
Under review as a conference paper at ICLR 2021

NEURAL SDES MADE EASY:
SDES ARE INFINITE-DIMENSIONAL GANS

Anonymous authors
Paper under double-blind review

ABSTRACT

Several authors have introduced Neural Stochastic Differential Equations (Neural
SDEs), often involving complex theory with various limitations. Here, we aim
to introduce a generic, user friendly approach to neural SDEs. Our central
contribution is the observation that an SDE is a map from Wiener measure
(Brownian motion) to a solution distribution, which may be sampled from, but
which does not admit a straightforward notion of probability density – and that
this is just the familiar formulation of a GAN. This produces a continuous-time
generative model, arbitrary drift and diffusions are admissible, and in the infinite
data limit any SDE may be learnt. After that, we construct a new scheme for
sampling and reconstructing Brownian motion, with constant average-case time
and memory costs, adapted to the access patterns of an SDE solver. Finally, we
demonstrate that the adjoint SDE (used for backpropagation) may be constructed
via rough path theory, without the previous theoretical complexity of two-sided
filtrations.

1 INTRODUCTION

Neural differential equations are an elegant concept, bringing together the two dominant modelling
paradigms of neural networks and differential equations. Indeed, since their introduction, Neural
Ordinary Differential Equations (Chen et al., 2018) have prompted the creation of a wide variety of
similarly-inspired models, for example based around controlled differential equations (Kidger et al.,
2020b; Morrill et al., 2020), Lagrangians (Cranmer et al., 2020), higher-order ODEs (Massaroli
et al., 2020; Norcliffe et al., 2020), and equilibrium points (Bai et al., 2019).

In particular, several authors have introduced Neural Stochastic Differential Equations (neural
SDEs), such as Tzen & Raginsky (2019a); Li et al. (2020); Hodgkinson et al. (2020) among others.

1.1 RELATED WORK

We begin by discussing previous formulations, and applications, of Neural SDEs.

Tzen & Raginsky (2019a;b) obtain Neural SDEs as a continuous limit of deep latent Gaussian
models. They train by optimising a variational bound, using forward-mode autodifferentiation. They
consider only theoretical applications, for modelling distributions as the terminal value of an SDE.

Li et al. (2020) give arguably the closest analogue to the neural ODEs of Chen et al. (2018).
They introduce neural SDEs via a subtle argument involving two-sided filtrations and backward
Stratonovich integrals, but in doing so are able to introduce a backward-in-time adjoint equation,
using only efficient-to-compute vector-Jacobian products. In applications, they use neural SDEs in
a latent variable modelling framework, using the stochasticity to model Bayesian uncertainty.

Hodgkinson et al. (2020) introduce Neural SDEs via an elegant theoretical argument, as a limit of
random ODEs. The limit is made meaningful via rough path theory. In applications, they use the
limiting random ODEs, and treat stochasticity as a regulariser within a normalising flow. However,
they remark that in this setting the optimal diffusion is zero. This is a recurring problem: Innes et al.
(2019) also train neural SDEs for which the optimal diffusion is zero.

Rackauckas et al. (2020) treat neural SDEs in classical Feynman–Kac fashion, and like Hodgkinson
et al. (2020); Tzen & Raginsky (2019a;b), optimise a loss on just the terminal value of the SDE.

1

Under review as a conference paper at ICLR 2021

Briol et al. (2020); Gierjatowicz et al. (2020) instead consider the more general case of using a
neural SDE to model a time-varying quantity, for which the stochasticity in the system models the
variability (specifically certain statistics) of time-varying data. Letting µ, ν denote the learnt and true
distributions, both train by minimising |µ(f)− ν(f)| for functions of interest f (such as derivative
payoffs). This corresponds to training with a non-characteristic MMD (Gretton et al., 2013).

Several authors, such as Oganesyan et al. (2020); Hodgkinson et al. (2020); Liu et al. (2019), seek
to use stochasticity as a way to enhance or regularise a neural ODE model.

Our approach is most similar to Li et al. (2020), in that we treat neural SDEs as learnt continuous-
time model components of a differentiable computation graph, and Briol et al. (2020); Gierjatowicz
et al. (2020), in that we use stochasticity to model distributions on path space. The resulting neural
SDE is not a improvement to a similar neural ODE, but a standalone concept in its own right.

1.2 CONTRIBUTIONS

Our central contribution is the observation that the mathematical formulation of SDEs is directly
comparable to the machine learning formulation of GANs. Using this connection, we show how it
becomes straightforward to train neural SDEs as generative time series models. Arbitrary drift and
diffusions are admissible, and in the infinite data limit any SDE may be learnt.

Next, we introduce a new way of sampling Brownian motion, adapted to the query patterns typical to
SDE solvers. The scheme produces exact samples usingO(1) memory and average-caseO(1) time.
In particular, it can reconstruct its past trajectory, which is necessary for the use of adjoint equations.
The scheme operates by combining splittable Pseudo-Random Number Generators (PRNGs), a
binary tree of dependent intervals, and a Least Recently Used (LRU) cache of recent queries.

Finally, we demonstrate that the theoretical construction of adjoint SDEs (which may be used to
backpropagate through an SDE) may be simplified by using the pathwise formulation of rough path
theory. In particular this avoids the previous theoretical complexity of two-sided filtrations.

To facilitate the use of these techniques, we have implemented them as part of an open-source
PyTorch-compatible general-purpose SDE library, [redacted] . This may be found at https://
github.com/[redacted] .

H0 = ξφ(Y0)

X0 = ζθ(V)

V ∼ N (0, Iv) Wt = Brownian motion

dXt = µθ(t,Xt) dt+ σθ(t,Xt) ◦ dWt

dHt = fφ(t,Ht) dt+ gφ(t,Ht) ◦ dYt D = mφ(HT)

Yt = `θ(Xt)

Noise

Generator

Discriminator

Initial Hidden state Output

0.

Figure 1: Summary of equations.

2 METHOD

2.1 SDES AS GANS

Consider some “noise” distribution µ on a space X , and a target probability distribution ν on a space
Y . A generative model for ν is a learnt function Gθ : X → Y trained so that the (pushforward)
distribution Gθ(µ) approximates ν. For our purposes, a Generative Adversarial Network (GAN)
may then be characterised as a choice of Gθ which may be sampled from (by sampling ω ∼ µ and
then evaluating Gθ(ω)), but for which the probability density of Gθ(µ) is not computable (due to
the complicated structure of Gθ).

2

https://github.com/[redacted]
https://github.com/[redacted]

Under review as a conference paper at ICLR 2021

The name “adversarial” then arises from the fact that a GAN is trained by examining the statistics
of samples from Gθ(µ), most typically a learnt scalar statistic, parameterised by a discriminator.
(Although variations such as MMD-GANs instead use fixed vector-valued statistics (Li et al., 2015).)

Now consider SDEs. Consider some (Stratonovich) integral equation of the form

X0 ∼ µ, dXt = f(t,Xt) dt+ g(t,Xt) ◦ dWt,

for initial probability distribution µ and (Lipschitz) functions f , g and Brownian motion W . The
strong solution to this SDE may be described as the (unique) map F such that F (µ,W) = X almost
surely (Rogers & Williams, 2000, Chapter V, Definition 10.9).

Intuitively, SDEs are maps from a noise distribution (Wiener measure, the distribution of Brownian
motion) to some solution distribution, which is some probability distribution on path space. We
recommend any of Karatzas & Shreve (1991), Rogers & Williams (2000), or Revuz & Yor (2013)
as an introduction to the theory.

SDEs can be sampled from with relative ease: this is what a numerical SDE solver does. However,
evaluating its probability density is not possible; in fact it is not even defined in the usual sense.1
This scenario – no available/tractable densities, but sampling is available – is now the familiar setting
of a GAN.

Moreover, this essentially generalises the typical procedure by which a parameterised SDE is fit to
data, which is usually done by matching certain statistics (such as option prices).

2.2 GENERATOR

Let Z be a random variable on y-dimensional path space. Loosely speaking, this is the space of
continuous functions f : [0, T] → Ry for some fixed time horizon T > 0. For example, this may
correspond to the (interpolated) evolution of stock prices over time. This is what we seek to model.

Let W : [0, T] → Rw be a w-dimensional Brownian motion, and V ∼ N (0, Iv) be drawn from
a v-dimensional standard multivariate normal. The values w, v are hyperparameters describing the
size of the noise.

Let

ζθ : Rv → Rx, µθ : [0, T]× Rx → Rx, σθ : [0, T]× Rx → Rx×w, `θ : Rx → Ry,

where ζθ, µθ and σθ are (Lipschitz) neural networks, and `θ is linear. Collectively they are
parameterised by θ. The dimension x is a hyperparameter describing the size of the hidden state.

We seek to learn a (Stratonovich) SDE of the form

X0 = ζθ(V), dXt = µθ(t,Xt) dt+ σθ(t,Xt) ◦ dWt, Yt = `θ(Xt), (1)

for t ∈ [0, T], with X : [0, T] → Rx the (strong) solution to the SDE, such that in some sense

Y
d
≈ Z. That is to say, the model Y should have approximately the same distribution as the target

Z (for some notion of approximate). The solution X is guaranteed to exist given mild conditions
(such as Lipschitz µθ, σθ).

Network architecture ζθ, µθ, and σθ may be taken to be any standard network architecture, such
as a simple feedforward network. (The choice does not affect the GAN construction.)

Hidden state The solutionX represents hidden state, and is not the output of the model. If it were
the output, then future evolution would satisfy a Markov property, of being dependent on the past
only through the present, which need not be true in general.

This is the reason for the additional `θ mapping to Y . Practically speaking, during an SDE solve, Y
may be concatenated alongside X , and `θ concatenated with µθ.

1Technically speaking, a probability density is the Radon–Nikodym derivative of the measure with respect
to the Lebesgue measure. However, the Lebesgue measure only exists for finite dimensional spaces. In infinite
dimensions, it is possible to define densities with respect to for example Gaussian measures, but this is less
obviously meaningful when used with maximum likelihood.

3

Under review as a conference paper at ICLR 2021

Initial condition It is important that there be an additional source of noise for the initial condition,
passed through a nonlinear ζθ, as Y0 = `θ(ζθ(V)) does not depend on the Brownian noise W .

Stratonovich versus Itô The choice of Stratonovich solutions over Itô solutions is not mandatory,
but will turn out to be a little theoretically neater when we discuss the adjoint method in Section 3.1.

Sampling Given a trained model, we sample from it by sampling some initial noise V and some
Brownian motion W , and then solving equation (1) with a numerical SDE solver. Any standard
numerical SDE solver may be used. As we consider Stratonovich integrals, then we use the midpoint
method (which converges to the Stratonovich solution), rather than the Euler–Maruyama method
(which converges to the Itô solution).

Comparison to the Fokker–Planck equation The distribution of an SDE, as learnt by a neural
SDE, contains more information than the distribution obtained by solving a Fokker–Planck equation.
The solution to a Fokker–Planck equation gives the (time evolution of the) probability density of a
solution at fixed times. It does not encode information about the time evolution of individual sample
paths. This is exemplified by stationary processes, whose distribution does not change over time.

2.3 DISCRIMINATOR

Each sample from the generator is a path Y : [0, T]→ Ry; the discriminator must accept such paths
as inputs. There is a natural choice: parameterise the discriminator as another neural SDE.

Let

ξφ : Ry → Rh, fφ : [0, T]× Rh → Rh, gφ : [0, T]× Rh → Rh×y, mφ : Rh → R,
where ξφ, fφ and gφ are (Lipschitz) neural networks, and mφ is linear. Collectively they are
parameterised by φ. The dimension h is a hyperparameter describing the size of the hidden state.

Recalling that Y is the generated sample, then the discriminator is an SDE of the form

H0 = ξφ(Y0), dHt = fφ(t,Ht) dt+ gφ(t,Ht) ◦ dYt, D = mφ(HT), (2)

for t ∈ [0, T], with H : [0, T] → Rh the (strong) solution to this SDE, which exists given mild
conditions (such as Lipschitz fφ, gφ). The value D ∈ R, which is a function of the terminal hidden
state HT , is the discriminator’s score for real versus fake.

Neural CDEs The discriminator follows the formulation of a neural CDE (Kidger et al., 2020b)
with respect to the control Y . Neural CDEs are the continuous-time analogue to RNNs, just as
neural ODEs are the continuous-time analogue to residual networks (Chen et al., 2018). This is
what motivates equation (2) as a probably sensible choice of discriminator. Moreover, it means
that the discriminator enjoys theoretical properties, such as universal approximation with respect to
compact sets of paths.

Training data Just described is how the discriminator is applied to the generator output. For the
training data, the analogous thing is done, as follows.

Suppose for simplicity that we observe samples from Z as an irregularly sampled but fully observed
time series z = ((t0, z0), . . . , (tn, zn)), where without loss of generality t0 = 0 and tn = T .

Then we may (linearly) interpolate to produce ẑ : [0, T]→ Ry such that ẑ(ti) = zi, and compute

H0 = ξφ(ẑ(t0)), dHt = fφ(t,Ht) dt+ gφ(t,Ht) ◦ dẑt, D = mφ(HT)

as before.

Using an interpolation of the data represents an approximation to the underlying continuous-time
process from which the data was observed; see Kidger et al. (2020b). Additionally the interpolation
need not be linear; all that is required is to produce the distribution on path space that is desired to
be modelled.

If the data is actually partially observed, has asynchronous sampling, or is of variable length, then
the interpolation may still be performed in much the same way. See the examples of Kidger (2020).

4

Under review as a conference paper at ICLR 2021

Initial condition and hidden state As with the generator, it is important that there be a learnt
initial condition, and that the output be a function of HT and not a univariate HT itself. (See also
Kidger et al. (2020b), who emphasise the need for a learnt initial condition.)

Single SDE solve In practice, both generator and discriminator may be concatenated together into
a single SDE solve. The state is the combined [X,Y,H], the drift is the combined [µθ, `θ ◦µθ, fφ ◦
`θ ◦ µθ], and the diffusion is the combined [σθ, `θ ◦ σθ, gφ ◦ `θ ◦ σθ]. Then HT is extracted from
the final hidden state, and mθ applied, to produce the discriminator’s score for that sample.

Training loss The training losses used are the usual one for Wasserstein GANs (Goodfellow et al.,
2014; Arjovsky et al., 2017). Let Yθ : (V,W) 7→ Y represent the overall action of the generator, and
Dφ : Y 7→ D the overall action of the discriminator. Then the generator is optimised with respect to

min
θ

[EV,WDφ(Yθ(V,W))] ,

and the discriminator is optimised with respect to

max
φ

[EV,WDφ(Yθ(V,W))− EzDφ(ẑ)] .

Training is performed via stochastic gradient descent techniques as usual. Backpropagation may
be performed either through the internal operations of the numerical SDE solver, or via the adjoint
method for SDEs (Li et al., 2020). In the latter case, then the entire SDE is treated as a single
differentiable primitive within the computation graph.

Lipschitz regularisation Wasserstein GANs need a Lipschitz discriminator, for which a variety
of methods have been proposed. We use gradient penalty (Gulrajani et al., 2017), finding that neither
weight clipping nor spectral normalisation worked (Arjovsky et al., 2017; Miyato et al., 2018).

We attribute this to the observation that neural SDEs (as with RNNs) have a recurrent structure. If
a single step has Lipschitz constant λ, then the Lipschitz constant of the overall neural SDE will be
O(λT) in the time horizon T . Even small positive deviations from λ = 1 produce large Lipschitz
constants. Gradient penalty avoids this by regularising the Lipschitz constant of the overall network,
by adding an additional regularisation term

Ez(‖∇zDφ(z)‖2 − 1)2,

where z is sampled from all convex combinations of the true and generated distributions.

The use of gradient penalty does require a double backward. This is a concern we shall return to in
Section 5.

2.4 EXTENSIONS

Conditional GANs This approach may be extended to conditional GANs; simply append the extra
context to both generator and discriminator as in Mirza & Osindero (2014); Ren et al. (2016)

MMD-GANs Given a kernel on path space (not just on samples as in Briol et al. (2020)), for
example the signature kernel (Király & Oberhauser, 2019; Toth & Oberhauser, 2020), then the
neural SDE may alternatively be trained as an MMD-GAN as well (Li et al., 2015).

Jumps It is straightforward to include jump terms (Jia & Benson, 2019) in the generator. The
formulation of the discriminator is unchanged.

We consider conditional GANs in our experiments, and leave MMDs and jumps for future work.

3 EFFICIENT COMPUTATION

The SDE-as-GAN formulation is expected to be the primary interest for its machine learning
applications.

5

Under review as a conference paper at ICLR 2021

We now provide two further technical contributions. First, we demonstrate how the construction
of the adjoint equations may be performed straightforwardly via rough path theory. Second, we
construct a new scheme for simulating Brownian motion, which we dub the Brownian Interval.

As a practical matter, these may be handled by SDE libraries, without the end user having to worry
about how they are performed. And indeed, we make these available in the [redacted] library.

3.1 ROUGH ADJOINT EQUATION

Neural differential equations may be backpropagated through either by backpropagating through
the internal operations of the solver, or by treating the entire neural differential equation as a
differentiable primitive via the adjoint method (Pontryagin et al., 1962; Chen et al., 2018). The
adjoint method backpropagates by solving another differential equation, the adjoint equation,
backwards in time. See Kidger et al. (2020a) for a clear exposition in the ODE setting.

However, it does not straightforwardly extend to the SDE setting, as the theory of SDEs relies on
arguments that depend on the arrow of time, such as filtrations. Li et al. (2020) manage to handle
this by using a nonstandard setting involving subtle arguments with two-sided filtrations.

Here we show that the issue may instead be straightforwardly resolved by the adoption of rough
path theory. Hodgkinson et al. (2020) give a very readable introduction, and Friz & Hairer (2014);
Friz & Victoir (2010) are standard textbooks. In this formulation: (a) the integrals Ws,t =

∫ t
s
(Wr−

Ws) ◦ dWr are defined probabilistically as typically Stratonovich integrals; (b) the joint probability
distribution (W,W) is sampled; (c) the solution to the SDE is defined pathwise with respect to the
sample.2 The solution is the same as the strong solution given by usual SDE theory, but now the
probability is contained just within (W,W), and complications such as filtrations do not appear.

It is instructive to note that this is the same procedure as performed when using numerical SDE
solvers. Samples are drawn from (W,W), and then the SDE is solved pathwise with respect to those
samples. The higher order terms W appear for example in Milstein’s method (Kloeden & Platen,
1992), originally constructed for solving Itô SDEs.

What this then means is that it is straightforward to make sense of notions like running SDEs
backwards in time: we sample from (W,W) as before, and then just traverse the sample backwards.

Theorem (Informal). Consider the Stratonovich SDE of equation (1), and let L be a (scalar) loss
on XT . Then the adjoint process at = dL(XT)/dXt is a strong solution of the linear Stratonovich
SDE

dat = −(at · ∇)µθ(t,Xt) dt− (at · ∇)σθ(t,Xt) ◦ dWt

for t ∈ [0, T]. In particular Wt is the same Brownian noise as used in the forward pass.

This is cheap to compute as it involves only vector-Jacobian products. This is equivalent to the
adjoint as given by Li et al. (2020): the difference is through our use of conventional Stratonovich
integrals over their “backward Stratonovich integrals” – and we argue that interpreting these as rough
integrals is better still.

The proof may be found in Appendix A.

3.2 SIMULATING BROWNIAN MOTION

Numerically solving an SDE requires sampling Brownian motion, conditional on its previous
samples. Mathematically this is straightforward. Let Ws,t = Wt −Ws ∈ Rw. Then for s < t < u,
Lévy’s Brownian bridge (Revuz & Yor, 2013) states that

Ws,t|Ws,u = N
(
t− s
u− s

Ws,u,
(u− t)(t− s)

u− s
Iw

)
. (3)

2For almost all samples. In fact the excluded null set is the same for all SDEs. Note the use of Stratonovich
integrals – this is the reason for our previous preference for them over Itô integrals.

6

Under review as a conference paper at ICLR 2021

Algorithm 1: Sampling the Brownian Interval
Type: Let Node denote a 5-tuple consisting of an

interval, a seed, and three optional Nodes,
corresponding to the parent node, and two
child nodes, respectively. (Optional as the
root has no parent and leaves have no
children.)

Input: Interval [s, t] ⊆ [0, T]
State: Binary tree with elements of type Node,

with root Î = ([0, T], ŝ, ∗, Îleft, Îright).
A Node Ĵ .

Result: Sample increment Ws,t

The returned ‘nodes’ is a list of Nodes whose
intervals partition [s, t]. Practically speaking
this will usually have only one or two elements.
nodes = traverse(Ĵ , [s, t], [])

def sample(I : Node):
if I is Î then

return N (0, T) sampled with seed ŝ.
Let I = ([a, b], s, Iparent, Ileft, Iright)
Let Iparent = ([ap, bp], sp, Ipp, Ilp, Irp)
Wparent = sample(Iparent)
if Ii is Irp then

Wleft = bridge(ap, bp, a,Wparent, s)
return Wparent −Wleft

else
return bridge(ap, bp, b, Wparent, s)

sample = LRUCache(sample)

Ĵ ← nodes[−1]
return

∑
I∈nodes sample(I)

[0, T]

[0, s] [s, T]

[s, t] [t, T]

(a)

[0, T]

[0, s] [s, T]

[s, t] [t, T][0, u] [u, s]

[s, v] [v, t]

(b)

Figure 2: Binary tree of intervals.

The difficulty here is computational. On
the adjoint pass, the same Brownian
sample must be reconstructed, potentially
at locations other than were used on the
forward pass. A memory intensive approach
is to store every sample, and apply equation
(3) when appropriate. Gaines & Lyons
(1997); Li et al. (2020) instead approach
this via the “Brownian Tree”. However
this produces only approximations, as the
real line must be discretised to some
tolerance at which the tree is terminated.
Practically speaking this is also slow, as
small tolerances demand deep traversals of
the tree; indeed Li et al. (2020) do not use it
in their experiments for this reason.

We introduce the “Brownian Interval”,
which improves upon this with exact
samples and fast query times. Similar to the
dyadic tree of points used in the Brownian
Tree, we now instead we have a binary tree
of intervals. Each parent interval is the
disjoint union of its child intervals. What
is simulated is actually the incrementsWs,t,
not displacements Wt. This is because
(a) this is what is actually used in an
SDE solver, and (b) this is the appropriate
interface when additionally desiring the
higher order term Ws,t =

∫ t
s
Ws,r ◦ dWr,

such as for Milstein’s method.

The tree starts as a stump consisting of just
the global interval [0, T]. New leaf nodes
are created as queries over intervals are
made. For example, making a first query
at [s, t] ⊆ [0, T] (an operation that returns
Ws,t) produces the binary tree shown in
Figure 2a; making a subsequent query at
[u, v] with u < s < v < t produces Figure
2b. Using a splittable PRNG (Salmon et al.,
2011), each child node also has a random
seed deterministically produced from the
seed of its parent.

The tree thus completely encodes the
conditional statistics of Brownian motion:
Ws,t,Wt,u are completely specified by s, t, u, Ws,u, equation (3), and the random seed associated
with [s, u].

Computing Ws,t in this way requires Ws,u, which is not itself stored; in principle it is instead
calculated by recursing up the tree. This would be very slow (recursing to the root on every query),
except that an LRU cache is additionally applied to the computed increments Ws,t.

Queries are exact because the tree aligns with the query points. Queries are fast because of the LRU
cache; in SDE solvers, subsequent queries are likely to be close to (and thus conditional on) previous
queries. The average-case (modal) time complexity is thus O(1). Even in the event of cache misses
all the way up the tree, the worst-case time complexity will only beO(log(1/s)) in the average step
size s of the SDE solver. The (GPU) memory cost is essentially the size of the LRU cache, which is
constant. There is the small additional cost of storing the tree structure itself, but this is held in CPU
memory, which is for practical purposes essentially infinite.

7

Under review as a conference paper at ICLR 2021

See Algorithm 1, where bridge denotes equation (3), and traverse traverses the binary tree to
find a list of nodes that are of interest, and is defined explicitly in Appendix B. Also see Appendix
B for various extensions and technical considerations need to ensure this algorithm works.

4 EXPERIMENTS

4.1 DATASETS

Stocks We consider a dataset consisting of Alphabet/Google stock prices for 2018–2019, obtained
from LOBSTER (Haase, 2013). The data consists of limit orders, in particular ask and bid prices. On
average there are 605 054 values per day. Many of these do not actually change the price (specifically
the midpoint or spread), so we downsample to 40 000 observations per day, specifically over the
trading period 9.30am–4pm. This is then sliced into windows of length approximately one minute.
We model the bivariate path consisting of the midpoint and the log-spread over this time interval.

Weights Next, we consider another problem that is classically produced via (stochastic)
differential equations: the weight updates when training a neural network via stochastic gradient
descent. We train a small convolutional network on MNIST (LeCun et al., 2010) for 100 epochs,
and record its weights on every epoch. Repeated over 10 models, this produces a dataset of univariate
time series; each time series corresponding to a particular scalar weight.

Beijing Air Quality We consider a dataset of the air quality in Beijing, from the UCI repository
(Zhang et al., 2017; Dua & Graff, 2017). Each sample is a 6-dimensional time series of the SO2,
NO2, CO, O3, PM2.5 and PM10 concentrations, as they change over the course of a day. We train
this problem as a conditional GAN, by conditioning on the one-hot encoded label for which of 14
different locations the data was measured at.

4.2 MODELS

We compare against the Latent ODE model of Rubanova et al. (2019) and the continuous time flow
process (CTFP) of Deng et al. (2020). We used the full version of CTFPs, including latent variables.

These were selected for being competing neural differential equation models, which additionally
represent differing extremes of neural SDEs. The Latent ODE model samples its noise as an initial
condition, and is thereafter a pure-drift model. Meanwhile, continuous time flow processes sweep a
normalising flow over a Brownian noise, and thus represent a pure-diffusion model. Neural SDEs,
however, combine both drift and diffusion terms.

Between them these models cover a variety of training regimes. Latent ODEs are trained as
variational autoencoders; CTFPs are trained as normalising flows; neural SDEs are trained as GANs.
To our knowledge neural SDEs are the first model in their class, namely continuous-time GANs.

4.3 RESULTS

We study three test metrics: classification, prediction, and MMD. In each case every model is run
three times and mean and standard deviation of the test metrics are reported. See Appendix C for
details of hyperparameters, learning rates, optimisers and so on.

Classification is given by training a model to distinguish real from fake data. We use a neural CDE
(Kidger et al., 2020b) for the classifier. Larger losses, meaning inability to classify, indicate better
performance of the generative model.

Table 1: Classification loss. (Bold indicates best performance.)

Neural SDE CTFP Latent ODE

Stocks 0.357 ± 0.045 0.165 ± 0.087 0.000239 ± 0.000086
Weights 0.507 ± 0.019 0.676 ± 0.014 0.0112 ± 0.0025
Beijing Air Quality 0.589 ± 0.051 0.764 ± 0.064 0.392 ± 0.011

8

Under review as a conference paper at ICLR 2021

Prediction is a train on synthetic, test on real (TSTR) metric (Hyland et al., 2017). We train a
sequence-to-sequence model to predict the latter part of a time series given the first part. We use a
neural CDE/ODE as an encoder/decoder pair. Smaller losses, meaning ability to predict, are better.

Table 2: Prediction loss. (Bold indicates best performance.)

Neural SDE CTFP Latent ODE

Stocks 0.144 ± 0.0446 0.725 ± 0.233 46.2 ± 12.3
Weights 0.00843 ± 0.00759 0.0808 ± 0.0514 0.127 ± 0.152
Beijing Air Quality 0.395 ± 0.056 0.810 ± 0.083 0.456 ± 0.095

Maximum mean discrepancy is a distance between probability distributions with respect to a kernel
or feature map. We use the depth-5 signature transform as the feature map (Király & Oberhauser,
2019; Toth & Oberhauser, 2020). Smaller values, meaning closer distributions, are better.

Table 3: MMD loss. (Bold indicates best performance.)

Neural SDE CTFP Latent ODE

Stocks 1.92 ± 0.09 2.70 ± 0.47 60.4 ± 35.8
Weights 5.28 ± 1.27 12.0 ± 0.5 23.2 ± 11.8
Beijing Air Quality 0.000160 ± 0.000029 0.00198 ± 0.00001 0.000242 ± 0.000002

Neural SDEs produce substantially better results with respect to both the predictive (forecasting) and
MMD metrics. On the stocks data, they additionally perform substantially better on the classification
metric – stocks being a regime in which SDE models have classically been applied. We see that both
neural SDEs and CTFPs consistently outperform Latent ODEs, which we attribute to the nature of
these datasets: on these problems we expect to see some random fluctuations, and the underlying
dynamics are not those of a pure drift.

4.4 ORNSTEIN–UHLENBECK PROCESS

We also studied an example for which the underlying distribution is known, and is given by a time-
dependent Ornstein–Uhlenbeck process. See Appendix C.5.

5 CONSIDERATIONS

Stochastic weight averaging We found that using stochastic weight averaging (Izmailov et al.,
2018) was particularly helpful for improving performance, as it averages out the oscillatory training
behaviour for the min-max objective used in GAN training.

Final tanh nonlinearity Using a final tanh nonlinearity (on both drift and diffusion, for both
generator and discriminator) constraints the rate of change of hidden state (Kidger et al., 2020b),
which we found helped training.

Lipschitz regularisation We found that training using the adjoint equations was difficult due to
the use of gradient penalty: this involves a double backward, and thus a double adjoint, which
for reasonable step sizes we found produced inaccurate enough gradients to prevent models from
training. As such our experiments do not use adjoints, instead backpropagating through the solver.
This is an issue that we hope may be resolved in future work.

6 CONCLUSION

We have shown that SDEs and GANs follow similar formalisms. Using this connection, we train
neural SDEs as continuous time, infinite dimensional, time series GANs. Next, we introduce a new
way of sampling and reconstructing Brownian motion that is both fast and memory efficient. Finally,
we show that the adjoint equations may straightforwardly be developed through rough path theory.

9

Under review as a conference paper at ICLR 2021

REFERENCES

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein Generative Adversarial Networks. volume 70
of Proceedings of Machine Learning Research, pp. 214–223, International Convention Centre,
Sydney, Australia, 2017. PMLR.

S. Bai, J. Kolter, and V. Koltun. Deep equilibrium models. In Advances in Neural Information
Processing Systems 32, pp. 690–701. Curran Associates, Inc., 2019.

F.-X. Briol, A. Barp, A. Duncan, and M. Girolami. Statistical Inference for Generative Models with
Maximum Mean Discrepancy. arXiv:1906.05944, 2020.

R. T. Q. Chen. torchdiffeq, 2018. https://github.com/rtqichen/torchdiffeq.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural Ordinary Differential
Equations. In Advances in Neural Information Processing Systems 31, pp. 6571–6583. Curran
Associates, Inc., 2018.

K. Claessen and M. Pałka. Splittable pseudorandom number generators using cryptographic hashing.
ACM SIGPLAN Notices, 48:47–58, 2013.

M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho. Lagrangian neural
networks. In ICLR 2020 Workshop on Integration of Deep Neural Models and Differential
Equations, 2020.

A. Davie. KMT theory applied to approximations of SDE. In Stochastic Analysis and Applications
2014, pp. 185–201. Springer, 2014.

R. Deng, B. Chang, M. A. Brubaker, G. Mori, and A. Lehrmann. Modeling Continuous Stochastic
Processes with Dynamic Normalizing Flows. arXiv:2002.10516, 2020.

A. Dickinson. Optimal Approximation of the Second Iterated Integral of Brownian Motion.
Stochastic Analysis and Applications, 25(5):1109–1128, 2007.

D. Dua and C. Graff. UCI Machine Learning Repository, 2017. URL http://archive.ics.
uci.edu/ml.

G. Flint and T. Lyons. Pathwise approximation of SDEs by coupling piecewise abelian rough paths.
arXiv:1505.01298, 2015.

J. Foster, H. Oberhauser, and T. Lyons. An optimal polynomial approximation of Brownian motion.
SIAM Journal on Numerical Analysis, 58(3):1393–1421, 2020.

P. Friz and M. Hairer. A Course on Rough Paths. Springer International Publishing, 2014.

P. K. Friz and N. B. Victoir. Multidimensional stochastic processes as rough paths: theory and
applications. Cambridge University Press, 2010.

J. Gaines and T. Lyons. Random Generation of Stochastic Area Integrals. SIAM Journal on Applied
Mathematics, 54(4):1132–1146, 1994.

J. Gaines and T. Lyons. Variable step size control in the numerical solution of stochastic differential
equations. SIAM Journal on Applied Mathematics, 57(5):1455–1484, 1997.

P. Gierjatowicz, M. Sabate-Vidales, D. Šiška, L. Szpruch, and Ž. Žurič. Robust Pricing and Hedging
via Neural SDEs. arXiv:2007.04154, 2020.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative Adversarial Nets. In Advances in Neural Information Processing Systems
27, pp. 2672–2680. Curran Associates, Inc., 2014.

W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud. Ffjord: Free-form
continuous dynamics for scalable reversible generative models. International Conference on
Learning Representations, 2019.

10

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Under review as a conference paper at ICLR 2021

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test.
Journal of Machine Learning Research, 13(1):723–773, 2013.

A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic
differentiation. Optimization Methods and Software, 1(1):35–54, 1992.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved Training of
Wasserstein GANs. In Advances in Neural Information Processing Systems 30, pp. 5767–5777.
Curran Associates, Inc., 2017.

J. Haase. Limit order book system – the efficient reconstructor, 2013. URL https://
lobsterdata.com/.

L. Hodgkinson, C. van der Heide, F. Roosta, and M. Mahoney. Stochastic Normalizing Flows.
arXiv:2002.09547, 2020.

S. L. Hyland, C. Esteban, and G. Rätsch. Real-Valued (Medical) Time Series Generation with
Recurrent Conditional GANs. arXiv:1706.02633, 2017.

M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah, and W. Tebbutt. A
Differentiable Programming System to Bridge Machine Learning and Scientific Computing.
arXiv:1907.07587, 2019.

P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. Gordon Wilson. Averaging Weights
Leads to Wider Optima and Better Generalization. UAI, 2018.

J. Jia and A. Benson. Neural Jump Stochastic Differential Equations. In Advances in Neural
Information Processing Systems 32, pp. 9847–9858. Curran Associates, Inc., 2019.

I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Graduate Texts in
Mathematics. Springer New York, 1991.

P. Kidger. torchcde, 2020. https://github.com/patrick-kidger/torchcde.

P. Kidger and T. Lyons. Signatory: differentiable computations of the signature and logsignature
transforms, on both CPU and GPU. arXiv:2001.00706, 2020. URL https://github.com/
patrick-kidger/signatory.

P. Kidger, R. T. Q. Chen, and T. Lyons. “Hey, that’s not an ODE”: Faster ODE Adjoints with 12
Lines of Code. arXiv:2009.09457, 2020a.

P. Kidger, J. Morrill, J. Foster, and T. Lyons. Neural Controlled Differential Equations for Irregular
Time Series. arXiv:2005.08926, 2020b.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.

F. Király and H. Oberhauser. Kernels for sequentially ordered data. Journal of Machine Learning
Research, 2019.

P. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Springer, 1992.

Y. LeCun, C. Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

X. Li, T.-K. L. Wong, R. T. Q. Chen, and D. Duvenaud. Scalable Gradients and Variational Inference
for Stochastic Differential Equations. AISTATS, 2020.

Y. Li, K. Swersky, and R. Zemel. Generative Moment Matching Networks. In Proceedings of the
32nd International Conference on Machine Learning. 2015.

X. Liu, T. Xiao, S. Si, Q. Cao, S. Kumar, and C.-J. Hsieh. Neural SDE: Stabilizing Neural ODE
Networks with Stochastic Noise. arXiv:1906.02355, 2019.

T. Lyons. Differential equations driven by rough signals. Revista Matemática Iberoamericana, 14,
1998.

11

https://lobsterdata.com/
https://lobsterdata.com/
https://github.com/patrick-kidger/torchcde
https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/signatory

Under review as a conference paper at ICLR 2021

T. Lyons, Caruana M., and Lévy T. Differential equations driven by rough paths. In École d’été de
probabilités de Saint-Flour XXXIV-2004, edited by J. Picard in Volume 1908 of Lecture Notes in
Mathematics, Berlin, Springer, 2007.

S. Massaroli, M. Poli, J. Park, A. Yamashita, and H. Asama. Dissecting Neural ODEs.
arXiv:2002.08071, 2020.

M. Mirza and S. Osindero. Conditional Generative Adversarial Nets. arXiv:1411.1784, 2014.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral Normalization for Generative
Adversarial Networks. In International Conference on Learning Representations, 2018.

J. Morrill, P. Kidger, C. Salvi, J. Foster, and T. Lyons. Neural CDEs for Long Time-Series via the
Log-ODE Method. arXiv:2009.08295, 2020.

A. Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Lió. On Second Order
Behaviourin Augmented Neural ODEs. arXiv:2006.07220, 2020.

V. Oganesyan, A. Volokhova, and D. Vetrov. Stochasticity in Neural ODEs: An Empirical Study.
arXiv:2002.09779, 2020.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

L. S. Pontryagin, E. F. Mishchenko, V. G. Boltyanskii, and R. V. Gamkrelidze. The mathematical
theory of optimal processes. 1962.

C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner,
and A. Ramadhan. Universal Differential Equations for Scientific Machine Learning.
arXiv:2001.04385, 2020.

Y. Ren, J. Zhu, J. Li, and Y. Luo. Conditional Generative Moment-Matching Networks. In Advances
in Neural Information Processing Systems 29, pp. 2928–2936. Curran Associates, Inc., 2016.

D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293. Springer Science
& Business Media, 2013.

L.C.G. Rogers and D. Williams. Diffusions, Markov Processes and Martingales: Volume 2, Itô
Calculus. Cambridge Mathematical Library. Cambridge University Press, 2000.

A. Rößler. Runge-Kutta Methods for the Strong Approximation of Solutions of Stochastic
Differential Equations. SIAM Journal on Numerical Analysis, 48(3):922–952, 2010.

Y. Rubanova, R. T. Q. Chen, and D. Duvenaud. Latent Ordinary Differential Equations for
Irregularly-Sampled Time Series. In Advances in Neural Information Processing Systems 32,
pp. 5320–5330. Curran Associates, Inc., 2019.

J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw. Parallel random numbers: as easy as 1, 2,
3. Proc. High Performance Computing, Networking, Storage and Analysis, pp. 1–12, 2011.

C. Toth and H. Oberhauser. Variational Gaussian Processes with Signature Covariances. ICML
2020, 2020.

B. Tzen and M. Raginsky. Neural Stochastic Differential Equations: Deep Latent Gaussian Models
in the Diffusion Limit. arXiv:1905.09883, 2019a.

B. Tzen and M. Raginsky. Theoretical guarantees for sampling and inference in generative models
with latent diffusions. COLT, 2019b.

S. Zhang, B. Guo, A. Dong, J. He, Z. Xu, and S. X. Chen. Cautionary Tales on Air-Quality
Improvement in Beijing. Proceedings of the Royal Society A, 473(2205), 2017.

12

Under review as a conference paper at ICLR 2021

A DERIVATION OF THE ROUGH ADJOINT EQUATION

In this section, we will present a “rough path” derivation of the adjoint equation for Neural SDEs.
Since rough path theory is a well developed field, much of our analysis involves quoting key results.
To begin, we recall the informal statement of the theorem that we wish to prove:

Theorem (Informal). Consider the Stratonovich SDE

dXt = µθ(t,Xt) dt+ σθ(t,Xt) ◦ dWt, (4)

where µθ and σθ = {σiθ}1≤i≤d are sufficiently regular vector fields. Let L be a scalar loss on XT .
Then the adjoint process at = dL(XT)/dXt is a strong solution of the linear Stratonovich SDE

dat = −(at · ∇)µθ(t,Xt) dt− (at · ∇)σθ(t,Xt) ◦ dWt (5)

for t ∈ [0, T]. In particular Wt is the same Brownian noise as used in the forward pass.

Whilst the above theorem looks simple enough, it provides us with three main challenges to address:

The first challenge in proving this theorem is that Brownian sample paths are not differentiable and
thus the adjoint process will not be differentiable. In particular, we cannot use the proof given by
Chen et al. (2018) where the derivative of the adjoint process is approximated using a Taylor series.

The second challenge is more subtle and relates to fact that Brownian sample paths do not have
bounded variation. In particular, this means that we cannot define integrals with respect to Brownian
sample paths in the Riemann-Stieltjes sense (this is discussed in Section 1.5 of Lyons et al. (2007)).

The third challenge is purely technical in that the vector fields of the adjoint equation (5) do not
satisfy certain technical conditions. Typical assumptions in rough path theory are that the vector
fields are either bounded (and with some smoothness) or linear. However the adjoint vector fields
are linear in a but nonlinear in X; overall they are unbounded and nonlinear. Therefore our analysis
will involve separating the linear part of the adjoint equation from the bounded nonlinear part.

The outline of this section is as follows. In subsection A.1, we will derive the adjoint equation for
systems where the “driving path” has bounded variation but can be non-differentiable (Challenge 1).
In subsection A.2, we will discuss some aspects of rough path theory – which provides a “pathwise”
integration theory for SDEs (Challenge 2). Finally, in subsection A.3, we shall put the various pieces
together and derive the rough adjoint equation for Stratonovich SDEs (Challenge 3).

A.1 THE ADJOINT FOR CONTROLLED DIFFERENTIAL EQUATIONS

Before we consider SDEs and Brownian motion, we first derive the adjoint equation for a slightly
more manageable class of differential equation – namely the controlled differential equation.3 A
CDE takes a similar form to an SDE, except the system is “controlled” by a continuous path X
instead of Brownian motion with time (that is, we write dXt instead of dt or dWt). By assuming
that X has bounded variation, we can use Riemann-Stieltjes integration to define well-posed CDEs
(existence and uniqueness results for CDE solutions are given in Chapter 3 of Friz & Victoir (2010)).

Theorem A.1 (Adjoint equation for CDEs that are driven by bounded variation paths).
Consider the controlled differential equation,

dyt =

d∑
i=1

f iθ(yt) dXi
t , (6)

y0 = ξ ∈ Rn, (7)

where X : [0, T] → Rd is continuous bounded variation path and each f iθ : Rn → Rn is bounded,
differentiable and with bounded first derivatives. Let L : Rn → R be a differentiable loss function.
Then the adjoint process

at :=
dL(yT)

dyt
, (8)

3Also referred to in the literature as a rough differential equation.

13

Under review as a conference paper at ICLR 2021

satisfies the following linear CDE

dat = −
d∑
i=1

at∇f iθ(yt) dXi
t . (9)

Proof. For s ≤ t, let Ψs,t : Rn → Rn be the “time-reversed” flow map for the CDE (7) on [s, t].
So for y ∈ Rn, Ψs,t(y) is the solution of the CDE (7) at time s so that its future value at time t is y.
SinceX has bounded variation, Ψs,t is well-defined (via Riemann-Stieltjes integration) and satisfies

y = Ψs,t(y) +

d∑
i=1

∫ t

s

f iθ
(
Ψu,t(y)

)
dXi

u. (10)

It was shown by Theorem 4.4 in Friz & Victoir (2010) that CDE flows have directional derivatives.
As a result of this theorem, taking the gradient of (10) is possible and rearranging gives

∇Ψs,t(y) = Id−
d∑
i=1

∫ t

s

∇f iθ
(
Ψu,t(y)

)
∇Ψu,t(y) dXi

u. (11)

Applying the chain rule to the adjoint process at = dL(yT)
dyt

gives

at =
dL(yT)

dyt
=

dL(yT)

dys

dys
dyt

, (12)

where dys
dyt

is the Jacobian matrix given by∇Ψs,t(yt), and so

at = as∇Ψs,t(yt). (13)

Thus, substituting (11) into the above yields

at = as − as
(d∑
i=1

∫ t

s

∇f iθ
(
yu
)
∇Ψu,t(yt) dXi

u

)
.

So by the above equation along with the triangle inequality, we have∥∥∥∥at − (as − d∑
i=1

∫ t

s

au∇f iθ(yu) dXi
u

)∥∥∥∥ (14)

≤
∥∥∥∥at − (as − d∑

i=1

∫ t

s

as∇f iθ(yu) dXi
u

)∥∥∥∥+

∥∥∥∥ d∑
i=1

∫ t

s

(au − as)∇f iθ(yu) dXi
u

∥∥∥∥
=

∥∥∥∥ as(d∑
i=1

∫ t

s

∇f iθ
(
yu
)(
∇Ψu,t(yt)− Id

)
dXi

u

)∥∥∥∥+

∥∥∥∥ d∑
i=1

∫ t

s

(au − as)∇f iθ(yu) dXi
u

∥∥∥∥ .
In order to estimate these terms, we consider the matrix-valued path M t,y : [s, t]→ Rn×n given by

M t,y
u := −

d∑
i=1

∫ t

u

∇f iθ(Ψv,t(y)) dXi
v ,

so that equation (14) becomes∥∥∥∥at − (as − d∑
i=1

∫ t

s

au∇f iθ(yu) dXi
u

)∥∥∥∥ (15)

≤
∥∥∥∥ as ∫ t

s

dM t,yt
u

(
∇Ψu,t(yt)− Id

)∥∥∥∥+

∥∥∥∥∫ t

s

(au − as) dM t,yt
u

∥∥∥∥.
14

Under review as a conference paper at ICLR 2021

We use the notation ‖γ‖1-var;[s,t] to denote the total variation (or 1-variation) of a path γ : [s, t]→ Rk,

‖γ‖1-var;[s,t] := sup
D

∑
i

‖γti+1
− γti‖,

where ‖·‖ is a norm on Rk (we use k = d, n2). The supremum is taken over all partitionsD of [s, t].

It is worth noting that since u 7→ ∇fi(yu, θ) is continuous, it is bounded for u ∈ [s, t]. As a result,
Mu,yu has bounded variation on [s, u] and there exists a constant C1 (depending only on t) such that

‖Mu,yu‖1-var;[s,u] ≤ C1‖X‖1-var;[s,t], (16)
for u ∈ [s, t] with s and t sufficiently close together.

We can rewrite (11) as the following linear CDE:

dzu = −
(
dMv,yv

u

)
zu ,

z0 = Id,

where zu := ∇Ψu,v(yv) for s ≤ u ≤ v ≤ t. Since the path Mv,yv has bounded variation, by
Davie’s lemma for linear CDEs (Lemma 10.56 in Friz & Victoir (2010)), there exists a constant C2

such that ∥∥zu − z0∥∥ ≤ C2‖Mv,yv‖1-var;[s,v].

for s ≤ u ≤ v ≤ t whenever s is sufficiently close to t and we note that zu− z0 = ∇Ψu,v(yv)− Id.

Hence by the total variation estimate (16), there exists a constant C3 depending only on t, such that∥∥∇Ψu,v(yv)− Id
∥∥ ≤ C3‖X‖1-var;[s,t], (17)

for s ≤ u ≤ v ≤ t whenever s is sufficiently close to t.

Since a is continuous, it is bounded on [s, t] and so it follows from (13) with the estimate (17) that∥∥∥∥∫ t

s

(au − as) dM t,yt
u

∥∥∥∥ ≤ sup
u∈[s,t]

(
‖au − as‖

)∥∥M t,yt
∥∥
1-var;[s,t]

≤ sup
u∈[s,t]

(∥∥as∇Ψs,u(yu)− as
∥∥)∥∥M t,yt

∥∥
1-var;[s,t]

≤ sup
u∈[s,t]

(
‖as‖

∥∥∇Ψs,u(yu)− Id
∥∥)∥∥M t,yt

∥∥
1-var;[s,t]

≤ C4‖X‖21-var;[s,t],

and ∥∥∥∥ as ∫ t

s

dM t,yt
u

(
∇Ψu,t(yt)− Id

)∥∥∥∥ ≤ sup
u∈[s,t]

(
‖as‖

∥∥∇Ψu,t(yt)− Id
∥∥)∥∥M t,yt

∥∥
1-var;[s,t]

≤ C5‖X‖21-var;[s,t],

where the constants C4 and C5 only depends on t (provided that ε := t − s is sufficiently small).
Therefore equation (15) for the adjoint process becomes∥∥∥∥at − (as − d∑

i=1

∫ t

s

au∇f iθ(yu) dXi
u

)∥∥∥∥ ≤ (C4 + C5)‖X‖21-var;[s,t].

In other words, for a fixed t, we have

at = as −
d∑
i=1

∫ t

s

au∇f iθ(yu) dXi
u +O

(
‖X‖21-var;[s,t]

)
,

provided that s is sufficiently close to t. Thus, letting s→ t− gives

dat = −
d∑
i=1

at∇f iθ(yt) dXi
t ,

as required.

15

Under review as a conference paper at ICLR 2021

A.2 THE ROUGH PATH APPROACH TO STOCHASTIC DIFFERENTIAL EQUATIONS

In this subsection, we shall briefly outline the “pathwise solution” theory for SDEs that was made
possible by the advent of rough path theory (originally proposed in Lyons (1998)). Whilst rough
path theory extends beyond the SDE setting, this is not within the scope of this paper.

Let
(
Ω,F ,P ; {Ft}t≥0

)
be a filtered probability space containing a d-dimensional Brownian motion.

Since the Brownian motion W : Ω × [0,∞) → Rn corresponds to a certain Gaussian measure on
(infinite-dimensional) path space, it must be discretised in order to be used in SDE simulation.
Moreover, by constructing a sequence of approximations converging to the Brownian path we can
extend the adjoint equation from the bounded variation setting (see Theorem A.1) to the SDE setting.

To begin, we give a few key definitions (the signature, p-variation metric and geometric rough path).

Definition A.2. The (depth-2) signature of a continuous bounded variation path X : [0, T]→ Rd is
S2(X) =

{
S2
s,t(X)

}
0≤s≤t≤T where S2

s,t(X) is a collection of increments and integrals given by

S2
s,t(X) :=

(
1,
{
Xi
t −Xi

s

}
1≤i≤d ,

{∫ t

s

(
Xi
u −Xi

s

)
dXj

u

}
1≤i,j≤d

)
, (18)

where the above is defined using Riemann-Stieltjes integration.

Therefore S2(X) : 4T → R1+d+d2 where4T = {(s, t) ∈ [0, T]2 : s < t} is a rescaled 2-simplex.

Definition A.3. For p ∈ [2, 3), the p-variation metric between functions Z1, Z2 : 4T → R1+d+d2

is

dp
(
Z1, Z2

)
:= max

k=1,2
sup
D

(∑
ti∈D

∥∥∥πk(Z1
ti,ti+1

)
− πk

(
Z2
ti,ti+1

)∥∥∥ p
k

) k
p

, (19)

where πk denotes the projection map from R1+d+d2 onto Rdk (for k = 1, 2) and the above
supremum is taken over all partitions D of [0, T] and the norms ‖ · ‖ must satisfy (up to a constant)

‖a⊗ b‖ ≤ ‖a‖‖b‖,
for a, b ∈ Rd. For example, we could use the standard L2 (operator) norms for vectors and matrices.

Definition A.4. For p ∈ [2, 3), we say that a sequence of continuous bounded variation paths
XN : [0, T]→ Rd converges in the p-variation sense to a continuous map X : 4T → R1+d+d2 if

dp
(
S2
(
XN

)
,X
)
→ 0, (20)

as N →∞. When such a sequence exists, we can refer to the limit X as a geometric p-rough path.

We now state the following result from rough path theory (Corollary 13.22 in Friz & Victoir (2010)).

Theorem A.5 (Brownian motion as a geometric rough path). LetW be a standard d-dimensional
Brownian motion and WN be the piecewise linear path with N pieces that coincides with W on the
uniform partition DN := {0 = t0 < t1 < · · · < tN = T} with tk := kh and mesh size h := T

N .
Then there exists a random geometric p-rough path W (p ∈ (2, 3)) such that for almost all ω ∈ Ω,

dp

(
S2
(
WN

)
(ω),W (ω)

)
→ 0, (21)

as N →∞ for any p ∈ (2, 3) and

W (ω) =

{(
1,
(
Wt −Ws

)
(ω),

(∫ t

s

(
Wr −Ws

)
⊗ ◦ dWr

)
(ω)

)}
0≤s≤t≤T

. (22)

Hence the geometric rough path W is often referred to as Stratonovich enhanced Brownian motion.

To put simply, this theorem states that Brownian motion can be approximated (in a rough path sense)
by a sequence of bounded variation paths. This is particularly helpful within stochastic analysis as
it allows one to construct pathwise solutions for SDEs governed by sufficiently regular vector fields.
The central result within rough path theory that makes this possible is the Universal Limit Theorem.
To counter the roughness of Brownian motion, this requires vector fields to have Lip(γ) regularity.

16

Under review as a conference paper at ICLR 2021

Definition A.6 (Lip(γ) functions). A function f : Rn → Rn is said to be Lip(γ) with γ > 1 if it is
bounded with bγc bounded derivatives, the last being Hölder continuous with exponent (γ − bγc).
Equivalently, f is Lip(γ) if the following norm is finite:

‖f‖Lip(γ) := max
0≤k≤bγc

∥∥Dkf
∥∥
∞ ∨

∥∥Dbγcf∥∥
(γ−bγc)-Höl , (23)

where Dkf is the k-th (Fréchet) derivative of f and ‖ · ‖α-Höl is the standard α-Hölder norm for
α ∈ (0, 1). We say that f is Lip(1) if it is bounded and Lipschitz continuous. That is, if the norm

‖f‖Lip(1) :=
∥∥f∥∥∞ ∨ sup

x,y∈Rn

x6=y

∥∥f(x)− f(y)
∥∥

‖x− y‖
, (24)

is finite.

Theorem A.7 (Universal Limit Theorem for RDEs (Theorem 5.3 in Lyons et al. (2007))). Let
p ∈ (2, 3) and xN : [0, T] → Rd be a sequence of continuous bounded variation paths which
converge in p-variation to a geometric p-rough path x. Let {fi}1≤i≤d denote a collection of Lip(γ)
functions on Rn with γ > p and consider the controlled differential equation (CDE)

dyNt =

d∑
i=1

fi(y
N
t) d

(
xN
)i
t
,

yN0 = ξ,

where ξ ∈ Rn and the above differential equation is defined using Riemann-Stieltjes integration.
Then there exists a unique geometric p-rough path z = (x,y) : 4T → R1+(d+n)+(d+n)2 such that
yN converges to y in p-variation. Moreover, the “universal limit” y depends only on x, {fi} and ξ.

Definition A.8. We shall refer to y as the solution of the rough differential equation (RDE),

dyt =

d∑
i=1

fi(yt) dxit. (25)

Remark A.9. Theorem A.7 and Definition A.8 also apply when the vector fields {fi} are linear
(Theorem 10.57 in Friz & Victoir (2010)).

Importantly for us, the above theory applies directly to (Stratonovich) SDEs as Brownian motion
can be viewed as a geometric p-rough path with p ∈ (2, 3) by Theorem A.5. We refer the reader
to Section 17.2 of Friz & Victoir (2010) for a detailed account of the “rough path approach” to
Stratonovich theory. For our purposes, we state a Universal Limit Theorem for Stratonovich SDEs

Theorem A.10 (Remark 17.5 in Friz & Victoir (2010)). Suppose that µ is a Lip(1) function on
Rn+1 and {σk}1≤k≤d are Lip(2) functions on Rn+1. Let {WN}N≥1 be a sequence of piecewise
linear paths converging to the Stratonovich enhanced Brownian motion W given by Theorem A.5.
Let {yN}N≥1 be the sequence of solutions to the following controlled differential equations (CDEs),

dyNt = µ(t, yNt) dt+

d∑
i=1

σi(t, yNt) d
(
WN

)i
t
,

y0 = ξ ∈ Rn,

Then yN converges in p-variation to a geometric p-rough path y with p ∈ (2, 3) and the process
y : [0, T] → Rn given by yt := ξ + π1(y0,t) coincides with the strong solution of the Stratonovich
SDE

dyt = µ(t, yt) dt+

d∑
i=1

σi(t, yt) ◦ dW i
t , (26)

y0 = ξ,

almost surely.

17

Under review as a conference paper at ICLR 2021

A.3 THE ADJOINT FOR STOCHASTIC DIFFERENTIAL EQUATIONS

Ideally, we would like to just replace the path X in Theorem A.1 with a Brownian motion (coupled
with time, that is to say (t,Wt).). However, that result required that X have bounded variation,
whilst sample paths of Brownian motion have infinite total variation. Resolving this difficulty is one
of the essential reasons that rough path theory exists (see also in Section 1.5 of Lyons et al. (2007)).

As mentioned previously, the main challenge in applying rough path theory here is that the adjoint
equation (29) has nonlinear unbounded vector fields, which are not Lip(γ) functions in (a, y).
Our trick is to first derive an adjoint equation for the stochastic process corresponding to the
Jacobian (which satisfies assumptions of boundedness), and then to drive the adjoint equation by
this Jacobian-valued stochastic process (which satisfies assumptions of linearity).

Theorem A.11 (Adjoint equation for Stratonovich SDEs). Suppose that µθ and {σkθ}1≤k≤d are
bounded functions on Rn+1 such that

• The drift vector field µθ is continuously differentiable with bounded first derivative.

• Each noise vector field σkθ is a Lip(γ) function with γ > 2.

Consider the (Stratonovich) stochastic differential equation,

dyt = µθ(t, yt) dt+

d∑
i=1

σiθ(t, yt) ◦ dW i
t , (27)

y0 = ξ ∈ Rn,

and let L : Rn → R denote a differentiable loss function. Then the adjoint process

at :=
dL(yT)

dyt
, (28)

coincides with the strong solution of the linear Stratonovich SDE

dat = −at∇µθ(t, yt) dt−
d∑
i=1

at∇σiθ(t, yt) ◦ dW i
t . (29)

almost surely.

Proof. Let {yN}N≥1 be the sequence of solutions to the following controlled differential equations,

dyNt = µθ(t, y
N
t) dt+

d∑
i=1

σiθ(t, y
N
t) d

(
WN

)i
t
, (30)

yN0 = ξ,

where {WN}N≥1 are the piecewise linear paths converging to W in p-variation by Theorem A.5.
Hence by Theorem A.10, we have that the corresponding sequence of CDE solutions {yN}N≥1
converges almost surely in p-variation to the solution y of the Stratonovich SDE (27).

Let L be a differentiable loss function so that by Theorem A.1, each adjoint process

aNt =
dL
(
yNT
)

dyNt
, (31)

satisfies the linear CDE

daNt = −aNt ∇µθ(t, yNt) dt−
d∑
i=1

aNt ∇σiθ(t, yNt) d
(
WN

)i
t
,

Just as in the proof of Theorem A.1, we can rewrite the adjoint equation for aN as

daNt = −aNt dMN
t ,

18

Under review as a conference paper at ICLR 2021

where the matrix-valued path MN : [0, T]→ Rn×n is given by

MN
t := −

∫ T

t

∇µθ
(
s, yNs

)
ds−

d∑
i=1

∫ T

t

∇σiθ
(
s, yNs

)
d
(
WN

)i
s
. (32)

Since the vector fields∇µθ and {∇σiθ}1≤i≤n are bounded, we see that MN has bounded variation.

Recall from the universal limit theorem (Theorem A.7) that (x,y) was a geometric p-rough path.
This carries over to our setting and thus we define the (random) geometric p-rough path z = (W ,y).
Then by Proposition 17.1 in Friz & Victoir (2010), we have that the following rough integral exists∫ t

0

ϕ(W, y) ◦ d(W, y) = π1

(∫ t

0

ϕ(z) dz

)
,

for all t ∈ [0, T] with probability one, provided that ϕ = {ϕi} is a collection of Lip(γ−1) functions
with γ > p. Since each vector field σiθ is Lip(γ), it follows that each gradient ∇σiθ is Lip(γ − 1).
Therefore we can apply Proposition 17.1 in Friz & Victoir (2010) to the dWN integrals in (32) and,
since∇µθ is continuous and bounded, it is clear that the dt integral in equation (32) also converges.

Thus, due to the regularity of µθ and σθ, we see that the sequence {MN} converges in p-variation
to a geometric p-rough path M and the limiting (matrix-valued) process Mt := π1

(
M t,T

)
satisfies

Mt = −
∫ T

t

∇µθ
(
s, ys

)
ds−

d∑
i=1

∫ T

t

∇σiθ
(
s, ys

)
◦ dW i

s , (33)

almost surely. We now have all the ingredients needed to construct the rough adjoint equation (29),

1. Each CDE (30) admits a unique solution yN and the resulting sequence {yN} converges to
the solution y of the SDE (27) almost surely.

2. Each CDE (30) admits a unique adjoint process aN satisfying a linear CDE driven byMN .

3. The sequence {MN} converges in p-variation to a geometric p-rough path (almost surely).

4. By Theorem 10.57 in Friz & Victoir (2010), we have that the Universal Limit Theorem
(Theorem A.7) also holds for linear RDEs.

Therefore the sequence {aN} converges in p-variation to a geometric p-rough path a almost surely
and the process at := dL(yT)

dy0
+π1(a0,t) coincides with the strong solution to the Stratonovich SDE

dat = −at ◦ dMt

= −at∇µθ(t, yt) dt−
d∑
i=1

at∇σiθ(t, yt) ◦ dW i
t .

almost surely. The fact that a is the adjoint process follows from (31) and the continuity of∇L.

Remark A.12. The above argument can also extend to an RDE driven by a geometric p-rough path.
In this case, the vector fields governing the differential equation would have to be Lip(γ) with γ > p.

B SAMPLING BROWNIAN MOTION

B.1 ALGORITHM

We begin with providing the complete traversal and splitting algorithm needed to find or create all
intervals in the Brownian Interval, as in Section 3.2. We discuss its operation in the next section.

Here, List is an ordered data structure that needs to be appended to, and iterated over sequentially.
For example a linked list would suffice. We let split denote a splittable PRNG as in Salmon
et al. (2011); Claessen & Pałka (2013). We use ∗ to denote an unfilled part of the data structure,
equivalent to None in Python or a null pointer in C/C++; in particular this is used as a placeholder

19

Under review as a conference paper at ICLR 2021

for the (nonexistent) children of leaf nodes. We use = to denote the creation of a new local variable,
and← to denote in-place modification of a variable.

Algorithm 2: Definition of traverse
def bisect(I : Node, x : R):

Only called on leaf nodes
Let I = ([a, b], s, Iparent, ∗, ∗)
sleft, sright = split(s)
Ileft = ([a, x], sleft, J, ∗, ∗)
Iright = ([x, b], sright, J, ∗, ∗)
I ← ([a, b], s, Iparent, Ileft, Iright)

def traverse(I : Node, [c, d] : Interval, nodes : List[Node]):
Let I = ([a, b], s, Iparent, Ileft, Iright)

Outside our jurisdiction - pass to our parent
if c < a or d > b then

traverse(Iparent, [c, d], nodes)
return

It’s I that is sought. Add I to the list and return.
if c = a and d = b then

nodes.append(I)
return

Check if I is a leaf or not.
if Ileft is ∗ then

I is a leaf
if a = c then

If the start points align then create children and add on the left child.
(Which is created in bisect.)
bisect(I, d)
nodes.append(Ileft) # nodes is passed by reference
return

Otherwise create children and pass on to our right child.
(Which is created in bisect.)
bisect(I, c)
traverse(Iright, [c, d], nodes)
return

else
I is not a leaf.
Let Ileft = ([a,m], sleft, I, Ill, Ilr)
if d ≤ m then

Strictly our left child’s problem.
traverse(Ileft, [c, d], nodes)
return

if c ≥ m then
Strictly our right child’s problem.
traverse(Iright, [c, d], nodes)
return

A problem for both of our children.
traverse(Ileft, [c,m], nodes)
traverse(Iright, [m, d], nodes)
return

B.2 DISCUSSION

The function traverse is simply a depth-first tree traversal for locating an interval within a binary
tree. The search may split into multiple (potentially parallel) searches (on the last few lines) if the
target interval crosses the intervals of multiple existing leaf nodes. If its target is not found then
additional nodes are created if needed.

20

Under review as a conference paper at ICLR 2021

Sections 3.2 and B.1 now between them define the algorithm in technical detail.

There are some further technical considerations worth mentioning. Recall that the context we are
explicitly considering is when sampling Brownian motion to solve an SDE forwards in time, then
the adjoint backwards in time, and then discarding the Brownian motion. This motivates several of
the choices here.

Small intervals First, the access patterns of SDE solvers are quite specific. Queries will be
over relatively small intervals: the step that the solver is making. This means that the list of
nodes populated by traverse is typically small. In our experiments we observed it usually only
consisting of a single element; occasionally two. In contrast if the Brownian Interval has built up
a reasonable tree of previous queries, and was then queried over [0, s] for s � 0, then a long
(inefficient) list would be returned. It is the fact that SDE solvers do not make such queries that
means this is acceptable.

Searching from Ĵ Moreover, the queries are either just ahead (fixed-step solvers; accepted steps
of adaptive-step solvers) or just before (rejected steps of adaptive-step solvers) previous queries.
Thus in Algorithm 1, we keep track of the most recent node Ĵ , so that we begin traverse near to
the correct location.

LRU cache The fact that queries are often close to one another is also what makes the strategy of
using an LRU (least recently used) cache work. Most queries will correspond to a node that have a
recently-computed parent in the cache.

Backward pass The queries are broadly made left-to-right (on the forward pass), and then right-
to-left (on the backward pass). (Other than the occasional rejected adaptive step.)

Left to its own devices, the forward pass will thus build up a highly imbalanced binary tree. At any
one time, the LRU cache will contain only nodes whose intervals are a subset of some contiguous
subinterval [s, t] of the query space [0, T]. Letting n be the number of queries on the forward
pass, then this means that the backward pass will consume O(n2) time – each time the backward
pass moves past s, then queries will miss the LRU cache, and a full recomputation to the root will
be triggered, costing O(n). This will then hold only nodes whose intervals are subets of some
contiguous subinterval [u, s]: once we move past u then this O(n) procedure is repeated, O(n)
times. This is clearly undesirable.

This is precisely analogous to the classical problem of optimal recomputation for performing
backpropagation, whereby a dependency graph is constructed, certain values are checkpointed, and
a minimal amount of recomputation is desired; see Griewank (1992).

In principle the same solution may be applied: apply a snapshotting procedure in which specific
extra nodes are held in the cache. This is a perfectly acceptable solution, but implementing it requires
some additional engineering effort, carefully determining which nodes to augment the cache with.

Fortunately, we have an advantage that Griewank (1992) does not: we have some control over the
dependency structure between the nodes, as we are free to prespecify any dependency structure we
like. That is, we do not have to start the binary tree as just a stump. We may exploit this to produce
an easier solution.

Given some estimate ν of the average step size of the SDE solver, a size of the LRU cache L,
and before a user makes any queries, we simply make some queries of our own. These queries
correspond to the intervals [0, T/2], [T/2, T], [0, T/4], [T/4, T/2], . . ., so as to create a dyadic tree,
such that the smallest intervals (the final ones in this sequence) are of size not more than νL. (In
practice we use 0.8× νL as an additional safety factor.)

Letting [s, t] be some interval at the bottom of this dyadic tree, where t ≈ s + 0.8νL, then we are
capable of holding every node within this interval in the LRU cache. Once we move past s on the
backward pass, then we may in turn hold the entire previous subinterval [u, s] in the LRU cache,
and in particular the values of the nodes whose intervals lie within [u, s] may be computed in only
logarithmic time, due to the dyadic tree structure.

21

Under review as a conference paper at ICLR 2021

This is now analogous to the Brownian Tree of Gaines & Lyons (1997); Li et al. (2020). (Up to the
use of intervals rather than points.) If desired, this approach may be loosely interpreted as placing a
Brownian Interval on every leaf of a shallow Brownian Tree.

Recursion errors We find that for some problems, the recursive computations of traverse (and
in principle also sample, but this is less of an issue due to the LRU cache) can occasionally grow
very deep. In particular this occurs when crossing the midpoint of the pre-specified tree: for this
particular query, the traversal must ascend the tree to the root, and then descend all the way down
again. As such traverse should be implemented with trampolining and/or tail recursion to avoid
maximum depth recursion errors.

CPU vs GPU memory We describe this algorithm as requiring only constant memory. To be more
precise, the algorithm requires only constant GPU memory, corresponding to the fixed size of the
LRU cache. As the Brownian Interval receives queries then its internal tree tracking dependencies
will grow, and CPU memory will increase. For deep learning models, GPU memory is usually the
limiting (and so more relevant) factor.

Stochastic integrals What we have not discussed so far is the simulation of integrals such as
Ws,t =

∫ t
s
Ws,r ◦ dWr and Hs,t = 1

t−s
∫ t
s
Ws,r dr which are used in higher order SDEs solvers

(such as the Runge-Kutta methods in Rößler (2010) and the log-ODE method in Foster et al. (2020)).
Just like increments Ws,t, these integrals fit nicely into an interval-based data structure.

In general simulating the pair (Ws,t,Ws,t) is known to be a difficult problem (Dickinson, 2007),
and exact solutions are only known when W is one or two dimensional (Gaines & Lyons, 1994).
However, the approximation developed in Davie (2014) and further analysed using rough path theory
by Flint & Lyons (2015) constitutes a simple and computable solution. Their approach is to generate

W̃s,t :=
1

2
Ws,t ⊗Ws,t +Hs,t ⊗Ws,t −Ws,t ⊗Hs,t + λs,t ,

where λs,t is an anti-symmetric matrix with independent entries λi,js,t ∼ N
(
0, 1

12 (t− s)2
)
, i < j .

In both papers, the authors input W̃ into an SDE solver (the Milstein and log-ODE methods
respectively) and prove that the resulting approximation achieves a 2-Wasserstein convergence rate
beyond O

(
1/
√
N
)
, where N is the number of steps. We have follow-up work planned on this topic.

C EXPERIMENTAL DETAILS

C.1 GENERAL NOTES

Code Our code is available at [redacted].

Software We used PyTorch (Paszke et al., 2019) as an autodifferentiable framework. We used
the [redacted] library to solve SDEs. We used the Signatory library (Kidger & Lyons, 2020) to
calculate the signatures used in the MMD metric. We used the torchcde library (Kidger, 2020)
for its interpolation schemes, and to solve the neural CDEs used in the classification and prediction
metrics. We used the torchdiffeq library (Chen, 2018) to solve the neural ODEs used in the
classification and prediction metrics, and for the ODE components of the Latent ODE and CTFP
models.

Architectures By using similar differential equation models, we were able to use essentially
the same parameterisation for every model’s vector fields. We used essentially the same
hyperparameters for every dataset.

To recap, the neural SDE has generator initial condition ζθ, generator drift µθ, generator diffusion
σθ, discriminator initial condition ξφ, discriminator drift fφ, and discriminator diffusion gφ. All of
these are parameterised as neural networks.

Meanwhile Latent ODEs have an ODE-RNN encoder (with a neural network vector field) and a
neural ODE decoder (with a neural network vector field). The CTFP has an ODE-RNN encoder

22

[redacted]

Under review as a conference paper at ICLR 2021

(with a neural network vector field) and a continuous normalising flow (Chen et al., 2018; Grathwohl
et al., 2019) (with a neural network vector field) Additionally Deng et al. (2020) condition the
normalising flow on the time evolution of a neural ODE of some latent state, which requires another
neural network vector field.

In every case, the neural network was parameterised as a feedforward network with 2 hidden layers,
width 64, and softplus activations. The drift, diffusion and vector fields, for every model, all
additionally had a tanh nonlinearity as their final operation. As per Kidger et al. (2020b) we found
that this improved the performance of every model.

The neural SDE’s generator has hidden state of size x and the discriminator has hidden state is of
size h. These were both taken as x = h = 96. Note that this is larger than the width of each hidden
layer within the neural networks, so that the first operation within each neural network is a map
from R96 → R64. Somewhat anecdotally, we found that taking the state to be larger than the hidden
width was beneficial for model performance.4

The Latent ODE likewise has evolving hidden state, which was also taken to be of size 96.

The Latent ODE samples noise from a normally distributed initial condition, we took to have 40
dimensions. The CTFP samples noise from a Brownian motion, which as a continuous normalising
flow has dimension equal to the number of dimensions of target distribution.

The neural SDE samples noise from both a normally distributed initial condition and a Brownian
motion. We took the initial condition to have 40 dimensions. The number of dimensions of the
Brownian motion was dataset dependent, see below.

The CTFP included a latent context vector as described in Deng et al. (2020). This was taken to
have 40 dimensions.

These hyperparameters were selected based on informal initial experiments with all models.

SDE solvers The SDEs used the midpoint method, without adaptive stepping. Recall that the
target time series data was regularly sampled and linearly interpolated to make a path. We took the
SDE solver to take a single step between each output data point.

ODE solvers The ODEs of the Latent ODE and CTFP models were solved using the midpoint
method, for consistency with the SDE solvers.

CDE solvers The CDEs of the classification and prediction models were solved by reducing to
ODEs as in Kidger et al. (2020b) and then using the midpoint method, for consistency with the SDE
solvers.

Optimisers The CTFP, Latent ODE, and the generator of the neural SDE were all trained with
Adam (Kingma & Ba, 2015) with a learning rate of 4× 10−5. The discriminator of the neural SDE
was trained with RMSprop with a learning rate of 4 × 10−5. The learning rates were chosen by
starting at 4 × 10−4 (arbitrarily) and reducing until good performance was achieved. (In particular
seeking to avoid oscillatory behaviour in training of the neural SDE.)

Training Every model was trained for 100 epochs. The discriminator of the neural SDE received
five training steps for every step with which the generator was trained, as is usual; the number of
epochs given at 100 is for the generator, for a fair comparison to the other models.

Batch sizes were picked based on what was the largest possible batch size that GPU memory allowed
for; these vary by problem and are given below.

Normalisation All data was normalised to have zero mean and unit variance.

4This has some loose theoretical justification: a signature is a linear differential equation with very large
state, and it is a universal approximator. (See Kidger et al. (2020b, Appendix B) and references within – this is
a classical fact within rough analysis.) That is to say, it is a simple vector field with a large state, rather than a
complicated vector field with a small state.

23

Under review as a conference paper at ICLR 2021

Classifier and predictor The classifier was taken to be a neural CDE with hidden state of size 32,
and whose vector field was parameterised as a feedforward neural network with 2 hidden layers of
width 32, with softplus activations and final tanh activation.

The predictor was taken to be a neural CDE/neural ODE encoder/decoder pair. Both had a hidden
state of size 32, and vector fields parameterised as feedforward neural network with 2 hidden layers
of width 32, with softplus activations and final tanh activation. 32 dimensions were used at the
encoder/decoder interface.

The learning rate used was 10−4 for both models, for every dataset and generative model considered,
with the one exception of CTFP on Beijing Air Quality, where we observed divergent training of the
classifier; the learning rate was reduced to 10−5 for this case only.

In all cases they were trained for 50 epochs using Adam, with early stopping if the model failed to
improve its training loss over 20 epochs.

The classifier took an 80%/20% train/test split of the dataset given by combining the underlying
dataset and model-generated samples of equal size.

C.2 STOCKS

Each sample is of length 100.

The batch size was 2048 for every model.

For the neural SDE, the discriminator received 1 epoch of training before the main training (of
both generator and discriminator simultaneously) commenced. The weight averaging (over both
generator and discriminator) was over every training epoch. The Brownian motion from which
noise was sampled had 3 dimensions.

The prediction metric was based on using the first 80% of the input to predict the last 20%.

C.3 WEIGHTS

Each sample is of length 100. Each sample corresponds to the trajectory of a single scalar weight,
epoch-by-epoch, as a small convolutional model is trained on MNIST for 100 epochs. Every weight
from the network is used, and treated as a separate sample. This is repeated 10 times. If P is
the number of parameters in the convolutional network, then the overall size of the dataset is now
(samples = 10P, length = 100, channels = 1).

The batch size was 4096 for the neural SDE and latent ODE. This was reduced to 1024 for the CTFP,
which we found to be a very memory intensive model on this problem.

For the neural SDE, the discriminator received 10 epochs of training before the main training (of
both generator and discriminator simultaneously) commenced. The weight averaging (over both
generator and discriminator) was over every training epoch. The Brownian motion from which
noise was sampled had 3 dimensions.

The prediction metric was based on using the first 80% of the input to predict the last 20%.

C.4 BEIJING AIR QUALITY

Each sample is of length 24.

The data was normalised to have zero mean and unit variance.

The batch size was 1024 for every model.

For the neural SDE, the discriminator received 10 epochs of training before the main training (of
both generator and discriminator simultaneously) commenced. The weight averaging (over both
generator and discriminator) was over the final 40 epochs of training. (We realised that this was an
obvious improvement over averaging every epoch, as was done for the previous two experiments.)
The Brownian motion from which noise was sampled had 10 dimensions.

24

Under review as a conference paper at ICLR 2021

Figure 3: Loss over training for the time-dependent Ornstein–Uhlenbeck example.

The prediction metric was based on using the first 50% of the input to predict the last 50%. (An
accidental change from the 80%/20% split used in the other experiments; this was kept as it is fair,
as it is the same for all models on this dataset.)

C.5 ORNSTEIN–UHLENBECK PROCESS

Target SDE As an additional example for which the true underlying distribution is known, we
consider the problem of training a neural SDE to match this known SDE.

The target SDE is a time-dependent Ornstein–Uhlenbeck process, of the form

dzt = (µt− θzt)dt+ σdWt.

We specifically take µ = 0.02, θ = 0.1, σ = 0.4, and generate 8192 samples from t = 0 to t = 63,
sampled at every integer.

Unless otherwise specified, this example followed the same procedure as for the other experiments;
for example using small feedforward neural networks to parameterise the required neural networks.

Architectures The neural networks had a single hidden layer of width 16, the size of the hidden
state (for both generator and discriminator) was taken to be 32, the Brownian motion was 3-
dimensional, and the initial noise was 5-dimensional.

Optimisation The model was trained for 1000 epochs. As with the main text, we found stochastic
weight averaging to be important to obtain good performance. This was performed by averaging
(without weighting) over all epochs from epoch 60, so as to use a small warm-up period.

Loss curves Consider the loss

min
θ

[EV,WDφ(Yθ(V,W))− EzDφ(ẑ)],

which is the generator’s loss with the normalisation term on the true distribution included, and
corresponds to the Wasserstein distance between distributions. The notation used is as used in
Section 2.3 of the main text.

We measure this every 20 epochs and plot how it varies. See Figure 3. We see that the loss is very
unstable for the unaveraged model. This highlights the importance of stochastic weight averaging,
as described in Section 5.

Sample paths We plot 10 samples from the true distribution against 10 samples from the learnt
distribution (and examined several such plots to be sure that these were representative samples). See
Figure 4.

We see that the model has indeed learnt to reproduce the true distribution. It does particularly well
near the middle; it still has room to improve near t = 0 and t = 63.

25

Under review as a conference paper at ICLR 2021

Figure 4: Sample paths from the time-dependent Ornstein–Uhlenbeck SDE, and from the neural
SDE trained to match it.

Figure 5: Top to bottom, left to right: marginal distributions at t = 6, 19, 32, 44, 57.

Marginal distributions Next we plot its marginal distributions at t = 6, 19, 32, 44, 57.
(Corresponding to approximately 10%, 30%, 50%, 70% and 90% of the way along.) See Figure
5.

We see that the generated marginal distributions generally match the true marginal distributions.
These observations match the samples previously generated; in both cases the generated distribution
is a little too low at later times.

Summary This relatively small synthetic example demonstrates that neural SDEs can recover
distributions known to be generated by SDEs. Further improvement could likely be obtained by
using larger neural networks, and by training for longer.

26

	Introduction
	Related work
	Contributions

	Method
	SDEs as GANs
	Generator
	Discriminator
	Extensions

	Efficient computation
	Rough adjoint equation
	Simulating Brownian motion

	Experiments
	Datasets
	Models
	Results
	Ornstein–Uhlenbeck process

	Considerations
	Conclusion
	Derivation of the rough adjoint equation
	The adjoint for controlled differential equations
	The rough path approach to stochastic differential equations
	The adjoint for stochastic differential equations

	Sampling Brownian motion
	Algorithm
	Discussion

	Experimental details
	General notes
	Stocks
	Weights
	Beijing Air Quality
	Ornstein–Uhlenbeck process

