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Abstract

A classic statistical problem is to study the asymptotic behavior of the order
statistics of a large number of independent samples taken from a distribution with
finite expectation. This behavior has implications for several core problems in
machine learning and economics — including robust learning under adversarial
noise, best-arm identification in bandit algorithms, revenue estimation in second-
price auctions, and the analysis of tail-sensitive statistics used in out-of-distribution
detection.

The research question we tackle in this paper is: How large can the expectation
of the /-th maximum of the n samples be? For £ = 1, i.e., the maximum, this
expectation is known to grow as o(n), which can be shown to be tight. We show
that there is a sharp contrast when considering any fixed ¢ > 1. Surprisingly, in

this case, the largest possible growth rate for all fixed ¢ > 1 is O(m

and Q( Tog (n)(log Tog ()T ). Our result is actually finer than the latter and provides
a sharp characterization of the largest achievable growth rate for the expectation of
the ¢-th maximum of n i.i.d. samples.

Beyond the theoretical analysis, we support our findings with extensive simulations.
These empirical results highlight a notable phenomenon: although the multiplica-
tive gap between the maximum and the second maximum grows quickly with
n, the ratio remains approximately constant in 99% of trials. This suggests that
while worst-case growth is sharp and meaningful, typical-case behavior may be
significantly more stable.

1 Introduction

A fundamental problem in applied probability and statistics is to estimate the distribution of the
maxima and minima of a set of independent and identically distributed random variables. Specifically,
the setting we study in this paper is the following. Let X7, X5, ..., X,, be non-negative independent
and identically distributed (i.i.d.) random variables drawn from a distribution F'. The corresponding
order statistics are:

min X; = X1, < Xo,, <00 < Xppypy = max X;.

i€[n] i€[n]
Our object of interest is My(n) = Mf (n) = E [Xn,gﬂm] Our goal is to study the asymptotics of
My (n). In particular, we are interested in the largest possible rate at which M, (n) can grow.

"When clear from context we will drop the dependence on F'.
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Figure 1: Simulation of expected extremes for a distribution with finite expectation but infinite
variance (see for more details).

Interestingly, while the expectation of the maximum sample, M7 (n), has been widely studied, the
situation is radically different for M,(n) with £ > 1. The first obvious bound follows since the
maximum is upper bounded by the sum and thus M; (n) < nlE[X;], so that, if we have a finite
expectation distribution, we get that M (n) = O(n). Furthermore, tighter bounds have long been
studied assuming more constraints of the distribution such as finite moments (e.g.,[3]] and [3]). The
bound of M;(n) = O(n) is actually achievable if the distribution F' can depend on n, however when
F is fixed and only n grows, a stronger bound can be obtained: [10] established that M;(n) = o(n).
Furthermore, Downey proves that this bound is essentially the best possible in the sense that for all
€ > 0 there exists a distribution F', such that M (n) = Q(n'~¢). Recently, [8] strengthened the lower
bound by showing that for any sublinear function g(n), there exists a finite expectation distribution
F such that My (n) = Q(g(n)). This completes the picture for the asymptotic behaviour of M; (n);
it holds that M;(n) = o(n), but for any function g(n) € o(n) there exists a finite expectation
distribution F such that M{ (n) > g(n).

In this paper, we explore the asymptotic behavior of the second maximum of n i.i.d. samples and,
more generally, M, (n) for fixed £ > 1. The natural reaction here is that the asymptotic behavior
of M (n) should be essentially the same as that of M; (n). However, we show a surprisingly stark
difference and that the comparison between the first and second maxima is more delicate (see[Figure TJ).
On the one hand, we note that for any sublinear function g(n), there exists a distribution F’ with
finite expectation such that M1 (n) > g(n) for infinitely many values of n. In other words, we show
that lim sup,, M4 (n)/g(n) > 0. On the flip side, if we want to have the inequality for all n, then
we prove that no such distribution ex1sts This involves studying the lim inf,, M3(n)/g(n), which is
positive if and only if the Ms(n) = Q(g E] Perhaps surprisingly, our results imply that if we take
g(n) = m then for any dlstrlbutlon liminf,, M3(n)/g(n) = 0, whereas for g(n )

log(n)(log Tog () ToT there exists a finite expectation distribution such that lim inf,, Ms(n)/g(n) >

More precisely, in we obtain a tight characterization that generalizes to the ¢-th largest
sample for any fixed /. Our necessary condition to have M} (n) = Q(g(n)) generalizes easily for

distributions with higher moments: if F' has finite variance, in particular, M, EF (n) =9 ( logn) is

impossible.

1.1 Additional Related Work

In the asymptotic case of order statistics the goal is to study the properties of X.,, as n tends
to infinity. A plethora of results are known for asymptotic distributions, theory of extremes and
even extremal processes, which have been developed at length in [11]. Their results depend on
p = lim,_,oc k/n € [0, 1] and they study three categories ([9]): (1) Central or quantile case: If
p € (0,1), (2) Extreme case: If p € {0,1}, for fixed k. Xy.,, and X, 1., are usually called the k-
th lower and upper extremes, respectively, (3) Intermediate case: If p € {0, 1}, with k = k(n) — oo.
The scope of our work lies in the second case.

*Interestingly, lim sup,, M2 (n)/g(n) and liminf,, M2(n)/g(n) may well be different.



Results that study the asymptotic behavior of the expected maximum have been further stud-
ied in [2]], who show that if E[XP] < oo, then the expected maximum M;(n) < E[X] +

nrE X —E[X]|P] = O(n%), and for each n the bound is achievable by an extremal distribu-
tion F,. [3]] give bounds on the expected k-th order statistic (i.e., E [Xy.,] = M,,—g+1(n)) using
information about the first and second moment improving the work of [4] and of [[17]. When F' is fixed
and does not depend on n a much stronger and general bound can be obtained. Indeed, [10] shows
that M{'(n) = o(n)ﬂ An alternative and simpler proof of Downey’s result was recently given by [8].
They also prove an impossibility result showing that the o(n) bound cannot be improved. Specifically,
they showed that for any function g with sublinear growth, namely such that g(n) = o(n), there is a
finite expectation distribution F such that M¥ (n) = Q(g(n)).

Applications

While our primary motivation is theoretical, the asymptotic behavior of extreme order statistics plays
a fundamental role in several areas of machine learning and economics. Below, we highlight key
settings where our results yield insights.

1. Robust Learning and Adversarial Risk. In robust learning, models are often evaluated
under worst-case scenarios, such as adversarial examples or corrupted data. Rather than
minimizing the average loss, some approaches focus on the largest or top-¢ losses across
training examples. Our tight bounds on the ¢-th largest sample provide a principled under-
standing of how such tail-sensitive objectives scale with the number of examples, especially
when the underlying distribution has heavy tails [[14].

2. Best-Arm Identification in Bandits. In stochastic multi-armed bandit problems, particularly
in pure exploration settings, identifying the top-performing arms often involves analyzing the
largest observed rewards. The expectation of the /-th maximum is directly tied to evaluating
near-optimal arms [13]].

3. Second-Price Auctions. In second-price (Vickrey) auctions, the seller’s revenue is deter-
mined by the second-highest bid. When the distribution of bidders’ values is unknown or
adversarially chosen, our results provide tight upper bounds on the expected revenue a seller
can achieve. This supports worst-case analysis in auction design and recent approaches for
detecting collusion or setting reserve prices in data-agnostic ways [[7, [1].

4. Out-of-Distribution (OOD) Detection. Tail-sensitive scoring functions—such as maximum
softmax scores or energy-based confidence measures—are widely used for detecting out-
of-distribution inputs in classification models [12}[15]. While our work does not propose
new detection methods, it offers theoretical insights into how the extreme scores behave as
the sample size grows. For example, if the second larges value appears to grow faster than
n/(lognloglogn), then it’s likely an outlier. This may aid in understanding failure modes
and calibrating thresholds in high-dimensional or heavy-tailed settings.

5. Stability of Random Forests. The sensitivity of the output of a machine learning algorithm
to the removal of a single training point—commonly referred to as algorithmic stability—is
widely studied in the machine learning literature [6}!18]. Recent work by [19] establishes
the stability of random forest predictors in regression tasks by showing that it follows from
the sublinear growth of the expected maximum of the squared response, a condition satisfied
under finite variance. Our bounds on the ¢-th largest order statistic may support the analysis
of stability guarantees for heavy-tailed responses, where clipping the prediction outcome to
some data-dependent range, defined by extreme order statistics, can help control the scale of
the model’s outputs [18]].

1.2 Overview of our Results

Our main result is to obtain a tight characterization of the lim inf,, M} (n)/g(n) for any finite expec-
tation distribution F'. Recall that for any F', M{'(n) = o(n), so that we have lim inf,, M{ (n)/n = 0,
and we also know that for any sublinear g(n), there are F’s for which lim inf,, M{"(n)/g(n) > 0
(10 8]D).

*More generally Downey establishes that if & [X?] < oo, then M{ (n) = o( ¥/n).




One would expect that the situation for the second, or third maximum would be the same. However,
we show that the behavior changes radically. While it is easy to observe that for any sublinear
g(n) = o(n), there exists a finite expectation F' such that M} (n) > g(n) infinitely often for
any constant éﬂ, when looking at the actual growth rate (given by the lim inf,, M/ (n)/g(n)) this
threshold function g(n) changes dramatically.

In we show that for £ > 2, there exists a finite expectation distribution F' such that
M} (n) = Q(g(n)) if and only if >° % < oo. This means that if g(n) satisfies the previous
conditionE] then there are finite expectation distribution F' for which liminf,, M} (n)/g(n) >
0. However, if, on the contrary, %Z’) = oolf| then liminf,, M['(n)/g(n) = 0O for any finite

expectation distribution F. As a result, the growth rate of the /-th maximum cannot be larger than
n/(lognloglogn) (see[Section 4] for precise bounds).

A key feature of our analysis is a simple transformation of any finite expectation distribution F' into a
distribution F'* which takes the form of an escalator. This is done in|Section ZL Then, our analysis
consists of two keys parts. First, in[Theorem 1| (Section 3)) we prove asymptotically tight bounds on
the growth rate of M (n), for any distribution with finite expectation. Then, in , presented
in[Section 4] we establish the aforementioned condition by using the bounds of and an
averaging argument over all values of n.

Empirical Validation and Observations. We complement our theoretical findings with extensive
numerical experiments. While our analysis centers on the true expected order statistics M;(n), our
empirical simulations shed light on the behavior of their empirical estimates across repeated trials

M, ¢(n). and support the theoretical results in several ways.

As anticipated, for some distributions, the ratio M (n)/Ma(n) increases quickly as a function of 7.
Even with a large number of trials and high values of n, the ratio exhibits significant variability—an
expected consequence of the infinite variance of the distribution used. Interestingly, this heavy-tailed
behavior appears to predominantly impact Mj (n), while M, (n) and lower order statistics remain
concentrated.

An interesting phenomenon emerges when we censor the most extreme values: after removing the top
1% of trials with the largest maxima, the ratio M (n)/Ma(n) stabilizes and remains nearly constant
across values of n. This same near-constant behavior of the ratio is observed when using distributions
with finite variance, suggesting that the instability of the ratio is largely driven by rare but extreme
deviations in the maximum.

2 Reducing to Escalator Distributions

Given n samples X1, X, . .., X,, drawn independently (i.i.d.) from a distribution F, we let M} (n)
for £ € {1,...,n} denote the expected value of the /—th largest sample.

Given a general distribution F', our goal in this section is to show that the asymptotic behavior of
MF (n) is unchanged if we consider a distribution related to F', with convenient structural properties
which we call escalator distribution. The family of escalator distributions only take values 1 — 1/k
for integer k. An example is the following. For all natural numbers k, fix the interval I, = [k — 1, k),
in which the distribution (CDF) F takes value 1 — 1/k. This defines a discrete random variable X on
the natural numbers such that P[X = k] = F(k+ 1) — F(k) = 1/(k(k + 1)).

In order to formally define escalator probability distributions, let us consider the indicator function of
a subset of real numbers I defined as

1 ifzxel
1 = .
1) { 0 otherwise

Definition 1. We say a distribution F* over non-negative reals is an escalator distribution if for
all x > 0, F*(x) € {(1 — 1/k) | k € N}. For any distribution F (not necessarily an escalator

*That is, lim sup,, M{ (n)/g(n
3 As it is the case for g(n) = n/
8As it is the case for g(n) = n/

) >
(log n(log logn)'-%1).
(log nloglogn).



distribution), we define the two associated escalator distributions '™, F'~ as follows: For k > 1
define xy, = inf{x : F(x) > 1—1/k}, and

P =3 (17 ) @ F@ =3 (157 ) o)

k=1 k=1
We define the step sizes 0 = Tp11 — x> 0. In this case, if X is drawn from FT, then E [X]| =
>k Ok/k. If X is drawn from F~, then E[X]| = 3", dr_1/k.

Note that F'*(x), F~ () are CDFs since they are monotonically increasing and converge to 1 as =
tends to infinity. It is clear that F+ < ' < F'~ and thereforeﬂ

ME™ (n) < MF (n) < MF" (n). (1)

Therefore, instead of studying F', we can study the associated escalator distribution F'* in order to
upper bound M} (n), since M} (n) < M} * (n). We may simply study the asymptotic growth of F'™
so long as it has finite expectation. Next we establish that if " has finite expectation, then so has F'T.

Proposition 1 (Proof in . Let F be any distribution with finite expectation, then its

associated escalator distribution F'™ has finite expectation,

3 Asymptotic Behavior of M/ (n)

In this section, we analyse the asymptotic behavior of the expectation of the ¢-th maximum of n i.i.d.
samples from a distribution F' on the non-negative real numbers. Note that this quantity equals:

{—1

M/ (n) = / T =P (X gyrn < 2]} = / ) (1 -3 (") F'ia) - (1 - F<x>>i> dz.

=0
Our main result in this section is the following.
Theorem 1 (Proof in[Appendix A.3). For any distribution F, for any integer ¢ > 1, we have that

n—1 e} ¢
n
uf =0 (S Y fa).
k=1 k=n

where 0y, is defined in[Definition 1

We prove this theorem in four steps. First, we consider the associated escalator distribution '+ and

transform M} i (n) into a weighted-sum of the d;s (Proposition 2). Second, we derive asymptotically

tight (up to constant) bounds (Lemma 3), for £ < n. Third, in [Lemma 4] we derive bounds for
the case k > n. Finally, in the proof of the theorem, we combine all of the above and show that

n— oo nt
ME @) =0 (M () =0 (12! 6+ 52, ).
Proposition 2 (Proof in|Appendix A.2). Let Y ~ BINOMIAL(n, 1/k), we have that

MET(n) =3 PYe > 06k, ME () =Y P Vi > 46
k=1 k=1

Intuitively, the binomials Y} appear here for the following reason. In order for X,,_;4 1., to be in
the interval 7y, it is necessary that at least ¢ variables are in the intervals Ty, Ty 1 . . . , where Z; are

the intervals associated with the d; (see [Definition 1)). With [Proposition 2|equipped, we are ready to

prove the following lemma.

"This is a straight-forward extension of ([16]) who prove that if F* < F then Mf (n) < MZF+ (n).

8As an example, consider the exponential distribution with parameter A, F(z) = 1 — e~>. Then, F'*
is defined by the intervals I, = (In(k)/A, In(k 4+ 1)/)], and defines a discrete random variable Y such that
E[Y]=+>,In(1+1/k)/k < cc.



Lemma 3 (Proof in[Appendix A.3). Let Y; ~ BINOMIAL(n, 1/k). Let ¢ be a fixed constant. For
n > 2el! + 1 and k < n we have that,

11

——,1].

2e ()’ ]

We now prove the following lemma, which bounds the partial sum of for k > n.

Lemma 4 (Proof in[Appendix A.4). Let Y} ~ BINOMIAL(n, 1/k). Let ¢ be a fixed constant. Then,
forn > 1%/(1—+/1—1/e) and k > n we have that,

ez e[S () (2)]

]P[Ykzé]e

4 Main Result

In this section we study the largest possible asymptotic behavior of M/ (n) using the results of the
previous section. As we know from [10], M{"(n) is sublinear, but can grow as fast as any sublinear
function ([8]]). In general for any /, it is clear that M/ (n) is sublinear since M/ (n) < M{'(n). A
natural conjecture is that this is still true that the second (or /-th) maximum grows as fast as any
sublinear function.

Our first observation here says that the answer to this question is more subtle. First, in|Proposition 3|
we show that for any sublinear function, there are distributions that M/"(n) surpasses it infinitely
often. On the other hand, in our main result we show that M/ (n) cannot be consistently
above any sublinear function. More precisely, we prove that in order to have a finite expectation

distribution with M/ (n) = Q(g(n)) it is necessary and sufficient to have > 90 < 0.

n n?2

Proposition 5 (Proof in [Appendix A.6). For any non-negative, non-decreasing function g with
sublinear growth, i.e. g(n) = o(n), there exists an escalator distribution F with finite expectation

such that for infinitely many n

M[ (n) > g(n).

In other words, the last proposition establish that if g(n) = o(n), then there exists a distribution
F such that limsup,, M/ (n)/g(n) > 0. This result implies that, although M/"(n) has sublinear
growth for any finite expectation F/, it is impossible to find a specific sublinear function g such that
MF (n) = o(g(n)) for all distributions F' with finite expectation.

One might hope that our previous lim sup result could be strengthened to lim inf since for { =
1, Correa and Romero [8] show that liminf,, M{(n)/g(n) > 0, which translates to M{ (n) =
Q(g(n)).

However, we show in that one cannot hope to extend this result to ¢ > 2 for any sublinear

function g. In particular, implies that for any finite expectation distribution there are
infinitely many values of n for which M/'(n) < TognTozlogn (for £ = 2).

Theorem 2 (Proof in|{Appendix A.7). Fix an integer { > 2. Let g(n) be a monotonically increasing
non-negative function. Then, there exists a distribution F' with finite expectation such that M, ZF (n) =
Q(g(n)) ifand only if 3", 292 < oo,

n n?2

The above theorem can also be stated as follows. Consider an increasing function g(n) such that

T F
> %ﬁ”) < 00, then there is a finite expectation distribution F', such that lim inf,, ]v;e(gl) >0
Conversely, if ZZ": L 97(:2‘) = 00, then for each distribution F’, we have that lim inf,, N;{,E?) =0.

Therefore, the big picture is the following. We can always find probability distributions to make
M ZF (n) match any sublinear function infinitely often. (for infinitely many n). However, if one
seeks to find a distribution for which M} (n) is large for all n, then the threshold lies at n/¢,, where

n =TI, 1og (n), where for all i € N and n € Rt
log(log" ™Y (n))  fori > 2andlog" Y (n) > 2
log®(n) =<1 fori > 2 and log"" " (n) < 2 2
log(n) fori=1.



In particular, M (n) = Qo gmrey) With € > 0 is achievable, whereas M/ (n) =

n .
Q( log nloglogn ) 1s not.

The construction of finite expectation distributions with large growth rate of M} (n) intuitively
depends on the tail being heavy enough. If higher moments exist, order statistics grow much slowly.
This idea has been established in the literature when deriving upper bounds for the expected maximum
([1O1,[51,18]). Similarly, one implication from [Theorem 2]can be extended in the same way as follows.
Suppose IE [XP] < oo for p > 1. Since power functions are convex and non-decreasing, Jensen’s
inequality imply

(Mf(n))p = (E [X’n—ﬁ-i-l:n])p <E [Xﬁfe+1;n] =E [Zn—f-i-l:n] = M{(n)’

where Z; = X f’ are non-negative i.i.d. random variables with distribution F. Thus, states
that if g(n) satisfies > gfl—’;) = 00, then for £ > 2

In particular, M} (n) = Q (1 / logn) is not achievable by any F' with finite variance. We establish

this generalization in the following corollary.

Corollary 1. Fix p > 1 and an integer { > 2. Let g(n) be a monotonically increasing non-
negative function such that y_, 4 (:2),, = oco. Then, any distribution F with E [XP] < oo satisfy
liminf,, M} (n)/g(n) = 0.

S Experiments

We complement our theoretical results with simulation experiments that illustrate how the separation
between M;(n) and Ms(n) manifests itself in practice. Our goal is twofold: (i) to empirically
validate our results even for moderate values of n, and (ii) to explore whether this gap comes from
many observations where the maximum sample is consistently larger than the second-highest sample,
or from rare events where the separation is extremely large.

5.1 Experimental Setup

We focus on heavy-tailed distributions with finite expectation, considering two cases: one with
infinite-variance tail behavior and another with finite-variance tail behavior.

We construct each distribution by defining its tail-quantile function T(y) = inf{zx : F(x) >
1 — 1/y}. Both distributions were sampled efficiently via inverse transform sampling using a
PARETO(1) auxiliary variable. For each distribution, we generate 1,000,000 independent trials
for values of n ranging from 10 to 10,000. In each trial, we computed the top order statistics
Xnns Xn—1:n, Xn—2:n, Xn—3.n and averaged across trials to estimate Mg. We focus in particular on

the ratio M, / Myasa proxy for the separation between the top two samples.

All experiments were conducted on the Columbia Business School (CBS) Research Grid, a high-
performance computing cluster running a Linux environment (Debian 4.19). We fixed the random
seed to 42 using Python’s default pseudo-random number generator to ensure reproducibility. The
code is included in the supplementary material.

5.2 Separation between 1, (n) and M,(n) under Heavy-Tailed Distributions

We consider g(n) = n/log(n) as the benchmark growth rate, since implies that no
We

distribution with finite expectation F' can achieve M1 (n) = Q(n/log(n)). consider a heavy-
tailed distribution defined by the tail-quantile function

T(y) = Wv
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Figure 2: Empirical behavior under T'(y) = y/log(y)'-°L. M;j(n) grows rapidly with large variance;
M (n) and lower order statistics grow more slowly and are tightly concentrated.

which has finite mean but infinite variance. We observe that the ratio M (n) /My (n) increases rapidly

with n. While M, n) grows nearly linearly, ]\ng(n) remains close to the benchmark growth rate
n/logn. shows the estimated expectations of M,(n) for £ = 1,2, 3, 4. Notably, M; is

highly variable even across 10° trials, due to its infinite variance. In contrast, M and lower order
statistics are sharply concentrated. This is explained by the fact that the second moment of X,,.,, is
infinite under this distribution. Indeed, if X; = T'(V;) with IID samples V; ~ PARETO(1), then

o= [ (1) s
[ (-2

n [T,

Z 2n71 y2

n e 1
77 )y T ®

This divergence explains the persistent noise in estimating M, (n), even with large trial counts.

shows the ratios between consecutive order statistics. We observe a clear upward trend
in M7 (n)/Ms(n), in line with the theoretical expectation that the first and second maxima diverge
under infinite variance. Ratios M»(n)/Msz(n) and M3(n)/My(n) remain nearly constant.

5.3 Effects of Censoring Extremes

We repeat the comparison after removing the top 1% of trials with the largest maxima. This censoring
stabilizes the results dramatically. As shown in|[Figure 3], the estimates become less noisy, and the
ratio M (n)/Ma(n) flattens across n. This illustrates that the growth in the ratio is largely driven by
rare extreme values of M (n).

5.4 Finite-Variance Comparisons

To test whether this behavior is specific to infinite-variance distributions, we repeat the experiments
with a finite-variance distribution defined by

Y
0= Togyror
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(a) Expected order statistics after censoring. (b) Ratios after censoring.

Figure 3: Empirical behavior after removing top 1% extreme maxima. The ratio M (n)/Ma(n)
becomes stable, suggesting that typical-case gaps are modest.
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(a) Expected order statistics under finite-variance distribution. (b) Ratios between consecutive expected order statistics.

Figure 4: Results under T'(y) = +/y/log(y)'0l. All order statistics are well-behaved and
M (n)/ My (n) remains stable across 7.

As expected, the results are markedly more stable. We can verify the finite second moment of the
maximum:

* T(y)? 1\""! * T(y)? * 1
E[Xx2 |= 1-= dy < dy = S .
(Xt /1 Ty Yy y_n/1 2 Y n/1 ylog(y)'0 v

Hence, the estimates of M (n) are far less noisy, and the ratio M, (n)/Ma(n) remains stable across
all tested values of n.

6 Conclusion and Future Work

In this paper, we have presented asymptotically tight results (up to constants) for M;(n) for any
constant ¢. The regime where ¢ is linear in n, comprising the median is well-understood—here, we
have that M,(n) = O(1) for any finite expectation distribution. Therefore, a natural open question is
what happens in the regime where ¢ € [w(1), o(n)]. Further enticing open questions are to understand
the distribution of X,,.,,/X,,_1., and to obtain bounds on higher moments of X,,_1.,. Finally, it
would be interesting to understand the distribution of the second-maximum assuming that higher
moments of I are finite. Numerical experiments confirm our theoretical predictions: under heavy tails
with infinite variance, the ratio M{"(n)/MJ (n) can grow with n but does so due to rare extremes.
In the typical case—either after censoring or under finite variance—the ratio is stable and bounded.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claims match our results.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the assumptions we make and hence the limitations as
well as numerous open problems that mark the limitations of our results.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

11



Justification: All proofs can be found in

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experiments with this paper are numerical simulations. No datasets are
being used. We provide all relevant details.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code is included in the supplementary material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiments with this paper are numerical simulations. No datasets are
being used. We provide all relevant details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results in [3a]and [da] report the mean and standard error over
1,000,000 random trials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on the Columbia Business School (CBS)
Research Grid, a high-performance computing cluster running a Linux environment (Debian
4.19). The code and notebooks are included in the supplementary material. We fixed
the random seed to 42 using Python’s default pseudo-random number generator to ensure
reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conform, in every respect, with the NeurIPS Code of Ethics
https://neurips.cc/public/EthicsGuidelines.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: We are unaware of any direct path that leads to negative societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA |

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA |
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendix

A.1 Proof of

Proof. Since F(x) <1 — 145 forall & € (24, x)41], we have that

/OOO (F(z) — F*(2)) de = kil /I+ (F(x) - (1 - ;)) dx
< i (li - k—lkl> (Trtr — k)

S |
= Z m(ﬂ%ﬂ - Tk)

k=1
< g:l (k}rl)(karl -z,
>/ (@)

Thus,
E[X]] = /OOO (1-FF(2))de = /OOO (1 - F(x)) dx+/ooo (F(z) — F*(z)) dz < 2E [X;] < oo,

and F'" has finite expectation.

A.2 Proof of

Proof. Recall that if '+ is an escalator distribution and X, ..., X;F are drawn from F'* with
non-negative support, then

ME"(n) = /OOO (1— F*"(z)) de = i <1 - (1 - ;)n) 5.

k=1

Similarly, using the fact that the distribution of X,,_1., is F+" + nF+" "' (1 — F*), we get that

In general, we get, that X,, ¢, 1., is distributed as Zf;; (?)F*n_i(m) (1 — FT(x))*. Thus,
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concluding the proof for F'*. The result for F'~ is anologous since its definition only involves shifting

0 s indices by one.

O

A.3 Proof of

Proof. The upper bound holds trivially, since IP [Y}, > ¢] < 1. For the lower bound, we have, by

[Lemma 6] for & > 2

PV, < (] = Zi (2‘) (1- 1/k)”*i%

=0

1—1//c”fi<)

<<1—;)"f_20<?>m

Note that for &k = 1, we have P [Y; < ¢] = 0. Thus, for all & > 1, we have

P[Yk<é]§i§(?>(n—ll)i'

Then, since ¢ is much smaller than n,

Thus, P[Y; > {] =

2el! + 1.

0—1 0—1 , i—1 .

n ; _ l n—j
Z, i) (n—1) Z ' ddn—1
i=0 i=0 ~ j=0

< (142 !
= n—1)\" " @
L,
TR
“PVe< 21— 1(e—dtit) = -5k 2 gy forn >
0
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A.4 Proof of[Lemma 4

Proof. Let Zj, be the Poisson distribution with mean n/k. Using that & > n + 1, we get,

Thus, using that ) ;- ‘ % e, we get,

_n/kz n/kj

P[Z, > (] =

For the lower bound, we use (1 — 1/k)¥

:(n>

1

(=1

nt1
T
(n/k)’

il
P[Z), =i e*

P [Z;, = i]e™/*.

< 1 — 1/k)kn=i)/k

e—(n—i)/k

I IA

IN

n

< e—n/k n/k ;Zl 1—n/k . (E

)Z.

> (1 —1/k)/e. We first bound,

e S ©
) (n—0)/k
>(-(1-1/k
> (ta-um)
et/k n—4V
> en/k <1 B k2 >
ellk 1
Thus, since n > ¢?/(1 — /1 — 1/e), and using that P [Z}, = {] = M , we get,
n\ 1
= = ~1
Pl == () - 10
(n —/ + 1)6 1 n—~¢
> 7 W (1-1/k)
1 4
=P[Z), =] (n ﬁf ) (1—1/k)" ek
¢
>P[Z ={) (1_H> (1_1) etk
@ n n
2 1
> P2 = (1—£) <1—) ellk
n n
2\®
> P2, = (1)
n
>P[Z, =/ (1-1/e).
Hence, since e~ /% > 1/e we get,
¢ myf
>0 > =>(1- —>(1-1/e)-= (2) .
PIYi>0>PYi=0>(1-1ePZ=0>01-1/)-7(7)
Establishing the claimed bounds. O
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A.5 Proof of [Theorem 1]
Proof. From we get

o ng5k<ZP [V > (] 5k<26k

From[Lemma 4]we get,
e—11 <= /n\? o0 o
o2 Z (E) o < Z PY, >/ <e Z (E) 5
k=ntl k=n+1 k=n+1

Thus, by , for the escalator F' using that Y, 6, + >0, 14 Z—de = 22;11 O +

e Z—ﬁék, we have
n—1 oy
n
:(9(2 0 + g kéék>~ o)
k=1 k=n

Similarly, we obtain
n—1 e} ¢
n
=0 J —0 6
(S Safn) ©
We claim that if £ > n and ¢ = O(1), then

| 11 ,
AR M

From [Eq. (7)| together with [Eq. (3)] and [Eq. (6)] the claim in the statement of the theorem follows
immediately, since for some c large enough,

n—1 0 n—1 o0
1 nt P F Pt nt
p <1§—1 Ok + ;;:n 7 5k> <M; (n)< Mg (n)<M; (n)<c 321 Ok + ;;:n g Ok | »

where we used that F+ < F < F~, yielding M} (n) < M} (n) < Mf+ (n).
It remains to prove [Eq. (7), Clearly ﬁ <7 2 . For the lower bound, we assume without loss of

generality that £ > 2 since, otherwise, = +1 > %

£ .
We have (k+1)2 > 517 since (kinf =(1-1/(k+1))* > 1/2. Thus,|[Eq. (7)|holds completing the
proof. O

A.6 Proof of

Proof. For any i € N, define n(i) = min{n > 1 | g(n)/n < 27%}. Note that n(i) is well-defined,
i.e. it is a positive integer, since g(n) = ( ) Moreover, since g(+) is non-decreasing, n(i) — oo as
i — 00. LetZ = {n(i) | i € N} and ¢ = o= 4. Consider an escalator distribution defined by

9B ifkinT
O0p =4 ¢ .
0 otherwise

Therefore, such escalator distribution has finite expectation. Indeed,

N
- «21 ¢ '
kel

On the other hand, from we have M/ (n) > P[Y,, > (]6,. Moreover, by |Lemma 3

for large enough n, P[Y,, > 7] > c. Thus since n(i ) — 00 as ¢ — oo, for all large enough ¢,

M7 (n(i)) > edugy = g(n(i)).
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A.7 Proof of [Theorem 2|

Proof. We start by proving that if M} (n) = Q(g(n)) for some distribution F with finite expectation,
then necessarily 90 < 0. Since MF (n) < M{ (n), it is enough to show the claim for ¢ = 2.

n n2
Therefore, assume that for all n we have,

M3’ (n) = g(n). ®)
By there exists a constant ¢ > 0 such that

n—1

<cZ(5k+cZk2 =: f(n).
From [Eq. (8)|it follows that f(n) > MZ (n) > g(n). Thus,

Therefore, dividing by n again and summing over all values of n it must hold that

DI CHOLE W

Switching indices yields

S0 <SS ()
zcgémm(;,;)%
> in (15

Here we used thatn )2 7z =n¥(1,n) < 2, where ¥ is the polygamma function. Recall from
that if F' has finite expectation, then 3°, %= < co. Therefore, 3, g( ") < oo

We now prove the other direction: assuming . gfg) < 00, we construct an escalator distribution F’

with finite expectation such that M/ (n) > g(n). Recall that for any distribution F, byw
there exists a universal constant ¢ such that M/ (n) > ¢> ), L6k + > Z’f 0. We define
h(n) = n/g(n) and construct F' by defining

K’ 1 1
%::c(wlhwy_w+1vlmk+n>‘

-1
Indeed, if X is drawn by F, using that (1 — %—&-1) >1-— f;ﬁ, we get,

IE[X]:Z%
k=1
1 (1 1\t
:cg;<h%) (1_k+1> mk+n>
I~/ 1 = (-1
S};(h(k k+1>+§ TR
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The first term evaluates to 1/h(1) since it is a telescopic sum and 1/h(k) = g(k)/k — 0 as k — oo,
by the assumption that Y~ , g(n)/n* < oo. Similarly, the second sum is finite by hypothesis.
Therefore IE [X] < o0, so that the constructed distribution F" has finite expectation.

On the other hand, by [Theorem I} we get

n—1

>cZ(5k+cZ kf

1
0> (ke (k) (kD ThGk + 1))

k=n

S N g(n)

n=th(n)  h(n) '
As before, the telescopic sum results only in the first term, because 1/(k‘~'h(k)) = g(k)/k* <
g(k)/k — 0 as k — oo. The above implies the existence of a finite expectation distribution F' such

that M/ (n) = Q(g(n)). O

A.8 Auxiliary Lemma

The following technical lemma is used to prove[Lemma 3]
Lemma 6. For any positive integer { < n + 1, the function

=13 (M) ot

i=0
for x < n is non-decreasing.

Proof. The derivative w.r.t. 2 of this function f(z) is

ro=n(-1)" 22 Oatn- (o) 50t @

1=

Equation (9)) can be rewritten as

N""1[n S/n 1 n
w=(1-=) =] — (5=9)|.
) ( x) xlx+iz_;<i>(x—l)l !
Note that all terms in the sum are non-negative for if z < n/(¢ — 1). In the remainder we rewrite the

sum and consider the case that z > n /(¢ — 1). Since (?)% = (7:__11), we can rewrite the second sum
in equation (9) as

o )

1=

and then the derivative can be factorized as follows

(-3 ()t et (- (7))

where all the terms are non-negative if:

e—1_ (") _ (") _ Ty n—i
= (" ny n! = :

Which holds if and only if & P L which in turn is equivalent to z > . The latter is true since we
assume x > n/(£ — 1). Thus, the derivative is non-negative and the claim follows.

O
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