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ABSTRACT

The goal of conventional federated learning (FL) is to train a global model for
a federation of clients with decentralized data, reducing the systemic privacy
risk of centralized training. The distribution shift across non-IID datasets, also
known as the data heterogeneity, often poses a challenge for this one-global-
model-fits-all solution. In this work, we propose APPLE, a personalized cross-
silo FL framework that adaptively learns how much each client can benefit from
other clients’ models. We also introduce a method to flexibly control the focus
of training APPLE between global and local objectives. We empirically evaluate
our method’s convergence and generalization behavior and performed extensive
experiments on two benchmark datasets and two medical imaging datasets under
two non-IID settings. The results show that the proposed personalized FL frame-
work, APPLE, achieves state-of-the-art performance compared to several other
personalized FL approaches in the literature.

1 INTRODUCTION

In recent years, federated learning (FL) (McMahan et al., 2017; Kairouz et al., 2019) has shown great
potential in training a shared global model for decentralized data. In contrast with previous large-
scale machine learning approaches, training in FL resides on the sites of the data owners without the
need to migrate the data, which reduces systemic privacy risks and expenses on massive datacenters
(Kairouz et al., 2019). Compared to separate individual training, the leading FL algorithm, FedAvg
(McMahan et al., 2017), as a representative of global FL algorithms, attempts to train a consensus
global model by iteratively averaging the local updates of the global model. However, such an ap-
proach often suffers from the convergence challenges (Zhao et al., 2018; Hsieh et al., 2020) brought
by the statistical data heterogeneity (Smith et al., 2017; Li et al., 2018), where data are not identi-
cally distributed (non-IID) across all clients due to the inherent diversity (Li et al., 2019; Sahu et al.,
2018).

Data heterogeneity lies almost everywhere in real-world FL applications. For cross-device training
of a mobile keyboard next-word prediction model, non-IIDness is generated by different typing
preferences of users (Hard et al., 2018; Yang et al., 2018); medical datasets across different silos
are heterogeneous by nature, due to factors such as different data acquisition protocols and various
local demographics (Rieke et al., 2020). Data heterogeneity may lead to inferior performance of
federated models in certain silos (medical institutes) and that may lose their incentives to participate
in the federation.

Attempts to supplement FL algorithms with the ability to better handle data heterogeneity fall into
two general schemes, based on the number of the trained model(s). The first scheme tries to enhance
the global consensus model for higher robustness to non-IID datasets (Li et al., 2018; Karimireddy
et al., 2020; Acar et al., 2020). The other scheme looks at FL from a client-centric perspective,
aiming to train multiple models for different clients (Kairouz et al., 2019), and is often referred to as
personalized FL.

Personalized FL tries to systematically mitigate the influence of data heterogeneity, since a different
model could be trained for a different target data distribution(Kulkarni et al., 2020; Kairouz et al.,
2019). Efforts in this direction include approaches that fine-tune the global model (Wang et al.,
2019a), and more sophisticated approaches that leverage meta-learning (Finn et al., 2017; Nichol
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Figure 1: The workflow of the proposed framework, APPLE. Each client trains a local personalized
model, uploads its updated core model to the server, and downloads others’ core models from the
server as needed at the beginning of each round.

et al., 2018) or multi-task learning (Smith et al., 2017; Sattler et al., 2020) to learn the relation-
ships between source and target domains/tasks, which corresponds to different distributions of the
datasets. Other efforts pay more attention to interpolations between local models and the global
model (Deng et al., 2020; Huang et al., 2021; Zhang et al., 2020).

In this work, we focus on the personalization aspect of cross-silo FL for non-IID data. We propose
Adaptive Personalized Cross-Silo Federated Learning (APPLE), a novel personalized FL frame-
work for cross-silo settings that adaptively learns to personalize each client’s model by learning how
much the client can benefit from other clients’ models according to the local objective. In this pro-
cess, the clients do not need to acquire information regarding other clients’ data distributions. We
illustrate the workflow of APPLE in Figure 1.

There are three major distinctions between APPLE and other existing personalized FL algorithms:
in APPLE, (1) after local training, a client does not upload the local personalized model, but a
constructing component of the personalized model, here called a core model; (2) the central server
only maintains the core models uploaded from the clients, for further downloading purposes; (3)
a unique set of local weights on each client, here called a directed relationship (DR) vector, is
adaptively learned to weight the downloaded core models from the central server. This enables the
personalized models to take more advantage of the beneficial core models, while suppressing the
less beneficial or potentially harmful core models. We also introduce a method to flexibly control
the focus of training APPLE between global and local objectives, by dynamically penalizing the DR
vectors.

We summarize our contribution as follows:

• We propose APPLE, a novel personalized cross-silo FL framework that adaptively learns
to personalize the client models.

• Within APPLE, we introduce a method to flexibly control the focus of training between
global and local objectives via a dynamic penalty.

• We evaluate APPLE on two benchmark datasets and two medical imaging datasets under
two types of non-IID settings. Our results show that APPLE achieves state-of-the-art per-
formance in both settings compared to other personalized FL approaches in the literature.

2 RELATED WORK

2.1 FEDERATED LEARNING ON NON-IID DATA

Federated learning (FL) (McMahan et al., 2017; Kairouz et al., 2019; Wang et al., 2021) enables
participating clients to collaboratively train a model without migrating the clients data, which miti-
gates the systemic privacy risks. The most notable FL algorithm, FedAvg (McMahan et al., 2017),
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achieves this by aggregating the updated copies of the global model using an averaging approach.
While concerns for the behavior of FedAvg on non-IID data began to accumulate (Li et al., 2019;
Sahu et al., 2018; Zhao et al., 2018), numerous work has been focusing on the robustness of FL
on non-IID data. Li et al. (2018) proposed FedProx that penalizes the local update when it is far
from the prox-center. Karimireddy et al. (2020) proposed SCAFFOLD that corrects the local gradi-
ent under client-drift with control variates. FedDyn by Acar et al. (2020) dynamically updates the
regularizer in the empirical risk to reduce the impact of data heterogeneity.

2.2 PERSONALIZED FEDERATED LEARNING

To systematically mitigate the impact of data heterogeneity, a new branch of FL, the personalized
FL, has emerged in recent years (Kairouz et al., 2019; Kulkarni et al., 2020). Instead of being
restricted by the global consensus model, personalized FL allows different models for different
clients, especially when the data are drawn from distinct distributions.

In this line of work, a natural way is to fine-tune the global model at each client (Wang et al., 2019a).
However, Jiang et al. (2019) claims that fine-tuning the global model may result in poor gener-
alization to unseen data. They also demonstrate the similarity between personalizing a FedAvg-
trained model and a type of model-agnostic meta-learning (MAML) (Finn et al., 2017) algorithm
called Reptile (Nichol et al., 2018). And many works have been focusing on the overlap between
meta-learning and FL Fallah et al. (2020); Khodak et al. (2019); Chen et al. (2018).

Apart from approaches that need further fine-tuning the trained models, Smith et al. (2017) proposed
MOCHA that leverages multi-task learning (Zhang & Yang, 2017) to learn the relationship between
different clients. Hanzely & Richtárik (2020) seek a balance between the trade-off of global and
local models. Sattler et al. (2020) and Ghosh et al. (2020) focus on a new setting where clients
are adaptively partitioned into clusters, and a personalized model is trained for clients in the same
cluster.

Other personalized FL algorithms include carefully interpolating a model for each client. APFL
(Deng et al., 2020) weights the global and the local model at each client. FedFomo (Zhang et al.,
2020) computes estimates of the optimal weights for each client’s personalized model using a local
validation set. FedAMP (Huang et al., 2021) uses an attention-inducing function to compute an
interpolated model as the prox-center for the personalized model.

3 ADAPTIVE PERSONALIZED CROSS-SILO FEDERATED LEARNING

In this section, we look at personalized FL with more details, and present APPLE, a framework for
personalized cross-silo FL that adaptively learns to personalize the client models. Similar to most
FL methods, in APPLE, the training progresses in round. Each client iteratively downloads and
uploads model parameters in each round. However, in APPLE, each client uploads a constructing
component of the personalized model, here called a core model. And the central server maintains
the core models uploaded from the clients. Before we go into further details, we formulate the
problem and define the notations which will be used throughout the paper.

3.1 PROBLEM FORMULATION

In general, federated learning aims to improve model performance of individually trained models,
by collaboratively training a model over a number of participating clients, without migrating the
data due to privacy concerns. Specifically, the goal is to minimize:

min
w

fG(w) = min
w

N∑
i=1

piFi(w), (1)

where fG(·) denotes the global objective. It is computed as the weighted sum of the N local objec-
tives, with N being the number of clients and pi ≥ 0 being the weights. The local objective Fi(·) of
client i is often defined as the expected error over all data under local distribution Di, i.e.

Fi(·) = Eξ∼Di
[L(·; ξ)] ≈ 1

ni

∑
ξ∈Dtr

i

L(·; ξ), (2)
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where ξ represents the data under local distribution Di. As shown in Equation 2, Fi(·) is often
approximated by the local empirical risk on client i using its training set Dtr

i (ni = |Dtr
i |). The

notable FedAvg tries to solve the empirical risk minimization (EMR) by iteratively averaging the
local updates of the copy of global model, i.e. wt+1 =

∑K
i=1 piw

i
t+1, where K is the number

of selected clients in each round, and the pi’s are defined as the ratio between the number of data
samples on client i, ni, and the number of total data samples from all clients n, with constraints:
∀i ∈ [N ], pi ≥ 0, and

∑
i pi = 1.

In personalized FL, the global objective slightly changes to a more flexible form:

min
W

fP (W ) = min
wi,i∈[N ]

fP (w1, ...,wN ) = min
wi,i∈[N ]

N∑
i=1

piFi(wi) (3)

where fP (·) is the global objective for the personalized algorithms, and W = [w1,w2, ...,wN ]
is the matrix with all personalized models. In this work, we aim to obtain the optimal W ∗ =
argminW fP (W ), which equivalently represents the optimal set of personalized models w∗

i , i ∈
[N ]. In addition, we focus on the cross-silo setting of FL, which is differentiated with the cross-
device setting by much smaller number of participating (stateful) clients, and no selection of clients
are strictly needed at the beginning of each round.

3.2 ADAPTIVELY LEARNING TO PERSONALIZE

As mentioned above, in APPLE, each client uploads to the central server a core model, and down-
loads other clients’ core models maintained on the server at the end and beginning of each round,
respectively. In an ideal scenario where communication cost is not taken into account, each core
model maintained on the server is downloaded by every client. In practice, communication is costly,
and the limitations on the communication bandwidth always exists. We will discuss how APPLE
handles this in Section 3.4.

In APPLE, after each client has downloaded the needed core models from the server, the personal-
ized model for client i is subsequently computed as

w
(p)
i =

N∑
j=1

pi,jw
(c)
j , (4)

where w
(p)
i represents the personalized model of client i, and w

(c)
j is the downloaded client j’s

core model. Similar to some personalized FL algorithms that focus on interpolating a model for
each client (Acar et al., 2020; Zhang et al., 2020; Huang et al., 2021), the personalized model here
is also a convex combination of models. The difference is that in APPLE, there is a unique set of
learnable weights for each client. We use pi,j to denote the learnable weight on client i for the
downloaded core model w(c)

j , and use pi = [pi,1, ..., pi,N ]T to denote the set of learnable weights
on client i, calling it the directed relationship (DR) vector.

During local training on client i, after the personalized model w(p)
i is computed, we freeze the

downloaded core models (w(c)
j , j 6= i), and only update its local core model w(c)

i using a gradient-
based method, such as local Stochastic Gradient Descent (SGD). Meanwhile, we adaptively update
the DR vector, pi, according to the local objective, i.e.

w
(c)
i ← w

(c)
i − η1

∂

∂w
(c)
i

Fi(w
(p)
i ) (5)

pi ← pi − η2
∂

∂pi
Fi(w

(p)
i ) (6)

Note that after a round of local training is finished, each client only uploads the local core model
(w(c)

i for client i, i ∈ [N ]) to the server. The DR vector pi is always maintained at client i without
any migration, which makes it impossible for others to infer the personalized model, and further
protects the data privacy.
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Algorithm 1 APPLE
Input: N clients, learning rates η1, η2, number of total roundsR, proximal term coefficients λ(r), µ,
prox-center p0

1: ∀i ∈ [N ], initialize core models w(c)
i on server

2: ∀i ∈ [N ] in parallel, initialize local DR vector pi

3: for r ← 1, 2, ..., R do
4: for i← 1, 2, ..., N in parallel do
5: Download core models from server as needed.
6: Iteratively optimize the local core model w(c)

i and local DR vector pi by the following:
7: Compute personalized model w(p)

i with w
(c)
j , j ∈ [N ] and pi by Eq. (4)

8: Compute local empirical risk Fi(w
(p)
i ) by Eq. (7)

9: Update w
(c)
i and DR vector pi by Eq. (5, 6)

10: When optimization is finished, upload local core model w(c)
i to the server

11: end for
12: end for
13: return Personalized models w(p)

1 ,w
(p)
2 , ...,w

(p)
N on site of corresponding client.

3.3 PROXIMAL DIRECTED RELATIONSHIPS

In APPLE, for each client, the learned global information is blended in the downloaded core models,
whose contributions to the local personalized model are measured by the learnable weights in the
DR vector. Ideally, the entry pi,i, or “self-relationship”, should be larger than the other entries in pi,
since the local core model w(c)

i is the only network trained with local distribution Di. On the other
hand, for all j 6= i, pi,j should be somewhere in between 0 and pi,i, if the local personalized model
w

(p)
i can benefit more from w

(c)
j (may happen if the distributionsDi andDj are similar), while pi,j

should be closer to 0 or even negative, if w(c)
j results in potential negative transfer to w

(p)
i .

However, in a real-world situation, due to the data heterogeneity in FL, chances for similar distribu-
tions among clients are slim. Most off-diagonal entries in the DR matrix should be small. Without
any constraint, this may result in a natural pitfall that the learned DR matrix is too quickly drawn
to somewhere near the identity matrix (in terms of the Frobenius norm). This can lead the person-
alized models to hardly benefit from FL, and the training process undesirably resembles individual
learning.

To address this issue and facilitate collaboration between clients, we penalize the directed relation-
ship by adding a proximal term (Rockafellar, 1976; Li et al., 2018) to the local empirical risk. We
summarize the final empirical risk in APPLE in Equation 7.

Fi(w
(p)
i ) =

1

ni

∑
ξ∈Dtr

i

L(w(p)
i ; ξ) + λ(r)

µ

2
||pi − p0||22 (7)

In Equation 7, λ and µ are two coefficients for the proximal term with the prox-center at p0 =
[n1/n, ..., nN/n]. It is obvious that FedAvg is a special case of APPLE by setting µ to∞, which
infers that a larger coefficient of the proximal term can push the personalized model to a global
model, facilitating collaboration between clients. While this may benefit the personalized model
to learn high-level features, it is not always desired throughout the training. Ultimately, with the
learned high-level features, the personalized models should still focus on how to be personalized.

To this end, we design λ with a certain type of decay in terms of the current training round r,
inspired by Wang et al. (2019b), and call such λ(r) a loss scheduler. More details regarding the loss
scheduler are presented in Appendix A.1. We summarize the steps of APPLE in Algorithm 1.
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3.4 APPLE UNDER LIMITED COMMUNICATION BUDGET

The collaboration between clients in APPLE relies on the downloaded core models at the begin-
ning of each round. Without considering communication limitations, each client can download all
other clients’ core models from the server, which effectively enhances the communication across all
clients.

However, although the number of participating clients in cross-silo settings will not be as large com-
pared to the cross-device settings, the communication cost of downloading all core models to each
client is still considerable. While this issue can be mitigated by techniques including quantization
(Xu et al., 2018; Reisizadeh et al., 2020; Dai et al., 2019) and knowledge distillation (Chen et al.,
2017; Hinton et al., 2015; Li & Wang, 2019), in the worst-case scenario, the communication per
round still cost N times more overhead than algorithms that only download one model for each
client per round (e.g. FedAvg).

To address this issue, we restrict the number of models a client can download per round, denoted by
M . Under limited communication budget (M < N − 1), briefly, APPLE decides to select which
M core models to download by the following rules: on client i, the core model of client j will be
downloaded if it has never been downloaded on client i (breaks tie randomly); if all other clients’
core models have all been downloaded at least once, with high probability, priority goes to client j’s
core model who has a large pi,j . We elaborate this selection process in Appendix A.2.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of APPLE with experiments under two different
non-IID federated settings. We show the empirical convergence behaviors and the generalization
performances with respect to each client on different image datasets. In addition, we study the
transition of the pairwise directed relationships between different clients throughout the training
process. Last but not least, we also investigate the performance of APPLE under different levels of
limited communication budget.

To evaluate the convergence behavior, we plot the training losses and test accuracies against the
number of trained rounds. For the personalized methods, the training loss and test accuracy are
computed in a way such that if a data sample resides on client i, then we use the personalized model
of client i to conduct inference with it. In addition, we quantify the performance of the methods
by computing the test accuracies with respect to each client, and the best mean client test accuracy
(BMCTA) (best over all rounds, mean over all clients), a metric also used in Huang et al. (2021).

4.1 EXPERIMENTAL SETUP

Datasets We use four public datasets including two benchmark image datasets: MNIST (LeCun
& Cortes, 2010) and CIFAR10 (Krizhevsky et al., 2009), and two medical imaging datasets from
the MedMNIST datasets collection (Yang et al., 2021), namely the OrganMNIST(axial) dataset:
an 11-class of liver tumor image dataset (Bilic et al., 2019), and the PathMNIST dataset: a 9-
class colorectal cancer image dataset (Kather et al., 2019). We partition each of the four datasets
into a training set and test set with the same distribution (if such split does not pre-exist). Then
we transform the datasets according to a non-IID distribution, and ensure the same distribution of
training and test set on the same client.

Pathological and Practical Non-IID Settings We design two non-IID distributions for empirical
evaluation, namely the pathological non-IID and the practical non-IID. For the pathological non-
IID, we follow precedent work and select two random classes for each client. A random percentage
of images from each of the two selected classes is assigned to the client. To simulate a cross-silo
setting, the number of clients is set to be 12. For the practical non-IID, our endeavor aims to simulate
a more realistic cross-silo federation of medical institutes. To this end, we partition each class of
the dataset into 12 shards (corresponding to the 12 clients): 10 shards of 1%, 1 shard of 10% and 1
shard of 80% images within this class. A randomly picked shard from each class is assigned to each
client, so that every client will possess data from every class. The practical non-IID setting is more
similar to the real-world FL in medical applications.This is because the datasets at medical institutes
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Figure 2: The training loss, test accuracy and client test accuracies of personalized methods under
the pathological non-IID setting.

most likely contain a variety of categories of data. And due to different demographic distributions
of patients, medical institutes located in different regions may have more frequent occurrences of
different categories of data. As a result, these datasets are often imbalanced with different majority
classes, and have a wide range in size. Appendix B.1 shows the data distributions in further details.

Compared Baselines We compare APPLE, with and without proximal DR penalty, against the
following approaches: (1) Separate training, meaning the clients’ models are trained purely lo-
cally without FL; (2) the FedAvg (McMahan et al., 2017) which takes the average of the locally
trained copies of the global model; (3) FedAvg-local, a naı̈ve personalized approach of us-
ing the locally trained copy of FedAvg’s global model; (4) a fine-tuning approach (Wang et al.,
2019a) on the FedAvg and on the FedProx (Li et al., 2018), here denoted as FedAvg-FT and
FedProx-FT, respectively; (5) APFL (Deng et al., 2020), a personalized method using a mixture
of the global and the local model; (6) HeurFedAMP (Huang et al., 2021), a personalized method
on the cross-silo setting with federated attentive message passing; and (7) FedFomo (Zhang et al.,
2020), a personalized method that computes first-order approximations for the personalized models.
We train each method 160 rounds with 5 local epochs and summarize the results as follows.

4.2 EXPERIMENTAL RESULTS

We summarize the empirical convergence behavior and performance under pathological and practi-
cal non-IID settings in Figure 2 and Table 1. Convergence performance under the practical non-IID
setting is shown in Figure 7 in Appendix B.2. Across all datasets and different non-IID settings,
our proposed method has a fast convergence, and achieves highest BMCTAs. Specifically, for the
pathological non-IID setting, the separate training reaches comparable performance with all other
methods, due to little similarity in data distribution shared by different clients, and the small num-
ber of classes in each client. With a direct averaging of the local updates as in FedAvg and no
fine-tuning as in FedAvg-FT and FedProx-FT, the global model is hardly able to boost the
performance of separate training. The personalized FL methods bring further improvement to the
naı̈ve personalization, and APPLE outperforms the other compared personalized FL methods. For
the practical non-IID setting, since different client can have different majority classes in the local
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Table 1: Best mean client test accuracy (BMCTA) of the four datasets under the pathological and
practical non-IID settings. Highest performance is represented in bold.

Pathological non-IID Practical non-IID

MNIST CIFAR10
Organ-
MNIST
(axial)

Path-
MNIST MNIST CIFAR10

Organ-
MNIST
(axial)

Path-
MNIST

Separate 97.34 74.96 93.14 87.09 78.20 63.06 65.21 61.36
FedAvg 95.71 51.44 59.43 56.61 94.00 34.32 86.56 53.83
FedAvg-local 99.52 90.10 96.76 93.21 97.47 71.99 93.75 78.70
FedAvg-FT 99.43 90.49 97.03 92.31 97.66 72.08 94.13 78.69
FedProx-FT 99.43 90.49 97.03 92.38 97.66 72.08 94.13 78.69
APFL 99.75 89.30 98.72 98.98 98.80 71.19 93.75 78.70
HeurFedAMP 98.13 91.10 98.39 96.55 97.45 69.54 86.82 79.33
FedFomo 99.71 91.96 99.31 97.24 98.05 70.15 82.86 79.39

APPLE, µ = 0 99.73 92.22 99.66 96.78 99.00 75.62 95.70 84.22
APPLE, µ 6= 0 99.77 92.68 99.61 97.51 98.97 77.41 95.62 86.39

Figure 3: Directed Relationships of different datasets under the pathological non-IID setting. The
first row shows the DRs on client 1. The second row shows the “self-relationships”, pi,i, for each
client.

imbalanced dataset, high performance requires careful integration of the global information. As a
result, the fine-tuning method outperforms some personalized methods, and APPLE also reaches
state-of-the-art performance in all settings.

Next, we visualize the trajectories of the directed relationships throughout the training process.
Specifically, we study the 12 local DRs on client 1, and the pi,i’s for all clients. Figure 3 shows
these trajectories of DRs under the pathological non-IID, and Figure 8 in Appendix B.2 shows them
under the practical non-IID setting. As mentioned in Section 3.3, the self-relationship, pi,i, should
be larger than the other local DRs since on client i, the only updated core model is w

(c)
i . And

depending on the similarity between the distribution on client i and on client j, larger similarity
will push pi,j towards |pi,i| and lower similarity will push |pi,j | towards 0. These properties can
be observed in Figure 3. For instance, in CIFAR10, even in the same class, images can have high
variance, different client shares little similarity in distribution, so it has high pi,i and low pi,j . In
PathMNIST, p1,6 and p1,8 are closer to p1,1, which makes sense since client 1 and 6 both have a
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Table 2: BMCTA of APPLE (µ = 0) and FedFomo with a maximum of M models to download for
each client of the N = 12 clients.

Pathological non-IID Practical non-IID

MNIST CIFAR10
Organ-
MNIST
(axial)

Path-
MNIST MNIST CIFAR10

Organ-
MNIST
(axial)

Path-
MNIST

M = 11
FedFomo 99.71 91.96 99.31 97.24 98.05 70.15 82.86 79.39
APPLE 99.73 92.22 99.66 96.78 99.00 75.62 95.70 84.22

M = 7
FedFomo 99.71 91.95 99.31 97.33 97.65 70.24 80.88 80.19
APPLE 99.73 92.17 99.53 97.15 98.70 76.14 94.21 84.07

M = 5
FedFomo 99.71 91.94 99.31 97.40 97.47 70.44 82.83 79.62
APPLE 99.72 92.28 99.48 97.17 98.45 75.63 94.49 85.46

M = 2
FedFomo 99.71 91.98 99.31 97.25 96.51 69.87 79.53 79.26
APPLE 99.70 92.41 99.47 97.11 98.29 74.84 92.29 84.64

M = 1
FedFomo 99.71 91.95 99.31 97.15 91.54 69.93 78.37 75.17
APPLE 99.66 92.31 99.59 96.29 98.52 73.03 93.55 83.35

large portion of images from class 1, and client 1 and 8 both have a large portion of images from
class 7 (refer to Figure 5 in Appendix B.1 for the data distribution).

Furthermore, we report the performance of APPLE under limited communication budget. With the
same levels of communication restriction, we compare APPLE against FedFomo since FedFomo
also needs to download N − 1 models to each client by default. We restrict the maximum number
of downloaded models for each client per round, M , to be 11, 7, 5, 2, 1 (M ≥ 11 is equivalent to no
communication limitation since the number of clients is 12). Table 2 shows the results under limited
communication budget. For the pathological non-IID setting, results are mixed across different
datasets. APPLE outperforms FedFomo on the CIFAR10 and OrganMNIST (axial) dataset, while
FedFomo reaches higher performance on the PathMNIST dataset. For the practical non-IID setting,
APPLE outperforms FedFomo across all datasets and different levels of limitations. Note that in
APPLE, less downloaded models (smaller M ) does not necessarily lead to an inferior performance.
This is because the proposed rule of picking which models to download tends to download to a client
the top M core models that has the highest chance to benefit the client.

5 CONCLUSIONS

In this work, we proposed APPLE, a novel personalized cross-silo federated learning framework for
non-IID data, that adaptively learns the quantification of how much each client can benefit from other
clients’ models, named as directed relationships. We introduced a proximal directed relationship
penalty on the local objective to control the training between global and local. In addition, we
evaluate our method’s empirical convergence behavior and performance on four image datasets over
two non-IID settings. Our experimental results show the overall superior effects of APPLE several
related personalized FL alternatives. Through the visualization of directed relationships, our study
empirically shows that: a client can adaptively take more advantage from other clients with similar
distribution, while mitigate the potential non-beneficial influence or negative transfer from clients
with drastically different distributions. We also investigated the behavior of APPLE under limited
communication budget and showed that APPLE can still reach state-of-the-art performance with
little drop in performance. As a future work, we plan to further explore personalized FL algorithm
that is robust to non-IID data.
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A DETAILS OF THE ALGORITHM DESIGN

A.1 LOSS SCHEDULER FOR PROXIMAL DIRECTED RELATIONSHIPS

To push the model to learn more global information at the beginning of the training while gradually
transitioning to focusing more on local training, we design the loss scheduler, λ(r), to be a mono-
tonically decreasing function between 1 and 0 in terms of the current training round r. Theoretically,
λ(r) can be designed in different forms, as long as it has the above property. Here, we explore the
following two types of loss scheduler (shown in Figure 4) and treat the choice of loss scheduler type
as an additional hyperparameter. In both of the following two loss scheduler expressions, L is the
round number after which the loss scheduler’s value is always 0:

Figure 4: loss-scheduler

• a cosine-shaped scheduler: λ(r) = (cos(rπ/L) + 1) /2 indicating the learning focus tran-
sitions gradually from global to local.

• an exponentially decreasing scheduler: λ(r) = εr/L, ε = 10−3, indicating a rapid transi-
tion from global to local.

A.2 CORE MODEL SELECTION UNDER LIMITED COMMUNICATION BUDGET

Under the constraint that a maximum ofM core models can be downloaded for each of theN clients
per round, we first compute a normalized set of powers as the probabilities for the core models to be
selected. The base of the powers is shared among all clients, and is computed by

b(r) = max(1.5, rM/N), (8)

where b(r) is the base with respect to the current training round r, and rM/N computes the mean
downloaded times per core model for the first r rounds. For client i, the exponent of the powers are
|pi,j |’s. In other words, the core model w(c)

j will be downloaded to client i with probability:

P (w
(c)
j downloaded to client i) =

b(r)|pi,j |∑N
j=1,j 6=i b(r)

|pi,j |
(9)

The reasoning behind this exponential design is that, as training progresses and r increases, |pi,j |
gradually represents the contribution of core model w(c)

j on client iwith more confidence. However,

for the first several rounds (with small r) where the core model w(c)
j still has a large potential to

update, the confidence of |pi,j | to represent the contribution is still small. With an exponential
design, where the base is correlated to the mean downloaded times per core model, this growth in
confidence can be better represented.
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Figure 5: Data distribution of the pathological non-IID setting. The first row represents which clients
the data is assigned to. The second row represents the local label distribution of each client.

Figure 6: Data distribution of the practical non-IID setting. The first row represents which clients
the data is assigned to. The second row represents the local label distribution of each client.

B EXPERIMENTS

B.1 DATASETS

We partition each dataset into pathological and practical non-IID distributions. Figure 5 and Figure
6 shows the partition of the training set with respect to “where do the images of each class go” and
“what is the label distribution on each client”. For example Figure 5 bottom right plot (PathMNIST
dataset) shows that for the PathMNIST dataset under the pathological non-IID setting, client 1 and
client 6 both contain a large portion of data from class 1, which explains why the visualization in
Figure 3 for the PathMNIST dataset demonstrates that p1,6 and p1,8 are closer to p1,1 than other
DRs.

B.2 EMPIRICAL CONVERGENCE BEHAVIOR AND DIRECTED RELATIONSHIPS UNDER THE
PRACTICAL NON-IID SETTING

Under the practical non-IID setting, the importance of learning global information will be increased
due to the following major aspects of the data: the datasets on the clients (1) contain a variety
of categories, increasing the variance of the data; (2) are likely to be imbalanced with a different
majority class on different clients; (3) are different in size, and local training on a small dataset might
quickly overfit. Consequently, personalized methods that address the global update of the model,
such as APPLE and FedFomo, have natural advantages in this regard. Experimental results in
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Figure 7: The training loss, test accuracy and client test accuracies of personalized methods under
the practical non-IID setting.

Figure 8: Directed Relationships of different datasets under the practical non-IID setting. The first
row shows the DRs on client 1. The second row shows the “self-relationships”, pi,i, for each client.

Figure 7 show the advantages of APPLE and FedFomo over other compared personalized methods,
and APPLE and FedFomo achieve similarly fast convergence.

Figure 8 shows the visualization of the directed relationships. Under the practical non-IID setting,
since a large portion of samples in each class are assigned to only one client (recall the 80% × 1,
10% × 1, 1% × 10 split described in Section 4.1), less can be inferred about the DRs given each
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client’s data distribution. We elaborate this through an example of FedFomo. FedFomo is a
personalized FL method that focuses on weighting the personalized models with local validation
sets. As the majority class on a different client is different, the personalized model on client j can
hardly perform well on client i. This results in less weight for client j’s personalized model on
client i, and it fails to maximize the global information that can be learned. Our proposed method,
APPLE, takes a different scheme from FedFomo. Rather than deciding the weights of other clients’
personalized models purely based on the validation performance, APPLE’s learnable DRs prevent
the waste of other clients’ core models. The learnable DRs enable to adaptively optimize the joint
contribution from each downloaded core model. This is empirically demonstrated in Figure 8 (in the
OrganMNIST (axial) dataset). Although client 1 and client 8 do not share any majority class (refer
to Figure 6), p1,8 can still be large, as long as the personalized model learns a beneficial assignment
of each downloaded core model’s contribution.

B.3 ADDITIONAL IMPLEMENTATION DETAILS

We used the pre-existing training set and test set of MNIST and CIFAR10. For the two datasets
from MedMNIST, since the training and test datasets are different in terms of the distribution, we
combined them and split it into a new training set of 80% of the entire dataset, and a new test set of
the remaining 20%.

We adopted the classic four-layer CNN model. The model has two 5 × 5 convolutional layers
followed by a fully connected layer with 500 units and another fully connected layer with the number
of units equals to the number of classes.

For each method, we trained the model for 160 rounds of 5 local epochs using a batch size of 256.
We used SGD as the optimizer with 0.9 momentum, and chose the best performing learning rate
in {10−2, 10−3, 10−4}, and learning rate decay in {1.0, 0.9964 (= 100

√
0.7), 0.9}. For APPLE, we

selected the loss scheduler type from cosine and exponential, µ from {1.0, 0.1, 0.01}, and L from
{10%, 20%, 30%} of the number of total training rounds. The detailed hyperparameter values are
summarized in Table 3

Table 3: The hyperparameter values used in APPLE
Pathological non-IID Practical non-IID

MNIST CIFAR10
Organ-
MNIST
(axial)

Path-
MNIST MNIST CIFAR10

Organ-
MNIST
(axial)

Path-
MNIST

Net’s learning rate 10−2 10−2 10−2 10−2 10−2 10−2 10−2 10−2

DRs’ learning rate 10−3 10−3 10−3 10−4 10−3 10−4 10−4 10−4

Loss scheduler type cos exp. exp. cos cos cos cos cos
µ 0.1 0.001 0.001 1.0 0.01 0.001 0.1 1.0
L 30% 20% 20% 10% 30% 20% 20% 10%
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