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ABSTRACT

Diffusion models have emerged as a powerful tool across diverse domains. How-
ever, their purely data-driven nature can produce samples that deviate from
domain-governing constraints. We introduce a plug-and-play, Reinforcement
Learning framework that operates in the latent space of pre-trained diffusion
models to optimize initial noise samples. Our approach, motivated by the near-
spherical geometry of high-dimensional Gaussian distributions, employs a novel
rotation-matrix-based scheme for efficient latent space exploration. This steers the
model toward more feature-preserving outputs, guided by task-specific rewards
computed on the final samples. We evaluate our method on three diffusion mod-
els: one trained on solutions of the Darcy Flow PDE, one on a synthetic dataset
with complex structural features, and a text-conditioned one. Across all three set-
tings, our framework yields significant improvements in sample quality, achieving
a ∼25% relative reduction in PDE residual, up to a ∼44% relative improvement
on the synthetic dataset’s feature-alignment metric, and up to a ∼80% relative
improvement on human preference, compared to the vanilla diffusion models. Fi-
nally, we show that rotation-matrix-based exploration significantly outperforms
unconstrained exploration, validating our geometry-aware approach and establish-
ing a more effective method for latent space control.

1 INTRODUCTION

Deep generative models, particularly diffusion (Song et al., 2021) and Latent Diffusion Models
(LDM) (Rombach et al., 2022) have emerged as remarkably powerful tools for learning complex
data distributions. Their success has been more prominent in image synthesis, where they have rev-
olutionized computer vision and content creation. However, their applicability extends far beyond
the visual arts, with successful deployments in scientific and engineering domains such as 3D mod-
eling (Hu et al., 2024), audio synthesis (Prenger et al., 2019; Yamamoto et al., 2020; Kong et al.,
2021), molecular generation (Gómez-Bombarelli et al., 2018; De Cao & Kipf, 2018; Zang & Wang,
2020; Sun et al., 2021; Xu et al., 2022), protein design (Repecka et al., 2021; Kozlova et al., 2023;
Watson et al., 2023) , physics simulation (Jiang et al., 2021; Won et al., 2022; Holzschuh et al.,
2023) and recently material design (Zeni et al., 2025).

Despite their impressive capabilities, a key limitation of these purely data-driven models is their
tendency to produce samples that may not adhere to known, domain-governing constraints. This is
particularly critical in scientific applications where outputs must satisfy physical laws, mathematical
principles, or structural requirements. Furthermore, many applications benefit from steering the
generative process towards a specific, desirable region of the output distribution for downstream
tasks. Prominent examples include generating solutions to Partial Differential Equations (PDEs),
where outputs must remain consistent with physical principles; designing 3D models with strict
geometric tolerances; or creating novel proteins that adhere to fundamental biochemical constraints.

To address this, several techniques for guiding generative models have been proposed. These range
from costly fine-tuning the model’s weights or incorporating constraints directly into the training
objective, to Latent Space Optimization (LSO). LSO has emerged as a flexible, post-hoc alternative
that operates on the initial noise vectors of a pre-trained, frozen generative model, often guided
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by reward signals to align outputs with specific objectives like human preferences. Nevertheless,
within the current LSO landscape, we identify two significant gaps. First, most existing methods
are computationally expensive, requiring iterative optimization and multiple full denoising passes to
generate a single sample, which creates a substantial bottleneck at inference time. Second, current
approaches often treat the latent space as a generic Euclidean space, overlooking the near-spherical
geometry of high-dimensional Gaussian noise. We posit that failing to account for this inherent
structure leads to inefficient exploration and can degrade sample quality.

In this work, we propose a novel framework to address these shortcomings. Our main contributions
are:

• We introduce Rotational Latent Space Optimization (RLSO), a novel, geometry-aware,
modular exploration technique for the latent space of frozen diffusion models. RLSO
leverages rotation matrices to preserve the norm of latent vectors, respecting the inherent
geometry of the Gaussian prior.

• We formulate the optimization of the initial noise as a Reinforcement Learning (RL)
problem, allowing us to amortize the optimization cost. This enables the generation of
constraint-aligned samples with only a single denoising pass at inference time, drastically
improving efficiency.

• We provide a validation of our approach on three distinct use-cases from vastly different
domains, demonstrating its versatility and effectiveness in improving sample quality.

Our experiments show that our geometry-aware RLSO framework significantly outperforms stan-
dard, unconstrained exploration. Furthermore, we demonstrate that the modularity of our approach
can be leveraged to control the trade-off between generalization and computational efficiency, es-
tablishing a new and effective paradigm for latent space control in diffusion models.

2 RELATED WORK

High-Dimensional Rotations The study of the theory and the application of Rotations in dimen-
sions higher than three originates in the 18th century, but the literature remains limited and lacks
a unified taxonomy. While some applications have successfully used the Rodrigues’ formula (Ro-
drigues, 1840) or Cayley’s transform (Cayley, 2009; 1846), for our work we use rotation matrices
as a representation of rotations. Specifically, we follow Schoute (1892)’s theoretical generalization
of Euler (1776)’s Principal Rotation Theorem to n dimensions:

Any displacement of a rigid body about a fixed point in n dimensions can be achieved for n even
by n

2 simple rotations in mutually orthogonal planes about the fixed point and for n odd by n−1
2

such rotations. Furthermore the rotations commute.

In practice, we rely on Mortari (2001): by using the properties of the eigen-analysis of rotation
matrices and an n-dimensional extension to the vector cross product (Mortari, 1997), the author
provides a formula to construct simple rotations. This formulation allows us to uniquely identify a
rotation matrix by defining a rotation angle and a principal plane of rotation.

Latent Space of Diffusion Models We define the latent space of a Diffusion model as the Gaus-
sian space X0 ∼ N (0, I) containing all possible initial noise samples x0 ∈ Rc×N× N , where c is
the number of channels and N is the latent dimension. In higher dimensions (N >> 1), due to
the Concentration of Measure Phenomenon (Wainwright, 2019) and the Gaussian Annulus Theorem
(Blum et al., 2020), the expected length of Gaussian samples is concentrated around the square root
of its dimensions d, i.e. in a thin shell of an n-sphere with radius

√
d. This means that a gaussian

space behaves more akin to a hyper-spherical space than an euclidean one.

Though underexplored, this phenomenon has been described (Arvanitidis et al., 2018; Chen et al.,
2018) and exploited, either by exploring the latent space with norm-regularization techniques or
Spherical Linear Interpolation (Videau et al., 2023; Samuel et al., 2023; Bodin et al., 2024; Sacchetto
et al., 2024). The works of Park et al. (2023) and Jin et al. (2025) advance in this direction and use
geodesic shooting for latent space exploration and Rodrigues’ formula-based rotation for guidance,
respectively.
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We note that, while our work focuses on diffusion models specifically, this interpretation is valid for
any kind of generative model that possesses a Gaussian latent space.

Latent Space Optimization Latent space Optimization, or Noise Optimization, is a rapidly grow-
ing field that encompasses all algorithms and techniques which aim to optimize the input noise (or
some intermediary latent space) of frozen, pre-trained generative models. A common approach is to
optimize latent samples with classic optimization techniques, either by selecting the best candidate
out of a population (Karthik et al., 2023) or by backpropagating the gradients through the full de-
noising process (Samuel et al., 2023; Wallace et al., 2023; Samuel et al., 2024; Karunratanakul et al.,
2024). Alternatively, Eyring et al. (2024) use a one-step diffusion model. These do achieve signifi-
cant improvements, but have two significant drawbacks: backpropagating the gradients through the
denoising process may be costly and importantly they add significant computational overhead at
inference time, because they need to run the denoising process multiple times (Wu et al., 2023).

On the other hand, this issue can also be mitigated by training an auxiliary model to optimize the
latent samples, so that only one pass through the auxiliary model and the denoising process is re-
quired at inference time. Lu et al. (2023) use an auxiliary model to predict the values of an energy
function to guide the sampling process, Ahn et al. (2024) train a model in the latent space to mimic
Classifier-Free Guidance, while Venkatraman et al. (2025) train a model to substitute the sampler by
learning the reverse denoising process of high-reward samples. Most similarly to our work, Eyring
et al. (2025) recently proposed to train a LoRA network to predict latent samples that denoise into
high-reward samples.

While these papers presents similarities to our work, namely training auxilary models to gener-
ate optimized latent samples for pre-trained diffusion models, our approach introduces several key
differences. Typically, the techniques employed to ensure that optimized latent samples remain
Gaussian and within the shell range from adding a penalty term to the cost function (Eyring et al.,
2024; 2025; Venkatraman et al., 2025), adding a small Gaussian perturbation to each update step
(Karunratanakul et al., 2024), projecting back to the shell and adding small Gaussian perturbations
(Wallace et al., 2023), or using small, regularized gradient steps (Karunratanakul et al., 2024). In-
stead of relying on penalizing terms with high overhead or projecting back to the shell, which limits
exploration and doesn’t ensure Gaussianity on its own, our rotation-matrix-based exploration strat-
egy offers a principled and geometry-aware method for generating optimized latent samples that
automatically remain both in-distribution and semantically linked to the original latent sample.

Moreover, this exploration strategy allows for modular control over the direction and angle. In
contrast to Ahn et al. (2024) and Eyring et al. (2025), our use of Policy Gradient training enables
compatibility with arbitrary reward functions, even when their gradients are intractable. Compared
to Venkatraman et al. (2025), who train a large U-Net diffusion model, our approach is far more
lightweight, requiring an order of magnitude fewer parameters. Finally, we validate our method be-
yond text-to-image models and human preference alignment, demonstrating its effectiveness across
diverse domains.

Approaches whose noise optimization is an inherent part of training the main model naturally do not
suffer from this issue, like Hu et al. (2025) who train the encoder of their encoder-decoder structure
as an RL-policy in the latent space or Wagenmaker et al. (2025) who train an RL policy for robot
control tasks that outputs actions in the latent space. Finally, Zhang et al. (2025) expand on the work
of Lu et al. (2023) by integrating the energy-function guidance in the training of the main model.

3 METHODOLOGY

Our Approach employs a Reinforcement Learning Agent to navigate the latent space of a frozen, pre-
trained Latent Diffusion Model. The agent is effectively trained to apply a rotational tranformation
to the initial Gaussian noise sample, before the LDM decodes it into a final sample (see Appendix
A.2). To serve as engine and benchmark to our experiments we select two model architectures: an
unconditional Latent Diffusion Model and a text-conditioned Latent Diffusion Model.

3
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3.1 LATENT DIFFUSION MODELS

3.1.1 UNCONDITIONAL LATENT DIFFUSION MODEL

We train an unconditional Latent Diffusion model (Rombach et al., 2022) from scratch on two
datasets from different domains: solutions of the Darcy Flow Partial Differential Equations (PDE)
and an ad-hoc synthetic image dataset. Both provide computable metrics that measure how much
a sample violates the dataset validity constraints, i.e. a residual error. A residual error of zero
corresponds to a valid sample.

Darcy Flow Here we use the dataset created by Bastek et al. (2025), based partially on the work
of Jacobsen et al. (2025): it is a dataset of 10000 solutions of the steady-state 2D Darcy-flow PDEs,
which describe fluid movement through a porous medium. Each of the samples is generated by
sampling the permeability field K(ξ) from a Gaussian random field on a 64 × 64 grid and solving
for the pressure distribution p(ξ) with a finite-differences, least-squares linear solver. This results in
samples (K, p) ∈ R2×64×64. The per-grid-cell residual error is calculated based on the physical law
of mass conservation as follows:

R(K, p) = ∇(K∇p) + f. (1)
where K is the permeability field, p is the pressure field, and f is the source function. A scalar
residual error for one sample x0 is then obtained as the mean absolute residual error:

ϵ(x0) =
1

n2

n∑
i=1

n∑
j=1

|Rij(K, p)| (2)

where n = 64 and Rij(K, p) is the residual error at grid cell (i, j). We refer to Bastek et al. (2025)
for further details.

Voronoi Deshpande et al. (2024) introduce several synthetic datasets to benchmark image-
synthesis generative models. These datasets, which the authors call Stochastic Context Models
(SCM), contain images with different features, constraint, and rules that can be recovered after gen-
eration. They also provide scripts to compute a variety of quality metrics based on these features.
For our experiments, we select the Voronoi SCM and simplify it slightly, using 64x64 instead of
256x256 images and restricting it to the class of images containing 16 regions. Hence creating
a dataset of 10000 grayscale images. Out of a selection of the quality metrics introduced by the
authors we define our own residual error:

ϵ(x0) =
µ1

A
+

σ1

2B
+

µ2

Γ
+

σ2

2∆
+ τ + ρ+ 1.5η, (3)

where µ1 and σ1 are measures of the straightness of region edges, µ2 and σ2 are measures of the
intra-region grayscale variance, τ and ρ are Kendall’s and Spearman’s rank correlation coefficients
between the region’s and the target grayscale values, and η is the error in region count. Furthermore,
A, B, Γ, and ∆ are normalizing constants. Specifically, A = 0.0962016 and B = 0.116852 are the
average µ1 and σ1 of the training dataset, respectively. Γ = 50 and ∆ = 20 are set such that ∼95%
of the non-zero values of the training dataset fall in the [0, 1] range.

The implementation of the latent diffusion model was adapted from (von Platen et al., 2022) and
modified to include a Variational Autoencoder (VAE) with KL loss (Kingma & Welling, 2013). We
employ DDIM (Song et al., 2020) as our sampler. Architecture and training details are listed in the
Appendix A.

3.1.2 TEXT-CONDITIONED LATENT DIFFUSION MODEL

For the text-conditioned LDM, we use Stable Diffusion 1.5 (Rombach et al., 2022), integrated with
the 2-Step Hyper-SD LoRA (Ren et al., 2024) and the DDIM sampler (Song et al., 2020). As a
metric for sample quality, we employ Image Reward (Xu et al., 2023), a pre-trained text-to-image
human preference reward model that, given a generated image and its corresponding prompt, outputs
a human preference score. Differently to the experiments on the unconditional LDM, the human
preference score is not a residual since a higher score corresponds to a higher sample quality and
it has no theoretical upper bound. Therefore, we define the reward as the output of the human
preference reward model G(x0), shifted so that the majority of rewards are negative:

r(x0) = G(x0)− 2 (4)
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3.2 ROTATION MATRIX

Theoretical Framework We define a parameter description of n-dimensional rotations that both
encompasses all mathematic properties of rotation and offers modularity for managing the tradeoff
between generalization capabilities and computational efficiency. To this end, we adopt the theoreti-
cal framework described in chapter 2, which posits that a general rotation in even dimensions can be
described by n

2 mutually orthogonal planes (the rotation planes) and corresponding n
2 angles. Based

on this framework, Lounesto (2001) identifies three special classes of rotations. These are:

• single rotations: only one plane of rotation with angle θ ̸= 0.
• double rotations: two planes of rotation with angles α ̸= θ ̸= 0.
• isoclinic rotation: two planes of rotation with angles α = θ ̸= 0.

We extend this classification system to higher dimensions and introduce the n-fold rotation. In n
dimensions, there exists up to n-fold rotations. They can be isoclinic (if n is even) or as pseudo-
isoclinic (if n is odd) Richard et al. (2010). In his paper, (Mortari, 2001, eq. 18) provides a formula
for a rotation matrix that describes a single rotation as a function of the rotation angle and the vectors
spanning the plane of rotation:

R(P,Φ) = In + (cosΦ− 1)PPT + P

[
0 −1
1 0

]
PT sinΦ (5)

Where Φ is the angle of rotation and P = [p1 p2] ∈ Rn×2 is a matrix whose columns form an
orthogonal basis for the plane of rotation. Using the fact that a general rotation can be expressed as
a product of n

2 simple rotations, we extend equation 5 for rotation matrices of general rotations.

Rgen =

n
2∏

i=1

R(Pi,Φi) (6)

Where
[
P1 P2 . . . Pn

2

]
∈ Rnxn is an orthonormal basis of Rn and

[
Φ1 Φ2 . . . Φn

2

]
∈ Rn

are the rotation angles. We note that equation 6 simplifies to equation 5 for only one Φi ̸= 0.

Vector Rotation Let v ∈ Sn−1 ⊂ Rn a point on the surface of the sphere Sn−1 and v̂ = v
∥v∥ its

corresponding unit vector. let t ∈ Tv(S
n−1) be a non-zero unit vector in the tangent space at v. To

rotate v towards t along a geodesic by an angle Φ we can use equation 5 with P := [v̂ t]:

vrot = R([v̂ t] ,Φ)v (7)

where vrot is the rotated vector.

Now let w be a second vector in the tangent space at v, orthogonal to t. To perform a double rotation
on v in the directions of t and w, we can use 6:

vrot = R([v̂ t] ,Φ1)R([v̂ w] ,Φ2)v (8)

Similarly, we can construct rotations with any number of planes and angles, up to a general rotation.
For the purposes of this work, we restrict the rotations to paths along geodesics (or combinations
thereof). This has two key advantages:

1. We can describe the rotation of a vector with k n-dimensional direction vectors and k
angles, i.e. k(n− 1) parameters. For a simple rotation, this is equivalent to other retraction
methods.

2. Because random vectors in high dimensions are always almost orthogonal (Diaconis &
Freedman, 1984), this constraint helps prevent the optimization from exploring rotations
that have little to no effect on the vector’s position.

This formulation provides significant modularity. Unlike common exploration techniques such as
back-projection or the exponential map, our approach decouples the angle and direction of rotation.
This allows for fine-grained control over the scope and nature of the directional exploration. Fur-
thermore, by enabling precise manipulation of the number and angles of rotation planes, our method
facilitates the construction of more complex rotational transformations than previously possible.

5
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A note on meaningful change Because residual errors are computed on the entire sample, we
are primarily interested in transformations that affect a large portion of a latent vector’s dimensions.
However, simple rotations do not consistently achieve this. For example, individual Givens rotations
(Givens, 1958), i.e. rotations confined to hyperplanes spanned by coordinate axes, only modify the
corresponding coordinate pair. They therefore induce negligible change in high-dimensional set-
tings, causing the LDM to denoise the transformed latent sample into one nearly identical to the
original, except for a small localized change. At the opposite extreme, one can show that rotations
defined by planes spanned by vectors maximally distant from the coordinate axes impact the greatest
number of dimensions of an n-dimensional vector. To restrict exploration to rotations that mean-
ingfully change latent vectors, we construct a set of k fixed directions in tangent space. For k ≤ n,
we select the columns of a Hadamard matrix, as they are simultaneously maximally distant from all
coordinate hyperplanes and mutually orthogonal Tadej & Życzkowski (2006). For k > n, we use
a gradient-based energy minimization algorithm that iteratively refines randomly initialized points.
The optimization objective combines a repulsive force to maximize angular separation and a penalty
to repels vectors from coordinate hyperplanes. For our setting, we project these column vectors onto
the tangent space of the sphere at v and normalize them.

3.3 REINFORCEMENT LEARNING

The RL Problem is defined as a Markov decision process (MDP) characterized by the tuple
(S,A, P, r, γ); where S is the state space, A is the action space, P (s′|s, a) is the system transi-
tion probability, r(s, a) is the reward, and γ ∈ (0, 1) is the discount factor. The goal of the RL
algorithm is to find an optimal policy π∗(a|s) that maximizes the expected cumulative discounted
reward:

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γtr(st, at)

]
(9)

Observation Space the observation space is equal for all experiments. At each time-step t the
Agent receives observation st = vec(x0) ∈ Rc×d2 ∼ N (0, I), which is a latent sample with
its spatial dimensions flattened, where d is the latent dimension and c is the number of channels.
Specifically:

• Unconditional LDM - Darcy Flow: c = 2, d = 16⇒ st ∈ R512.

• Unconditional LDM - Voronoi: c = 1, d = 16⇒ st ∈ R1024.

• Text-conditioned LDM: c = 4, d = 64⇒ st ∈ R16384.

Reward Function The reward function is dependent on the architecture. For the unconditional
LDM, we define the reward function as the negative residual of the respective dataset:

r(s, a) = −ϵ(x0) (10)

where x0 = s and ϵ(x0) is computed according to Equation 2 for the Darcy Flow dataset and
according to Equation 3 for the Voronoi dataset. For the text-conditioned LDM, we set the reward
function equal to the reward defined in equation 4.

An episode terminates either upon reaching a predefined reward threshold or after 15 time-steps.
To set the reward thresholds, we generated 10000 samples using the LDM and selected the value
exceeded by the top 5% of samples. This resulted in values of τ = −0.4 for the Darcy Flow dataset,
τ = −1.5 for the Voronoi dataset, and τ = −0.2 for the text-conditioned LDM.

The action space varies depending on the experiment and is discussed in section 4. To train the agent,
we employ Proximal Policy Optimization (PPO) (Schulman et al., 2017), a state-of-the art on-policy
policy optimization algorithm. While the goal of the policy is not necessarily to find trajectories
to optimal samples, but rather to identify them in one or a few steps, this setup effectively mimics
a multi-armed bandit problem. Nonetheless, we choose PPO due to its superior ability to handle
high-dimensional and partially continuous observation and action spaces, which are required in our
experiments.

6
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4 EXPERIMENTS

The experimental setup aims to validate three main hypotheses:

Hypothesis 1 Reinforcement learning is a viable paradigm for performing amortized, gradient-free
optimization in the latent space of frozen diffusion models.

Hypothesis 2 Exploration techniques that account for the inherent spherical geometry of Gaussian
latent spaces significantly outperform naive approaches.

Hypothesis 3 An exploration technique that enables control over the trade-off between general-
ization capabilities and computational efficiency (i.e., the number of parameters) offers significant
advantages.

To this end, we conducted 5 experiments: three analogous ones on both the Voronoi and the Darcy
Flow datasets, one only on the Darcy flow dataset, and one on the text-conditioned LDM. Generally,
the only variables between experiments are the action space, the observation space, and the reward
function. We refer to appendix A for all other architecture and implementation details. For all
experiments, we applied the same transformation to all channels. Since the channels encode spatial
information, this approach ensures that the transformations do not disrupt the spatial relationships
learned by the VAE.

4.1 EXPERIMENT 1 - UNCONSTRAINED EXPLORATION

To serve as our benchmark we define the action space of the RL-Agent such that it can move freely
in the latent space. Therefore, the actions lie in the space (α,u), where α ∈ R is a scalar, u ∈ Rn2

is a unit vector, and w = αu ∈ Rn2

is perturbation vector that is summed to all channels. The next
state is computed as st+1 = st + 1c ⊗w, where 1c ∈ Rc is a vector of ones corresponding to the
number of channels, and ⊗ denotes the outer product, so that w is added to each channel of st.

4.2 EXPERIMENT 2 - ROTATION MATRIX I

Instead of moving freely in the latent space, here the RL-Agent is constrained to the n-sphere. It
moves by choosing a direction and an angle of rotation. Therefore, the actions lie in the space (t̂,Φ),
where t̂ ∈ Ts(S

d2−1) ⊂ Rd2

is a unit vector in the tangent space of the sphere at s and Φ ∈ [0, π] is
a rotation angle. The next state is then computed according to equation 7 on all channels:

st+1 =
[
R
([
ŝt,1 t̂

]
,Φ

)
st,1 · · · R

([
ŝt,1 t̂

]
,Φ

)
st,n

]
where st,i denotes channel i of st, , and R is the rotation matrix as defined in Equation 5.

4.3 EXPERIMENT 3 - ROTATION MATRIX II

Here, we investigate the effects of discretizing the action space. Instead of choosing a vector of
continuous values, the RL-agent moves by selecting one of a predetermined, fixed number of di-
rection vectors and an angle step. The actions lie in the space (j,Φ), where j ∈ 1, . . . , Nd and
Φ = pπ

79 , for p ∈ 0, . . . , 79. The next state is then computed according to equation 7:

st+1 =
[
R
([
ŝt,1 ĥj

]
,Φ

)
st,1 · · · R

([
ŝt,1 ĥj

]
,Φ

)
st,n

]
where ĥj is th jth column of the direction matrix H ∈ Rd2×Nd , Φ the discretized angle, st,i denotes
channel i of st, and R is the rotation matrix as defined in Equation 5.

4.4 EXPERIMENT 4 - DOUBLE ROTATION

In experiments two and three, we have computed the rotation only from one channel and have
applied it to both. In this experiment, to analyzes the effect of making the action dependent
on the entire observation space, we compute the rotation from all channels and keep the ac-
tion space discrete. Therefore, the actions lie in the space (j, k,Φ), where j, k ∈ 1, . . . , d2 and

7
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Figure 1: Darcy Flow: RL training (left) and residual error comparison (right), evaluated on 10000
samples

Φ = pπ
79 , for p ∈ 0, . . . , 79. We essentially perform a isoclininc, double rotation with two planes of

rotations: Span(st1 , ĥj) and Span(st2 , ĥk). The next state is then computed according to equation
8:

st+1 =
[
R(2)st,1 R(2)st,2

]
where:

R(2) = R
([
ŝt,1 ĥj

]
,Φ

)
R(

[
ˆst,2 ĥk

]
,Φ)

with ĥj and ĥk denoting columns j, k of the direction matrix H ∈ Rd2×Nd , Φ the discretized angle,
st,i the channel i of st, and R the rotation matrix as defined in Equation 6.

4.5 EXPERIMENT 5 - TEXT-CONDITIONED LDM

Here, the latent space is significantly larger (16384 dimensions). To keep the action space ex-
ploding in dimensionality, we keep the action space discrete with a limited amount of fixed di-
rections. Furthermore, similarly to experiment four, we compute the rotation from all channels.
Therefore the actions lie in the space (j, k, l,m,Φ1,Φ2,Φ3,Φ4), where j, k, l,m ∈ 1, . . . , 512 and
Φi =

pπ
79 , for p ∈ 0, . . . , 79. I.e., we perform a 4-fold rotation with four planes of rotations:

st+1 =
[
R(4)st,1 R(4)st,2 R(4)st,3 R(4)st,4

]
where:

R(4) = R
([
ŝt,1 ĥj

]
,Φ

)
R(

[
ˆst,2 ĥk

]
,Φ)R

([
ŝt,3 ĥl

]
,Φ

)
R(

[
ˆst,4 ĥm

]
,Φ)

with ĥj, ĥk, ĥl, and ĥm denoting columns j, k, l,m of the direction matrix H ∈ Rd2×Nd ; Φ1, Φ2,
Φ3, Φ4 the discretized angles of the respective planes of rotation; st,i the channel i of st; and R the
rotation matrix as defined in Equation 6. We train with the fixed prompt: ”a photo of an astronaut
riding a horse on mars”.

5 RESULTS AND DISCUSSION

5.1 UNCONDITIONAL LDM

Darcy Flow Figure 1 presents the results of experiments 1, 2, 3, and 4 conducted on the Darcy
Flow dataset. The left subfigure highlights two key findings: Firstly, our geometry-aware explo-
ration technique consistently outperforms unconstrained exploration, thereby validating hypothesis
2. Second, restricting the search directions to a predefined set led to faster and, in some cases, higher
convergence. Furthermore, by leveraging the chosen theoretical framework of n-dimensional rota-
tions, and using the underexplored concepts of double and isoclinic rotations, we were able to further
enhance exploration performance, validating hypothesis 3. The right subfigure provides evidence for
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hypothesis 1: our framework achieved a ∼25% relative reduction in PDE residual compared to the
vanilla LDM and obtained an absolute PDE residual comparable to state-of-the-art models, outper-
forming CoCoGen (Jacobsen et al., 2025) and PG-diffusion (Shu et al., 2023) but trailing PIDM
(Bastek et al., 2025), as reported by Bastek et al. (2025).

Voronoi Figure 2 presents the results of experiments 1,2, and 3 conducted on the Voronoi dataset.
The findings closely parallel those from the Darcy Flow experiments: geometry-aware exploration
consistently outperforms unconstrained exploration, resulting in an approximate ∼10% relative re-
duction in residual error for experiment 2 and an approximate ∼44% relative reduction for experi-
ment 3.

Diversity We have conducted an extensive analysis of quality and diversity for both datasets (see
appendix B). The results show that diversity depends on the size of the action space and of the latent
space. In all our experiments, a continuous action space never resulted in a loss in diversity. In
the Darcy Flow experiments, a discrete action space with Nd = 256 fixed directions lead to a slight
reduction in diversity, which didn’t appear with Nd = 512 directions. For the Voronoi dataset, which
has the smallest latent space, discretizing the action space always led to loss in diversity, albeit on
different levels depending on the type of discretization.

5.2 TEXT-CONDITIONED LDM

Figure 3 presents the results for experiment 5 conducted on the text-conditioned LDM. Similar to
the unconditional LDM experiments, RLSO significantly improves the sample quality based on the
target metric: in this case, the human preference score from the Image Reward model. We observed
up to an ∼80% relative improvement when using the same fixed prompt as in training. Further-
more, we report a ∼12% relative improvement with a different fixed prompt and a ∼3.7% relative
improvement with random prompts from a small prompt dataset (see appendix B.3), indicating that
the model also generalizes to unseen conditionings. This experiment demonstrates the importance
of the modularity of RLSO. Despite the significant increase in the dimensionality of the latent space
(Stable Diffusion 1.5 has a latent space X ∈ R64×64×4 ), the number of training step did not sig-
nificantly increase. This is due to two main reasons: first, training time scales primarily with the
observation space, which we can control independently of dimensionality by adjusting the number
of directions; second, complexity scales only minimally with the number of channels due to the use
of n-fold rotations.

In their paper, Venkatraman et al. (2025) introduce Outsourced Diffusion and include a comparison
to previous works that use RL to train or fine-tune diffusion models. These are DDPO (Black et al.,
2024), DPOK (Fan et al., 2023), and RTB (Venkatraman et al., 2024). The authors report the average
ImageReward score and the average diversity score (measured as the mean cosine distance between
CLIP embeddings) for each model across four fixed prompts. Although the comparison is limited,
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Figure 2: Voronoi: RL training (left) and residual error comparison (right), evaluated on 10000
samples
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Model Backbone Reward CLIP Diversity
Prior SD1.5 −0.17 0.18
DDPO SD1.5 1.37 0.09
DPOK SD1.5 1.23 0.13
RTB SD1.5 1.4 0.11
Outsourced Diff. SD1.5 1.26 0.14

Prior (ours) SD1.5+Hyper-SD 0.08 0.15
RLSO (ours) SD1.5+Hyper-SD 1.2 0.17

Table 1: Alignment performance of RLSO on an accelerated backbone (Hyper-SD) compared to
standard benchmarks on vanilla Stable Diffusion 1.5., extended from table 13 of Venkatraman et al.
(2025)

because we used Stable Diffusion 1.5 with the Hyper-SD LoRA as the backbone of RLSO, while
the baselines used vanilla Stable Diffusion 1.5, the absolute scores and the net gain over the prior
shown in Table 1 demonstrate effective alignment.

6 CONCLUSION

In this work, we introduced Rotational Latent Space Optimization (RLSO) with Reinforcement
Learning (RL), a novel framework that leverages reinforcement learning for efficient, geometry-
aware guidance of pre-trained diffusion models. Our experiments, conducted across three diverse
scientific domains, demonstrate that respecting the spherical geometry of the latent space via ro-
tational exploration produces significantly higher-quality samples compared to unconstrained opti-
mization. Moreover, by amortizing the optimization process with an RL agent, our method gener-
ates constraint-aligned samples in a single denoising pass, eliminating the substantial computational
overhead of iterative LSO techniques. We have shown that this approach is a viable and effective
paradigm for improving sample quality wherever a guiding reward signal is available, establishing a
new path for efficient latent space control Furthermore, we have shown the modularity of our rota-
tional approach facilitates optimization in lower-dimensional subspaces, ensuring the method scales
effectively even as latent space dimensionality and model complexity increases increases.

Limitations RLSO is inherently shaped by the expressive capacity of the underlying diffusion
model. It is particularly effective at identifying optimal latent codes within the learned data manifold,
but it cannot introduce features entirely outside the model’s training distribution. While our current
implementation utilizes PPO for its stability in high-dimensional spaces, future work could explore
more sample-efficient RL paradigms to further improve scalability.

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps 1e6

4

3

2

1

M
ea

n 
Ep

iso
de

 R
ew

ar
d

LDM RLSO
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

r

1.56

1.28

1.78

1.63

Figure 3: text-conditioned LDM: RL training (left) and Image Reward score (right), evaluated on
10000 samples conditioned with the fixed prompt: ”a photo of an astronaut riding a horse on mars”.
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Wang, Aliaksandra Shysheya, Jonathan Crabbé, Shoko Ueda, et al. A generative model for inor-
ganic materials design. Nature, 2025.

Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline
reinforcement learning. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=HA0oLUvuGI.

15

https://openreview.net/forum?id=HA0oLUvuGI


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 HYPERPARAMETERS

Hyperparameter Value
In-, output channels (Darcy Flow) 2, 2

In-, output channels (Voronoi) 1, 1

In-, output channels (Stable Diffusion) 4, 4

ResNet blocks per down-/up-sampling 2
ResNet block normalization Group Normalization
ResNet block activation function SiLU
Attention block normalization LayerNorm
Feature map resolutions [64, 64, 128, 256]

Attention head dimension 32

Table 2: Diffusion model architecture

Hyperparameter Value
Latent channels (Darcy Flow) 2

Latent channels (Voronoi) 1

Latent channels (Stable Diffusion) 4

Latent dimension (unconditional LDM) 16× 16

Latent dimension (Stable Diffusion) 64× 64

Down block type, number DownEncoderBlock2D, 3
Up block number, number UPDecoderBlock2D, 3
Block output channels [64, 64, 64]

Table 3: VAE architecture

Hyperparameter Value
Actor Hidden layers [2048, 2048]

Critic Hidden Layers [2048, 2048]

Dropout Rate 0.3

Learning Rate Linear Schedule [1 · 10−6, 1 · 10−7]

GAE Lambda 0.9

Table 4: PPO hyperparameters
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A.2 ALGORITHM DETAILS

Algorithm 1 Rotational Latent Space Optimization (RLSO)

1: Input: Pre-trained Latent Diffusion Model D(·), reward function r(·)
2: Initialize: Policy network πθ(a|s) with parameters θ.

Training

3: procedure TRAINING
4: for each training iteration do
5: Sample initial latent vector s0 ∼ N (0, I).
6: for t = 0, . . . , T − 1 do ▷ Loop over steps in an episode
7: Sample action at ∼ πθ(·|st).
8: Construct rotation matrix R(at) and compute the new latent vector: st+1 = Rst.
9: Generate sample by decoding the latent vector: yt+1 = D(st+1).

10: Compute reward: rt+1(yt+1).
11: if episode terminates then
12: break
13: Update policy θ using PPO with the collected trajectory.

Inference

14: procedure INFERENCE
15: Input: Trained policy πθ∗ , initial latent vector sinit ∼ N (0, I).

16: Sample initial latent vector s0 ∼ N (0, I).
17: Compute optimized latent vector sopt = πθ(·|s0).
18: Generate the final, optimized sample: yopt = D(sopt).
19: return yopt.

A.3 TRAINING

Experiment GPU Training steps Hours
exp 2 - Darcy Flow 1x Nvidia GeForce RTX 4090 2× 106 ∼14

exp 2 - Voronoi 1x Nvidia GeForce RTX 4090 1.5× 106 ∼11

exp 3 - Darcy Flow (ND = 512) 1x Nvidia GeForce RTX 4090 1× 106 ∼7.8

exp 3 - Voronoi (ND = 512) 1x Nvidia GeForce RTX 4090 0.8× 106 ∼6.7

exp 4 - Darcy Flow (ND = 512) 1x Nvidia GeForce RTX 4090 0.6× 106 ∼5.2

exp 5 - Stable Diffusion 1x Nvidia GeForce RTX 5090 1.5× 106 ∼54

Table 5: Hardware details and training time (one training step comprises one full denoising pass of
the frozen LDM and one update of the RL Policy’s network weights).

B TRADEOFF BETWEEN QUALITY AND DIVERSITY

To investigate the tradeoff between quality and diversity, we run experiments that analyze the effect
of several variables on the diversity and on the quality of the generated samples. Specifically, the
number of directions Nd (continuous, 256, or 512); the angle range ((0, π), [0, π] or [0, π

2 ]); the
number of discretization bins BΦ (80 or 160); and the type of rotation (single or double).

B.1 DARCY FLOW

To evaluate diversity, we generate 1000 darcy flow samples for each experiment, aggregate them
by channel (permeability K and pressure p). and compute a kernel-density estimation. To evaluate
sample quality, we generate 10000 samples and evaluate the residual error ϵ. Figure 4 shows the
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results of the diversity evaluation, figure 5 the results of the quality evaluation. These highlight
several key findings:

1. Continuous direction and angle (as described in section 4.2) lead to increase in sample
quality without significant loss of diversity.

2. Discretizing and limiting the number of directions (as described in section 4.3) leads to im-
proved sample quality, but can lead to significant loss in diversity beyond a certain thresh-
old.

3. Angle range and number of discretization bins have little effect on quality or diversity.

4. Incorporating information from all channels by using an n-fold rotation (a double rotation
in this case, as described in section 4.4) leads to a measurable increase in sample quality,
without loss of diversity.

Furthermore, we investigate the effect of isoclinic rotations. As discussed in section 3.2, isoclinic
rotations are a special form of n-fold rotations, where the angles of all planes of rotations are equal
to each other. To that end, we extend the action space of experiment 4 (section 4.4) to (j, k,Φ1,Φ2),
where j, k ∈ 1, . . . , d2 and Φi =

kπ
79 , for k ∈ 0, . . . , 79. Essentially, we add one action dimension

for the second angle. The results show that the effect is minimal: the isoclinic rotation converges
slightly faster and achieves a slightly higher average residual error (∼1.7%). We believe that this
stems mostly from the added complexity from the extra free parameter Φ2.

4 2 0 2 4

Training Data (a)

LDM
W= 0.003

(b)

R=S |Nd,Φ : continuous
W= 0.006

(c)

R=S |Nd=256 |Φ+=π |BΦ= 80
W= 0.038

(d)

R=S |Nd=256 |Φ+=π
2
|BΦ= 80

W= 0.035
(e)

R=S |Nd=256 |Φ+=π |BΦ=160
W= 0.037

(f)

R=S |Nd=512 |Φ+=π |BΦ= 80
W= 0.006

(g)

R=D |Nd=512 |Φ+=π |BΦ= 80
W= 0.006

(h)

R=I |Nd=512 |Φ+=π |BΦ= 80
W= 0.007

(i)

1.0 0.5 0.0 0.5 1.0

Training Data (a)

LDM
W= 0.089

(b)

R=S |Nd,Φ : continuous
W= 0.075

(c)

R=S |Nd=256 |Φ+=π |BΦ= 80
W= 0.045

(d)

R=S |Nd=256 |Φ+=π
2
|BΦ= 80

W= 0.048
(e)

R=S |Nd=256 |Φ+=π |BΦ=160
W= 0.049

(f)

R=S |Nd=512 |Φ+=π |BΦ= 80
W= 0.040

(g)

R=D |Nd=512 |Φ+=π |BΦ= 80
W= 0.035

(h)

R=I |Nd=512 |Φ+=π |BΦ= 80
W= 0.034

(i)

Figure 4: Darcy Flow: Distribution of permeability K (left) and pressure p (right) for different
numbers of directions Nd, angle ranges [0,Φ+], and number of angle discretization bins BΦ. R
represents the type of rotation (S: single, D: double, I: isoclinic) and W denotes the Wasserstein
distance to the training data. Plot (c) corresponds to experiment 2, plots (d,e,f,g) correspond to
variations of experiment 3, and plots (h,i) correspond to variations of experiment 4.
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Figure 5: Darcy Flow: residual error for different numbers of directions Nd, angle ranges [0,Φ+],
and number of angle discretization bins BΦ. R represents the type of rotation (S: single, D: double,
I: isoclinic).

B.2 VORONOI

To evaluate diversity, we generate 1000 images, automatically detect the position of the region cen-
troids and plot their distribution on the 64 × 64 pixel grid. To evaluate sample quality, we generate
10000 samples and evaluate the residual error ϵ. Figure 6 shows the results of the diversity evalua-
tion, figure 7 the results of the quality evaluation. These partly mimic the results from section B.1,
with a few important differences:

1. Discretizing direction and angle always leads to significant loss in diversity.

2. Both increasing the angle range and the number of discretization bins increase sample
quality and diversity.

LDM

0.0e+00

2.5e 04

5.0e 04

7.5e 04

Nd=256 |Φ+=π |BΦ= 80

0.0e+00

1.5e 02
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2
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6.0e 03
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1.8e 02

Nd,Φ : continuous
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Figure 6: Voronoi: Distribution of region centroids for different number of directions Nd, angle
ranges [0,Φ+], and number of angle discretization bins BΦ.
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Figure 7: Voronoi: residual error for different numbers of directions Nd, angle ranges [0,Φ+], and
number of angle discretization bins BΦ.

B.3 TEXT-CONDITIONED LDM

To evaluate quality, we generate 10000 images and evaluate the residual error ϵ. Results are shown
in figure 3. To evaluate diversity, we generate 1000 images with RLSO and 10000 images with
the LDM. We encode both generated datasets with CLIP and measure the mean pairwise cosine
similarity δ between encodings within each datasets. We report δ = 0.8457 for the LDM and
δ = 0.8857 for RLSO. This indicates a slightly reduced diversity, but no signs of mode collapse,
as also confirmed by visual inspection. Furthermore, we investigated how well RLSO trained on a
fixed prompt generalizes to unseen prompts and slight architecture modifications. Figures 8 (a,b,c)
show that RLSO can generalize to unseen prompts when trained with a fixed one, albeit with a
reduced improvement in sample quality. Similarly, it can cope with dropping the Hyper-SD LoRA
with which it was trained at inference time, also with a slightly reduced effectiveness.

C BASELINE COMPARISON: PROJECTION-BASED UPDATES

To further validate the hypothesis that rotations constitute an efficient exploration strategy, we com-
pare RLSO against a popular norm-preserving optimization method used in LSO (similar to e.g.
Wallace et al. (2023)). We construct a baseline with an action space analogous to that of Ex-
periment 3 (Section 4.3); however, instead of applying a rotation, this baseline projects the up-
date back onto the hypersphere. The actions lie in the space (j, α), where j ∈ 1, . . . , Nd and
α = p

8 , for p ∈ 0, . . . , 79. The next state is then computed according to:

st+1 =
√
D · st + ĥjα∥∥∥st + ĥjα

∥∥∥
2

where ĥj is th jth column of the direction matrix H ∈ Rd2×Nd , α is a step size, and D = d2 = 256
denotes the dimensionality of the vectorized latent space.

Figure 9 demonstrates that RLSO significantly outperforms this norm-constrained baseline. We
attribute this performance gap to the limitations of projection-based exploration, which is inherently
restricted in its angular reach compared to rotational updates.
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Figure 8: (a) Training with the fixed prompt ”a photo of an astronaut riding a horse on mars.”,
reward evaluation with the same fixed prompt. (b) Training with the fixed prompt ”a photo of an
astronaut riding a horse on mars.”, reward evaluation with fixed prompt yellow cat sitting on a
park bench. (c) Training with the fixed prompt ”a photo of an astronaut riding a horse on mars.”,
reward evaluation with dynamic prompt, sampled at each inference step from the DrawBench dataset
(Saharia et al., 2022). (d) Training with the fixed prompt ”a photo of an astronaut riding a horse on
mars.”, reward evaluation with the same fixed prompt, without the Hyper-SD LoRA. (e) Training
with the fixed prompt ”a green colored rabbit.”, reward evaluation with the same fixed prompt.
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Figure 9: Voronoi: RL training (left) and residual error comparison (right), evaluated on 10000
samples

D QUALITATIVE RESULTS

Figures 10 to 14 show a qualitative comparison between the LDM and RLSO. For each comparison,
we generated 1000 samples with the LDM and 1000 samples with RLSO and respectively selected
5 at random using a pseudo-random number generator.

E LLM USAGE

We used a large language model only for minor editing, such as correcting typos, fixing grammatical
errors, and limited rephrasing.
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Figure 10: Images generated by the text-conditioned LDM with the prompt ”a photo of an astronaut
riding a horse on mars” (top). The mean reward for the LDM images is r = 1.09 (top). Images
generated by RLSO (bottom). The mean reward for the RLSO samples is r = 1.525.

Figure 11: Images generated by the text-conditioned LDM with the prompt ”four roses.” (top). The
mean reward for the LDM images is r = −1.08 (top). Images generated by RLSO (bottom). The
mean reward for the RLSO samples is r = 1.217. Note that RLSO avoids the SD 1.5 failure mode
associated with the whisky brand of the same name.

Figure 12: Images generated by the text-conditioned LDM with the prompt ”a green colored rabbit.”
(top). The mean reward for the LDM images is r = −0.204 (top). Images generated by RLSO
(bottom). The mean reward for the RLSO samples is r = 1.733.
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Figure 13: Voronoi samples generated by the unconditional LDM. The mean residual for the LDM
samples is ϵ = 1.879 (top). Voronoi samples generated by the baseline for Experiment 1. The mean
residual is ϵ = 1.864 (middle). Voronoi samples generated by RLSO for Experiment 2 (continuous
action space). The mean residual for the RLSO samples is ϵ = 1.51 (bottom).

Figure 14: Darcy Flow permeability fields K and pressure fields p generated by the unconditional
LDM (top two rows). Row 1 shows samples of K, and Row 2 shows samples of p. The mean
residual for the LDM samples is ϵ = 0.552. Darcy Flow permeability and pressure fields generated
by RLSO for Experiment 3 (Nd = 512) are shown in the bottom two rows. Row 3 shows K, and
Row 4 shows p. The mean residual for the RLSO samples is ϵ = 0.424.
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