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Abstract

While large language models (LLMs) trained001
with large-scale unsupervised learning acquire002
a wide variety of world knowledge and skills,003
its behavior does not necessarily align with004
human preferences. RLHF methods achieve005
successes in aligning LLM responses with hu-006
man preferences and improving the controlla-007
bility of LLM behavior with human instruc-008
tion. However, RLHF methods are consider-009
ably complicated to implement, computation-010
ally expensive to train, and notoriously tricky011
to tune. In this work, we propose Alignment012
with Residual Energy-Based Model (ARM),013
as a simple and flexible alternative to RLHF014
methods. Our method is driven by an obser-015
vation that we can learn an aligned policy by016
minimizing a forward Kullback–Leibler (KL)017
divergence from a target policy (in the form of a018
residual energy-based model) to a parameteric019
policy (LLM), instead of a reverse KL as in020
RLHF methods. With samples from the energy-021
based target policy, we can leverage the power022
of DPO (or other offline methods) to learn an023
aligned policy efficiently. ARM is simple to024
implement and applicable in various data set-025
tings. Our extensive experiments demonstrate026
its strong performance across multiple datasets,027
compared to strong baselines like PPO, DPO.028

1 Introduction029

Large language models (LLMs) have become ex-030

tremely powerful and demonstrated remarkable ca-031

pacities in various domains (OpenAI, 2023; Anil032

et al., 2023). LLMs trained on very large unsuper-033

vised datasets acquire a wide range of capacities034

and skillsets, completing tasks zero-shot or few-035

shot (Radford et al., 2019; Brown et al., 2020). The036

large unsupervised corpus contains text with var-037

ious goals and values, which are not necessarily038

aligned with human preferences.039

After unsupervised learning, instruction tun-040

ing (Mishra et al., 2021; Sanh et al., 2021; Chung041

Figure 1: Improvements of ARM over SFT model un-
der various settings. y-axis is the win-rate of LLM re-
sponses compared to human responses in the Anthropic-
Helpful-Harmless dataset.

et al., 2022; Wei et al., 2021) is often applied to 042

LLMs, which can significantly improve their ca- 043

pacities on instruction following and align their re- 044

sponses with human values or preferences. While 045

instruct tuning is straightforward, the most success- 046

ful class of methods on alignment is Reinforcement 047

Learning from Human Feedback (RLHF) (Chris- 048

tiano et al., 2017; Stiennon et al., 2020; Ouyang 049

et al., 2022). To apply RLHF, human preferences 050

data on model responses are first collected, and a 051

reward function is learned with the preference data 052

as a surrogate to human value. Given the surro- 053

gate reward function, RL methods can be applied, 054

where language models are optimized to produce 055

responses that receive high rewards while not drift- 056

ing too far away from a reference model (Schulman 057

et al., 2017). 058

Despite the success of RLHF, these methods 059

are often complicated to implemented, expensive 060

to train, and tricky to tune. Recently, there is a 061

surge of interest in developing simpler alternatives 062

to RLHF methods such as DPO (Rafailov et al., 063

1



2023), RRHF (Yuan et al., 2023). These meth-064

ods are straightforward to implement and easier to065

train, yet they maintain the performance of RLHF066

methods on human preference learning.067

The reliance on complicated online RL methods068

is because the reward maximization (with some069

conservative constraint) in preference learning070

amounts to minimizing a reverse Kullback–Leibler071

(KL) divergence DKL
(
πθ || π∗), where π∗ is the072

target response distribution or policy that aligns073

with human preference, and πθ is parameteric pol-074

icy (e.g., LLMs) we aim to learn (see Section 4075

for more details). Optimizing the reverse KL is076

not straightforward since sampling from πθ is not077

differentiable, and we have to resort to online RL078

methods to optimize this objective.079

In this work, we propose to optimize the for-080

ward KL, DKL
(
π∗ || πθ

)
. As we will show later081

(Section 4), the target distribution π∗ is a residual082

energy-based model with a reference distribution083

(usually the SFT distribution) as the base model084

and the surrogate reward function as the (nega-085

tive) residual energy term. We can sample from π∗086

given a learned reference distribution and reward087

function, and let’s denote it as Dπ∗ . If we learn088

πθ from Dπ∗ with maximum likelihood estimation089

(MLE), it is a variant of expert iteration (Anthony090

et al., 2017). Besides MLE, we can learn it with091

any other offline methods such as DPO. This work092

focuses on DPO since it is simple and performs093

well (Rafailov et al., 2023). We call our method of094

learning policy from Dπ∗ as Alignment with Resid-095

ual Energy-Based Model (ARM) due to the central096

role of EBM in our method.097

We conduct extensive experiments and demon-098

strate that our method, ARM, yields substantial099

improvements over SFT policies and outperforms100

competitive baselines such as PPO and DPO. In101

addition to standard benchmarks, we also examine102

ARM when only non-pairwise preference data are103

available and in low-resource settings. These exper-104

iments highlight the applicability of our method to105

diverse settings due to its simplicity and flexibility.106

As a preview, Figure 1 displays the win-rate of SFT107

and ARM policy responses under various condi-108

tions, as compared to human preferred responses,109

in the Anthropic Helpful-Harmless dataset (Bai110

et al., 2022a).111

Our contributions are summarized as follows:112

• We propose a new learning method named113

ARM for aligning LLMs with human prefer-114

ences. 115

• ARM is simple to implement and flexible to 116

accommodate various data settings. 117

• Our experiments show that ARM outperforms 118

strong baselines such as PPO-based RLHF, 119

state-of-the-art RL-free method DPO, in tasks 120

including instruction following, summariza- 121

tion, dialogue. 122

2 Related Works 123

Since unsupervised LLMs have demonstrated un- 124

precedented potentials in a wide variety of tasks 125

and domains (Radford et al., 2019; Brown et al., 126

2020), much research has dedicated to study how 127

to improve the controllability of LLM behavior, in 128

order to align it with human value and ensure it to 129

follow human instructions. 130

One line of work focuses on instruction tun- 131

ing. Early works leverage academic datasets by 132

transforming them into instructional formats with 133

human-written prompt templates (Wei et al., 2021; 134

Sanh et al., 2021; Wang et al., 2022). This approach 135

is scalable and exhibits potentials in making unsu- 136

pervised LLMs follow instructions. However, its 137

performance significantly lags behind proprietary 138

models like GPT-4 (OpenAI, 2023) which most 139

likely collects a large scale of human-written high 140

quality instruction data. Recently, some researchers 141

attempt to collect high-quality instruction data from 142

strong proprietary models and use them to improve 143

open-sourced models’ instruction following capac- 144

ities (Xu et al., 2023b,a). 145

Besides instruction tuning, RLHF is another 146

class of methods that demonstrate success in hu- 147

man preference learning (Christiano et al., 2017; 148

Stiennon et al., 2020; Ouyang et al., 2022). This ap- 149

proach learns a surrogate reward function from hu- 150

man preference data and considers LLMs as policy 151

models, and then applies RL methods to maximize 152

rewards assigned to the policy without excessively 153

drifting from some reference model. One popular 154

method, PPO (Schulman et al., 2017), is often used 155

in this setting. Motivated by the complexity of RL 156

methods, many recent works attempt to develop 157

simpler alternatives. DPO (Rafailov et al., 2023) 158

and RRHF (Yuan et al., 2023) are developed along 159

this line. Our work shares the same motivation. 160

Since collecting human feedback is expensive, 161

some works explore to use AI models to provide 162

feedback, and they offer potential solutions to the 163
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scalability limitations of RLHF (Lee et al., 2023;164

Bai et al., 2022b). Our method, once an SFT model165

and a reward function are trained with human (or166

other AI) data, our method characterizes sampling167

instruction data and preference data from AI mod-168

els and learning from these samples. Thus, our169

work is also in line with these RLAIF works on this170

aspect.171

3 Preliminaries172

Large language model training starts with unsu-173

pervised learning where it is trained on very large174

datasets with next token prediction. With scaling,175

LLMs gain wide knowledge and capacities after176

unsupervised training (Radford et al., 2019; Brown177

et al., 2020).178

To improve LLMs’ instruction following capac-179

ity, the next step is instruction tuning or supervised180

finetuning (SFT), where models are finetuned on in-181

structions and human-written completions (Mishra182

et al., 2021; Sanh et al., 2021; Wei et al., 2021).183

Given a dataset, Dsft = {(x, y)} where x is an184

instruction or a prompt and y is a human-written185

completion, SFT is often done by186

πsft = max
π

E(x,y)∼Dsft

[
log π(y|x)

]
(1)187

To align model behavior with human value,188

RLHF is applied after learning the SFT policy.189

This framework assumes there is a latent reward190

model r : X × Y → R, such as Bradley-Terry191

model (Bradley and Terry, 1952) or more general192

Plackett-Luce model (Plackett, 1975; Luce, 2012),193

that reflects human preference. Assume we have ac-194

cess to {(x, y0, y1)} where y0, y1 ∼ πsft(y|x), the195

Bradely-Terry model assumes human preference is196

captured by the following distribution,197

p(y1 ≻ y0|x) =
exp (r(x, y1))

exp (r(x, y1)) + exp (r(x, y0))
.

(2)198

We define z ∼ Bernoulli(p(y1 ≻ y0 | x)),199

then we can generate a preference dataset, Dpref =200

{(x, y0, y1, z)}. Given a parameteric form of re-201

ward model, rϕ(x, y), it can be learned with the202

negative log-likelihood loss:203

L(ϕ) = −E(x,y0,y1,z)∼Dpref

[
204

z log σ(rϕ(x, y1)− rϕ(x, y0))+205 (
1− z

)(
1− log σ(rϕ(x, y1)− rϕ(x, y0))

)]
(3)

206

Given πsft(y|x) and rϕ(x, y), we would like to 207

learn a policy, πθ(y | x), with feedback from the 208

reward model. The objective is often formulated as 209

reward maximization with KL-constraint: 210

max
πθ

Ex∼D,y∼πθ(y|x)
[
rϕ(x, y)

]
− 211

βDKL
[
πθ(y | x) || πref(y | x)

]
,

(4)
212

where πref is often set to be πsft. This objective is 213

often optimized with online RL methods such as 214

PPO (Schulman et al., 2017). 215

As an alternative, Rafailov et al. (2023) proposes 216

direct preference optimization (DPO) where they 217

bypass direct reward modeling via a change of vari- 218

ables to define the preference loss as a function of 219

the policy directly. Therefore, the policy can be 220

trained with the preference loss directly. In particu- 221

lar, the DPO objective is as follows, 222

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
223

log σ

(
β log

πθ(yw | x)
πref(yw | x)

− 224

β log
πθ(yl | x)
πref(yl | x)

)]
, (5) 225

where yw is the preferred response and yl is the 226

dispreferred response given the prompt x. 227

4 Methods 228

4.1 Motivations 229

As shown in prior works (Peters and Schaal, 2007; 230

Korbak et al., 2022; Go et al., 2023), the KL- 231

constrained reward maximization objective defined 232

in Equation 4 is equivalent to minimizing a reverse 233

KL divergence, DKL
(
πθ(y | x) || π∗(y | x)

)
where 234

πθ(y | x) is the parametric policy that we are try- 235

ing to align with human value and π∗(y | x) = 236
1

Z(x)πsft(y | x) exp
(

1
β rϕ(x, y)

)
. 237

We may learn πθ by minimizing DKL
(
πθ || π∗). 238

However, this approach faces two challenges. First, 239

optimizing a reverse KL leads to mode collaps- 240

ing. Second, it cannot be optimized end-to-end 241

due to the non-differentiability of sampling from 242

πθ (which has a discrete output space), and this is 243

why researchers resort to RL-based methods such 244

as PPO. While they produce language models with 245

impressive capacities, these methods are consid- 246

erably complicated to implement, tricky to tune, 247
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Algorithm 1 Self-Normalizing Importance Sam-
pling.

Input: πsft(y | x), instruction x, number of
proposal samples to be drawn, n.
Output: completion y.
1. proposal sampling: Sample n samples
{y(1), ..., y(n)} from πsft(y | x).
2. resampling with residual energy: Sample
y ∼ p(y|x) = exp (rϕ(x,y)/β)∑n

i=1 exp (rϕ(x,si)/β)
.

and computationally expensive to train (e.g., four248

LLMs need to be fit in GPU memory in PPO train-249

ing).250

4.2 Alignment with Residual Energy-Based251

Model252

In this work, we propose to learn πθ with the for-253

ward KL, DKL
(
π∗(y | x) || πθ(y | x)

)
. Follow-254

ing this principle, we develop a simple, efficient,255

flexible, and highly-performant method, and recast256

several heuristic-driven methods in a probabilistic257

framework.258

4.2.1 Residual Energy-Based Model259

Our proposal is driven by the observation that the260

target distribution π∗ is an residual energy-based261

model (EBM) (Deng et al., 2019; Bakhtin et al.,262

2021),263

π∗(y | x) = 1

Z(x)
πsft(y | x) exp

(
1

β
rϕ(x, y)

)
,

(6)264

where Z(x) is a normalizing factor known as par-265

tition function, πsft is the SFT-learned distribution,266

and 1
β rϕ(x, y) is the negative energy or the residual267

in the residual EBM framework (rϕ is the learned268

surrogate reward function, see Equation 3).269

4.2.2 Self-Normalizing Importance Sampling270

Since all the components in π∗(y | x) is known,271

we can directly sample from it. Sampling from272

EBM, especially discrete EBM, is still under ac-273

tive research (Grathwohl et al., 2021). In this274

work, we use self-normalizing importance sam-275

pling (Shapiro, 2003; Grover et al., 2019). Deng276

et al. (2019) has shown that it works well with277

language-model-based EBM. The sampling pro-278

ceeds in two steps: 1) sampling from the auto-279

regressive language model πsft(y | x), 2) re-280

sampling according to the negative energy term,281
1
β rϕ(x, y). This sampling procedure is detailed in282

Algorithm 1.283

Algorithm 2 Expert Iteration.

Input: π∗(y | x), prompt dataset Dprompt =
{x}.
Output: πθ(y|x).
1. sampling: Sample a completion y
from π∗(y|x) given x ∼ Dprompt with self-
normalizing importance sampling (Algorithm 1),
resulting in Dπ∗ = {(x, y)}.
2. learning: Learn θ from Dπ∗ via MLE, see
Equation 7.

Given this particular choice of sampling method 284

(self-normalizing importance sampling) and the 285

fact the negative energy is defined by a surrogate re- 286

ward function, sampling from π∗(y | x) resembles 287

the well-known best-of-n inference (Dubois et al., 288

2023) where it draws n responses from the SFT 289

model and returns the response with the highest 290

surrogate reward. The difference is that sampling 291

from π∗ is a probabilistic approach while best-of-n 292

is greedy. 293

4.2.3 Expert Iteration 294

With samples from π∗(y | x), we can learn θ by 295

minimizing the forward KL, DKL
(
π∗ || πθ

)
, which 296

amounts to maximum likelihood estimation (MLE) 297

of θ. That is, 298

max
θ

Ex,y∼Dπ∗ log πθ(y|x), (7) 299

where Dπ∗ = {x, y | x ∼ Dprompt, y ∼ π∗(y | x)} 300

and Dprompt is a collection of prompts. This is 301

a variant of expert iteration considering that re- 302

sponses from π∗ can be considered as "expert" 303

responses. This approach is summarized in Algo- 304

rithm 2. 305

4.2.4 ARM: Bradley-Terry 306

In our experiments, expert iteration works well 307

and consistently produce policy that outperform 308

SFT policy. Considering the advantage of DPO 309

over MLE (or the advantage of offline RL methods 310

over behavior cloning in general), the flexibility 311

of our framework allows us to do simple modifica- 312

tions on expert iteration to leverage DPO, which 313

results in alignment with residual energy-based 314

model (ARM). Expert iteration (see Algorithm 2) 315

follows two steps: 1) sampling and 2) MLE learn- 316

ing. In ARM, we 1) add a scoring step as the second 317

step where we collect preference scores using the 318

learned surrogate reward function, rϕ(x, y), and 2) 319

use DPO instead of MLE to train πθ. 320
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Algorithm 3 ARM.

Input: π∗(y | x), prompt dataset Dprompt =
{x}.
Output: πθ(y|x).
1. sampling: Sample completions y0 and y1
from π∗(y|x) given x ∼ Dprompt with self-
normalizing importance sampling (Algorithm 1),
resulting in Dπ∗ = {(x, y0, y1)}.
2. scoring: Score y0 and y1, yielding rϕ(x, y0)
and rϕ(x, y0), and then compute the prefer-
ence probability (see Equitation 8), giving us
Dpreference = {(x, y1, y2, ρ)}.
3. learning: Learn θ from Dpreference via DPO,
see Equation 9.

Given an instruction x, we can sample two re-321

sponses, y0 and y1, from π∗(y|x). Bradley-Terry322

model (Equation 2) is then used to assign pref-323

erence scores with the surrogate reward model,324

rϕ(x, y). In particular, for y0 being preferred over325

y1, y1 ≻ y0, the preference probability, ρ, is326

ρ = p(y1 ≻ y0|x)327

=
exp (rϕ(x, y1))

exp (rϕ(x, y1)) + exp (rϕ(x, y0))
, (8)328

and for y0 ≻ y1, we have 1− ρ. As such, we build329

a preference dataset by sampling from π∗(y | x)330

and the Bradley-Terry preference model, and let’s331

denote it as Dpreference = {(x, y1, y2, ρ)}. With the332

preference dataset, πθ can be learned by minimiz-333

ing the following objective,334

LARM(θ) = −E(x,y0,y1,ρ)∼Dpreference

[
335

ρ log σ

(
β log

πθ(y1 | x)
πsft(y1 | x)

− β log
πθ(y0 | x)
πsft(y0 | x)

)
+336

(1− ρ) log σ

(
β log

πθ(y0 | x)
πsft(y0 | x)

−337

β log
πθ(y1 | x)
πsft(y1 | x)

)]
. (9)338

It is a modified version of the original DPO ob-339

jective (Rafailov et al., 2023). Notice that is a340

probability value or soft label. This is accessible be-341

cause we have the learned surrogate reward model342

(instead of the latent reward model of human). It343

is also possible to sample hard labels. But in our344

experiments, we find that using probability values345

directly lead to higher performance. This learning346

approach is summarized in Algorithm 3.347

4.2.5 ARM: Plackett-Luce 348

The Bradley-Terry model is one choice of reward 349

model. The Plackett-Luce model (Plackett, 1975; 350

Luce, 2012) is a generalization of the Bradley-Terry 351

model when the number responses is more than 352

two. One practical reason why Bradley-Terry is 353

chosen instead of Plackett-Luce is because it is 354

more expensive to collect preference data over mul- 355

tiple responses. In our framework, preference data 356

used to train πθ(y|x) 1 are collected from a learned 357

reward function. Thus, it is trivial to collect prefer- 358

ence over multiple responses given a prompt. We 359

next briefly introduce the Plackett-Luce model and 360

show how our method can be extended to the case 361

with Plackett-Luce as the reward model. 362

As the Bradley-Terry model, the Plackett-Luce 363

model also assumes that human preference is pro- 364

portional to the value of each choice under some 365

latent reward function, when presented a set of 366

choices. In the LLM context, given a prompt x and 367

a set of K LLM responses {y1, . . . , yK}, human 368

would give a permutation τ : [K] → [K], based on 369

their ranking of the responses. The Plackett-Luce 370

model states the distribution of the permutations 371

(rankings) is, 372

p(τ |y1, . . . , yK , x) =
K∏
k=1

exp(r(x, yτ(k)))∑K
j=k exp(r(x, yτ(j)))

.

(10) 373

Notice that when K = 2, Equation 10 reduces to 374

the Bradley-Terry model (Equation 2). Rafailov 375

et al. (2023) shows that DPO can be generalized to 376

the Plackett-Luce model too by parameterizing the 377

reward function r(x, y) as log-ratios of policies. In 378

particular, 379

pθ(τ |y1, . . . , yK , x) = 380

K∏
k=1

exp
(
β log

πθ(yτ(k)|x)
πsft(yτ(k)|x)

)
∑K

j=k exp
(
β log

πθ(yτ(j)|x)
πsft(yτ(j)|x)

) (11) 381

Similar to ARM based on the Bradley-Terry 382

model (see Section 4.2.4 and Algorithm 3), we 383

can learn the aligned policy πθ(y | x) with the fol- 384

lowing three steps: 1) sample K model responses, 385

{y(i)1 , . . . , y
(i)
K }, from πsft(y | x), given a prompt 386

x(i); 2) score the K responses with rϕ(x, y), yield- 387

ing {rϕ(x, y
(i)
1 ), . . . , rϕ(x, y

(i)
K )}; 3) update θ by 388

1Note that the preference data used to train the surrogate
reward function is still collected from human feedback.
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AlpacaFarm TL;DR Summarization Anthropic-HH

SFT 36.7 43.7 52.7
Expert Iteration 41.9 57.2 62.4
PPO 46.8 63.5 63.6
DPO 46.8 65.8 67.3
Best-of-n 45.0 64.6 70.1
Ours 50.1 71.0 77.7

Table 1: Win-rates on AlpacaFarm, TL;DR Summarization, and Anthropic-HH.

Non-Pairwise Preference Data

AlpacaFarm TL;DR Summarization Anthropic-HH

SFT 36.7 43.7 52.7
Expert Iteration 41.7 45.0 57.1
DPO N/A N/A N/A
Best-of-n 43.3 46.2 68.4
Ours 48.2 47.4 72.5

Table 2: Win-rates on AlpacaFarm, TL;DR Summarization, Anthropic-HH when we only have access to non-
pairwise preference data.

minimizing a generalized DPO loss,389

CE(pEBM(τ |y1, . . . , yK , x), pθ(τ |y1, . . . , yK , x)),
(12)390

where CE(p, q) is the cross-entropy from p391

to q, and pEBM(τ |y1, . . . , yK , x) is the rank-392

ing distribution computed following Equation 10393

with surrogate reward values from step 2)394

({rϕ(x, y
(i)
1 ), . . . , rϕ(x, y

(i)
K )}).395

5 Experiments396

In this section, we empirically evaluate our pro-397

posed method, ARM. We first examine its perfor-398

mance on three datasets. After validating its perfor-399

mance in standard settings, we next explore how400

ARM work in two other interesting settings: 1)401

we only have access to non-pairwise human feed-402

back 2) we only have access to a limited amount403

of pairwise human feedback. These experiments404

aim to demonstrate the flexibility of our method405

and applicability to realistic scenarios. In the afore-406

mentioned experiments, we focus on ARM based407

on the Bradley-Terry model (see Section 4.2.4).408

We then compare ARM based on Bradley-Terry409

versus Plackett-Luce. In the end, we do an abla-410

tion on the number proposal samples used in the411

self-normalizing importance sampling, n (see Al-412

gorithm 1).413

5.1 Experiment setup 414

We conduct experiments on three datasets. Each 415

dataset contains two subsets: 1) an SFT dataset 416

Dsft = {(x(i), y(i))}Ni=1; 2) a human preference 417

dataset Dpref = {(x(i), y(i)w , y
(i)
l )}Ni=1. We first 418

learn an SFT model with Dsft and a reward model 419

with Dpref, and then train a policy model with our 420

proposed method, ARM (see Algorithm 3). 421

We first consider AlpacaFarm (Dubois et al., 422

2023). It provides a suite of datasets and evaluation 423

methods that enables research and development for 424

learning from feedback. The datasets build upon 425

Alpaca data (Taori et al., 2023) by splitting it into 426

multiple subsets and collecting pairwise feedback 427

data. We use the SFT split (10k) and pairwise pref- 428

erence split (10k) as Dsft and Dpref respectively in 429

our experiments. Alpaca data cover diverse top- 430

ics and models trained on it has shown non-trivial 431

instruction following capacities. 432

The second dataset is the Reddit TL;DR summa- 433

rization dataset (Völske et al., 2017). In TL;DR, x 434

is a post from reddit.com with a variety of topics 435

(sbureddits), and y is summary written the origi- 436

nal poster (TL;DR). We use the filtered version by 437

Stiennon et al. (2020). It has 123k posts as Dsft. 438

Stiennon et al. (2020) also collected 64k summary 439

comparison on the TL;DR dataset, which we use 440

as Dpref. 441
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TL;DR Summarization Anthropic-HH

2k 8k 2k 8k

SFT 43.7 43.7 52.7 52.7
Expert Iteration 46.3 47.8 56.4 59.7
DPO 47.5 52.6 57.2 60.6
Best-of-n 48.2 51.9 58.1 62.3
Ours 51.9 64.2 69.2 73.9

Table 3: Win-rates on TL;DR Summarization and Anthropic-HH when we only have access to a limited amount of
preference data (2k and 8k).

Our third dataset is Anthropic’s Helpful and442

Harmless (HH) dataset where each instance con-443

sists of a conversation between a human and an444

AI assistant. In HH, x is a human query (poten-445

tially with some conversation history), and y is a446

response generated by a large (unknown) language447

model. HH has 170k examples. It does not have a448

separate Dsft set, while each instance has a query449

and two responses (chosen and rejected). We use450

the collection of query and chosen response as our451

Dsft.452

In AlpacaFarm experiments, we use the pre-453

trained SFT and reward models by Dubois et al.454

(2023) in order to ensure a fair comparison between455

our results and reported results. Their models are456

based on LLama-1-7B-base (Touvron et al., 2023a).457

In our experiments, our base model is LLama-2-458

7B-base (Touvron et al., 2023b).459

To evaluate our methods, we compute the win-460

rate of model responses against preferred responses461

by human. The comparison is done by GPT-4 (gpt-462

4-0314). Dubois et al. (2023) has demonstrated463

that the consistency between GPT-4 and humans464

on model ranks. The prompts we use in evaluation465

are provided in the Appendix B.466

We use the original implementation of DPO by467

the authors (Rafailov et al., 2023) and the TRLX468

for PPO training (Castricato et al., 2023). Other-469

wise, our model training is based on Huggingface470

transformers (Wolf et al., 2020). For DPO, we use471

β = 0.1 in all experiments. For best-of-n and self-472

normalizing importance sampling, we use n = 32473

(see Section 5.6 for an ablation). Additional exper-474

iment details are given in Appendix A.475

5.2 Main results476

Our primary results across the three datasets are477

summarized in Table 1. In comparison to SFT,478

all methods show sizeable advancements. Simple479

training method, Expert Iteration, achieves a 14% 480

to 30% improvement over SFT. The standard RLHF 481

method, PPO, and the recently-popularized simpler 482

alternative, DPO, show even greater enhancements 483

beyond Expert Iteration. Notably,the inference- 484

based method, best-of-n , performs surprisingly 485

well, yielding comparable or superior win rates 486

when compared to both PPO and DPO. 487

Last but not least, our proposed method, ARM, 488

improves the win-rates significantly. In comparison 489

to the previously top-performing methods, PPO, 490

DPO, and best-of-n , our method also exhibits sub- 491

stantial improvements, ranging from 7% to 15%. 492

5.3 Learn from non-pairwise preference 493

RLHF methods and recently-developed alterna- 494

tives assume there exists at least of two responses 495

given an instruction or a prompt. Nevertheless, 496

this is not always the case. In most deployed- 497

chatbot settings, human users interact with an LLM- 498

based assistant and may provide a binary feed- 499

back (e.g., thumbs-up versus thumbs-down) to an 500

LLM response. The same instruction or prompt 501

almost never appears twice. Therefore, we may 502

end up with a non-pairwise preference dataset, 503

Dnon-pairwise = {(x(i), y(i), z(i))}Ni=1 where z ∈ 504

{0, 1} or z ∈ {like, dislike}. Methods like DPO 505

is not applicable in the setting without pairwise 506

preference data. Our method, however, is flexible 507

and can be applied. 508

We only need to make a simple modification 509

by training a surrogate reward function from the 510

non-pairwise data Dnon-pairwise. In particular, the 511

reward function can be trained with the following 512

loss function, 513

L(ϕ) = −E(x,y,z)∼Dnon-pairwise

[
z log σ(rϕ(x, y))+ 514

(1− z)(1− log σ(rϕ(x, y)))

]
(13) 515
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TL;DR Summarization Anthropic-HH

Plackett-Luce 69.8 76.3
Bradley-Terry 71.0 77.7

Table 4: Win-rates on TL;DR Summarization and Anthropic-HH with Bradley-Terry versus Plackett-Luce as the
human preference model.

n win-rate

16 47.8
32 50.1
64 49.7
128 50.6

Table 5: Ablation on the number of proposal samples,
n, in the self-normalizing importance sampling.

Then a policy can be learned via the same ARM516

procedure as defined in Algorithm 3.517

We conduct experiments based on pairwise518

datasets (AlpacaFarm, TL;DR summarization,519

Anthropic-HH). First, we simulate non-pairwise520

preference data by randomly sampling y from521

{yw, yl} and denote z = 1 if y = yw and522

z = 0 if y = yl, resulting in Dnon-pairwise =523

{(x(i), y(i), z(i))}Ni=1. Then we train a reward func-524

tion according to Equation 13. Following steps525

proceed exactly the same as the pairwise setting.526

The experiment results are displayed in Table 2.527

First, ARM outperforms Expert Iteration and best-528

of-n . Second, our method still yields substantial529

enhancements over the SFT model, especially on530

AlpacaFarm and Anthropic-HH.531

5.4 Learn from limited amount pairwise data532

In this section, we investigate our method in low-533

resource settings. In particular, for TL;DR sum-534

marization and Athropic-HH, we sample 2k and535

8k pairwise preference data. The results are sum-536

marized in Table 3. First, ARM is able to produce537

significant improvements over SFT policy, and the538

improvements are larger compared to baselines.539

Second, although in the 2k setting, the ARM per-540

formance is clearly weakened compared to the full541

dataset performance (see Table 1), it is quite surpris-542

ing that our method with 8k data (accounting for543

10% or less of the full dataset) can recover a large544

proportion of the performance of the models trained545

with the full dataset, especially on Anthropic-HH.546

5.5 Bradley-Terry versus Plackett-Luce 547

In this section, we compare the performance of 548

ARM with Bradley-Terry or Plackett-Luce as the 549

preference model. We conduct experiments with 550

both TL;DR summarization and Anthropic-HH. As 551

shown in Table 4, In both datasets, ARM with 552

Plackett-Luce slightly underperforms ARM with 553

Bradley-Terry. This is an intriguing observation. 554

First, intuitively ARM with Plackett-Luce learns 555

from more data and should potentially perform 556

better. Second, a previous theoretical work also 557

shows the advantage of Plackett-Luce (Zhu et al., 558

2023). Our current hypothesis to the weaker per- 559

formance of Plackett-Luce is that Plackett-Luce 560

requires more preference accurate labels compared 561

to Bradley-Terry, since it learns from more nuanced 562

comparisons, while the surrogate reward function 563

is noisy. We invite future work to further explore 564

this interesting issue. 565

5.6 How many proposal samples we need? 566

As shown in Algorithm 1, to sample from π∗(y | 567

x), we need first sample n proposal samples form 568

πsft(x). In this experiment, we ablate on the num- 569

ber proposal needed for good performance of our 570

method. As shown in Table 5, as n increases from 571

16 to 32, we observe a clear improvement on win 572

rate. However, further increasing n yields no im- 573

provement. 574

6 Conclusion 575

In this work, we propose Alignment with Residual 576

Energy-Based Model (ARM) as a simple alterna- 577

tive to complicated RLHF methods. The core idea 578

is to learn from samples drawn from a target policy 579

in the form of a residual energy-based model, with 580

powerful offline methods like DPO. Our proposed 581

method is characterized by its simplicity and high 582

performance, as demonstrated in diverse tasks and 583

various data settings. 584
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7 Limitations585

ARM with Plackett-Luce is a potentially powerful586

method since it leverages the flexibility of ARM587

and enables πθ(y|x) to learn from multiple compar-588

isons. However, the current work did not elucidate589

the reason that it does not outperform ARM with590

Bradley-Terry. We find that this question intriguing591

and hope future work can further investigate it.592

Even though the goal of this paper is to align593

LLMs with human preference, the resulting model594

still have the risk of producing harmful content.595

The resulting model should be extensively tested596

before it is deployed in real-world settings.597
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A Additional Experiment Details813

In both SFT and reward function training, we first814

warm up the learning rate to 2e-5 and cosine decay815

it to 2e-6, and models are trained with 3 epochs.816

DPO and PPO training follow the default settings817

in Rafailov et al. (2023) and Castricato et al. (2023).818

All model training are done with 8 Nvidia A100819

GPUs. AlpacaFarm experiments cost 1-2 hours,820

while TL;DR and Anthropic experiments cost 4-6821

hours.822
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B Evaluation Prompts823

We use the same evaluation prompts as in (Rafailov824

et al., 2023).825

GPT-4 win rate prompt for TL;DR summa-826

rization.827

Which of the following summaries does a better job of summarizing the most \828

important points in the given forum post, without including unimportant or \829

irrelevant details? A good summary is both precise and concise.830

831

Post:832

<post>833

834

Summary A:835

<Summary A>836

837

Summary B:838

<Summary B>839

840

FIRST provide a one-sentence comparison of the two summaries, explaining which \841

you prefer and why. SECOND, on a new line, state only "A" or "B" to indicate your \842

choice. Your response should use the format:843

Comparison: <one-sentence comparison and explanation>844

Preferred: <"A" or "B">845

GPT-4 win rate prompt for Anthroptic-HH.846

For the following query to a chatbot, which response is more helpful?847

848

Query: <the user query>849

850

Response A:851

<either the test method or baseline>852

853

Response B:854

<the other response>855

856

FIRST provide a one-sentence comparison of the two responses and explain \857

which you feel is more helpful. SECOND, on a new line, state only "A" or \858

"B" to indicate which response is more helpful. Your response should use \859

the format:860

Comparison: <one-sentence comparison and explanation>861

More helpful: <"A" or "B">862
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