$ is an orthonormal basis of \mathbb{R}^n and $[\Phi_1 \ \Phi_2 \ \dots \ \Phi_{\frac{n}{2}}] \in \mathbb{R}^n$
244 are the rotation angles. We note that equation 6 simplifies to equation 5 for only one $\Phi_i \neq 0$.

245 **Vector Rotation** Let $\mathbf{v} \in S^{n-1} \subset \mathbb{R}^n$ a point on the surface of the sphere S^{n-1} and $\hat{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ its
246 corresponding unit vector. let $\mathbf{t} \in T_{\mathbf{v}}(S^{n-1})$ be a non-zero unit vector in the tangent space at \mathbf{v} . To
247 rotate \mathbf{v} towards \mathbf{t} along a geodesic by an angle Φ we can use equation 5 with $P := [\hat{\mathbf{v}} \ \mathbf{t}]$:

$$249 \mathbf{v}_{\text{rot}} = R([\hat{\mathbf{v}} \ \mathbf{t}], \Phi) \mathbf{v} \quad (7)$$

251 where \mathbf{v}_{rot} is the rotated vector.

252 Now let \mathbf{w} be a second vector in the tangent space at \mathbf{v} , orthogonal to \mathbf{t} . To perform a double rotation
253 on \mathbf{v} in the directions of \mathbf{t} and \mathbf{w} , we can use 6:

$$254 \mathbf{v}_{\text{rot}} = R([\hat{\mathbf{v}} \ \mathbf{t}], \Phi_1) R([\hat{\mathbf{v}} \ \mathbf{w}], \Phi_2) \mathbf{v} \quad (8)$$

256 Similarly, we can construct rotations with any number of planes and angles, up to a general rotation.
257 For the purposes of this work, we restrict the rotations to paths along geodesics (or combinations
258 thereof). This has two key advantages:

- 259 1. We can describe the rotation of a vector with k n-dimensional direction vectors and k
260 angles, i.e. $k(n-1)$ parameters. For a simple rotation, this is equivalent to other retraction
261 methods.
- 262 2. Because random vectors in high dimensions are always almost orthogonal (Diaconis &
263 Freedman, 1984), this constraint helps prevent the optimization from exploring rotations
264 that have little to no effect on the vector's position.

266 This formulation provides significant modularity. Unlike common exploration techniques such as
267 back-projection or the exponential map, our approach decouples the angle and direction of rotation.
268 This allows for fine-grained control over the scope and nature of the directional exploration. Fur-
269 thermore, by enabling precise manipulation of the number and angles of rotation planes, our method
facilitates the construction of more complex rotational transformations than previously possible.

270 **A note on meaningful change** Because residual errors are computed on the entire sample, we
 271 are primarily interested in transformations that affect a large portion of a latent vector's dimensions.
 272 However, simple rotations do not consistently achieve this. For example, individual Givens rotations
 273 (Givens, 1958), i.e. rotations confined to hyperplanes spanned by coordinate axes, only modify the
 274 corresponding coordinate pair. They therefore induce negligible change in high-dimensional settings,
 275 causing the LDM to denoise the transformed latent sample into one nearly identical to the
 276 original, except for a small localized change. At the opposite extreme, one can show that rotations
 277 defined by planes spanned by vectors maximally distant from the coordinate axes impact the greatest
 278 number of dimensions of an n -dimensional vector. To restrict exploration to rotations that meaningfully
 279 change latent vectors, we construct a set of k fixed directions in tangent space. For $k \leq n$, we select the
 280 columns of a Hadamard matrix, as they are simultaneously maximally distant from all
 281 coordinate hyperplanes and mutually orthogonal Tadej & Życzkowski (2006). For $k > n$, we use
 282 a gradient-based energy minimization algorithm that iteratively refines randomly initialized points.
 283 The optimization objective combines a repulsive force to maximize angular separation and a penalty
 284 to repel vectors from coordinate hyperplanes. For our setting, we project these column vectors onto
 285 the tangent space of the sphere at v and normalize them.

286 3.3 REINFORCEMENT LEARNING

287 The RL Problem is defined as a Markov decision process (MDP) characterized by the tuple
 288 (S, A, P, r, γ) ; where S is the state space, A is the action space, $P(s'|s, a)$ is the system transition
 289 probability, $r(s, a)$ is the reward, and $\gamma \in (0, 1)$ is the discount factor. The goal of the RL
 290 algorithm is to find an optimal policy $\pi^*(a|s)$ that maximizes the expected cumulative discounted
 291 reward:

$$293 \pi^* = \arg \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] \quad (9)$$

296 **Observation Space** the observation space is equal for all experiments. At each time-step t the
 297 Agent receives observation $s_t = \text{vec}(x_0) \in \mathbb{R}^{c \times d^2} \sim \mathcal{N}(0, I)$, which is a latent sample with
 298 its spatial dimensions flattened, where d is the latent dimension and c is the number of channels.
 299 Specifically:

- 301 • Unconditional LDM - Darcy Flow: $c = 2, d = 16 \Rightarrow s_t \in \mathbb{R}^{512}$.
- 302 • Unconditional LDM - Voronoi: $c = 1, d = 16 \Rightarrow s_t \in \mathbb{R}^{1024}$.
- 304 • Text-conditioned LDM: $c = 4, d = 64 \Rightarrow s_t \in \mathbb{R}^{16384}$.

306 **Reward Function** The reward function is dependent on the architecture. For the unconditional
 307 LDM, we define the reward function as the negative residual of the respective dataset:

$$309 r(s, a) = -\epsilon(x_0) \quad (10)$$

311 where $x_0 = s$ and $\epsilon(x_0)$ is computed according to Equation 2 for the Darcy Flow dataset and
 312 according to Equation 3 for the Voronoi dataset. For the text-conditioned LDM, we set the reward
 313 function equal to the reward defined in equation 4.

314 An episode terminates either upon reaching a predefined reward threshold or after 15 time-steps.
 315 To set the reward thresholds, we generated 10000 samples using the LDM and selected the value
 316 exceeded by the top 5% of samples. This resulted in values of $\tau = -0.4$ for the Darcy Flow dataset,
 317 $\tau = -1.5$ for the Voronoi dataset, and $\tau = -0.2$ for the text-conditioned LDM.

318 The action space varies depending on the experiment and is discussed in section 4. To train the agent,
 319 we employ Proximal Policy Optimization (PPO) (Schulman et al., 2017), a state-of-the art on-policy
 320 policy optimization algorithm. While the goal of the policy is not necessarily to find trajectories
 321 to optimal samples, but rather to identify them in one or a few steps, this setup effectively mimics
 322 a multi-armed bandit problem. Nonetheless, we choose PPO due to its superior ability to handle
 323 high-dimensional and partially continuous observation and action spaces, which are required in our
 experiments.

324

4 EXPERIMENTS

325
326 The experimental setup aims to validate three main hypotheses:
327328 **Hypothesis 1** *Reinforcement learning is a viable paradigm for performing amortized, gradient-free*
329 *optimization in the latent space of frozen diffusion models.*330
331 **Hypothesis 2** *Exploration techniques that account for the inherent spherical geometry of Gaussian*
332 *latent spaces significantly outperform naive approaches.*333
334 **Hypothesis 3** *An exploration technique that enables control over the trade-off between general-*
335 *ization capabilities and computational efficiency (i.e., the number of parameters) offers significant*
336 *advantages.*337 To this end, we conducted 5 experiments: three analogous ones on both the Voronoi and the Darcy
338 Flow datasets, one only on the Darcy flow dataset, and one on the text-conditioned LDM. Generally,
339 the only variables between experiments are the action space, the observation space, and the reward
340 function. We refer to appendix A for all other architecture and implementation details. For all
341 experiments, we applied the same transformation to all channels. Since the channels encode spatial
342 information, this approach ensures that the transformations do not disrupt the spatial relationships
343 learned by the VAE.344
345

4.1 EXPERIMENT 1 - UNCONSTRAINED EXPLORATION

346 To serve as our benchmark we define the action space of the RL-Agent such that it can move freely
347 in the latent space. Therefore, the actions lie in the space (α, \mathbf{u}) , where $\alpha \in \mathbb{R}$ is a scalar, $\mathbf{u} \in \mathbb{R}^{n^2}$
348 is a unit vector, and $w = \alpha \mathbf{u} \in \mathbb{R}^{n^2}$ is perturbation vector that is summed to all channels. The next
349 state is computed as $\mathbf{s}_{t+1} = \mathbf{s}_t + \mathbf{1}_c \otimes \mathbf{w}$, where $\mathbf{1}_c \in \mathbb{R}^c$ is a vector of ones corresponding to the
350 number of channels, and \otimes denotes the outer product, so that w is added to each channel of \mathbf{s}_t .
351352
353

4.2 EXPERIMENT 2 - ROTATION MATRIX I

354 Instead of moving freely in the latent space, here the RL-Agent is constrained to the n-sphere. It
355 moves by choosing a direction and an angle of rotation. Therefore, the actions lie in the space $(\hat{\mathbf{t}}, \Phi)$,
356 where $\hat{\mathbf{t}} \in T_s(S^{d^2-1}) \subset \mathbb{R}^{d^2}$ is a unit vector in the tangent space of the sphere at s and $\Phi \in [0, \pi]$ is
357 a rotation angle. The next state is then computed according to equation 7 on all channels:
358

359
$$\mathbf{s}_{t+1} = [R([\hat{\mathbf{s}}_{t,1} \ \hat{\mathbf{t}}], \Phi) \mathbf{s}_{t,1} \ \cdots \ R([\hat{\mathbf{s}}_{t,1} \ \hat{\mathbf{t}}], \Phi) \mathbf{s}_{t,n}]$$

360 where $\mathbf{s}_{t,i}$ denotes channel i of s_t , and R is the rotation matrix as defined in Equation 5.
361362
363

4.3 EXPERIMENT 3 - ROTATION MATRIX II

364 Here, we investigate the effects of discretizing the action space. Instead of choosing a vector of
365 continuous values, the RL-agent moves by selecting one of a predetermined, fixed number of di-
366 rection vectors and an angle step. The actions lie in the space (j, Φ) , where $j \in 1, \dots, N_d$ and
367 $\Phi = \frac{p\pi}{79}$, for $p \in 0, \dots, 79$. The next state is then computed according to equation 7:
368

369
$$\mathbf{s}_{t+1} = [R([\hat{\mathbf{s}}_{t,1} \ \hat{\mathbf{h}}_j], \Phi) \mathbf{s}_{t,1} \ \cdots \ R([\hat{\mathbf{s}}_{t,1} \ \hat{\mathbf{h}}_j], \Phi) \mathbf{s}_{t,n}]$$

370 where $\hat{\mathbf{h}}_j$ is the j th column of the direction matrix $H \in \mathbb{R}^{d^2 \times N_d}$, Φ the discretized angle, $\mathbf{s}_{t,i}$ denotes
371 channel i of s_t , and R is the rotation matrix as defined in Equation 5.
372373
374

4.4 EXPERIMENT 4 - DOUBLE ROTATION

375 In experiments two and three, we have computed the rotation only from one channel and have
376 applied it to both. In this experiment, to analyze the effect of making the action dependent
377 on the entire observation space, we compute the rotation from all channels and keep the ac-
tion space discrete. Therefore, the actions lie in the space (j, k, Φ) , where $j, k \in 1, \dots, d^2$ and

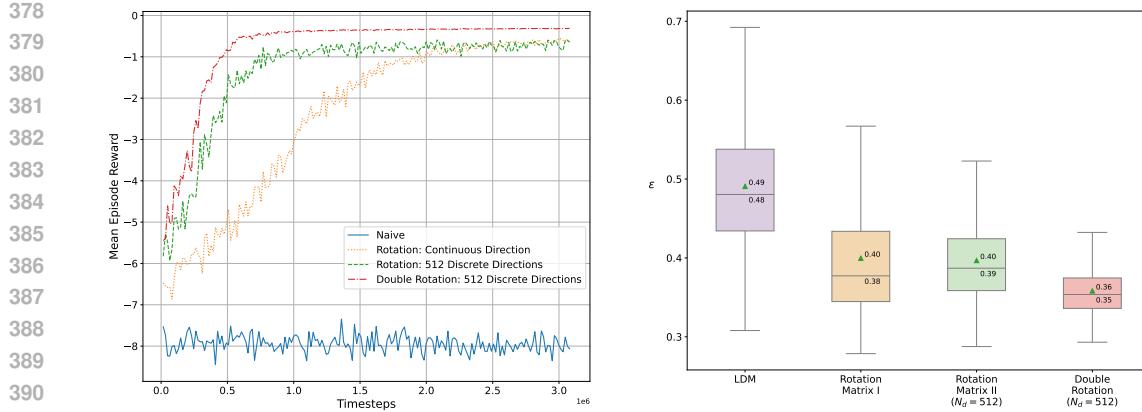


Figure 1: Darcy Flow: RL training (left) and residual error comparison (right), evaluated on 10000 samples

$\Phi = \frac{p\pi}{79}$, for $p \in 0, \dots, 79$. We essentially perform a isoclininc, double rotation with two planes of rotations: $\text{Span}(\mathbf{s}_{t,1}, \hat{\mathbf{h}}_j)$ and $\text{Span}(\mathbf{s}_{t,2}, \hat{\mathbf{h}}_k)$. The next state is then computed according to equation 8:

$$\mathbf{s}_{t+1} = [R^{(2)}\mathbf{s}_{t,1} \quad R^{(2)}\mathbf{s}_{t,2}]$$

where:

$$R^{(2)} = R([\hat{\mathbf{s}}_{t,1} \quad \hat{\mathbf{h}}_j], \Phi) R([\hat{\mathbf{s}}_{t,2} \quad \hat{\mathbf{h}}_k], \Phi)$$

with $\hat{\mathbf{h}}_j$ and $\hat{\mathbf{h}}_k$ denoting columns j, k of the direction matrix $H \in \mathbb{R}^{d^2 \times N_d}$, Φ the discretized angle, $\mathbf{s}_{t,i}$ the channel i of s_t , and R the rotation matrix as defined in Equation 6.

4.5 EXPERIMENT 5 - TEXT-CONDITIONED LDM

Here, the latent space is significantly larger (16384 dimensions). To keep the action space exploding in dimensionality, we keep the action space discrete with a limited amount of fixed directions. Furthermore, similarly to experiment four, we compute the rotation from all channels. Therefore the actions lie in the space $(j, k, l, m, \Phi_1, \Phi_2, \Phi_3, \Phi_4)$, where $j, k, l, m \in 1, \dots, 512$ and $\Phi_i = \frac{p\pi}{79}$, for $p \in 0, \dots, 79$. I.e., we perform a 4-fold rotation with four planes of rotations:

$$\mathbf{s}_{t+1} = [R^{(4)}\mathbf{s}_{t,1} \quad R^{(4)}\mathbf{s}_{t,2} \quad R^{(4)}\mathbf{s}_{t,3} \quad R^{(4)}\mathbf{s}_{t,4}]$$

where:

$$R^{(4)} = R([\hat{\mathbf{s}}_{t,1} \quad \hat{\mathbf{h}}_j], \Phi) R([\hat{\mathbf{s}}_{t,2} \quad \hat{\mathbf{h}}_k], \Phi) R([\hat{\mathbf{s}}_{t,3} \quad \hat{\mathbf{h}}_l], \Phi) R([\hat{\mathbf{s}}_{t,4} \quad \hat{\mathbf{h}}_m], \Phi)$$

with $\hat{\mathbf{h}}_j, \hat{\mathbf{h}}_k, \hat{\mathbf{h}}_l$, and $\hat{\mathbf{h}}_m$ denoting columns j, k, l, m of the direction matrix $H \in \mathbb{R}^{d^2 \times N_d}$; $\Phi_1, \Phi_2, \Phi_3, \Phi_4$ the discretized angles of the respective planes of rotation; $\mathbf{s}_{t,i}$ the channel i of s_t ; and R the rotation matrix as defined in Equation 6. We train with the fixed prompt: "a photo of an astronaut riding a horse on mars".

5 RESULTS AND DISCUSSION

5.1 UNCONDITIONAL LDM

Darcy Flow Figure 1 presents the results of experiments 1, 2, 3, and 4 conducted on the Darcy Flow dataset. The left subplot highlights two key findings: Firstly, our geometry-aware exploration technique consistently outperforms unconstrained exploration, thereby validating hypothesis 2. Second, restricting the search directions to a predefined set led to faster and, in some cases, higher convergence. Furthermore, by leveraging the chosen theoretical framework of n-dimensional rotations, and using the underexplored concepts of double and isoclinic rotations, we were able to further enhance exploration performance, validating hypothesis 3. The right subplot provides evidence for

432 hypothesis 1: our framework achieved a $\sim 25\%$ relative reduction in PDE residual compared to the
 433 vanilla LDM and obtained an absolute PDE residual comparable to state-of-the-art models, outper-
 434 forming CoCoGen (Jacobsen et al., 2025) and PG-diffusion (Shu et al., 2023) but trailing PIDM
 435 (Bastek et al., 2025), as reported by Bastek et al. (2025).

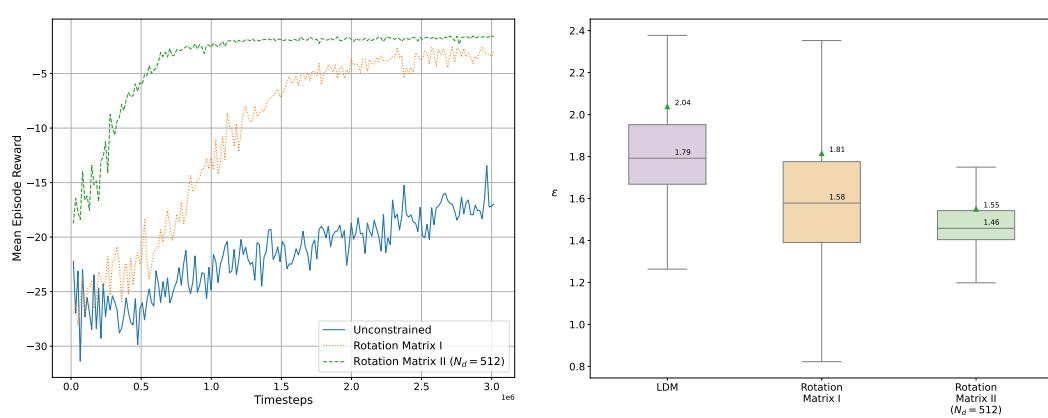
436
 437 **Voronoi** Figure 2 presents the results of experiments 1,2, and 3 conducted on the Voronoi dataset.
 438 The findings closely parallel those from the Darcy Flow experiments: geometry-aware exploration
 439 consistently outperforms unconstrained exploration, resulting in an approximate $\sim 10\%$ relative re-
 440 duction in residual error for experiment 2 and an approximate $\sim 44\%$ relative reduction for experi-
 441 ment 3.

442
 443 **Diversity** We have conducted an extensive analysis of quality and diversity for both datasets (see
 444 appendix B). The results show that diversity depends on the size of the action space and of the latent
 445 space. In all our experiments, a continuous action space never resulted in a loss in diversity. In
 446 the Darcy Flow experiments, a discrete action space with $N_d = 256$ fixed directions lead to a slight
 447 reduction in diversity, which didn't appear with $N_d = 512$ directions. For the Voronoi dataset, which
 448 has the smallest latent space, discretizing the action space always led to loss in diversity, albeit on
 449 different levels depending on the type of discretization.

450 5.2 TEXT-CONDITIONED LDM 451

452 Figure 3 presents the results for experiment 5 conducted on the text-conditioned LDM. Similar to
 453 the unconditional LDM experiments, RLSO significantly improves the sample quality based on the
 454 target metric: in this case, the human preference score from the Image Reward model. We observed
 455 up to an $\sim 80\%$ relative improvement when using the same fixed prompt as in training. Further-
 456 more, we report a $\sim 12\%$ relative improvement with a different fixed prompt and a $\sim 3.7\%$ relative
 457 improvement with random prompts from a small prompt dataset (see appendix B.3), indicating that
 458 the model also generalizes to unseen conditionings. This experiment demonstrates the importance
 459 of the modularity of RLSO. Despite the significant increase in the dimensionality of the latent space
 460 (Stable Diffusion 1.5 has a latent space $\mathcal{X} \in \mathbb{R}^{64 \times 64 \times 4}$), the number of training step did not sig-
 461 nificantly increase. This is due to two main reasons: first, training time scales primarily with the
 462 observation space, which we can control independently of dimensionality by adjusting the number
 463 of directions; second, complexity scales only minimally with the number of channels due to the use
 464 of n-fold rotations.

465 In their paper, Venkatraman et al. (2025) introduce Outsourced Diffusion and include a comparison
 466 to previous works that use RL to train or fine-tune diffusion models. These are DDPO (Black et al.,
 467 2024), DPOK (Fan et al., 2023), and RTB (Venkatraman et al., 2024). The authors report the average
 468 ImageReward score and the average diversity score (measured as the mean cosine distance between
 469 CLIP embeddings) for each model across four fixed prompts. Although the comparison is limited,



484 Figure 2: Voronoi: RL training (left) and residual error comparison (right), evaluated on 10000
 485 samples

	Model	Backbone	Reward	CLIP Diversity
486	Prior	SD1.5	-0.17	0.18
487	DDPO	SD1.5	1.37	0.09
488	DPOK	SD1.5	1.23	0.13
489	RTB	SD1.5	1.4	0.11
490	Outsourced Diff.	SD1.5	1.26	0.14
491	Prior (ours)	SD1.5+Hyper-SD	0.08	0.15
492	RLSO (ours)	SD1.5+Hyper-SD	1.2	0.17
493				
494				

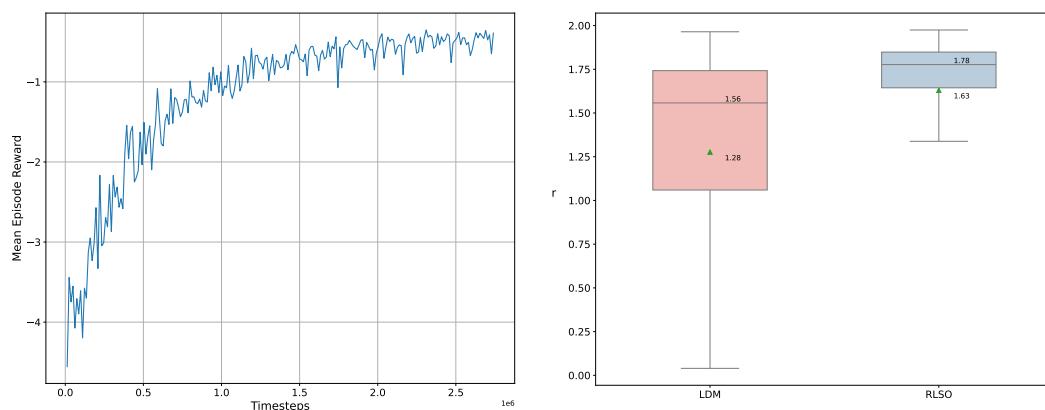
495 Table 1: Alignment performance of RLSO on an accelerated backbone (Hyper-SD) compared to
 496 standard benchmarks on vanilla Stable Diffusion 1.5., extended from table 13 of Venkatraman et al.
 497 (2025)

500 because we used Stable Diffusion 1.5 with the Hyper-SD LoRA as the backbone of RLSO, while
 501 the baselines used vanilla Stable Diffusion 1.5, the absolute scores and the net gain over the prior
 502 shown in Table 1 demonstrate effective alignment.

504 6 CONCLUSION

506 In this work, we introduced Rotational Latent Space Optimization (RLSO) with Reinforcement
 507 Learning (RL), a novel framework that leverages reinforcement learning for efficient, geometry-
 508 aware guidance of pre-trained diffusion models. Our experiments, conducted across three diverse
 509 scientific domains, demonstrate that respecting the spherical geometry of the latent space via ro-
 510 tational exploration produces significantly higher-quality samples compared to unconstrained opti-
 511 mization. Moreover, by amortizing the optimization process with an RL agent, our method gener-
 512 ates constraint-aligned samples in a single denoising pass, eliminating the substantial computational
 513 overhead of iterative LSO techniques. We have shown that this approach is a viable and effective
 514 paradigm for improving sample quality wherever a guiding reward signal is available, establishing a
 515 new path for efficient latent space control. Furthermore, we have shown the modularity of our ro-
 516 tational approach facilitates optimization in lower-dimensional subspaces, ensuring the method scales
 517 effectively even as latent space dimensionality and model complexity increases increases.

518 **Limitations** RLSO is inherently shaped by the expressive capacity of the underlying diffusion
 519 model. It is particularly effective at identifying optimal latent codes within the learned data manifold,
 520 but it cannot introduce features entirely outside the model’s training distribution. While our current
 521 implementation utilizes PPO for its stability in high-dimensional spaces, future work could explore
 522 more sample-efficient RL paradigms to further improve scalability.



538 Figure 3: text-conditioned LDM: RL training (left) and Image Reward score (right), evaluated on
 539 10000 samples conditioned with the fixed prompt: “*a photo of an astronaut riding a horse on mars*”.

540 REFERENCES
541

542 Donghoon Ahn, Jiwon Kang, Sanghyun Lee, Jaewon Min, Minjae Kim, Wooseok Jang, Hyoungwon
543 Cho, Sayak Paul, SeonHwa Kim, Eunju Cha, et al. A noise is worth diffusion guidance. *arXiv*
544 *preprint arXiv:2412.03895*, 2024.

545 Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature
546 of deep generative models. In *International Conference on Learning Representations*, 2018. URL
547 <https://openreview.net/forum?id=SJzRZ-WCZ>.

548 Jan-Hendrik Bastek, WaiChing Sun, and Dennis Kochmann. Physics-informed diffusion models.
549 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=tpYeermigp>.

550 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
551 models with reinforcement learning. In *The Twelfth International Conference on Learning Rep-
552 resentations*, 2024. URL <https://openreview.net/forum?id=YCWjhGrJFD>.

553 Avrim Blum, John Hopcroft, and Ravindran Kannan. *Foundations of data science*. Cambridge
554 University Press, 2020.

555 Erik Bodin, Henry Moss, and Carl Henrik Ek. Linear combinations of latents in diffusion models:
556 interpolation and beyond. *arXiv e-prints*, pp. arXiv–2408, 2024.

557 Arthur Cayley. *Sur quelques propriétés des déterminants gauches*. de Gruyter, 1846.

558 Arthur Cayley. *On the Motion of Rotation of a Solid Body*, pp. 28–35. Cambridge Library Collection
559 - Mathematics. Cambridge University Press, 2009.

560 Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and Patrick Smagt. Met-
561 rics for deep generative models. In *International Conference on Artificial Intelligence and Statis-
562 tics*, pp. 1540–1550. PMLR, 2018.

563 Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
564 *arXiv preprint arXiv:1805.11973*, 2018.

565 Rucha Deshpande, Mark A. Anastasio, and Frank J. Brooks. A method for evaluating deep gen-
566 erative models of images for hallucinations in high-order spatial context. *Pattern Recognition
567 Letters*, 186:23–29, 2024. doi: <https://doi.org/10.1016/j.patrec.2024.08.023>.

568 Persi Diaconis and David Freedman. Asymptotics of graphical projection pursuit. *The annals of
569 statistics*, pp. 793–815, 1984.

570 Leonhard Euler. Formulae generales pro translatione quacunque corporum rigidorum. *Novi Com-
571 mentarii academiae scientiarum Petropolitanae*, pp. 189–207, 1776.

572 Luca Eyring, Shyamgopal Karthik, Karsten Roth, Alexey Dosovitskiy, and Zeynep Akata. ReNO:
573 Enhancing one-step text-to-image models through reward-based noise optimization. In *The
574 Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
575 <https://openreview.net/forum?id=MXY0qsgGeO>.

576 Luca Eyring, Shyamgopal Karthik, Alexey Dosovitskiy, Nataniel Ruiz, and Zeynep Akata. Noise
577 hypernetworks: Amortizing test-time compute in diffusion models. In *The Thirty-ninth Annual
578 Conference on Neural Information Processing Systems*, 2025. URL <https://openreview.net/forum?id=DbzREoPwmM>.

579 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
580 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
581 fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*,
582 36:79858–79885, 2023.

583 Wallace Givens. Computation of plain unitary rotations transforming a general matrix to triangular
584 form. *Journal of the Society for Industrial and Applied Mathematics*, 6(1):26–50, 1958.

594 Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
 595 Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
 596 Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
 597 uous representation of molecules. *ACS central science*, 4(2):268–276, 2018.

598 Benjamin Holzschuh, Simona Vegetti, and Nils Thuerey. Solving inverse physics problems with
 599 score matching. *Advances in Neural Information Processing Systems*, 36, 2023.

600 Jing Hu, Chengming Feng, Shu Hu, Ming-Ching Chang, Xin Li, Xi Wu, and Xin Wang. Rlmin-
 601 istyler: Light-weight rl style agent for arbitrary sequential neural style generation. In James Kwok
 602 (ed.), *Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence*,
 603 pp. 1116–1124. International Joint Conferences on Artificial Intelligence Organization, 2025. doi:
 604 10.24963/ijcai.2025/125.

605 Jingyu Hu, Ka-Hei Hui, Zhengzhe Liu, Ruihui Li, and Chi-Wing Fu. Neural wavelet-domain diffu-
 606 sion for 3d shape generation, inversion, and manipulation. *ACM Trans. Graph.*, 43(2), 2024. doi:
 607 10.1145/3635304.

608 Christian Jacobsen, Yilin Zhuang, and Karthik Duraisamy. Cocogen: Physically consistent and
 609 conditioned score-based generative models for forward and inverse problems. *SIAM Journal on
 610 Scientific Computing*, 47(2):C399–C425, 2025. doi: 10.1137/24M1636071.

611 Yifeng Jiang, Tingnan Zhang, Daniel Ho, Yunfei Bai, C Karen Liu, Sergey Levine, and Jie Tan. Sim-
 612 gan: Hybrid simulator identification for domain adaptation via adversarial reinforcement learn-
 613 ing. In *2021 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 2884–2890.
 614 IEEE, 2021.

615 Cheng Jin, Zhenyu Xiao, Chutao Liu, and Yuantao Gu. Angle domain guidance: Latent diffusion
 616 requires rotation rather than extrapolation. In *Forty-second International Conference on Machine
 617 Learning*, 2025. URL <https://openreview.net/forum?id=DidTLeezyp>.

618 Shyamgopal Karthik, Karsten Roth, Massimiliano Mancini, and Zeynep Akata. If at first you don't
 619 succeed, try, try again: Faithful diffusion-based text-to-image generation by selection. *arXiv
 620 preprint arXiv:2305.13308*, 2023.

621 Korrawe Karunratanakul, Konpat Preechakul, Emre Aksan, Thabo Beeler, Supasorn Suwajanakorn,
 622 and Siyu Tang. Optimizing diffusion noise can serve as universal motion priors. In *Proceedings
 623 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1334–1345, 2024.

624 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
 625 arXiv:1312.6114*, 2013.

626 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
 627 diffusion model for audio synthesis. In *International Conference on Learning Representations*,
 628 2021. URL <https://openreview.net/forum?id=a-xFK8Ymz5J>.

629 Elizaveta Kozlova, Arthur Valentin, Aous Khadhraoui, and Daniel Nakhaei-Zadeh Gutierrez. Pro-
 630 teinflow: a python library to pre-process protein structure data for deep learning applications.
 631 *bioRxiv*, pp. 2023–09, 2023.

632 Pertti Lounesto. Clifford algebras and spinors. In *Clifford algebras and their applications in math-
 633 ematical physics*, pp. 25–37. Springer, 2001.

634 Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
 635 prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In *Pro-
 636 ceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.

637 Daniele Mortari. n-dimensional cross product and its application to the matrix eigenanalysis. *Jour-
 638 nal of Guidance, Control, and Dynamics*, 20(3):509–515, 1997.

639 Daniele Mortari. On the rigid rotation concept in n-dimensional spaces. *The Journal of the astro-
 640 nautical sciences*, 49:401–420, 2001.

648 Yong-Hyun Park, Mingi Kwon, Junghyo Jo, and Youngjung Uh. Unsupervised discovery of se-
 649 mantic latent directions in diffusion models. *arXiv preprint arXiv:2302.12469*, 2023. doi:
 650 10.48550/arXiv.2302.12469.

651 Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based generative network
 652 for speech synthesis. In *ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
 653 and Signal Processing*, pp. 3617–3621. IEEE, 2019.

654 Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, Xing Wang, and Xuefeng Xiao.
 655 Hyper-sd: Trajectory segmented consistency model for efficient image synthesis. *Advances in
 656 Neural Information Processing Systems*, 37:117340–117362, 2024.

657 Donatas Repecka, Vykintas Jauniskis, Laurynas Karpus, Elzbieta Rembeza, Irmantas Rokaitis, Jan
 658 Zrimec, Simona Poviloniene, Audrius Laurynenas, Sandra Viknander, Wissam Abuajwa, et al.
 659 Expanding functional protein sequence spaces using generative adversarial networks. *Nature
 660 Machine Intelligence*, 3(4):324–333, 2021.

661 Aurélie Richard, Laurent Fuchs, and Sylvain Charneau. An algorithm to decompose n-dimensional
 662 rotations into planar rotations. In *Computational Modeling of Objects Represented in Images:
 663 2nd Intern. Symp.*, pp. 60–71. Springer, 2010.

664 Olinde Rodrigues. Des lois géométriques qui régissent les déplacements d'un système solide
 665 dans l'espace, et de la variation des coordonnées provenant de ces déplacements considérés
 666 indépendamment des causes qui peuvent les produire. *Journal de mathématiques pures et ap-
 667 pliquées*, 5:380–440, 1840.

668 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 669 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 670 ence on computer vision and pattern recognition*, pp. 10684–10695, New Orleans, USA, 2022.
 671 IEEE Computer Society.

672 Luca Sacchetto, Stefan Röhrl, and Klaus Diepold. Iterative visual interaction with latent diffusion
 673 models. In Helmut Degen and Stavroula Ntoa (eds.), *Artificial Intelligence in HCI*, pp. 411–421,
 674 Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-60606-9.

675 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 676 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 677 text-to-image diffusion models with deep language understanding. *Advances in Neural Infor-
 678 mation Processing Systems*, 35:36479–36494, 2022.

679 Dvir Samuel, Rami Ben-Ari, Nir Darshan, Haggai Maron, and Gal Chechik. Norm-guided latent
 680 space exploration for text-to-image generation. *Advances in Neural Information Processing Sys-
 681 tems*, 36:57863–57875, 2023.

682 Dvir Samuel, Rami Ben-Ari, Simon Raviv, Nir Darshan, and Gal Chechik. Generating images of
 683 rare concepts using pre-trained diffusion models. In *Proceedings of the Thirty-Eighth AAAI Con-
 684 ference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Arti-
 685 ficial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence,
 686 AAAI'24*. AAAI Press, 2024. ISBN 978-1-57735-887-9. doi: 10.1609/aaai.v38i5.28270.

687 PH Schoute. *Le déplacement le plus général dans l'espace à n dimensions*. Brill, 1892.

688 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 689 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

690 Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for high-fidelity
 691 flow field reconstruction. *Journal of Computational Physics*, 478:111972, 2023.

692 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 693 preprint arXiv:2010.02502*, 2020.

694 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 695 national Conference on Learning Representations*, 2021. URL [https://openreview.net/
 696 forum?id=St1giarCHLP](https://openreview.net/forum?id=St1giarCHLP).

702 Ruoxi Sun, Hanjun Dai, Li Li, Steven Kearnes, and Bo Dai. Towards understanding retrosynthesis
 703 by energy-based models. *Advances in Neural Information Processing Systems*, 34:10186–10194,
 704 2021.

705 Wojciech Tadej and Karol Życzkowski. A concise guide to complex hadamard matrices. *Open
 706 Systems & Information Dynamics*, 13(2):133–177, 2006.

708 Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan,
 709 Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, et al. Amortizing intractable in-
 710 ference in diffusion models for vision, language, and control. *Advances in neural information
 711 processing systems*, 37:76080–76114, 2024.

712 Siddarth Venkatraman, Mohsin Hasan, Minsu Kim, Luca Scimeca, Marcin Sendera, Yoshua Bengio,
 713 Glen Berseth, and Nikolay Malkin. Outsourced diffusion sampling: Efficient posterior inference
 714 in latent spaces of generative models. In *Forty-second International Conference on Machine
 715 Learning*, 2025. URL <https://openreview.net/forum?id=94c9hu6Fsv>.

716 Mathurin Videau, Nickolai Knizev, Alessandro Leite, Marc Schoenauer, and Olivier Teytaud. In-
 717 teractive latent diffusion model. In *Proceedings of the Genetic and Evolutionary Computation
 718 Conference*, pp. 586–596, Portugal, Lisbon, 2023. ACM. doi: 10.1145/3583131.3590471.

720 Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Ra-
 721 sul, Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and
 722 Thomas Wolf. Diffusers: State-of-the-art diffusion models. [https://github.com/
 723 huggingface/diffusers](https://github.com/huggingface/diffusers), 2022.

724 Andrew Wagenmaker, Yunchu Zhang, Mitsuhiro Nakamoto, Seohong Park, Waleed Yagoub,
 725 Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with
 726 latent space reinforcement learning. In *9th Annual Conference on Robot Learning*, 2025. URL
 727 <https://openreview.net/forum?id=jU7AbGq3se>.

729 Martin J. Wainwright. *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge Series
 730 in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

731 Bram Wallace, Akash Gokul, Stefano Ermon, and Nikhil Naik. End-to-end diffusion latent opti-
 732 mization improves classifier guidance. In *2023 IEEE/CVF International Conference on Computer
 733 Vision (ICCV)*, pp. 7246–7256, 2023. doi: 10.1109/ICCV51070.2023.00669.

735 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
 736 nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
 737 protein structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.

738 Jungdam Won, Deepak Gopinath, and Jessica Hodgins. Physics-based character controllers using
 739 conditional vaes. *ACM Transactions on Graphics (TOG)*, 41(4):1–12, 2022.

741 Qiucheng Wu, Yujian Liu, Handong Zhao, Trung Bui, Zhe Lin, Yang Zhang, and Shiyu Chang.
 742 Harnessing the spatial-temporal attention of diffusion models for high-fidelity text-to-image syn-
 743 thesis. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7766–
 744 7776, 2023.

745 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 746 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 747 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

748 Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A
 749 geometric diffusion model for molecular conformation generation. In *International Confer-
 750 ence on Learning Representations*, 2022. URL <https://openreview.net/forum?id=PzcvxEMzvQC>.

753 Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel wavegan: A fast waveform gen-
 754 eration model based on generative adversarial networks with multi-resolution spectrogram. In
 755 *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing*,
 pp. 6199–6203. IEEE, 2020.

756 Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In
757 *Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data*
758 *mining*, pp. 617–626. ACM, 2020.

759
760 Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Zilong
761 Wang, Aliaksandra Shysheya, Jonathan Crabbé, Shoko Ueda, et al. A generative model for inor-
762 ganic materials design. *Nature*, 2025.

763 Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline
764 reinforcement learning. In *The Thirteenth International Conference on Learning Representations*,
765 2025. URL <https://openreview.net/forum?id=HA0oLUvuGI>.

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A IMPLEMENTATION DETAILS
811812
813 A.1 HYPERPARAMETERS
814

818 Hyperparameter	819 Value
819 In-, output channels (Darcy Flow)	820 2, 2
820 In-, output channels (Voronoi)	821 1, 1
821 In-, output channels (Stable Diffusion)	822 4, 4
822 ResNet blocks per down-/up-sampling	823 2
823 ResNet block normalization	824 Group Normalization
824 ResNet block activation function	825 SiLU
825 Attention block normalization	826 LayerNorm
826 Feature map resolutions	827 [64, 64, 128, 256]
827 Attention head dimension	828 32

829 Table 2: Diffusion model architecture
830
831
832
833
834
835

836 Hyperparameter	837 Value
837 Latent channels (Darcy Flow)	838 2
838 Latent channels (Voronoi)	839 1
839 Latent channels (Stable Diffusion)	840 4
840 Latent dimension (unconditional LDM)	841 16×16
841 Latent dimension (Stable Diffusion)	842 64×64
842 Down block type, number	843 DownEncoderBlock2D, 3
843 Up block number, number	844 UPDecoderBlock2D, 3
844 Block output channels	845 [64, 64, 64]

846 Table 3: VAE architecture
847
848
849
850
851
852

853 Hyperparameter	854 Value
854 Actor Hidden layers	855 [2048, 2048]
855 Critic Hidden Layers	856 [2048, 2048]
856 Dropout Rate	857 0.3
857 Learning Rate	858 Linear Schedule $[1 \cdot 10^{-6}, 1 \cdot 10^{-7}]$
858 GAE Lambda	859 0.9

860 Table 4: PPO hyperparameters
861
862
863

A.2 ALGORITHM DETAILS

Algorithm 1 Rotational Latent Space Optimization (RLSO)

- 1: **Input:** Pre-trained Latent Diffusion Model $D(\cdot)$, reward function $r(\cdot)$
- 2: **Initialize:** Policy network $\pi_\theta(a|s)$ with parameters θ .

Training

```

3: procedure TRAINING
4:   for each training iteration do
5:     Sample initial latent vector  $s_0 \sim \mathcal{N}(0, I)$ .
6:     for  $t = 0, \dots, T - 1$  do ▷ Loop over steps in an episode
7:       Sample action  $a_t \sim \pi_\theta(\cdot | s_t)$ .
8:       Construct rotation matrix  $R(a_t)$  and compute the new latent vector:  $s_{t+1} = R s_t$ .
9:       Generate sample by decoding the latent vector:  $y_{t+1} = D(s_{t+1})$ .
10:      Compute reward:  $r_{t+1}(y_{t+1})$ .
11:      if episode terminates then
12:        break
13:   Update policy  $\theta$  using PPO with the collected trajectory.

```

Inference

```

14: procedure INFERENCE
15:   Input: Trained policy  $\pi_{\theta^*}$ , initial latent vector  $s_{init} \sim \mathcal{N}(0, I)$ .
16:   Sample initial latent vector  $s_0 \sim \mathcal{N}(0, I)$ .
17:   Compute optimized latent vector  $s_{opt} = \pi_{\theta}(\cdot | s_0)$ .
18:   Generate the final, optimized sample:  $y_{opt} = D(s_{opt})$ .
19:   return  $y_{opt}$ .

```

A.3 TRAINING

Experiment	GPU	Training steps	Hours
exp 2 - Darcy Flow	1x Nvidia GeForce RTX 4090	2×10^6	~14
exp 2 - Voronoi	1x Nvidia GeForce RTX 4090	1.5×10^6	~11
exp 3 - Darcy Flow ($N_D = 512$)	1x Nvidia GeForce RTX 4090	1×10^6	~7.8
exp 3 - Voronoi ($N_D = 512$)	1x Nvidia GeForce RTX 4090	0.8×10^6	~6.7
exp 4 - Darcy Flow ($N_D = 512$)	1x Nvidia GeForce RTX 4090	0.6×10^6	~5.2
exp 5 - Stable Diffusion	1x Nvidia GeForce RTX 5090	1.5×10^6	~54

Table 5: Hardware details and training time (one training step comprises one full denoising pass of the frozen LDM and one update of the RL Policy’s network weights).

B TRADEOFF BETWEEN QUALITY AND DIVERSITY

To investigate the tradeoff between quality and diversity, we run experiments that analyze the effect of several variables on the diversity and on the quality of the generated samples. Specifically, the number of directions N_d (continuous, 256, or 512); the angle range $((0, \pi), [0, \pi]$ or $[0, \frac{\pi}{2}]$); the number of discretization bins B_Φ (80 or 160); and the type of rotation (single or double).

B.1 Darcy Flow

To evaluate diversity, we generate 1000 darcy flow samples for each experiment, aggregate them by channel (permeability K and pressure p). and compute a kernel-density estimation. To evaluate sample quality, we generate 10000 samples and evaluate the residual error ϵ . Figure 4 shows the

918 results of the diversity evaluation, figure 5 the results of the quality evaluation. These highlight
 919 several key findings:
 920

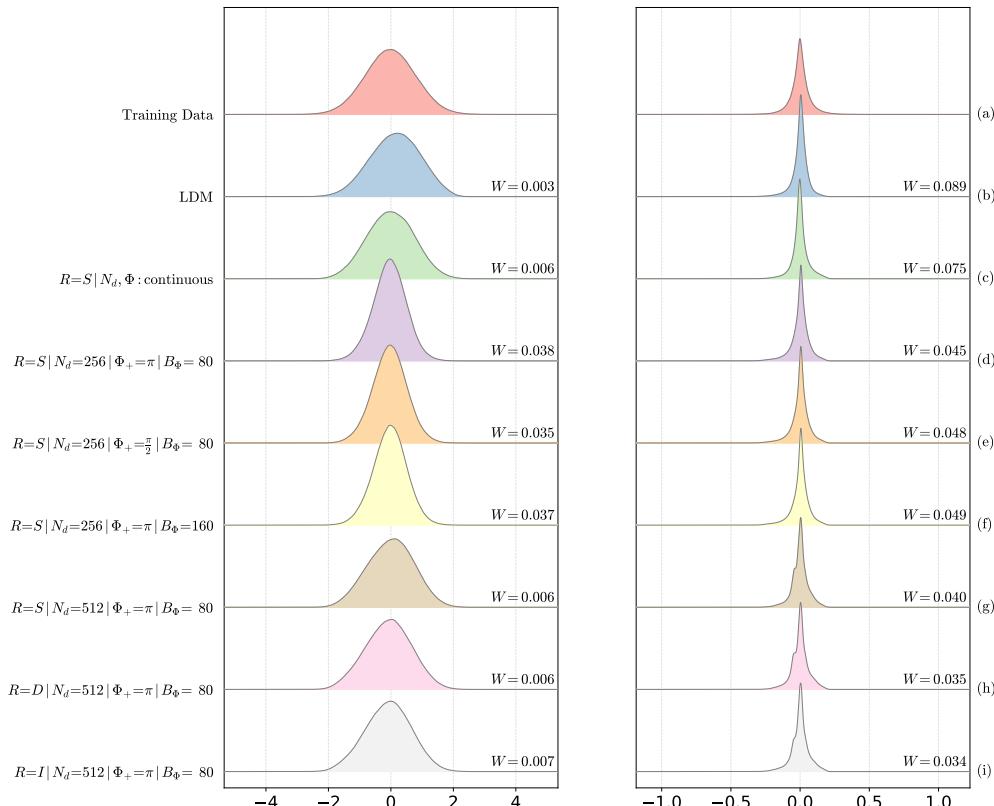
921 1. Continuous direction and angle (as described in section 4.2) lead to increase in sample
 922 quality without significant loss of diversity.
 923

924 2. Discretizing and limiting the number of directions (as described in section 4.3) leads to im-
 925 proved sample quality, but can lead to significant loss in diversity beyond a certain thresh-
 926 old.
 927

928 3. Angle range and number of discretization bins have little effect on quality or diversity.
 929

930 4. Incorporating information from all channels by using an n-fold rotation (a double rotation
 931 in this case, as described in section 4.4) leads to a measurable increase in sample quality,
 932 without loss of diversity.
 933

934 Furthermore, we investigate the effect of isoclinic rotations. As discussed in section 3.2, isoclinic
 935 rotations are a special form of n-fold rotations, where the angles of all planes of rotations are equal
 936 to each other. To that end, we extend the action space of experiment 4 (section 4.4) to (j, k, Φ_1, Φ_2) ,
 937 where $j, k \in 1, \dots, d^2$ and $\Phi_i = \frac{k\pi}{79}$, for $k \in 0, \dots, 79$. Essentially, we add one action dimension
 938 for the second angle. The results show that the effect is minimal: the isoclinic rotation converges
 939 slightly faster and achieves a slightly higher average residual error ($\sim 1.7\%$). We believe that this
 940 stems mostly from the added complexity from the extra free parameter Φ_2 .
 941



942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

Figure 4: Darcy Flow: Distribution of permeability K (left) and pressure p (right) for different
 942 numbers of directions N_d , angle ranges $[0, \Phi_+]$, and number of angle discretization bins B_Φ . R
 943 represents the type of rotation (S : single, D : double, I : isoclinic) and W denotes the Wasserstein
 944 distance to the training data. Plot (c) corresponds to experiment 2, plots (d,e,f,g) correspond to
 945 variations of experiment 3, and plots (h,i) correspond to variations of experiment 4.

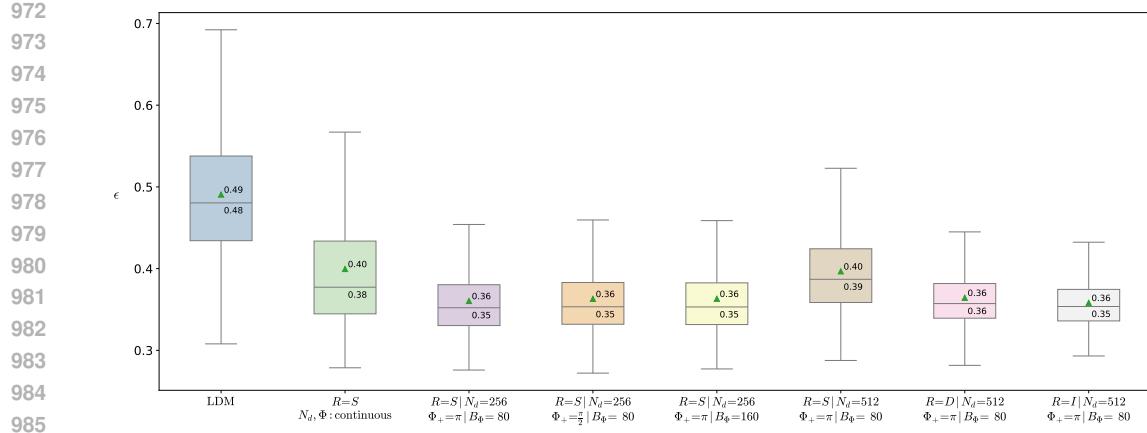


Figure 5: Darcy Flow: residual error for different numbers of directions N_d , angle ranges $[0, \Phi_+]$, and number of angle discretization bins B_Φ . R represents the type of rotation (S : single, D : double, I : isoclinic).

B.2 VORONOI

To evaluate diversity, we generate 1000 images, automatically detect the position of the region centroids and plot their distribution on the 64×64 pixel grid. To evaluate sample quality, we generate 10000 samples and evaluate the residual error ϵ . Figure 6 shows the results of the diversity evaluation, figure 7 the results of the quality evaluation. These partly mimic the results from section B.1, with a few important differences:

1. Discretizing direction and angle always leads to significant loss in diversity.
2. Both increasing the angle range and the number of discretization bins increase sample quality and diversity.

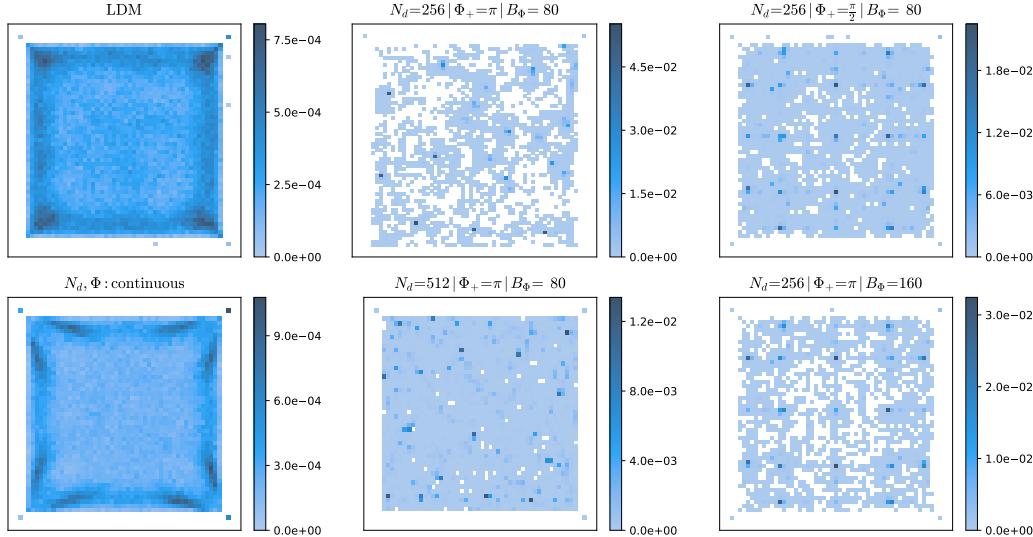


Figure 6: Voronoi: Distribution of region centroids for different number of directions N_d , angle ranges $[0, \Phi_+]$, and number of angle discretization bins B_Φ .

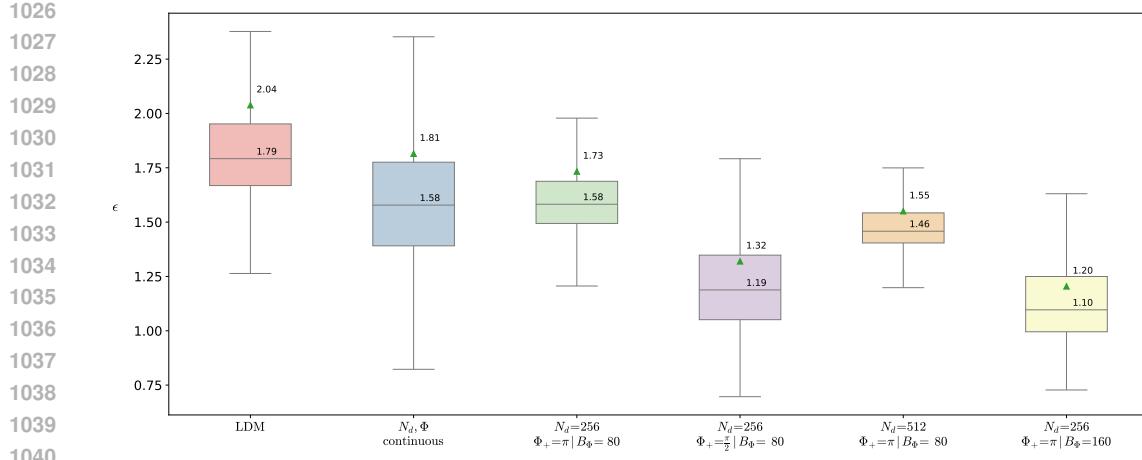


Figure 7: Voronoi: residual error for different numbers of directions N_d , angle ranges $[0, \Phi_+]$, and number of angle discretization bins B_Φ .

B.3 TEXT-CONDITIONED LDM

To evaluate quality, we generate 10000 images and evaluate the residual error ϵ . Results are shown in figure 3. To evaluate diversity, we generate 1000 images with RLSO and 10000 images with the LDM. We encode both generated datasets with CLIP and measure the mean pairwise cosine similarity δ between encodings within each datasets. We report $\delta = 0.8457$ for the LDM and $\delta = 0.8857$ for RLSO. This indicates a slightly reduced diversity, but no signs of mode collapse, as also confirmed by visual inspection. Furthermore, we investigated how well RLSO trained on a fixed prompt generalizes to unseen prompts and slight architecture modifications. Figures 8 (a,b,c) show that RLSO can generalize to unseen prompts when trained with a fixed one, albeit with a reduced improvement in sample quality. Similarly, it can cope with dropping the Hyper-SD LoRA with which it was trained at inference time, also with a slightly reduced effectiveness.

C BASELINE COMPARISON: PROJECTION-BASED UPDATES

To further validate the hypothesis that rotations constitute an efficient exploration strategy, we compare RLSO against a popular norm-preserving optimization method used in LSO (similar to e.g. Wallace et al. (2023)). We construct a baseline with an action space analogous to that of Experiment 3 (Section 4.3); however, instead of applying a rotation, this baseline projects the update back onto the hypersphere. The actions lie in the space (j, α) , where $j \in 1, \dots, N_d$ and $\alpha = \frac{p}{8}$, for $p \in 0, \dots, 79$. The next state is then computed according to:

$$\mathbf{s}_{t+1} = \sqrt{D} \cdot \frac{\mathbf{s}_t + \hat{\mathbf{h}}_j \alpha}{\|\mathbf{s}_t + \hat{\mathbf{h}}_j \alpha\|_2}$$

where $\hat{\mathbf{h}}_j$ is the j th column of the direction matrix $H \in \mathbb{R}^{d^2 \times N_d}$, α is a step size, and $D = d^2 = 256$ denotes the dimensionality of the vectorized latent space.

Figure 9 demonstrates that RLSO significantly outperforms this norm-constrained baseline. We attribute this performance gap to the limitations of projection-based exploration, which is inherently restricted in its angular reach compared to rotational updates.

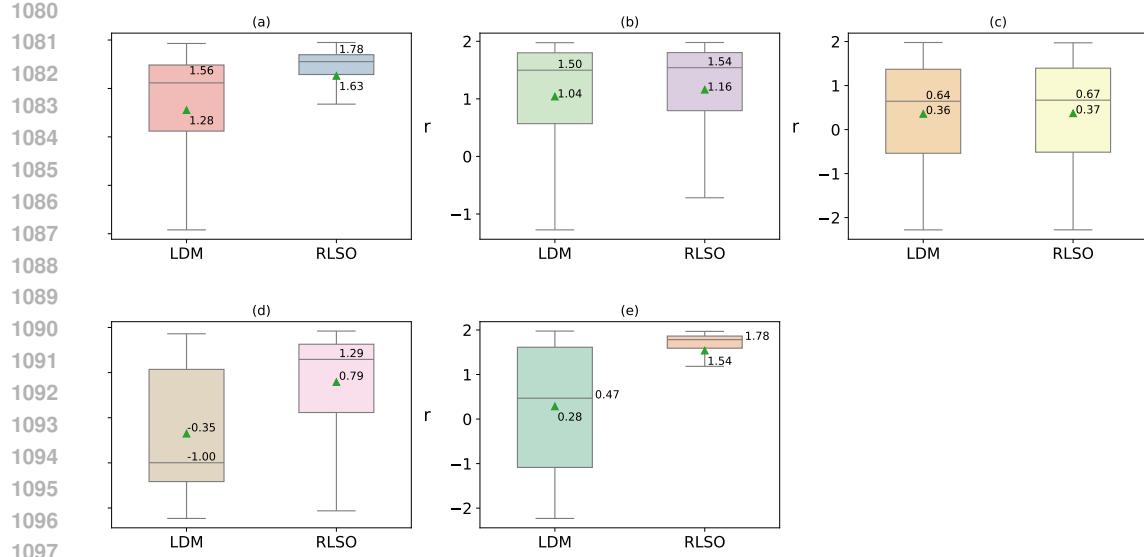


Figure 8: (a) Training with the fixed prompt "*a photo of an astronaut riding a horse on mars.*", reward evaluation with the same fixed prompt. (b) Training with the fixed prompt "*a photo of an astronaut riding a horse on mars.*", reward evaluation with fixed prompt *yellow cat sitting on a park bench*. (c) Training with the fixed prompt "*a photo of an astronaut riding a horse on mars.*", reward evaluation with dynamic prompt, sampled at each inference step from the DrawBench dataset (Saharia et al., 2022). (d) Training with the fixed prompt "*a photo of an astronaut riding a horse on mars.*", reward evaluation with the same fixed prompt, without the Hyper-SD LoRA. (e) Training with the fixed prompt "*a green colored rabbit.*", reward evaluation with the same fixed prompt.

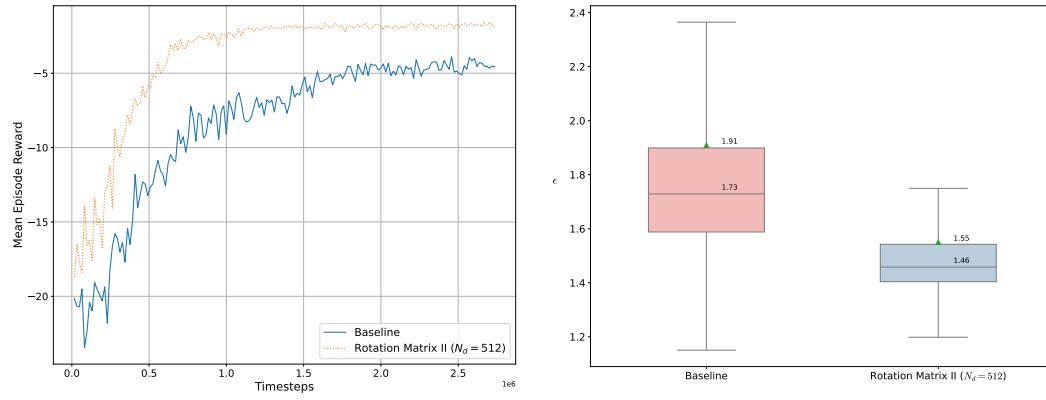


Figure 9: Voronoi: RL training (left) and residual error comparison (right), evaluated on 10000 samples

D QUALITATIVE RESULTS

Figures 10 to 14 show a qualitative comparison between the LDM and RLSO. For each comparison, we generated 1000 samples with the LDM and 1000 samples with RLSO and respectively selected 5 at random using a pseudo-random number generator.

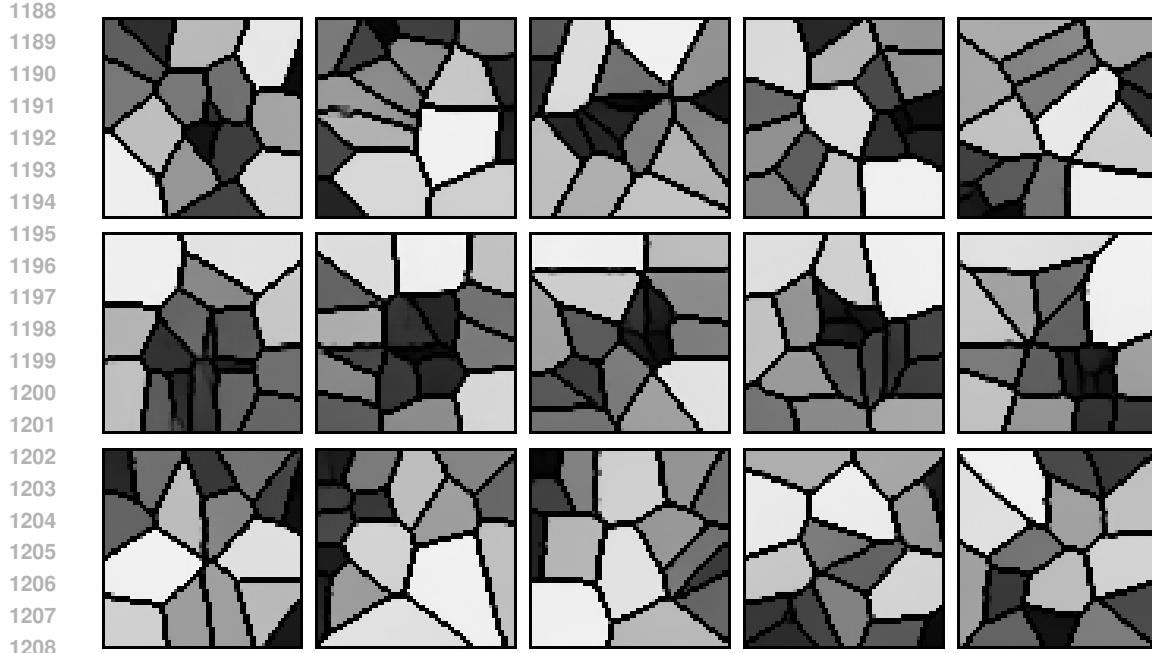
E LLM USAGE

We used a large language model only for minor editing, such as correcting typos, fixing grammatical errors, and limited rephrasing.

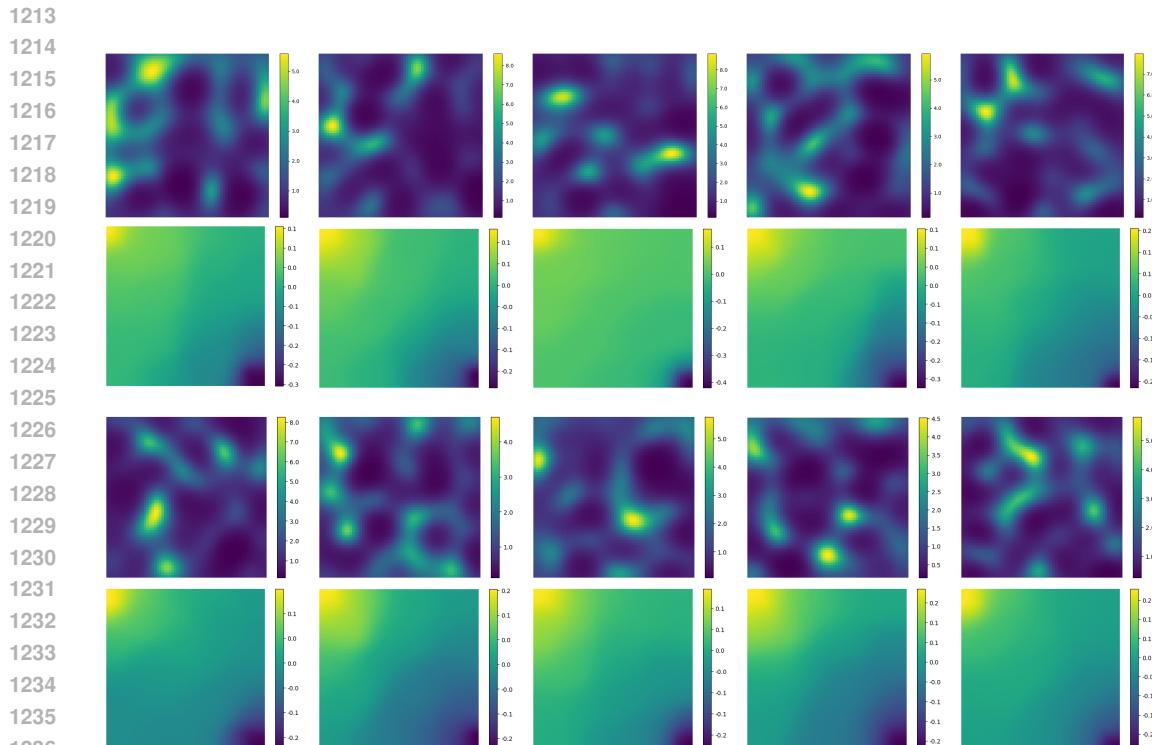
1148 Figure 10: Images generated by the text-conditioned LDM with the prompt *"a photo of an astronaut*
1149 *riding a horse on mars"* (top). The mean reward for the LDM images is $r = 1.09$ (top). Images
1150 generated by RLSO (bottom). The mean reward for the RLSO samples is $r = 1.525$.
1151

1166 Figure 11: Images generated by the text-conditioned LDM with the prompt *"four roses."* (top). The
1167 mean reward for the LDM images is $r = -1.08$ (top). Images generated by RLSO (bottom). The
1168 mean reward for the RLSO samples is $r = 1.217$. Note that RLSO avoids the SD 1.5 failure mode
1169 associated with the whisky brand of the same name.
1170

1185 Figure 12: Images generated by the text-conditioned LDM with the prompt *"a green colored rabbit."*
1186 (top). The mean reward for the LDM images is $r = -0.204$ (top). Images generated by RLSO
1187 (bottom). The mean reward for the RLSO samples is $r = 1.733$.
1188



1209
1210
1211
1212
Figure 13: Voronoi samples generated by the unconditional LDM. The mean residual for the LDM
samples is $\epsilon = 1.879$ (top). Voronoi samples generated by the baseline for Experiment 1. The mean
residual is $\epsilon = 1.864$ (middle). Voronoi samples generated by RLSO for Experiment 2 (continuous
action space). The mean residual for the RLSO samples is $\epsilon = 1.51$ (bottom).



1237
1238
1239
1240
1241
Figure 14: Darcy Flow permeability fields K and pressure fields p generated by the unconditional
LDM (top two rows). Row 1 shows samples of K , and Row 2 shows samples of p . The mean
residual for the LDM samples is $\epsilon = 0.552$. Darcy Flow permeability and pressure fields generated
by RLSO for Experiment 3 ($N_d = 512$) are shown in the bottom two rows. Row 3 shows K , and
Row 4 shows p . The mean residual for the RLSO samples is $\epsilon = 0.424$.