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Abstract

Assembly-to-source code translation is a critical task in reverse engineering, cyber-
security, and software maintenance, yet systematic benchmarks for evaluating large
language models (LLMs) on this problem remain scarce. In this work, we present
the first comprehensive evaluation of five state-of-the-art LLMs on assembly-to-
source translation. We assess model performance using a diverse set of metrics
capturing lexical similarity (BLEU, ROUGE, METEOR), semantic alignment
(BERTScore), fluency (Perplexity), and efficiency (time prediction). Our results
reveal clear trade-offs: while certain models excel in text similarity metrics, others
demonstrate lower perplexity or faster inference times. We further provide qualita-
tive analyses of typical model successes and failure cases, highlighting challenges
such as control flow recovery and identifier reconstruction. Taken together, our
benchmark offers actionable insights into the strengths and limitations of current
LLMs for program translation, establishing a foundation for future research in
combining accuracy with efficiency for real-world applications.

1 INTRODUCTION

Assembly language, while powerful, presents significant challenges due to its machine-like syntax,
lack of abstractions, and hardware dependence[l]]. Programs written in assembly are hard to read,
maintain, and debug, making development slow and error-prone[2} 3| |4]. Unlike high-level languages
such as C or C++, which provide portability, modularity, and human-readable syntax[3]], assembly
requires deep hardware knowledge and is only practical for small-scale programs. These limitations
in readability, scalability, and collaboration (Table[T) strongly motivate research into methods that
can translate assembly code into higher-level, more understandable representations.

Previous studies have investigated assembly-to-source translation using rule-based or statistical
approaches [6, 7, 18,19, 110]. While these efforts demonstrated the feasibility of the task, they often
relied on handcrafted rules or shallow machine learning methods [[11} 12} [13]], and thus struggled to
capture semantic nuances across diverse assembly instructions [[14,[15}116].

Recent advances in large language models (LLMs) have shown strong capabilities in source-to-source
translation, code synthesis, and natural language—to—code generation, making them natural candi-
dates for tackling the challenges of assembly-to-source translation. Building on these strengths,
several works have begun to explore LLMs for decompilation—for example, LLM4Decompile[17]
demonstrated converting binaries into readable source code, [[18] improved recompilability of decom-
piler outputs, and Decompile-Bench[19]] introduced large-scale benchmarks to facilitate systematic
evaluation. However, despite these advances, no work has specifically examined direct LLM-based
translation from assembly to C++ code, leaving this as an open and practically significant research
problem.
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Table 1: Comparison between Assembly (low-level) and High-Level (C++) programming languages.

Aspect Assembly (Low-Level) High-Level (C++ etc.)

Readability Hard to read (machine-like, cryptic =~ Human-readable, closer to natural
instructions) language

Maintainability Very difficult to modify/debug Easier to maintain and refactor

Portability Hardware-specific, not portable Portable across architectures via

across CPUs compilers
Development Speed ~ Slow (manual registers, memory Faster (loops, functions, data struc-
management) tures)

Error-Proneness

Easy to introduce subtle bugs

Safer abstractions, type-checking re-
duces errors

Abstractions No functions, classes, or advanced  Supports OOP, modularity, libraries
data types
Scalability Only feasible for small programs Suitable for large, complex software
systems
Collaboration Requires deep hardware knowledge Accessible to more developers,

(few can contribute)

teamwork-friendly

In this work, we present a benchmark to evaluate five representative large language models (LLMs)
on the task of translating assembly code into high-level source code (C++). We assess their perfor-
mance using widely adopted automatic evaluation metrics, including BLEU, ROUGE, METEOR,
BERTScore, Perplexity, and prediction time [20} 21].. Our findings reveal notable trade-offs between
fluency and correctness, highlighting both the strengths and limitations of current LLMs. These
results provide valuable insights into the challenges of assembly-to-source code translation and
underscore its practical significance for software engineering, program comprehension, and security
analysis.

2 RELATED WORK

Early efforts in assembly-to-source translation primarily relied on rule-based systems and statistical
learning approaches. These methods mapped instruction patterns to higher-level constructs through
handcrafted heuristics [6, 8, [10]. While effective on restricted subsets of assembly, they often lacked
scalability and failed to capture the semantic nuances of diverse instruction sets [11} 12} [13]]. More
recent statistical and neural approaches have sought to improve upon these limitations by introducing
learned representations of code, yet they still depend heavily on aligned training data and are brittle
to out-of-distribution inputs [14} 15} [16].

In parallel, compiler-inspired decompilers and binary analysis frameworks have been developed to
reconstruct high-level semantics from low-level code [7, 9]. These tools leverage static and dynamic
analysis techniques to recover control flow, data structures, and variable names, but the resulting code
is often verbose, hard to read, or not recompilable, limiting their usefulness for software maintenance
and reverse engineering.

The emergence of large language models (LLMs) has opened a new avenue for program translation.
LLMs trained on large-scale code corpora have demonstrated strong performance in code synthesis,
translation, and bug fixing [20} 21]]. Several recent studies have begun to apply LLMs to decompi-
lation tasks: LLM4Decompile [17] showed that LLMs can translate binaries into human-readable
source code, Wong et al. [[18] focused on improving the recompilability of generated outputs, and
Decompile-Bench [[19] introduced a benchmark to standardize evaluation. However, these works
do not specifically target direct assembly-to-C++ translation, nor do they provide a systematic
comparison across multiple models and evaluation dimensions.

Our work fills this gap by introducing the first benchmark that evaluates a diverse set of LLMs on
assembly-to-C++ translation. We assess performance along lexical, semantic, fluency, and efficiency
dimensions, offering new insights into the trade-offs between accuracy and practicality in this
important task.
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3 METHODOLOGY

In this section, we outline the methodology used to evaluate large language models (LLMs) for the
task of translating assembly code into C++. First, we provide an overview of the five selected LLMs
and highlight their key features, training paradigms, and relevance to code translation. Next, we
describe the evaluation metrics—BLEU, ROUGE, METEOR, BERTScore, Perplexity, and prediction
time—and explain the specific goal of using each in assessing model performance. We then present
the dataset and reference benchmark used in our experiments, including their composition and
distinguishing characteristics. Finally, we report and analyze the experimental results obtained across
the different models and metrics, offering both quantitative comparisons and qualitative insights.

3.1 LLM Models

To evaluate the task of assembly-to-C++ translation, we selected five representative instruction-tuned
large language models (LLMs), chosen to cover a range of scales and architectures. The models can
be divided into two groups based on their parameter size. The small-scale models include DeepSeek-
Coder-1.3B-Instruct[22], Phi-4-Mini-Instruct (Microsoft)[23]], and Qwen2.5-Coder-1.5B-Instruct[24],
which are lightweight models (1-2B parameters) designed for efficiency and suitable for deployment
in resource-constrained environments. These models are particularly attractive for edge computing
and IoT scenarios, where inference speed and memory footprint are critical.

The larger-scale models consist of Llama-3.1-8B-Instruct (Meta)[25] and Mistral-7B-Instruct-
v0.1[26]], which have significantly more parameters (7-8B) and generally provide stronger reasoning
and language generation capabilities. These models, while more computationally demanding, offer
higher capacity for capturing long-range dependencies and complex patterns in code.

Across both groups, all models share a common focus on instruction tuning, meaning they are
optimized to follow user prompts and generate context-aware responses. However, they differ in
their design philosophies: DeepSeek-Coder and Qwen2.5-Coder emphasize code-centric pretraining,
Phi-4-Mini is optimized for compact general-purpose reasoning, while Llama-3.1 and Mistral focus
on broad multilingual and multi-domain adaptability. This diversity allows us to assess how model
size and training specialization affect performance in the assembly-to-source translation task. Table[2]
summarizes the key characteristics of the five models, highlighting their size, specialization, and
distinctive features.

Table 2: Comparison of the selected LLMs used for assembly-to-C++ translation.

Model Size  Key Features
DeepSeek-Coder-1.3B-Instruct  1.3B  Code-focused, instruction-tuned
Phi-4-Mini-Instruct 1.8B  Compact, efficient, general-purpose
Qwen2.5-Coder-1.5B-Instruct  1.5B  Code-centric, multilingual
Mistral-7B-Instruct-v0.1 7B General-purpose, strong reasoning
Llama-3.1-8B-Instruct 8B Broad coverage, multilingual

3.2 Evaluation Metrics

To assess the performance of LLMs on assembly-to-C++ translation, we employ six evaluation
metrics: BLEU, ROUGE, METEOR, BERTScore, Perplexity, and Prediction Time. Each captures a
distinct dimension of translation quality or practicality, and together they provide a comprehensive
evaluation framework.

* BLEU (Bilingual Evaluation Understudy): Measures n-gram overlap between generated
output and the reference code. It primarily evaluates syntactic correctness but may penalize
valid variations in phrasing[27} 28} 29].

* ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a family of n-gram overlap
metrics that emphasize recall by rewarding outputs which capture more of the reference
content. Although originally developed for natural language evaluation, ROUGE has
been widely applied across domains, including code translation. Its main variants include
ROUGE-1 (unigram overlap), ROUGE-2 (bigram overlap), ROUGE-L (longest common
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subsequence), and ROUGE-Lsum (a summarization-oriented extension). Each variant
reflects a distinct inductive bias: ROUGE-1 measures token coverage, often yielding high
scores even when tokens are scrambled; it is useful for assessing vocabulary correctness
but ignores structural fidelity. ROUGE-2 captures local order by evaluating bigram overlap,
rewarding adjacent-token correctness but penalizing small edits disproportionately—for
example, inserting a modifier can disrupt many bigrams. ROUGE-L, based on longest
common subsequence, evaluates global sequence alignment: it rewards preservation of
overall token order while tolerating minor insertions or deletions, making it well-suited to
distinguish meaningful control-flow consistency from benign stylistic changes. ROUGE-
Lsum is a sentence-aware variant designed for summarization, but for code (where sentence
boundaries are irrelevant) it closely tracks ROUGE-L without providing additional insights.

= microsoft == Qwen = mistralai = |llama === deepseek

Parallel Coordinates (All Samples) across ROUGE-1/2/L/Lsum
Rows = Models (distinct color per model), Columns = Precision / Recall / F1

Precision Recall FL

ROUGE-T PROUGE-2 ROUGEL ROUGELcum  ROUGE1 ROUGE-2 ROUGE L ROUGE Loum

Quen
Score

ROUGEL ROUGE2 FOUGE L ROUGE-Lsum  ROUGE-L ROUGE2 FOUGEL ROUGE-Lsum  ROUGE-1 ROUGEZ ROUGE L ROUGE-Lsum

score

mistralai

OUGE-L ROUGE-2 FOUGE-L ROUGE-LsUM  ROUGE-1 ROUGE-? ROUGE-L ROUGE-SUM  ROUGE-1 ROUGE-Z ROUGE-L ROUGE-Lsum

llarms
seore

ROUGE-L ROUGE-2 ROUGEL ROUGE-Lsum  ROUGE-L ROUGE2 ROUGEL ROUGEL=um  ROUGE1 ROUGE2 ROUGE L ROUGE L=um

deepseck
score

) - - e e e ——

ROUGE'L ROUGE 2 ROUGEL ROUGE-Lsum  ROUGE'L ROUGE2 FOUGEL ROUGE-Lsum  ROUGE-1 FOUGEZ ROUGEL ROUGE Lsum

Figure 1: Parallel coordinate plots of five LLMs (Microsoft, Qwen, Mistral, Llama, DeepSeek) across
ROUGE metrics (ROUGE-1, ROUGE-2, ROUGE-L, ROUGE-Lsum) for precision, recall, and F1.
All models exhibit sharp performance drops on ROUGE-2 compared to ROUGE-1 and ROUGE-L.
ROUGE-L and ROUGE-Lsum trends are nearly identical, indicating similar sequence-level and
summarization-level matching. Precision generally exceeds recall, particularly for Microsoft and
Qwen, suggesting models often produce plausible but incomplete outputs.

In our parallel-coordinates analysis (Fig. [I), all five models exhibit a pronounced trough
at ROUGE-2 across Precision, Recall, and F1, reflecting the metric’s brittleness to small
local edits common in decompilation (e.g., toggling argument order, inserting casts, or
relocating declarations). By contrast, ROUGE-1 often appears inflated: precision is high
even when recall or token order is imperfect, since most tokens are present. ROUGE-L
produces consistently higher and more stable curves than ROUGE-2 across all models,
while ROUGE-Lsum overlaps ROUGE-L, confirming that sentence segmentation offers
no additional value in this task. Collectively, these results suggest that sequence-aware yet
order-tolerant matching provides the most reliable signal for assembly-to-source translation.
Accordingly, we adopt ROUGE-L F1 as our primary ROUGE metric, since it balances
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precision (avoiding hallucinated tokens) and recall (capturing required tokens), while its LCS
foundation preserves structural alignment—an aspect most closely aligned with compilable,
semantically faithful code translations. For completeness, we also report ROUGE-1 and
ROUGE-2 in the appendix.

* METEOR (Metric for Evaluation of Translation with Explicit ORdering): Incorporates
stemming, synonyms, and word order, making it more sensitive to semantic equivalence
compared to BLEU or ROUGE[30, 311

* BERTScore: Uses contextual embeddings from pretrained transformers to measure semantic
similarity. It can capture meaning preservation even when surface tokens differ[32] 33} [34].
Figure 2] presents the BERTScore evaluation results (Precision, Recall, and F1) for five large

BERTScore Precision / Recall / F1 by Model

10

EEm Precision
EEE Recall
. Fl

0.8 4

0.6

BERTScore

0.4

0.2 1

0.0 -
microsoft Qwen mistralai llama deepseek

Figure 2: BERTScore evaluation (Precision, Recall, and F1) of five LLMs (Microsoft, Qwen,
Mistral Al, LLaMA, and DeepSeek) on the Assembly-to-Source Code Translation task.

language models—Microsoft, Qwen, MistralAl, LLaMA, and DeepSeek—on the Assembly-
to-Source Code Translation task. BERTScore measures semantic similarity between the
generated and reference code using contextual embeddings rather than relying solely on
surface-level token overlap. As shown in the bar chart, all models achieve relatively high
scores across the three metrics, with Precision typically slightly higher than Recall. For
reporting purposes, the F1 score is selected as the representative metric since it balances
both Precision (exactness) and Recall (coverage). This makes F1 a more robust indicator of
overall performance, particularly in translation tasks where both accurate token generation
and comprehensive coverage of the reference meaning are equally important.

 Perplexity: Quantifies fluency and naturalness by measuring how likely the generated
sequence is under a model’s probability distribution. Lower perplexity reflects greater
confidence and smoother generation[33}, 36].

* Prediction Time: Measures the computational efficiency of producing translations, expressed
as the time per output. This metric is particularly important for deployment in real-time or
resource-constrained environments, such as edge devices or IoT systems.

No single metric fully reflects translation quality and usability. Overlap-based metrics (BLEU,
ROUGE, METEOR) capture surface-level correctness, embedding-based BERTScore measures
semantic fidelity, perplexity reflects fluency, and prediction time assesses practical feasibility. To-
gether, these metrics balance syntactic correctness, semantic accuracy, fluency, and computational
efficiency—dimensions that are all essential for reliable and deployable assembly-to-C++ translation.
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3.3 Dataset

For our experiments, we employed a subset of the SBAN dataset, a benchmark designed for analyzing
assembly code. From this collection, we selected about 700 samples, which represents approximately
0.1% of the full dataset. This subset contains a mix of malware and benign code, reflecting the
diversity of real-world assembly programs. Before use, the samples were preprocessed to ensure
consistency: formatting was normalized, extraneous metadata was removed, and assembly instructions
were paired with their corresponding source-level representations.

To provide a ground truth for evaluation, we used a reference dataset consisting of the C++ source
code aligned with the same SBAN assembly samples. This C++ reference code was manually
provided and verified by human experts, ensuring semantic correctness and eliminating potential
ambiguities. By aligning assembly instructions with trusted source-level counterparts, this dataset
enables a reliable assessment of translation quality.

Spider plot: aligned metrics (higher is bette ' models
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Figure 3: Spider plot comparing models across metrics that are aligned with performance (higher
values indicate better results): BLEU, METEOR, ROUGE-L F1, and BERTScore F1. Each axis
is min—max normalized across models to enable direct comparison. The plot highlights relative
strengths and weaknesses of the models, with overlapping traces (e.g., Qwen and mistralai) indicating
identical performance on these metrics.

3.4 Training Settings and Hyperparameters

All experiments were conducted on an NVIDIA H100 GPU, which provides high memory bandwidth
and powerful parallel processing for efficient model training. We trained the models for 10 epochs
with a batch size of 32 sequences per GPU, using a maximum sequence length of 512 tokens. The
learning rate was set to 3e-5 with a linear warm-up over the first 1,000 steps, and optimization was
performed using AdamW (5, = 0.9, B2 = 0.999, weight decay 0.01) with gradient clipping at
1.0. These hyperparameters were carefully selected to ensure stable training, fast convergence, and
optimal performance on our dataset.
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3.5 Results

We evaluate the five LLMs on six metrics spanning correctness, semantics, fluency, and efficiency.
Table 3 summarizes the average results across all models, reporting values for lexical metrics (BLEU,
METEOR, ROUGE-L F1), semantic similarity (BERTScore F1), fluency (Perplexity), and efficiency
(Prediction Time). Model size is also listed, expressed in billions of parameters, while prediction
time is measured in seconds. This table provides a unified view of performance, complementing the
visual analyses presented in the spider and bubble charts.

Aligned metrics. The spider plot in Figure [3] aggregates the aligned metrics—BLEU, METEOR,
ROUGE-L F1, and BERTScore Fl—where higher values indicate better performance. Large-
scale models (Mistral-7B, Llama-8B) generally achieve higher values, especially on ROUGE-L
and BERTScore, reflecting their greater ability to capture structural and semantic fidelity. Among
the smaller models, Qwen-1.5B consistently performs close to the larger models, suggesting that
efficiency-focused architectures can still yield competitive accuracy. Overlapping traces in the spider
plot (e.g., Qwen and Mistral) highlight instances where small and large models converge on similar
aligned performance. Non-aligned metrics. In contrast, the bubble chart in Figure |4| focuses on

LLM Model Tradeoff: Time vs Perplexity vs Size
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Figure 4: Bubble chart showing the efficiency trade-off across models. X-axis: average prediction
time (s). Y-axis: average perplexity (lower is better for both). Bubble area o parameter count
(billions), color encodes the model. Models closer to the lower-left are more efficient; the legend
groups small (<4B) vs large (>4B) models.

non-aligned metrics, where lower values are better. Here, the Y-axis denotes perplexity (fluency),
the X-axis shows prediction time (efficiency in seconds), and bubble area encodes model size (in
billions of parameters). Smaller models, such as Microsoft-Phi-3B, achieve substantially lower
prediction times (as fast as 2.59 s), while DeepSeek-1.3B and Qwen-1.5B balance efficiency with
competitive perplexity. Large models, particularly Llama-8B, deliver the lowest perplexity (4.44)
but incur the highest inference latency (7.69 s), illustrating the cost of scaling. Overall comparison.
Table 3] together with Figures 3 and 4, highlights the trade-offs between aligned and non-aligned
metrics. Larger models dominate in lexical and semantic similarity but sacrifice inference speed,
while smaller models are more efficient yet less consistent on accuracy-based metrics. These findings
reveal that model choice depends on the intended application: accuracy-critical tasks benefit from
large models, whereas efficiency-critical deployments favor smaller ones. This balance between
billions of parameters and seconds of inference time underscores the dual challenge of achieving both
correctness and practicality in assembly-to-source translation.
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4 DISCUSSION

Our evaluation shows that model performance depends strongly on the trade-off between accuracy
and efficiency.

Large-scale models. Mistral-7B and Llama-8B consistently achieve the best results on aligned
metrics (BLEU, ROUGE-L, METEOR, BERTScore), reflecting their superior capacity for semantic
and structural fidelity. Llama-8B also attains the lowest perplexity (4.44), but its prediction time is the
slowest (7.69 s). Mistral-7B offers a better balance, combining strong accuracy with more moderate
runtime.

Small-scale models. Microsoft-Phi-3B is the fastest (2.59 s) but lags on similarity metrics. DeepSeek-
1.3B is similarly efficient but weaker overall. Qwen-1.5B stands out among small models, achieving
competitive BLEU and BERTScore while maintaining reasonable prediction time (4.10 s).

Best models by use case. For accuracy-critical tasks (e.g., reverse engineering), Mistral-7B is the
most practical, with Liama-8B providing the strongest fluency at higher cost. For efficiency-focused
applications (e.g., real-time security analysis), Microsoft-Phi-3B is preferable. Qwen-1.5B represents
the best compromise between the two extremes.

Takeaway. There is no single best model: large models maximize fidelity, while small models enable
faster and more resource-conscious deployment. Future work should explore hybrid strategies (e.g.,
distillation, ensembles) to reduce this trade-off.

Despite providing new insights, this study has several limitations. First, our evaluation is conducted on
a relatively small subset of the SBAN dataset ( 700 samples), which represents only a fraction of the
diversity found in real-world assembly code. This restricted scale may limit the generalizability of our
findings to broader domains such as obfuscated binaries or domain-specific instruction sets. Second,
while we evaluate multiple dimensions of performance—including lexical similarity, semantics,
fluency, and efficiency—our benchmark does not incorporate functional correctness checks such as
recompilability or execution-based validation. Finally, we only benchmarked five instruction-tuned
LLMs; extending the evaluation to larger and more diverse model families would provide a more
comprehensive understanding of the trade-offs between accuracy and efficiency in assembly-to-source
translation.

S CONCLUSION

This work introduces the first comprehensive benchmark of large language models for assembly-
to-C++ translation, evaluating five diverse models across lexical, semantic, fluency, and efficiency
metrics. The study reveals trade-offs between semantic accuracy and inference speed, with larger
models like Mistral-7B and Llama-8B excelling in fidelity, while smaller ones like Phi-3B and
Qwen-1.5B offer faster, more deployment-friendly performance. Based on several samples from
the SBAN dataset, the results mark a meaningful starting point but underscore the need for broader
evaluations involving more diverse data and additional models. Future directions include exploring

Table 3: Comparison of models across evaluation metrics. Metrics with 1T mean higher is better, and
J mean lower is better. Highest values are in green, lowest in red.

Metric deepseek microsoft Qwen mistralai llama
Size (1) 1.3B 3B 4B 7B 7B

Perplexity () 10.0233 12.9007 9.5993  9.5993  4.4414
Prediction Time (]) 7.3s 2.59s 4.10s 5.16s 7.69 s
BLEU (1) 0.0426 0.0299 0.0396  0.0396  0.0231
METEOR (1) 0.1733 0.1383 0.1617  0.1617  0.1113

ROUGE-L F1 (1) 0.1044 0.1245 0.1307  0.1307  0.0911
BERTScore F1 (1) 0.8290 0.8345 0.8430 0.8430  0.8284
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hybrid approaches (e.g., distillation, ensembles), incorporating functional correctness via human and
compiler feedback, and expanding benchmarks to cover multilingual or domain-specific binaries.
Overall, the study lays essential groundwork for advancing LLM-based program translation toward
more robust, efficient, and real-world-applicable solutions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction explicitly state that SBAN is a large-scale,
multi-dimensional dataset integrating source code, binaries, assembly, and natural language
descriptions, and the paper consistently supports these claims with dataset construction
details and applications.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a dedicated discussion of limitations, noting challenges
such as dataset balance, potential biases, and difficulties in covering all programming
languages.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Dataset construction steps, data sources, and evaluation protocols are described
in detail, and the dataset is openly released with clear documentation.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The SBAN dataset is publicly available on Hugging Face at https://
huggingface.co/datasets/JeloH/SBANx20250610/tree/main, along with scripts
and documentation to reproduce results.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We used a sub-datest of SBAN datset.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: No experiments with statistical evaluation are included.

8. Experiments compute resources
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10.

11.

12.

13.

14.

15.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We used GPU H100 for working on LLMs.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The dataset uses legally distributable sources, and malware binaries are
disarmed for safe release. Responsible use guidelines are provided.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Positive impacts include enabling safer reverse engineering, improving soft-
ware maintenance, and supporting cybersecurity research. Potential negative impacts include
misuse for malware analysis or malware code analysis.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Harmful binaries are released only in disarmed form, and access requires
agreement to usage guidelines.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All reused datasets and code sources are cited in References.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: SBAN is released with full documentation describing dataset structure, prepro-
cessing steps, and limitations.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve human subjects or crowdsourcing.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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16.

Answer: [NA]
Justification: No human subjects research was conducted.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?

Answer: [NA]

Justification: The core contribution of the paper is the dataset; LLMs are evaluated on the
dataset but not developed as a core method.
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