
Asm2SrcEval: Evaluating Large Language Models for
Assembly-to-Source Code Translation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Assembly-to-source code translation is a critical task in reverse engineering, cyber-1

security, and software maintenance, yet systematic benchmarks for evaluating large2

language models (LLMs) on this problem remain scarce. In this work, we present3

the first comprehensive evaluation of five state-of-the-art LLMs on assembly-to-4

source translation. We assess model performance using a diverse set of metrics5

capturing lexical similarity (BLEU, ROUGE, METEOR), semantic alignment6

(BERTScore), fluency (Perplexity), and efficiency (time prediction). Our results7

reveal clear trade-offs: while certain models excel in text similarity metrics, others8

demonstrate lower perplexity or faster inference times. We further provide qualita-9

tive analyses of typical model successes and failure cases, highlighting challenges10

such as control flow recovery and identifier reconstruction. Taken together, our11

benchmark offers actionable insights into the strengths and limitations of current12

LLMs for program translation, establishing a foundation for future research in13

combining accuracy with efficiency for real-world applications.14

1 INTRODUCTION15

Assembly language, while powerful, presents significant challenges due to its machine-like syntax,16

lack of abstractions, and hardware dependence[1]. Programs written in assembly are hard to read,17

maintain, and debug, making development slow and error-prone[2, 3, 4]. Unlike high-level languages18

such as C or C++, which provide portability, modularity, and human-readable syntax[5], assembly19

requires deep hardware knowledge and is only practical for small-scale programs. These limitations20

in readability, scalability, and collaboration (Table 1) strongly motivate research into methods that21

can translate assembly code into higher-level, more understandable representations.22

Previous studies have investigated assembly-to-source translation using rule-based or statistical23

approaches [6, 7, 8, 9, 10]. While these efforts demonstrated the feasibility of the task, they often24

relied on handcrafted rules or shallow machine learning methods [11, 12, 13], and thus struggled to25

capture semantic nuances across diverse assembly instructions [14, 15, 16].26

Recent advances in large language models (LLMs) have shown strong capabilities in source-to-source27

translation, code synthesis, and natural language–to–code generation, making them natural candi-28

dates for tackling the challenges of assembly-to-source translation. Building on these strengths,29

several works have begun to explore LLMs for decompilation—for example, LLM4Decompile[17]30

demonstrated converting binaries into readable source code, [18] improved recompilability of decom-31

piler outputs, and Decompile-Bench[19] introduced large-scale benchmarks to facilitate systematic32

evaluation. However, despite these advances, no work has specifically examined direct LLM-based33

translation from assembly to C++ code, leaving this as an open and practically significant research34

problem.35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Table 1: Comparison between Assembly (low-level) and High-Level (C++) programming languages.
Aspect Assembly (Low-Level) High-Level (C++ etc.)
Readability Hard to read (machine-like, cryptic

instructions)
Human-readable, closer to natural
language

Maintainability Very difficult to modify/debug Easier to maintain and refactor
Portability Hardware-specific, not portable

across CPUs
Portable across architectures via
compilers

Development Speed Slow (manual registers, memory
management)

Faster (loops, functions, data struc-
tures)

Error-Proneness Easy to introduce subtle bugs Safer abstractions, type-checking re-
duces errors

Abstractions No functions, classes, or advanced
data types

Supports OOP, modularity, libraries

Scalability Only feasible for small programs Suitable for large, complex software
systems

Collaboration Requires deep hardware knowledge
(few can contribute)

Accessible to more developers,
teamwork-friendly

In this work, we present a benchmark to evaluate five representative large language models (LLMs)36

on the task of translating assembly code into high-level source code (C++). We assess their perfor-37

mance using widely adopted automatic evaluation metrics, including BLEU, ROUGE, METEOR,38

BERTScore, Perplexity, and prediction time [20, 21].. Our findings reveal notable trade-offs between39

fluency and correctness, highlighting both the strengths and limitations of current LLMs. These40

results provide valuable insights into the challenges of assembly-to-source code translation and41

underscore its practical significance for software engineering, program comprehension, and security42

analysis.43

2 RELATED WORK44

Early efforts in assembly-to-source translation primarily relied on rule-based systems and statistical45

learning approaches. These methods mapped instruction patterns to higher-level constructs through46

handcrafted heuristics [6, 8, 10]. While effective on restricted subsets of assembly, they often lacked47

scalability and failed to capture the semantic nuances of diverse instruction sets [11, 12, 13]. More48

recent statistical and neural approaches have sought to improve upon these limitations by introducing49

learned representations of code, yet they still depend heavily on aligned training data and are brittle50

to out-of-distribution inputs [14, 15, 16].51

In parallel, compiler-inspired decompilers and binary analysis frameworks have been developed to52

reconstruct high-level semantics from low-level code [7, 9]. These tools leverage static and dynamic53

analysis techniques to recover control flow, data structures, and variable names, but the resulting code54

is often verbose, hard to read, or not recompilable, limiting their usefulness for software maintenance55

and reverse engineering.56

The emergence of large language models (LLMs) has opened a new avenue for program translation.57

LLMs trained on large-scale code corpora have demonstrated strong performance in code synthesis,58

translation, and bug fixing [20, 21]. Several recent studies have begun to apply LLMs to decompi-59

lation tasks: LLM4Decompile [17] showed that LLMs can translate binaries into human-readable60

source code, Wong et al. [18] focused on improving the recompilability of generated outputs, and61

Decompile-Bench [19] introduced a benchmark to standardize evaluation. However, these works62

do not specifically target direct assembly-to-C++ translation, nor do they provide a systematic63

comparison across multiple models and evaluation dimensions.64

Our work fills this gap by introducing the first benchmark that evaluates a diverse set of LLMs on65

assembly-to-C++ translation. We assess performance along lexical, semantic, fluency, and efficiency66

dimensions, offering new insights into the trade-offs between accuracy and practicality in this67

important task.68

2

3 METHODOLOGY69

In this section, we outline the methodology used to evaluate large language models (LLMs) for the70

task of translating assembly code into C++. First, we provide an overview of the five selected LLMs71

and highlight their key features, training paradigms, and relevance to code translation. Next, we72

describe the evaluation metrics—BLEU, ROUGE, METEOR, BERTScore, Perplexity, and prediction73

time—and explain the specific goal of using each in assessing model performance. We then present74

the dataset and reference benchmark used in our experiments, including their composition and75

distinguishing characteristics. Finally, we report and analyze the experimental results obtained across76

the different models and metrics, offering both quantitative comparisons and qualitative insights.77

3.1 LLM Models78

To evaluate the task of assembly-to-C++ translation, we selected five representative instruction-tuned79

large language models (LLMs), chosen to cover a range of scales and architectures. The models can80

be divided into two groups based on their parameter size. The small-scale models include DeepSeek-81

Coder-1.3B-Instruct[22], Phi-4-Mini-Instruct (Microsoft)[23], and Qwen2.5-Coder-1.5B-Instruct[24],82

which are lightweight models (1–2B parameters) designed for efficiency and suitable for deployment83

in resource-constrained environments. These models are particularly attractive for edge computing84

and IoT scenarios, where inference speed and memory footprint are critical.85

The larger-scale models consist of Llama-3.1-8B-Instruct (Meta)[25] and Mistral-7B-Instruct-86

v0.1[26], which have significantly more parameters (7–8B) and generally provide stronger reasoning87

and language generation capabilities. These models, while more computationally demanding, offer88

higher capacity for capturing long-range dependencies and complex patterns in code.89

Across both groups, all models share a common focus on instruction tuning, meaning they are90

optimized to follow user prompts and generate context-aware responses. However, they differ in91

their design philosophies: DeepSeek-Coder and Qwen2.5-Coder emphasize code-centric pretraining,92

Phi-4-Mini is optimized for compact general-purpose reasoning, while Llama-3.1 and Mistral focus93

on broad multilingual and multi-domain adaptability. This diversity allows us to assess how model94

size and training specialization affect performance in the assembly-to-source translation task. Table 295

summarizes the key characteristics of the five models, highlighting their size, specialization, and96

distinctive features.

Table 2: Comparison of the selected LLMs used for assembly-to-C++ translation.
Model Size Key Features
DeepSeek-Coder-1.3B-Instruct 1.3B Code-focused, instruction-tuned
Phi-4-Mini-Instruct 1.8B Compact, efficient, general-purpose
Qwen2.5-Coder-1.5B-Instruct 1.5B Code-centric, multilingual
Mistral-7B-Instruct-v0.1 7B General-purpose, strong reasoning
Llama-3.1-8B-Instruct 8B Broad coverage, multilingual

97

3.2 Evaluation Metrics98

To assess the performance of LLMs on assembly-to-C++ translation, we employ six evaluation99

metrics: BLEU, ROUGE, METEOR, BERTScore, Perplexity, and Prediction Time. Each captures a100

distinct dimension of translation quality or practicality, and together they provide a comprehensive101

evaluation framework.102

• BLEU (Bilingual Evaluation Understudy): Measures n-gram overlap between generated103

output and the reference code. It primarily evaluates syntactic correctness but may penalize104

valid variations in phrasing[27, 28, 29].105

• ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a family of n-gram overlap106

metrics that emphasize recall by rewarding outputs which capture more of the reference107

content. Although originally developed for natural language evaluation, ROUGE has108

been widely applied across domains, including code translation. Its main variants include109

ROUGE-1 (unigram overlap), ROUGE-2 (bigram overlap), ROUGE-L (longest common110

3

subsequence), and ROUGE-Lsum (a summarization-oriented extension). Each variant111

reflects a distinct inductive bias: ROUGE-1 measures token coverage, often yielding high112

scores even when tokens are scrambled; it is useful for assessing vocabulary correctness113

but ignores structural fidelity. ROUGE-2 captures local order by evaluating bigram overlap,114

rewarding adjacent-token correctness but penalizing small edits disproportionately—for115

example, inserting a modifier can disrupt many bigrams. ROUGE-L, based on longest116

common subsequence, evaluates global sequence alignment: it rewards preservation of117

overall token order while tolerating minor insertions or deletions, making it well-suited to118

distinguish meaningful control-flow consistency from benign stylistic changes. ROUGE-119

Lsum is a sentence-aware variant designed for summarization, but for code (where sentence120

boundaries are irrelevant) it closely tracks ROUGE-L without providing additional insights.121

Figure 1: Parallel coordinate plots of five LLMs (Microsoft, Qwen, Mistral, Llama, DeepSeek) across
ROUGE metrics (ROUGE-1, ROUGE-2, ROUGE-L, ROUGE-Lsum) for precision, recall, and F1.
All models exhibit sharp performance drops on ROUGE-2 compared to ROUGE-1 and ROUGE-L.
ROUGE-L and ROUGE-Lsum trends are nearly identical, indicating similar sequence-level and
summarization-level matching. Precision generally exceeds recall, particularly for Microsoft and
Qwen, suggesting models often produce plausible but incomplete outputs.

In our parallel-coordinates analysis (Fig. 1), all five models exhibit a pronounced trough122

at ROUGE-2 across Precision, Recall, and F1, reflecting the metric’s brittleness to small123

local edits common in decompilation (e.g., toggling argument order, inserting casts, or124

relocating declarations). By contrast, ROUGE-1 often appears inflated: precision is high125

even when recall or token order is imperfect, since most tokens are present. ROUGE-L126

produces consistently higher and more stable curves than ROUGE-2 across all models,127

while ROUGE-Lsum overlaps ROUGE-L, confirming that sentence segmentation offers128

no additional value in this task. Collectively, these results suggest that sequence-aware yet129

order-tolerant matching provides the most reliable signal for assembly-to-source translation.130

Accordingly, we adopt ROUGE-L F1 as our primary ROUGE metric, since it balances131

4

precision (avoiding hallucinated tokens) and recall (capturing required tokens), while its LCS132

foundation preserves structural alignment—an aspect most closely aligned with compilable,133

semantically faithful code translations. For completeness, we also report ROUGE-1 and134

ROUGE-2 in the appendix.135

• METEOR (Metric for Evaluation of Translation with Explicit ORdering): Incorporates136

stemming, synonyms, and word order, making it more sensitive to semantic equivalence137

compared to BLEU or ROUGE[30, 31].138

• BERTScore: Uses contextual embeddings from pretrained transformers to measure semantic139

similarity. It can capture meaning preservation even when surface tokens differ[32, 33, 34].140

Figure 2 presents the BERTScore evaluation results (Precision, Recall, and F1) for five large

Figure 2: BERTScore evaluation (Precision, Recall, and F1) of five LLMs (Microsoft, Qwen,
MistralAI, LLaMA, and DeepSeek) on the Assembly-to-Source Code Translation task.

141
language models—Microsoft, Qwen, MistralAI, LLaMA, and DeepSeek—on the Assembly-142

to-Source Code Translation task. BERTScore measures semantic similarity between the143

generated and reference code using contextual embeddings rather than relying solely on144

surface-level token overlap. As shown in the bar chart, all models achieve relatively high145

scores across the three metrics, with Precision typically slightly higher than Recall. For146

reporting purposes, the F1 score is selected as the representative metric since it balances147

both Precision (exactness) and Recall (coverage). This makes F1 a more robust indicator of148

overall performance, particularly in translation tasks where both accurate token generation149

and comprehensive coverage of the reference meaning are equally important.150

• Perplexity: Quantifies fluency and naturalness by measuring how likely the generated151

sequence is under a model’s probability distribution. Lower perplexity reflects greater152

confidence and smoother generation[35, 36].153

• Prediction Time: Measures the computational efficiency of producing translations, expressed154

as the time per output. This metric is particularly important for deployment in real-time or155

resource-constrained environments, such as edge devices or IoT systems.156

No single metric fully reflects translation quality and usability. Overlap-based metrics (BLEU,157

ROUGE, METEOR) capture surface-level correctness, embedding-based BERTScore measures158

semantic fidelity, perplexity reflects fluency, and prediction time assesses practical feasibility. To-159

gether, these metrics balance syntactic correctness, semantic accuracy, fluency, and computational160

efficiency—dimensions that are all essential for reliable and deployable assembly-to-C++ translation.161

5

3.3 Dataset162

For our experiments, we employed a subset of the SBAN dataset, a benchmark designed for analyzing163

assembly code. From this collection, we selected about 700 samples, which represents approximately164

0.1% of the full dataset. This subset contains a mix of malware and benign code, reflecting the165

diversity of real-world assembly programs. Before use, the samples were preprocessed to ensure166

consistency: formatting was normalized, extraneous metadata was removed, and assembly instructions167

were paired with their corresponding source-level representations.168

To provide a ground truth for evaluation, we used a reference dataset consisting of the C++ source169

code aligned with the same SBAN assembly samples. This C++ reference code was manually170

provided and verified by human experts, ensuring semantic correctness and eliminating potential171

ambiguities. By aligning assembly instructions with trusted source-level counterparts, this dataset172

enables a reliable assessment of translation quality.173

Figure 3: Spider plot comparing models across metrics that are aligned with performance (higher
values indicate better results): BLEU, METEOR, ROUGE-L F1, and BERTScore F1. Each axis
is min–max normalized across models to enable direct comparison. The plot highlights relative
strengths and weaknesses of the models, with overlapping traces (e.g., Qwen and mistralai) indicating
identical performance on these metrics.

3.4 Training Settings and Hyperparameters174

All experiments were conducted on an NVIDIA H100 GPU, which provides high memory bandwidth175

and powerful parallel processing for efficient model training. We trained the models for 10 epochs176

with a batch size of 32 sequences per GPU, using a maximum sequence length of 512 tokens. The177

learning rate was set to 3e-5 with a linear warm-up over the first 1,000 steps, and optimization was178

performed using AdamW (β1 = 0.9, β2 = 0.999, weight decay 0.01) with gradient clipping at179

1.0. These hyperparameters were carefully selected to ensure stable training, fast convergence, and180

optimal performance on our dataset.181

6

3.5 Results182

We evaluate the five LLMs on six metrics spanning correctness, semantics, fluency, and efficiency.183

Table 3 summarizes the average results across all models, reporting values for lexical metrics (BLEU,184

METEOR, ROUGE-L F1), semantic similarity (BERTScore F1), fluency (Perplexity), and efficiency185

(Prediction Time). Model size is also listed, expressed in billions of parameters, while prediction186

time is measured in seconds. This table provides a unified view of performance, complementing the187

visual analyses presented in the spider and bubble charts.188

Aligned metrics. The spider plot in Figure 3 aggregates the aligned metrics—BLEU, METEOR,189

ROUGE-L F1, and BERTScore F1—where higher values indicate better performance. Large-190

scale models (Mistral-7B, Llama-8B) generally achieve higher values, especially on ROUGE-L191

and BERTScore, reflecting their greater ability to capture structural and semantic fidelity. Among192

the smaller models, Qwen-1.5B consistently performs close to the larger models, suggesting that193

efficiency-focused architectures can still yield competitive accuracy. Overlapping traces in the spider194

plot (e.g., Qwen and Mistral) highlight instances where small and large models converge on similar195

aligned performance. Non-aligned metrics. In contrast, the bubble chart in Figure 4 focuses on

Figure 4: Bubble chart showing the efficiency trade-off across models. X-axis: average prediction
time (s). Y-axis: average perplexity (lower is better for both). Bubble area ∝ parameter count
(billions), color encodes the model. Models closer to the lower-left are more efficient; the legend
groups small (≤4B) vs large (>4B) models.

196
non-aligned metrics, where lower values are better. Here, the Y-axis denotes perplexity (fluency),197

the X-axis shows prediction time (efficiency in seconds), and bubble area encodes model size (in198

billions of parameters). Smaller models, such as Microsoft-Phi-3B, achieve substantially lower199

prediction times (as fast as 2.59 s), while DeepSeek-1.3B and Qwen-1.5B balance efficiency with200

competitive perplexity. Large models, particularly Llama-8B, deliver the lowest perplexity (4.44)201

but incur the highest inference latency (7.69 s), illustrating the cost of scaling. Overall comparison.202

Table 3, together with Figures 3 and 4, highlights the trade-offs between aligned and non-aligned203

metrics. Larger models dominate in lexical and semantic similarity but sacrifice inference speed,204

while smaller models are more efficient yet less consistent on accuracy-based metrics. These findings205

reveal that model choice depends on the intended application: accuracy-critical tasks benefit from206

large models, whereas efficiency-critical deployments favor smaller ones. This balance between207

billions of parameters and seconds of inference time underscores the dual challenge of achieving both208

correctness and practicality in assembly-to-source translation.209

7

4 DISCUSSION210

Our evaluation shows that model performance depends strongly on the trade-off between accuracy211

and efficiency.212

Large-scale models. Mistral-7B and Llama-8B consistently achieve the best results on aligned213

metrics (BLEU, ROUGE-L, METEOR, BERTScore), reflecting their superior capacity for semantic214

and structural fidelity. Llama-8B also attains the lowest perplexity (4.44), but its prediction time is the215

slowest (7.69 s). Mistral-7B offers a better balance, combining strong accuracy with more moderate216

runtime.217

Small-scale models. Microsoft-Phi-3B is the fastest (2.59 s) but lags on similarity metrics. DeepSeek-218

1.3B is similarly efficient but weaker overall. Qwen-1.5B stands out among small models, achieving219

competitive BLEU and BERTScore while maintaining reasonable prediction time (4.10 s).220

Best models by use case. For accuracy-critical tasks (e.g., reverse engineering), Mistral-7B is the221

most practical, with Llama-8B providing the strongest fluency at higher cost. For efficiency-focused222

applications (e.g., real-time security analysis), Microsoft-Phi-3B is preferable. Qwen-1.5B represents223

the best compromise between the two extremes.224

Takeaway. There is no single best model: large models maximize fidelity, while small models enable225

faster and more resource-conscious deployment. Future work should explore hybrid strategies (e.g.,226

distillation, ensembles) to reduce this trade-off.227

Despite providing new insights, this study has several limitations. First, our evaluation is conducted on228

a relatively small subset of the SBAN dataset (700 samples), which represents only a fraction of the229

diversity found in real-world assembly code. This restricted scale may limit the generalizability of our230

findings to broader domains such as obfuscated binaries or domain-specific instruction sets. Second,231

while we evaluate multiple dimensions of performance—including lexical similarity, semantics,232

fluency, and efficiency—our benchmark does not incorporate functional correctness checks such as233

recompilability or execution-based validation. Finally, we only benchmarked five instruction-tuned234

LLMs; extending the evaluation to larger and more diverse model families would provide a more235

comprehensive understanding of the trade-offs between accuracy and efficiency in assembly-to-source236

translation.237

5 CONCLUSION238

This work introduces the first comprehensive benchmark of large language models for assembly-239

to-C++ translation, evaluating five diverse models across lexical, semantic, fluency, and efficiency240

metrics. The study reveals trade-offs between semantic accuracy and inference speed, with larger241

models like Mistral-7B and Llama-8B excelling in fidelity, while smaller ones like Phi-3B and242

Qwen-1.5B offer faster, more deployment-friendly performance. Based on several samples from243

the SBAN dataset, the results mark a meaningful starting point but underscore the need for broader244

evaluations involving more diverse data and additional models. Future directions include exploring245

Table 3: Comparison of models across evaluation metrics. Metrics with ↑ mean higher is better, and
↓ mean lower is better. Highest values are in green, lowest in red.

Metric deepseek microsoft Qwen mistralai llama

Size (↓) 1.3 B 3 B 4 B 7 B 7 B
Perplexity (↓) 10.0233 12.9007 9.5993 9.5993 4.4414
Prediction Time (↓) 7.3 s 2.59 s 4.10 s 5.16 s 7.69 s

BLEU (↑) 0.0426 0.0299 0.0396 0.0396 0.0231
METEOR (↑) 0.1733 0.1383 0.1617 0.1617 0.1113
ROUGE-L F1 (↑) 0.1044 0.1245 0.1307 0.1307 0.0911
BERTScore F1 (↑) 0.8290 0.8345 0.8430 0.8430 0.8284

8

hybrid approaches (e.g., distillation, ensembles), incorporating functional correctness via human and246

compiler feedback, and expanding benchmarks to cover multilingual or domain-specific binaries.247

Overall, the study lays essential groundwork for advancing LLM-based program translation toward248

more robust, efficient, and real-world-applicable solutions.249

References250

[1] Steven Muchnick. Advanced compiler design implementation. Morgan kaufmann, 1997.251

[2] Tilman Mehler. Challenges and applications of assembly level software model checking. 2006.252

[3] Wenbing Wu. Analysis of several difficult problems in assembly language programming.253

Creative Education, 10(7):1745–1752, 2019.254

[4] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles, techniques & tools.255

pearson Education, 2007.256

[5] Bjarne Stroustrup. An overview of the c++ programming language. Handbook of object257

technology, 72, 1999.258

[6] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew Smith. No259

more gotos: Decompilation using pattern-independent control-flow structuring and semantic-260

preserving transformations. In NDSS, 2015.261

[7] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian, Farinaz Koushanfar, and262

Jishen Zhao. Coda: An end-to-end neural program decompiler. In H. Wallach, H. Larochelle,263

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information264

Processing Systems, volume 32. Curran Associates, Inc., 2019.265

[8] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian, Farinaz Koushanfar, and266

Jishen Zhao. Coda: An end-to-end neural program decompiler. Advances in Neural Information267

Processing Systems, 32, 2019.268

[9] Ying Cao, Ruigang Liang, Kai Chen, and Peiwei Hu. Boosting neural networks to decompile269

optimized binaries. In proceedings of the 38th annual computer security applications conference,270

pages 508–518, 2022.271

[10] Iman Hosseini and Brendan Dolan-Gavitt. Beyond the c: Retargetable decompilation using272

neural machine translation. arXiv preprint arXiv:2212.08950, 2022.273

[11] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz, Miltiadis Allamanis, Claire Le Goues,274

Graham Neubig, and Bogdan Vasilescu. Dire: A neural approach to decompiled identifier275

naming. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering276

(ASE), pages 628–639. IEEE, 2019.277

[12] Vikram Nitin, Anthony Saieva, Baishakhi Ray, and Gail Kaiser. Direct: A transformer-based278

model for decompiled variable name recovery. NLP4Prog 2021, page 48, 2021.279

[13] Qibin Chen, Jeremy Lacomis, Edward J Schwartz, Claire Le Goues, Graham Neubig, and280

Bogdan Vasilescu. Augmenting decompiler output with learned variable names and types. In281

31st USENIX Security Symposium (USENIX Security 22), pages 4327–4343, 2022.282

[14] Luke Dramko, Jeremy Lacomis, Edward J Schwartz, Bogdan Vasilescu, and Claire Le Goues.283

A taxonomy of c decompiler fidelity issues. In 33rd USENIX Security Symposium (USENIX284

Security 24), pages 379–396, 2024.285

[15] Ying Cao, Runze Zhang, Ruigang Liang, and Kai Chen. Evaluating the effectiveness of286

decompilers. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software287

Testing and Analysis, pages 491–502, 2024.288

[16] Zixu Zhou. Decompiling rust: An empirical study of compiler optimizations and reverse289

engineering challenges. arXiv preprint arXiv:2507.18792, 2025.290

9

[17] Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun Zhang. Llm4decompile: Decompiling binary code291

with large language models. arXiv preprint arXiv:2403.05286, 2024.292

[18] Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu, Shuai Wang, Qiyi Tang, Sen Nie, and Shi293

Wu. Refining decompiled c code with large language models. arXiv preprint arXiv:2310.06530,294

2023.295

[19] Hanzhuo Tan, Xiaolong Tian, Hanrui Qi, Jiaming Liu, Zuchen Gao, Siyi Wang, Qi Luo, Jing Li,296

and Yuqun Zhang. Decompile-bench: Million-scale binary-source function pairs for real-world297

binary decompilation. arXiv preprint arXiv:2505.12668, 2025.298

[20] Taojun Hu and Xiao-Hua Zhou. Unveiling llm evaluation focused on metrics: Challenges and299

solutions. arXiv preprint arXiv:2404.09135, 2024.300

[21] Nik Bear Brown. Enhancing trust in llms: Algorithms for comparing and interpreting llms.301

arXiv preprint arXiv:2406.01943, 2024.302

[22] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,303

Xiao Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets304

programming–the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.305

[23] Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach,306

Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini307

technical report: Compact yet powerful multimodal language models via mixture-of-loras.308

arXiv preprint arXiv:2503.01743, 2025.309

[24] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-310

jun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint311

arXiv:2409.12186, 2024.312

[25] A. Grattafiori. The llama 3 herd of models. arXiv preprint, 2024.313

[26] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh314

Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile315

Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut316

Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b: A 7-billion-317

parameter language model engineered for superior performance and efficiency. arXiv preprint,318

2023.319

[27] Matt Post. A call for clarity in reporting bleu scores. arXiv preprint arXiv:1804.08771, 2018.320

[28] Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien Nguyen. Does bleu score work for321

code migration? In 2019 IEEE/ACM 27th International Conference on Program Comprehension322

(ICPC), pages 165–176, 2019.323

[29] Ehud Reiter. A structured review of the validity of bleu. Computational Linguistics, 44(3):393–324

401, 2018.325

[30] Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation evaluation326

for any target language. In Proceedings of the ninth workshop on statistical machine translation,327

pages 376–380, 2014.328

[31] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with329

improved correlation with human judgments. In Proceedings of the acl workshop on intrinsic330

and extrinsic evaluation measures for machine translation and/or summarization, pages 65–72,331

2005.332

[32] Michael Hanna and Ondřej Bojar. A fine-grained analysis of bertscore. In Proceedings of the333

Sixth Conference on Machine Translation, pages 507–517, 2021.334

[33] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore:335

Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019.336

10

[34] Tianxiang Sun, Junliang He, Xipeng Qiu, and Xuanjing Huang. Bertscore is unfair: On social337

bias in language model-based metrics for text generation. arXiv preprint arXiv:2210.07626,338

2022.339

[35] Clara Meister and Ryan Cotterell. Language model evaluation beyond perplexity. arXiv preprint340

arXiv:2106.00085, 2021.341

[36] Zachary Ankner, Cody Blakeney, Kartik Sreenivasan, Max Marion, Matthew L Leavitt, and342

Mansheej Paul. Perplexed by perplexity: Perplexity-based pruning with small reference models.343

In ICLR 2024 Workshop on Mathematical and Empirical Understanding of Foundation Models,344

2024.345

11

NeurIPS Paper Checklist346

1. Claims347

Question: Do the main claims made in the abstract and introduction accurately reflect the348

paper’s contributions and scope?349

Answer: [Yes]350

Justification: The abstract and introduction explicitly state that SBAN is a large-scale,351

multi-dimensional dataset integrating source code, binaries, assembly, and natural language352

descriptions, and the paper consistently supports these claims with dataset construction353

details and applications.354

2. Limitations355

Question: Does the paper discuss the limitations of the work performed by the authors?356

Answer: [Yes]357

Justification: The paper includes a dedicated discussion of limitations, noting challenges358

such as dataset balance, potential biases, and difficulties in covering all programming359

languages.360

3. Theory assumptions and proofs361

Question: For each theoretical result, does the paper provide the full set of assumptions and362

a complete (and correct) proof?363

Answer: [NA]364

Justification: The paper does not include theoretical results.365

4. Experimental result reproducibility366

Question: Does the paper fully disclose all the information needed to reproduce the main ex-367

perimental results of the paper to the extent that it affects the main claims and/or conclusions368

of the paper (regardless of whether the code and data are provided or not)?369

Answer: [Yes]370

Justification: Dataset construction steps, data sources, and evaluation protocols are described371

in detail, and the dataset is openly released with clear documentation.372

5. Open access to data and code373

Question: Does the paper provide open access to the data and code, with sufficient instruc-374

tions to faithfully reproduce the main experimental results, as described in supplemental375

material?376

Answer: [Yes]377

Justification: The SBAN dataset is publicly available on Hugging Face at https://378

huggingface.co/datasets/JeloH/SBANx20250610/tree/main, along with scripts379

and documentation to reproduce results.380

6. Experimental setting/details381

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-382

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the383

results?384

Answer: [Yes]385

Justification: We used a sub-datest of SBAN datset.386

7. Experiment statistical significance387

Question: Does the paper report error bars suitably and correctly defined or other appropriate388

information about the statistical significance of the experiments?389

Answer: [NA]390

Justification: No experiments with statistical evaluation are included.391

8. Experiments compute resources392

12

https://huggingface.co/datasets/JeloH/SBANx20250610/tree/main
https://huggingface.co/datasets/JeloH/SBANx20250610/tree/main
https://huggingface.co/datasets/JeloH/SBANx20250610/tree/main

Question: For each experiment, does the paper provide sufficient information on the com-393

puter resources (type of compute workers, memory, time of execution) needed to reproduce394

the experiments?395

Answer: [Yes]396

Justification: We used GPU H100 for working on LLMs.397

9. Code of ethics398

Question: Does the research conducted in the paper conform, in every respect, with the399

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?400

Answer: [Yes]401

Justification: The dataset uses legally distributable sources, and malware binaries are402

disarmed for safe release. Responsible use guidelines are provided.403

10. Broader impacts404

Question: Does the paper discuss both potential positive societal impacts and negative405

societal impacts of the work performed?406

Answer: [Yes]407

Justification: Positive impacts include enabling safer reverse engineering, improving soft-408

ware maintenance, and supporting cybersecurity research. Potential negative impacts include409

misuse for malware analysis or malware code analysis.410

11. Safeguards411

Question: Does the paper describe safeguards that have been put in place for responsible412

release of data or models that have a high risk for misuse (e.g., pretrained language models,413

image generators, or scraped datasets)?414

Answer: [Yes]415

Justification: Harmful binaries are released only in disarmed form, and access requires416

agreement to usage guidelines.417

12. Licenses for existing assets418

Question: Are the creators or original owners of assets (e.g., code, data, models), used in419

the paper, properly credited and are the license and terms of use explicitly mentioned and420

properly respected?421

Answer: [Yes]422

Justification: All reused datasets and code sources are cited in References.423

13. New assets424

Question: Are new assets introduced in the paper well documented and is the documentation425

provided alongside the assets?426

Answer: [Yes]427

Justification: SBAN is released with full documentation describing dataset structure, prepro-428

cessing steps, and limitations.429

14. Crowdsourcing and research with human subjects430

Question: For crowdsourcing experiments and research with human subjects, does the paper431

include the full text of instructions given to participants and screenshots, if applicable, as432

well as details about compensation (if any)?433

Answer: [NA]434

Justification: The paper does not involve human subjects or crowdsourcing.435

15. Institutional review board (IRB) approvals or equivalent for research with human436

subjects437

Question: Does the paper describe potential risks incurred by study participants, whether438

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)439

approvals (or an equivalent approval/review based on the requirements of your country or440

institution) were obtained?441

13

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]442

Justification: No human subjects research was conducted.443

16. Declaration of LLM usage444

Question: Does the paper describe the usage of LLMs if it is an important, original, or445

non-standard component of the core methods in this research?446

Answer: [NA]447

Justification: The core contribution of the paper is the dataset; LLMs are evaluated on the448

dataset but not developed as a core method.449

14

	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	LLM Models
	Evaluation Metrics
	Dataset
	Training Settings and Hyperparameters
	Results

	DISCUSSION
	CONCLUSION

