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Abstract

Medical chatbots powered by large language001
models (LLMs) face two critical challenges:002
hallucination, where the model produces plau-003
sible but incorrect responses, and loss of con-004
text in multi-turn conversations. These issues005
undermine reliability and trust in healthcare set-006
tings. This paper introduces a hybrid memory-007
retrieval architecture designed to enhance fac-008
tual grounding and conversational coherence.009
The system integrates a dual-retriever pipeline010
(BM25 and MedCPT) with long-term mem-011
ory retrieval using ChromaDB. Retrieved doc-012
uments and past interactions are fused via Re-013
ciprocal Rank Fusion and provided as input014
to a compact language model (Phi-2) for re-015
sponse generation. A fallback mechanism is016
employed when insufficient context is available017
to reduce hallucinated responses. Evaluation018
on the MedQuAD dataset demonstrates high019
semantic alignment (BERTScore F1 = 0.8644),020
improved fluency, and significantly faster re-021
sponse times compared to baseline retrieval-022
augmented models. These results support the023
effectiveness of combining structured memory024
with selective retrieval to develop more trust-025
worthy medical dialogue systems.026

1 Introduction027

Large language models (LLMs) are increasingly028

adopted in medical chatbots to support symptom029

checking, deliver health information, and facilitate030

conversational interactions. Despite their growing031

use, two fundamental challenges limit their reliabil-032

ity in healthcare applications: hallucination, where033

the model produces confident yet incorrect infor-034

mation, and insufficient context retention across035

multi-turn conversations. These issues can result in036

misleading advice, decreased user trust, and unsafe037

interactions.038

To mitigate these limitations, retrieval-039

augmented generation (RAG) techniques have040

been introduced to improve factual grounding,041

while memory-augmented systems aim to enhance 042

personalization and context continuity. However, 043

RAG systems are still susceptible to hallucination 044

when retrieval is incomplete or misaligned, and 045

memory-based approaches often face scalability 046

and coherence constraints. 047

This work presents a hybrid architecture that in- 048

tegrates structured memory retrieval with selective 049

document retrieval to enable safer, more context- 050

aware medical dialogue. The system combines 051

long-term memory via ChromaDB with a dual- 052

retriever pipeline leveraging BM25 and MedCPT. 053

Retrieved content is merged through Reciprocal 054

Rank Fusion (RRF) and formatted into a token- 055

limited prompt for a compact LLM (Phi-2). A 056

fallback strategy is incorporated to reduce hallu- 057

cination in cases of insufficient context. Evalua- 058

tion on the publicly available MedQuAD dataset 059

shows strong semantic alignment (BERTScore F1 060

= 0.8644), improved fluency, and substantially 061

lower response latency compared to baseline RAG 062

systems. These findings support the effectiveness 063

of combining memory and retrieval for building 064

more trustworthy and responsive medical chatbots. 065

1.1 Motivation 066

Given the limitations of current medical dialogue 067

systems, this work explores a hybrid architecture 068

that combines structured memory retention with 069

retrieval-based factual grounding. The proposed 070

system emphasizes long-term, user-specific con- 071

text through ChromaDB-based memory retrieval 072

while selectively employing an advanced retrieval 073

pipeline for access to recent medical knowledge. 074

This dual approach aims to mitigate hallucinations, 075

maintain conversational continuity across turns, 076

and ensure factual reliability without compromis- 077

ing on system efficiency or user trust. 078
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1.2 Research Goals079

This study is guided by the following research ques-080

tions:081

• To what extent can an advanced RAG pipeline082

reduce hallucinated outputs in medical chat-083

bots?084

• How effectively does ChromaDB-based mem-085

ory retrieval improve multi-turn context reten-086

tion?087

• Can a hybrid memory-retrieval system en-088

hance response reliability, fluency, and factual089

consistency in medical question-answering?090

2 Background091

Large language models (LLMs) such as Phi-2, a 2.7092

billion-parameter transformer, generate responses093

by predicting the next token based on prior in-094

puts and training data. While effective in gen-095

erating fluent text, LLMs frequently suffer from096

hallucinations—plausible but factually incorrect097

outputs—which can be especially problematic in098

high-stakes domains like healthcare. These models099

also lack persistent memory, leading to context loss100

across multi-turn conversations. This may result101

in snowballing effects, where early inaccuracies102

propagate due to forgotten context.103

To mitigate hallucinations, Retrieval-Augmented104

Generation (RAG) pipelines have been proposed.105

These systems augment the prompt with documents106

retrieved from external sources using information107

retrieval techniques. However, hallucinations can108

still arise if retrieval fails or if the language model109

inadequately integrates retrieved evidence. Further-110

more, most RAG systems treat each user query111

independently and do not incorporate prior conver-112

sation history.113

To improve retrieval, both lexical and semantic114

methods are employed. Lexical models, such as115

BM25 score documents based on token frequency116

and overlap, while semantic methods, such as Med-117

CPT utilize dense biomedical embeddings to cap-118

ture deeper contextual similarity. Combining these119

methods can enhance retrieval relevance.120

In addition, memory-based retrieval has emerged121

as a strategy to address long-term context reten-122

tion. Vector databases like ChromaDB can store123

conversation history (e.g., user queries and system124

responses) as embeddings. During inference, new125

queries are compared against this memory bank126

using similarity metrics such as cosine similarity, 127

allowing the system to retrieve relevant prior inter- 128

actions and produce more coherent, personalized 129

responses. 130

Figure 1: Limitations associated with each step of LLM
leading to non-zero probability of hallucinations (Baner-
jee et al., 2024)

3 Related Work 131

Large language models (LLMs) have driven sub- 132

stantial progress in both open-domain and special- 133

ized question answering, including medical appli- 134

cations. While these models demonstrate strong 135

generative capabilities, they remain vulnerable to 136

hallucination, producing factually incorrect or un- 137

verifiable information with high confidence (Baner- 138

jee et al., 2024). LLMs also lack mechanisms for 139

long-term context retention in multi-turn dialogues, 140

which poses significant risks in clinical settings. 141

To address these issues, Retrieval-Augmented 142

Generation (RAG) architectures have been devel- 143

oped to improve factual grounding by appending 144

relevant documents to the model’s input (Xiong 145

et al., 2024). Cache-Augmented Generation (CAG) 146

further extends this approach by integrating per- 147

sistent memory modules that maintain historical 148

context across sessions (Chan et al., 2024). De- 149

spite these advances, recent systematic evaluations 150

indicate that hallucinations persist in many RAG- 151

enhanced systems, particularly when retrieval is 152

incomplete or misaligned with the user query (Bora 153

and Cuayáhuitl, 2024). 154

Many real-world medical chatbots also continue 155

to operate without reliable long-term memory or ro- 156

bust fallback mechanisms. They often fail to recall 157

2



prior user interactions, fabricate responses when158

retrieval fails, and struggle with latency or scala-159

bility during real-time usage. These ongoing limi-160

tations suggest a need for architectures that more161

effectively integrate document retrieval, memory162

retention, and response control mechanisms.163

4 Methodology164

Figure 2: Architecture of our proposed method

4.1 Project Formulation165

This work presents a medical chatbot architec-166

ture designed to reduce hallucinations and improve167

multi-turn context retention. The approach com-168

bines structured memory retrieval with selective169

document retrieval, enabling the system to fetch170

both user-specific past interactions and relevant ex-171

ternal medical information in parallel. Retrieved172

contexts are assembled into a unified, focused173

prompt to support grounded and context-aware re-174

sponse generation.175

4.2 Proposed Method176

The system adopts a hybrid architecture that inte-177

grates long-term memory retrieval with real-time178

document search. Conversational memory is main-179

tained using a vector database (e.g., ChromaDB),180

where past user interactions are stored as dense181

embeddings. At inference time, the current user182

query is embedded and compared with stored en-183

tries using cosine similarity, allowing retrieval of184

semantically similar memory segments.185

For external knowledge retrieval, the system186

combines BM25—a lexical search model—with187

MedCPT, a dense retrieval model trained on188

biomedical literature. Outputs from both retrievers189

are merged using Reciprocal Rank Fusion (RRF),190

ensuring a balance between keyword matching and 191

semantic relevance. The top-ranked documents 192

and retrieved memory entries are combined into 193

a token-limited prompt (maximum 1024 tokens), 194

which is passed to a compact transformer-based 195

language model (Phi-2, 2.7B parameters) for re- 196

sponse generation. If the prompt lacks sufficient 197

context, it includes fallback instructions directing 198

the model to return a safe, conservative response. 199

5 Experiments 200

5.1 Advanced RAG Pipeline 201

To enhance factual grounding and mitigate hallu- 202

cinations, a selective Retrieval-Augmented Gen- 203

eration (RAG) pipeline was developed to retrieve 204

contextually relevant documents from a curated 205

medical corpus. The corpus consists of 216,102 206

question-answer and passage samples derived from 207

publicly available datasets, including MedQuAD 208

(Ben Abacha and Demner-Fushman, 2019), MedM- 209

CQA (Pal et al., 2022), BioASQ Task B (Tsatsaro- 210

nis et al., 2015), and a Kaggle-hosted medical QA 211

dataset. 212

Two complementary retrieval methods are em- 213

ployed: BM25 for lexical matching and MedCPT 214

for semantic similarity using dense biomedical em- 215

beddings. Retrieved documents from each method 216

are independently ranked. The final selection is 217

determined using Reciprocal Rank Fusion (RRF), 218

which balances token-based and embedding-based 219

relevance. In cases of tie scores, documents prior- 220

itized by BM25 are selected, while ensuring that 221

at least one semantically relevant document from 222

MedCPT is included. This retrieval strategy of- 223

fers robust coverage across both exact-match and 224

semantically aligned documents. 225

Performance is evaluated on the MedQuAD 226

dataset using standard information retrieval met- 227

rics: Recall@5, Precision@5, and BERTScore F1. 228

5.2 Dataset 229

The document retrieval system is built upon a com- 230

bined medical corpus containing 216,102 entries. 231

All sources are publicly available and intended for 232

academic and research purposes. The largest subset 233

originates from MedMCQA (Pal et al., 2022), com- 234

prising 192,000 multiple-choice medical questions. 235

MedQuAD (Ben Abacha and Demner-Fushman, 236

2019) contributes 17,236 question-answer pairs 237

collected from NIH websites. BioASQ Task B 238

(Tsatsaronis et al., 2015) provides 4,065 biomed- 239
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ical factoid and list-based QA samples. Finally,240

a publicly shared dataset from Kaggle adds 801241

entries related to symptoms and treatments. Each242

dataset entry includes textual content, metadata243

(e.g., title, category), and source references.244

5.3 Memory Retrieval245

To support multi-turn dialogue and personalized246

interaction, the system incorporates a memory re-247

trieval mechanism using a vector database. Each248

user query and corresponding response is stored as249

a memory entry, encoded into dense embeddings250

via MiniLM (embedding dimension = 384). At251

inference time, the current user query is embed-252

ded and compared against stored entries using co-253

sine similarity. If similarity exceeds a predefined254

threshold (0.4), the top two most similar entries are255

retrieved.256

This memory module enables the chatbot to re-257

call relevant prior interactions and maintain co-258

herence across sessions. All new interactions are259

automatically appended to the memory store, and260

mechanisms for memory management (e.g., clear-261

ing past interactions) are included to support user262

control. The memory retrieval system is evaluated263

on the MedQuAD dataset using BERTScore F1 and264

Perplexity.265

5.4 Medical Chatbot: Integration of266

Components267

The end-to-end chatbot integrates both document268

retrieval and memory retrieval modules to generate269

informed responses. Upon receiving a user query,270

the system pre-processes the input and simultane-271

ously performs memory-based and corpus-based272

retrieval. The retrieved content—including instruc-273

tions, relevant documents, and prior conversation274

memory—is assembled into a structured prompt275

limited to 1024 tokens.276

This composite prompt is passed to the Phi-2 lan-277

guage model for generation. In cases where neither278

document nor memory retrieval yields adequate279

context, a fallback instruction is included in the280

prompt to encourage a safe, conservative output.281

All chatbot interactions are persistently stored to282

enhance personalization and continuity in future283

sessions. System performance is assessed using284

BERTScore F1, Perplexity, and average response285

latency on the MedQuAD dataset.286

5.5 Privacy and User Control 287

To support privacy-aware conversational AI, the 288

system incorporates features that allow users to 289

manage stored interaction data. All user queries 290

and chatbot responses are encoded and stored as 291

dense embeddings in a vector database for memory 292

retrieval. During inference, relevant memory en- 293

tries are retrieved and used to condition the model’s 294

response. The system includes mechanisms for 295

users to review the memory content influencing 296

their responses and to delete their stored memory 297

entries at any time. This functionality ensures that 298

user data is neither persistently retained nor used 299

without consent. By offering transparent memory 300

management, the system aligns with emerging best 301

practices in responsible AI and privacy-centric chat- 302

bot design. 303

5.6 Implementation Details 304

The system was developed in Python using modular 305

components for retrieval, memory, and generation. 306

Lexical retrieval was implemented using BM25, 307

while dense retrieval employed MedCPT-based em- 308

beddings for semantic similarity. Memory embed- 309

dings were generated using MiniLM and stored 310

using a vector database client. Prompt construction 311

modules integrated both memory and document 312

retrieval results, constrained to a token limit. Re- 313

sponse generation was performed using the Phi-2 314

language model via a standard transformer-based 315

causal generation interface. 316

6 Results and Discussion 317

The complete hybrid system (incorporating the ad- 318

vanced RAG pipeline, memory retrieval, and Phi-2 319

for generation) was compared against two base- 320

lines: Mistral with RAG and fine-tuned Mistral 321

with RAG (Bora and Cuayáhuitl, 2024). Results 322

are summarized in Table 1. 323

Metric Mistral + RAG FT Mistral +
RAG

Hybrid
Memory-
RAG System

Dataset Meadow-
MedQA

Meadow-
MedQA

MedQuAD

BERTScore F1 0.181 0.221 0.8644

ROUGE-L 0.2512 0.221 0.2273

Perplexity 6.4691 4.84 12.8758

Avg. Response
Time (s)

78 150 28

Table 1: Comparison of the hybrid memory-retrieval
system with baseline RAG-based models on 20 QA
samples.
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Figure 3: BERTScore F1 across 20 test QA pairs
(MedQuAD) for the hybrid system.

The hybrid system demonstrates a substantial324

improvement in semantic alignment, as reflected325

by the BERTScore F1 metric, while offering signifi-326

cantly lower latency than fine-tuned RAG baselines.327

Although perplexity is higher, this is attributable to328

the conservative fallback strategy, which prioritizes329

safety in the absence of adequate context. ROUGE-330

L performance remains comparable across models.331

To assess the impact of memory context on gen-332

eration, Table 2 presents results for three scenar-333

ios: no memory, one retrieved memory, and two334

retrieved memories.335

Memory Con-
text

BERTScore F1 Perplexity

No Memory 0.8692 11.595

1 Memory 0.8520 10.230

2 Memories 0.8473 8.690

Table 2: Effect of memory context on semantic align-
ment and fluency.

While the addition of memory entries leads336

to a slight reduction in BERTScore F1, it sig-337

nificantly improves fluency, as indicated by de-338

creased perplexity. This suggests that memory339

retrieval contributes to more coherent and contex-340

tually grounded multi-turn responses.341

To isolate the retrieval component, Table 3342

presents evaluation results of the RAG pipeline343

alone (excluding memory or generation):344

Metric Value

Recall@5 0.750

Precision@5 0.260

BERTScore F1 0.8654

Table 3: Evaluation of the selective RAG pipeline on
document retrieval.

These results confirm that the retrieval pipeline345

successfully identifies relevant documents, with346

high recall and semantic alignment. Lower pre- 347

cision is expected due to variability in document 348

formats and medical terminology. 349

7 Conclusion 350

A hybrid medical chatbot architecture was devel- 351

oped by integrating structured memory retrieval 352

with selective document retrieval to enhance the 353

factual accuracy and contextual relevance of multi- 354

turn interactions. The system combines long-term 355

memory stored in a vector database with a dual- 356

retriever RAG pipeline (BM25 and MedCPT, fused 357

via Reciprocal Rank Fusion). Prompt construction 358

incorporates both sources of context and includes 359

a fallback mechanism for safe response genera- 360

tion in low-retrieval scenarios. Empirical results 361

indicate improved semantic alignment, response 362

fluency, and lower latency compared to RAG-only 363

baselines, providing a foundation for scalable, trust- 364

enhancing medical dialogue systems. 365

8 Limitations 366

Several limitations affect the current implementa- 367

tion. The use of Phi-2, a lightweight transformer 368

model, restricts expressive capacity and complex 369

reasoning compared to larger-scale LLMs. While 370

beneficial for latency and resource efficiency, this 371

may limit utility in highly nuanced clinical con- 372

texts. Evaluation was conducted primarily on the 373

MedQuAD dataset and a small sample of synthetic 374

queries, limiting generalizability to broader or real- 375

world user populations. Additionally, the memory 376

retrieval module uses static similarity thresholds 377

and lacks dynamic memory management, which 378

may lead to inefficiencies or retrieval noise as 379

stored data grows. 380

9 Future Work 381

Subsequent work may explore the integration of 382

larger or domain-specialized language models to 383

improve reasoning, fluency, and naturalness of re- 384

sponses. Expanding the medical corpus to incor- 385

porate real-time clinical guidelines, medical lit- 386

erature, and EMR-compatible content could fur- 387

ther enhance retrieval relevance. Introducing adap- 388

tive memory management and re-ranking strate- 389

gies may improve memory efficiency and relevance 390

over time. Additional real-world testing and lon- 391

gitudinal evaluations are also necessary to assess 392

robustness, usability, and trust under deployment 393

conditions. 394

5



10 Ethical Considerations395

The system is designed for medical question-396

answering and educational purposes only and is397

not intended to diagnose, treat, or manage med-398

ical conditions. It provides factual information399

sourced from publicly available medical datasets,400

such as MedMCQA, MedQuAD, BioASQ, and401

a publicly shared Kaggle dataset. No private or402

patient-identifiable data is included.403

To minimize potential harm, a fallback mecha-404

nism is used to prevent hallucinated or speculative405

responses when relevant context is lacking. Users406

are assigned randomized session identifiers, and407

no personal identifying information is collected or408

stored. All interaction history is stored as embed-409

dings solely to support contextual recall. Users410

retain full control over memory and may delete411

their stored history at any time.412

The design reflects a privacy-preserving ap-413

proach aligned with responsible AI practices. Fu-414

ture deployment in real-world or clinical contexts415

would necessitate further safeguards, including en-416

cryption, audit logs, user consent mechanisms,417

and compliance with regulatory standards such418

as HIPAA or GDPR. Ethical review and domain-419

specific oversight would also be essential before420

integration into any sensitive workflows.421
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