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Abstract

A common step in differentially private (DP) Riemannian optimization is sampling from
the (tangent) Gaussian distribution as noise needs to be generated in the tangent space to
perturb the gradient. In this regard, existing works either use the Markov chain Monte Carlo
(MCMC) sampling or explicit basis construction based sampling methods on the tangent
space. This becomes a computational bottleneck in the practical use of DP Riemannian
optimization, especially when performing stochastic optimization. In this paper, we discuss
different sampling strategies and develop efficient sampling procedures by exploiting linear
isometry between tangent spaces and show them to be orders of magnitude faster than
both the MCMC and sampling using explicit basis construction. Furthermore, we develop
the DP Riemannian stochastic variance reduced gradient algorithm and compare it with
DP Riemannian gradient descent and stochastic gradient descent algorithms on various
problems.

1 Introduction

Differential privacy (DP) provides a rigorous treatment for the notion of data privacy by precisely quantifying
the deviation in the model’s output distribution under modification of a small number of data points (Dwork
et al., 2006b). Provable guarantees of DP coupled with properties like immunity to arbitrary post-processing,
and graceful composability have made it a de-facto standard of privacy with steadfast adoption in the real
world (Erlingsson et al., 2014; Apple, 2017; Near, 2018; Abowd, 2018). Furthermore, it has been shown
empirically that DP models resist various kinds of leakage attacks that may cause privacy violations (Rahman
et al., 2018; Carlini et al., 2019; Sablayrolles et al., 2019; Zhu et al., 2019; Balle et al., 2022; Carlini et al.,
2022).

Various approaches have been explored in the literature to ensure differential privacy in machine learning
models. These include output perturbation (Chaudhuri et al., 2011; Zhang et al., 2017) and objective
perturbation (Chaudhuri et al., 2011; Iyengar et al., 2019), in which a perturbation term is added to the
output of a non-DP algorithm or the optimization objective, respectively. Another approach, gradient
perturbation, involves perturbing the gradient information at every iteration of gradient based approaches
and has received significant interest in the context of deep learning and stochastic optimization (Song et al.,
2013; Bassily et al., 2014; Abadi et al., 2016; Wang et al., 2017; Bassily et al., 2019; Wang et al., 2019a;
Bassily et al., 2021).
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Recently, achieving differential privacy over Riemannian manifolds has also been explored in the context of
obtaining Fréchet mean (Reimherr et al., 2021; Utpala et al., 2022b; Soto et al., 2022) and, more generally,
solving empirical risk minimization problems (Han et al., 2022a). Riemannian geometry is a generalization of
the Euclidean geometry (Lee, 2006) and includes several non-linear spaces such as the set of positive definite
matrices (Bhatia, 2009), set of orthogonal matrices (Edelman et al., 1998), and hyperbolic space (Beltrami,
1868; Gromov, 1987), among others. Many machine learning tasks such as principal component analysis
(Absil et al., 2007), low-rank matrix/tensor modeling (Boumal & Absil, 2011; Kasai et al., 2019; Jawanpuria
& Mishra, 2018; Nimishakavi et al., 2018), metric learning (Bhutani et al., 2018; Han et al., 2021), natural
language processing (Jawanpuria et al., 2019a; 2020a;b), learning embeddings (Nickel & Kiela, 2017; 2018;
Suzuki et al., 2019; Jawanpuria et al., 2019b; Qi et al., 2021), optimal transport (Mishra et al., 2021;
Jawanpuria et al., 2021; Han et al., 2022b), etc., may be viewed as problem instances on Riemannian
manifolds.

In differentially private Riemannian optimization (Han et al., 2022a), a key step is to use tangent Gaussian
sampling at every iteration to perturb the gradient direction in the tangent space. Han et al. (2022a)
proposed to use the Markov Chain Monte Carlo (MCMC) method (Robert & Casella, 1999), which is
computationally expensive especially on matrix manifolds with large dimensions. When the underlying
Riemannian metric is induced from the Euclidean metric, such as for sphere, Han et al. (2022a) showed
one can avoid MCMC via basis construction for the tangent space. For general manifolds of interest,
however, a discussion on basis construction and computationally efficient sampling is missing. The sampling
step is computationally prohibitive, especially when performing differentially private stochastic optimization
over Riemannian manifolds, where the number of sampling calls is relatively high compared to the case
of deterministic optimization. It should also be noted that generalizing more sophisticated differentially
private Euclidean stochastic algorithms like differentially private stochastic variance reduced gradient (Wang
et al., 2017) to Riemannian geometry is non-trivial and is an active area of research. The benefits of (non-
private) Riemannian stochastic variance reduction gradient (RSVRG) methods over Riemannian stochastic
gradient (Bonnabel, 2013) has been studied in existing works (Zhang et al., 2016; Zhou et al., 2019; Han &
Gao, 2021; Sato et al., 2019).

Our main contributions on improving differentially private Riemannian optimization framework are summa-
rized below.

1. Sampling. We propose generic fast sampling methods on the tangent space for various matrix
manifolds of interest. This makes differentially private Riemannian optimization more practically
appealing for real-world applications. The proposed sampling strategy is based on linear isometry
between tangent spaces. We show that it is computationally efficient and orders of magnitude faster
than other sampling schemes, MCMC, and explicit basis construction, presented in (Han et al.,
2022a).

2. DP-SVRG. We propose a differentially private Riemannian stochastic variance reduced gradient
(DP-RSVRG), enriching the suite of differentially private stochastic Riemannian optimization meth-
ods.

Our first contribution allows to scale differentially private Riemannian optimization algorithms since sampling
is now faster. Our second contribution is on developing DP-RSVRG and together with faster sampling, DP-
RSVRG is scalable to large datasets. In the experiments section, we show the empirical benefit of both of
these contributions.

Organization. The rest of the paper is organized as follows. Section 2 gives a background on Riemannian
geometry, Riemannian optimization, and differential privacy. We then use various properties of tangent
Gaussian distribution and discuss different possible sampling strategies in Section 3. Section 4 presents our
proposed sampling procedure and gives exact details about how to implement it in practice for several man-
ifolds of interest. In Section 5, we develop a differentially private Riemannian stochastic variance reduction
gradient algorithm (DP-RSVRG). Section 6 discusses the empirical results. Section 7 concludes the paper.
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2 Preliminaries and related work

Riemannian Geometry. A Riemannian Manifold M of dimension d is smooth manifold with an inner
product structure ⟨., .⟩w (i.e., having a Riemannian metric) on every tangent space TwM. Given a basis
B = (β1, . . . , βd) for TwM at w ∈ M, the Riemannian metric can be represented as a symmetric positive
definite matrix Gw and the inner product can be written as

⟨ν1, ν2⟩w = −→ν1
T Gw

−→ν2,

where −→ν1, −→ν2 are coordinates of the tangent vectors ν1, ν2 ∈ TwM in the coordinate system given by B.
An induced norm is defined as ∥ν∥w =

√
⟨ν, ν⟩w for ν ∈ TwM. Let γ : [0, 1] → M denote any smooth

curve and γ′(t) ∈ Tγ(t)M its derivative, then distance between w1, w2 ∈ M is defined as dist(w1, w2) =
infγ:γ(0)=w1,γ(1)=w2

∫ 1
0 ∥γ′(t)∥γ(t) dt.

A smooth curve γ : [0, 1] → M is called the geodesic if it locally minimizes the distance between γ(0) and
γ(t). For any ν ∈ TwM, the exponential map is defined as Expw(ν) = γ(1) where γ(0) = w and γ′(0) = ν.
If between any two points w, w′ ∈ W ⊆ M there is a unique geodesic connecting them, then the exponential
map has an inverse map Exp−1

w : W → TwM, which maps a point on the manifold to the tangent space
TwM. Transporting the vectors on the manifold requires the notion of parallel transport. In particular, the
parallel transport from w1 ∈ M to w2 ∈ M denoted as PTw1→w2 : Tw1M → Tw2M is a linear isometry (i.e.,
inner product preserving) along a geodesic. In this work, the curvature of a manifold refers to the sectional
curvature, which provides a local measure of curvature at each point on the manifold.

The Riemannian gradient of a real valued function f : M → R, denoted as grad f(w), is a tangent vector
such that for any ν ∈ TwM,

⟨grad f(w), ν⟩w = Df [w](ν),

where Df [w](ν) denotes the directional derivative of f at w along ν. We refer the readers to (Do Carmo &
Flaherty Francis, 1992; Lee, 2006) for a detailed exposition of Riemannian geometry and (Absil et al., 2009;
Boumal, 2022) for Riemannian optimization.

Function classes on Riemannian Manifolds. We call a neighbourhood W ⊆ M totally normal if for
any two points, the exponential map is invertible. Let W ⊆ M be a totally normal neighborhood and DW
be its diameter and κmin be the lower bound on the sectional curvature of W.

A function f : W → R is called L0-geodesically Lipschitz continuous (L-g-lipschitz) if for any w1, w2 ∈
M, |f(w1) − f(w2)| ≤ L0dist(w1, w2). Under the assumption of continuous gradient, a function f is L0
geodesically Lipschitz continuous if and only if

∥grad f(w)∥ ≤ L0,

for all w ∈ M (Boumal, 2022). A differentiable function f : M → R is geodesically L-smooth (L-g-smooth)
if its gradient is L-Lipschitz, i.e., ∥grad f(w1) − PTw2→w1 grad f(w2)∥w1

≤ Ldist(w1, w2). Additionally, it
can be shown that if f is geodesically L-smooth, then

f(w1) ≤ f(w2) + ⟨grad f(w2), Exp−1
w2

(w1)⟩w2 + L

2 ∥Exp−1
w2

(w1)∥2
w2

,

for all w1, w2 ∈ M. A function f is called geodesically µ-strongly convex (µ-strongly g-convex) (Zhang et al.,
2016) if for all w1, w2 ∈ W, it satisfies

f(w1) ≥ f(w2) + ⟨grad f(w2), Exp−1
w2

(w1)⟩w2 + µ

2 ∥Exp−1
w2

(w1)∥2
w2

.

Let w∗ be a global minimizer of f . Then f : W → R is said to satisfy the Riemannian Polyak–Łojasiewicz
(PL) condition if there exists τ > 0, such that,

f(w) − f(w∗) ≤ τ ∥grad f(w)∥2
w ,
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for any w ∈ M(Zhang et al., 2016). The Riemannian PL condition is a strictly weaker notion than the
geodesic strong convexity, i.e., every geodesic µ-strongly convex function satisfies the Riemannian PL con-
dition (with τ = 1/(2µ)) and there exist functions that satisfy the Riemannian PL condition but are not
geodesically strongly convex. The trigonometric distance bound from Zhang & Sra (2016) (see Lemma 10),
which is crucial for deriving convergence analysis of Riemannian optimization algorithms makes use of the
curvature constant, is defined as

ζ =


√

|κmin|DW

tanh
Ä√

|κmin|DW
ä κmin < 0

1 κmin ≥ 0.

Differential privacy. Let Z be an input data space and two datasets of size Z, Z ′ ∈ Zn of size n are
called adjacent if they differ by at most one element. We represent the adjacent datasets Z, Z ′ by the
notation Z ∼ Z ′. A manifold-valued randomized mechanism R : Zn → M is said to be (ϵ, δ)-approximately
differentially private (ADP) (Dwork et al., 2006a; Wasserman & Zhou, 2010) if for any two adjacent datasets
Z ∼ Z ′ and for all measurable sets S ⊆ M, we have

P [R(Z) ∈ S] ≤ exp (ϵ)P [R(Z ′) ∈ S] + δ.

Rényi differential privacy (RDP) by Mironov (2017) is a refinement of DP which gives tight privacy bounds
under composition of mechanisms. The λ-th moment of a mechanism R is defined as

KR(λ) = sup
Z∼Z′

log
Ç

E
o∼R(Z)

ñÅ
p(R(Z) = o)
p(R(Z ′) = o)

ãλ
ôå

,

and mechanism R is said to satisfy (λ, ρ)-RDP if 1
λ−1 KR(λ − 1) ≤ ρ. If the mechanism R : Z → M is an

(adaptive) composition of k mechanisms {Ri}k
i=1, i.e., Ri :

∏i−1
j=1 Mj × Zn → Mi, then

KR(λ) ≤
k∑

i=1
KRi

(λ).

Using the moments accountant technique (Abadi et al., 2016), (λ, ρ)-RDP mechanism can be given (ϵ, δ)-ADP
certificate. We refer the interested readers to (Dwork et al., 2014; Vadhan, 2017) for more details.

Differential privacy on Riemannian manifolds. Reimherr et al. (2021) are the first to consider differen-
tial privacy in the Riemannian setting and derived the Riemannian Laplace mechanism based on distribution
from (Hajri et al., 2016). Utpala et al. (2022b) derive output perturbation for manifold of symmetric posi-
tive definite matrices (SPD) with the Log-Euclidean metric based on distribution from (Schwartzman, 2016).
While (Reimherr et al., 2021; Utpala et al., 2022b) focus on output perturbation, Han et al. (2022a) propose
a unified differentially private Riemannian optimization framework through gradient perturbation.

Han et al. (2022a) consider the following problem (1) where the parameter of interest lies on a Riemannian
manifold M and {zi}, i = 1, . . . , n, represent the set of data samples, i.e.,

min
w∈M

{
F (w) = 1

n

n∑
i=1

fi(w) = 1
n

n∑
i=1

f(w; zi)
}

. (1)

The aim of differentially private Riemannian optimization is to privatize the solution from a Riemannian
optimization solver by injecting noise to the Riemannian gradient similar to the Euclidean case. The Rieman-
nian gradient grad F (w) belongs to the tangent space (TwM, ⟨, ⟩w) and to perturb the Riemannian gradient,
Han et al. (2022a) define an intrinsic Gaussian distribution on the tangent space TwM with density

p(ν) ∝ exp(− ∥ν − µ∥2
w /2σ2), ν ∈ TwM,

and refer to it as the tangent Gaussian distribution. They propose differentially private Riemannian gradient
and Riemannian stochastic gradient descent algorithms.
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Algorithm 1: Sampling from tangent Gaussian: a general algorithm
Input : Manifold M of dimension d, base point w ∈ M, Riemannian metric ⟨., .⟩w, mean µ ∈ M

and standard deviation σ > 0.
Output: ξ such that ξ ∼ Nw(0, σ2).

1 Construct a basis B of TwM orthonormal wrt to ⟨., .⟩w.
2 Generate d-dimensional coordinates a ∼ N (0, σ2Id).
3 Generate the sample ξ ∈ TwM as ξ =

∑d
i=1 aiβi.

3 Sampling from tangent Gaussian

In this section, we derive various properties of the tangent Gaussian distribution to discuss different sam-
pling strategies for different manifolds. The proofs of the claims discussed in this section are provided in
Appendix B.

We begin with the definitions of the Lebesgue measure on the tangent space and the tangent Gaussian distri-
bution. We then show that the tangent Gaussian reduces to the multivariate Gaussian when an appropriate
basis is constructed. This allows sampling to be performed in the intrinsic coordinates of the tangent space
and then generate a tangent Gaussian sample by a linear combination of the basis vectors with the sampled
coordinates.
Definition 1 (Lebesgue measure on tangent space). Consider a Riemannian manifold M with the intrinsic
dimension d. For w ∈ M, let B = {β1, . . . , βd} be an orthonormal basis of TwM with respect to the
Riemannian metric ⟨., .⟩w. Define ϕB : Rd → TpM as ϕB(c1, . . . , cd) =

∑d
i=1 ciβi. Let λ denote the standard

Lebesgue measure on Rd. Then, we define the Lebesgue measure on TwM as the pushforward measure ϕB
∗

given by
(ϕB

∗ λ)(S) ≜ λ
(
ϕ−1

B (S)
)

.

Remark 1. Let B1, B2 be two orthonormal bases of TwM, then ϕB1
∗ λ = ϕB2

∗ λ because the Lebesgue measure
is invariant under orthogonal transformations (with respect to the Riemannian metric). Hence, in the rest
of this draft, we drop the superscript B for clarity and denote the pushforward measure as ϕ∗λ.

We now define the tangent space Gaussian distribution (Han et al., 2022a) under the measure in Definition 1.
Definition 2 (Tangent Gaussian (Han et al., 2022a)). Let w ∈ M, a random tangent vector ξ ∈ TwM
follows a tangent space Gaussian distribution at w, denoted as ξ ∼ Nw(µ, σ2) with mean µ ∈ TwM and
standard deviation σ > 0 if its density is given by

pw(ν) = Cw,σ exp
Ç

−
∥ν − µ∥2

w

2σ2

å
,

under the pushforward measure given in Definition 1.
Lemma 1. Let w ∈ M and B be any orthonormal basis of TwM. Also, let ξ ∈ TwM denote a random
tangent vector. Then, the following holds:

1. If ξ ∼ Nw(µ, σ2) for some µ ∈ TwM and for σ > 0, then Cw,σ = (2πσ2)1/2.

2. ξ ∼ Nw(µ, σ2) ⇐⇒ ξ⃗ ∼ N (µ⃗, σ2Id) where ξ⃗, µ⃗ ∈ Rd denote coordinates in basis B.

3. If ξ ∼ Nw(0, σ2), then E ∥ξ∥2
w = dσ2, where d is the dimension of the manifold.

Remark 2. Statement 3 of Lemma 1 improves the bound on variance from (Han et al., 2022a, Lemma 4) by
removing the dependency on the metric tensor Gw.

Statement 2 of Lemma 1 implies that a random tangent vector follows tangent Gaussian if and only if its
random coordinates in any orthonormal basis follow from the Euclidean Gaussian distribution of the intrinsic
dimension. This allows to avoid the computationally expensive MCMC based sampling, which is suggested
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Algorithm 2: Sampling from tangent Gaussian using isometric transportation
Input : Manifold M of dimension d, base point w ∈ M, Riemannian metric ⟨., .⟩p, mean µ ∈

standard deviation σ > 0, reference point ŵ.
Output: ξ such that ξ ∼ Nw(0, σ2).

1 Sample d coordinates a ∼ N (0, σ2Id).
2 Generate the sample ζ ∈ T“wM at ŵ.
3 Generate the sample ξ ∈ TwM by isometric transportation of ζ from T“wM to TwM : ξ = LI“w→w(ζ).

in (Han et al., 2022a) for manifolds with non-Euclidean Riemannian metrics, and instead apply the basis
construction approach for any manifold. We summarize the procedure in Algorithm 1. However, the practical
efficiency depends on how Steps 1, 2, and 3 of Algorithm 1 are implemented for different manifolds.

One natural approach for sampling from tangent Gaussian is to perform an explicit basis construction (Step
1) in which we fully enumerate the basis elements in B. Steps 2 and 3 can subsequently be performed in
a straightforward manner. The other approach is to combine Steps 1, 2, and 3 implicitly. We discuss these
approaches in the following sections.

3.1 Sampling with explicit basis enumeration

Here, we construct a basis explicitly, i.e., either analytically or by using Gram-Schmidt orthogonalization.

Gram-Schmidt orthogonalization. The tangent space at a point on a manifold is parameterized by a
system of linear equations. One approach to perform sampling is to first solve the underlying linear equations
to get the basis B of TwM that is orthonormal in the sense of the Euclidean metric. Depending on the
Riemannian metric, we now have two further scenarios.

• When the Riemannian metric ⟨., .⟩w is a scaled Euclidean metric, then the orthonormal basis with
respect to the Riemannian metric ⟨., .⟩w can be obtained by appropriate scaling of B.

• If the Riemannian metric ⟨., .⟩w is a more general metric, we employ the Gram-Schmidt (GS) orthog-
onalization process on B to generate a new basis that is orthonormal with respect to the Riemannian
metric ⟨., .⟩w. This is computationally expensive because if d is the dimension of manifold, then we
have to evaluate O(d2) inner products ⟨., .⟩w.

Analytic basis construction. One way to avoid the computationally prohibitive GS orthogonalization
strategy is to analytically construct bases for different manifolds. This can be done for various manifolds
by exploiting the geometry of the space. We construct the full orthonormal basis with respect to the metric
⟨., .⟩w explicitly by full enumeration. We empirically observe (refer Section 6) that sampling with the explicit
basis construction strategy is computationally expensive even if the basis is known analytically.

3.2 Sampling implicitly using isometric transportation

Since our end goal is to efficiently generate tangent Gaussian samples, instead of first fully constructing
the orthonormal basis and then performing linear combinations, we aim to combine Steps 1, 2, and 3 of
Algorithm 1. Hence, we do not fully enumerate the basis but rather create a basis implicitly.

Given a manifold with a Riemannian metric and depending on the basis chosen, there are many ways of
implementing the implicit basis strategy. We propose a unified way that is both computationally efficient
and easy to implement using linear isometric transportation between tangent spaces.

The key observation of this strategy is the following claim which states that to sample from the tangent
Gaussian on TwM for w ∈ M, one can simply sample from the tangent Gaussian from any other base
(reference) point ŵ and then transport the sample using any linear isometry operator from the reference
point ŵ to the required base point w.
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Table 1: Reference points ŵ for Algorithm 2. I ∈ Rm×m denotes the identity matrix. (e1, . . . , er) denotes
the standard basis vectors of Rm and o ∈ Rm denotes the zero vector. ⟨, ⟩F and ⟨, ⟩2 denote the standard
Euclidean inner product on matrices and vectors, respectively. We observe that at specific reference points
both the Riemannian metric and tangent space expressions simply.

Manifold Metric Reference point ŵ Tangent space T“wM Metric ⟨, ⟩“w Algorithm Cost

SPD
Affine-Invariant I ∈ Rm×m SYM(m) ⟨, ⟩F Alg 3 O(m3)
Bures-Wasserstein I ∈ Rm×m SYM(m) ⟨, ⟩F/4 Alg 4 O(m3)
Log-Euclidean I ∈ Rm×m SYM(m) ⟨, ⟩F Alg 5 O(m3)

Hyperoblic Poincaré ball o ∈ Rm Rm ⟨, ⟩2 Alg 6 O(m)
Lorentz hyperboloid e1 ∈ Rm {0} × Rm−1 ⟨, ⟩2 Alg 7 O(m)

Sphere Euclidean e1 ∈ Rm {0} × Rm−1 ⟨, ⟩2 Alg 8 O(m)
Stiefel Euclidean [e1, . . . , er] ∈ Rm×r SKEW(r) × R(m−r)×r ⟨, ⟩F Alg 9 O(mr2)
Grassmann Euclidean [e1, . . . , er] ∈ Rm×r {0}r×r × R(m−r)×r ⟨, ⟩F Alg 10 O(mr2)

Claim 2. Let ŵ ∈ M and let LI“w→w : T“wM → TwM be any linear isometric transportation. If ξ ∼
N“w(µ, σ2) for some µ ∈ TwM and σ > 0, then

LI“w→w(ξ) ∼ Nw(LI“w→w(µ), σ2).

Remark 3. Linear isometry, as defined above, encompasses the parallel transport and more generally some
classes of vector transport on manifolds (Absil et al., 2009; Boumal, 2022; Huang et al., 2015; 2017). We
denote the parallel transport operation as PT and the vector transport operation as VT.

We choose the reference point ŵ such that it is relatively easy to sample from the tangent Gaussian at T“wM,
and then, isometrically transport from ŵ to the required point w. To be precise, we choose a reference
point where two things happen: (i) the tangent space T“wM is parametrized freely and (ii) the underlying
Riemannian metric ⟨., .⟩“w becomes a scaled Euclidean metric. We term this procedure as isometric trans-
portation and summarize it in Algorithm 2. The isometric transportation strategy can be seen as performing
implicit basis construction, i.e., transporting the samples from the ŵ to the required point w is equivalent
to transporting the tangent space basis from ŵ to w as ξ = LI“w→w

Ä∑d
i=1 aiβi

ä
=

∑d
i=1 aiLI“w→w(βi).

Efficient implementations of these isometric transportation procedures (parallel transport and vector trans-
port) are extensively studied in the literature (Absil et al., 2009; Xie et al., 2013; Huang et al., 2015; 2017;
Thanwerdas & Pennec, 2023; Guigui & Pennec, 2022) and are readily available in many of the existing
Riemannian optimization libraries (Boumal et al., 2014; Townsend et al., 2016; Miolane et al., 2020; Utpala
et al., 2022a). Hence, a benefit of the isometric transportation strategy (Algorithm 2) is that one only needs
to take care of the sampling at ŵ and the rest follows through. As we see later that implementing tangent
Gaussian sampling at a properly chosen reference point ŵ can be made computationally efficient. For all
the manifolds, sampling at ŵ amounts to simply reshaping samples from the standard normal distribution
to certain a size and is readily implementable.

4 Isometric transportation based sampling for different manifolds

In this section, we discuss the proposed sampling strategy and provide details about how to implement it for
several interesting manifolds. The rest of the section deals with how to concretely implement Algorithm 2
for several manifolds of interest. For each manifold, we include a summary of the reference points, the
metric at the points, and the concrete algorithm for sampling in Table 1. For the expressions of the parallel
transport and vector transport operations on different manifolds, see Appendix A. We illustrate through
the experiments that Algorithm 2 is significantly better than other discussed procedures in computational
efficiency and renders implementation of differentially private optimization computationally viable, especially
for high dimensional matrix manifolds.

7



Published in Transactions on Machine Learning Research (02/2023)

4.1 SPD manifold

Let SPD(m) denote the set of symmetric positive definite matrices of size m × m. At W ∈ SPD(m), the
tangent space at W is TWSPD(m) = SYM(m), where SYM(m) denotes the set of symmetric matrices of
size m × m. (Bhatia, 2009). We consider three Riemannian metrices: the Affine-Invariant (AI) metric (Pen-
nec, 2006; Bhatia, 2009), Bures-Wasserstein (BW) metric (Bhatia et al., 2019), and Log-Euclidean (LE)
metric (Arsigny et al., 2007) to endow SPD(m) with a Riemannian structure.

Let W, Ŵ ∈ SPD(m), U, V ∈ SYM(m) and denote C ∈ SYM(m) such that Cij = 1 if i = j and Cij = 1√
2

for i ̸= j and cij = Cij . W = PDPT is the eigenvalue decomposition of W, where P, D ∈ Rm×m and
D is diagonal matrix of eigenvalues [λ1, . . . , λm] and P is an orthogonal matrix. We denote the Hadamard
between product two square matrices with ⊙.

SPD with Affine-Invariant metric. The AI metric defined as ⟨U, V⟩AI
W := Tr

(
W−1UW−1V

)
. The

reference point for Algorithm 2 is Ŵ = I and the AI metric at I simplifies as ⟨U, V⟩AI”W = Tr(UV). As
the parallel transport operation is well-known for the AI metric, we choose it as the linear isometric trans-
portation operation in Algorithm 2. The concrete implementation of Algorithm 2 for the SPD manifold with
the AI metric is shown in Algorithm 3. The computational cost of implementing Algorithm 3 is O(m3).
Furthermore, the implicit basis that is being used by Algorithm 3 at W is

BAI
W =

¶
cij .W1/2 [eieT

j + ejeT
i

]
W1/2 : i = 1, . . . , m, j = i + 1, . . . , m

©
,

where W1/2 = PD1/2P denotes the principal square root of W.

Algorithm 3: Sampling on SPD with Affine-Invariant metric
Input : Base point W.
Output: Tangent Gaussian sample U ∼ NW(0, σ2).

1 Generate normal random vector a ∼ N (0, σ2I m(m+1)
2

).
2 Reshape a ∈ Rm(m+1)/2 into A ∈ SYM(m).
3 U = PTIm→W(C ⊙ A).

SPD with Bures-Wasserstein metric. The BW metric is defined as ⟨U, V⟩BW
W := Tr(LW[U]V), where

LW[U] is the solution to the matrix equation LW[U]U+ULW[U] = U. The reference point for Algorithm 2
is Ŵ = I and the BW metric at I simplifies as ⟨U, V⟩BW”W = Tr(UV)/4. We choose the parallel transport
as the preferred isometric transportation procedure. The concrete implementation is shown in Algorithm 4
and the cost of implementation is O(m3). The implicit basis at W that is being used by Algorithm 4 is

BBW
W =

¶
cijP

î
K ⊙

Ä
PT [eieT

j + ejeT
i

]
P
äó

PT : i = 1, . . . , m, j = i + 1, . . . , m
©

,

where K ∈ Rm×m such that Krs =
»

λr+λs

2 .

Algorithm 4: Sampling on SPD with Bures-Wasserstein metric
Input : Base point W.
Output: Tangent Gaussian sample U ∼ NW(0, σ2).

1 Generate a normal random vector a ∼ N (0, σ2I m(m+1)
2

).
2 Reshape a ∈ Rm(m+1)/2 into A ∈ SYM(m).
3 U = PTIm→W(4C ⊙ A).

SPD with Log-Euclidean metric. The LE metric is defined as ⟨U, V⟩LE
W :=

Tr (DLogm[W](U)DLogm[W](V)), where DLogm[W](U) is directional derivative of matrix logarithm of
W evaluated at U.

The reference point for Algorithm 2 is Ŵ = I and the LE metric at I simplifies as ⟨U, V⟩LE”W = Tr(UV). With
the parallel transport as the preferred isometric transportation procedure, the sampling implementation is

8
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shown in Algorithm 5. The computational cost of this implementation is O(m3). The implicit basis that is
being used by Algorithm 5 at W is

BLE
W =

¶
cijP

î
K ⊙

Ä
PT [eieT

j + ejeT
i

]
P
äó

PT : i = 1, . . . , m, j = i + 1, . . . , m
©

,

where K ∈ Rm×m such that Krs = f(λr, λs), where f(x, y) = x−y
exp (x)−exp (y) if x ̸= y else f(x, y) = 1

exp (x)
when x = y.

Algorithm 5: Sampling on SPD with Log-Euclidean metric
Input : Base point W.
Output: Tangent Gaussian sample U ∼ NW(0, σ2).

1 Generate a normal random vector a ∼ N (0, σ2I m(m+1)
2

).
2 Reshape a ∈ Rm(m+1)/2 into A ∈ SYM(m).
3 U = PTIm→X(C ⊙ A).

4.2 Hyperbolic

We consider the two popular geometric models of the hyperbolic space: the Poincaré ball and the Lorentz
hyperboloid model (Nickel & Kiela, 2017; 2018).

Poincaré ball. The Poincaré ball model is defined as PB(m) = {w ∈ Rm : ∥w∥2 < 1} with the metric
given by ⟨u, v⟩PB

w = 4⟨u, v⟩2/(1 − ∥w∥2
2). The tangent space at any w ∈ PB(m) is TwPB(m) = Rm. The

reference point for Algorithm 2 is “w = o ∈ Rm, where o denotes the zero vector. The PB metric at o is
⟨u, v⟩PB“w = ⟨u, v⟩2. The sampling algorithm is concretely shown in Algorithm 6 whose implementation cost
is O(m). The implicit basis that is being used by Algorithm 6 is

BPB
x = {ei(1 − ∥w∥2

2)/4 : i = 1, . . . , m},

where ei ∈ Rm, i = 1, . . . , m denotes the standard basis vector.

Algorithm 6: Sampling on Poincaré ball
Input : Base point w ∈ PB(m).
Output: Tangent Gaussian sample u ∼ Nw(0, σ2).

1 Generate a normal random vector a ∼ N (0, σ2Im).
2 u = PTom→x(a/4).

Lorentz hyperboloid. The Lorentizian inner product for x, w ∈ Rn is given by ⟨x, w⟩L = −x1y1 +∑k
i=2 xiyi. The Loretnz hyperboloid model is defined as LH(k) = {w ∈ Rk|⟨w, w⟩L = −1} with the

Lorentizian inner product as the Riemannian metric. The tangent space at w ∈ LH(k) is given by
TwLH(k) = {u ∈ Rk|⟨w, u⟩L = 0}. The reference point for Algorithm 2 is “w = e1 ∈ Rm, the LH metric at e1
simplifies as ⟨u, v⟩LH“w = ⟨u, v⟩2 for u, v ∈ T“wPB(m) and tangent space simplifies as T“wPB(m) = {0}×Rm−1.
The sampling algorithm is concretely shown in Algorithm 7. The implementation cost is O(m). The implicit
basis that is being used by Algorithm 7 at w is

BLH
w =

ß
ēi − wi+1

1 + w1
(ei + w) : i = 1, . . . , m − 1

™
,

where ēi = (0, ẽi) and ei ∈ Rm, ẽi ∈ Rm−1 denotes standard basis vectors for i = 1, . . . , m − 1.

Algorithm 7: Sampling on Lorentz hyperboloid
Input : Base point w ∈ PB(m).
Output: Tangent Gaussian sample u ∼ Nw(0, σ2).

1 Generate a normal random vector a ∼ N (0, σ2Im−1).
2 Perform zero padding a = [0, a] ∈ Rm.
3 u = PTe1→w(a).

9
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4.3 Sphere manifold

The sphere manifold is denoted as the set SP(m) = {w ∈ Rm| ∥w∥2 = 1} and the tangent space at w is given
by TwSP(m) = {u ∈ Rm|⟨w, u⟩2 = 0}. The Riemannian metric is the induced by the Euclidean metric, i.e.,
⟨u, v⟩w = ⟨u, v⟩2. The reference point for Algorithm 2 is “w = e1 ∈ Rm and SP metric at e1 simplifies as
⟨u, v⟩SP“w = ⟨u, v⟩2. With parallel transport as the preferred isometric transportation procedure, the sampling
implementation is shown in Algorithm 8 with implementation cost O(m). The implicit basis being used by
Algorithm 8 is

BSP
w = {ēi − wi+1 · w : i = 1, . . . , m − 1} ,

where ēi = (0, ẽi) and ẽi ∈ Rm−1 denotes the standard basis vector for i = 1, . . . , m − 1.

Algorithm 8: Sampling on sphere
Input : Base point w ∈ SP(m).
Output: Tangent Gaussian sample u ∼ Nw(0, σ2).

1 Generate a normal random vector a ∼ N (0, σ2Im−1).
2 Perform zero padding a = [0, a] ∈ Rm.
3 u = PTe1→w(a).

4.4 Stiefel manifold

The Stiefel manifold is the set of column orthonormal matrices, i.e., ST(m, r) = {W ∈ Rm×r|WT W = I}
and its tangent space at W is TWST(m, r) = {U ∈ Rm×r|UT W + WT U = O}, where O ∈ Rr×r is
the zero matrix. The Riemannian metric is the induced by the Euclidean metric ⟨U, V⟩ST

W = Tr(UT V)
(Edelman et al., 1998). The reference point for Algorithm 2 is Ŵ = [e1, . . . er] ∈ Rm×r, where the metric
is ⟨U, V⟩ST“w = Tr(UT V) and the tangent space is T”WST(m, r) = SKEW(r) × R(m−r)×r, where we denote
SKEW(r) as the set of skew-symmetric matrices of size r × r. Huang et al. (2017) have proposed an efficient
isometric vector transport procedure, which we choose for implementing Algorithm 2. The concrete sampling
procedure is shown in Algorithm 9 with an implementation cost O(mr2). The implicit basis that is being
used by Algorithm 9 is

BST
W = { 1√

2
W(eieT

j − ejeT
i ) : i = 1 . . . r, j = i + 1, . . . , r} ∪ {W⊥ẽieT

j : i = 1, . . . , m − r, j = 1, . . . , r},

where ei ∈ Rr, ẽi ∈ Rm−r denotes the standard basis vectors for i = 1, . . . , m − 1 and W⊥ ∈ Rm×(m−r)

denotes a matrix such that the columns form an orthonormal basis of the orthogonal complement of the
columns of W.

Algorithm 9: Sampling on Stiefel manifold
Input : Base point W ∈ ST(m).
Output: Tangent Gaussian sample, U ∼ NW(0, σ2).

1 Generate a normal random vector a1 ∼ N (0, σ2I r(r−1)
2

) and reshape into A1 ∈ SKEW(r).
2 Generate a normal random vector a2 ∼ N (0, σ2I(m−r)×r) and reshape into A2 ∈ R(m−r)×r.

3 Ŵ = [e1, . . . , er] , A =
ï
A1/

√
2

A2

ò
∈ Rm×r.

4 U = VT”W→W (A).

4.5 Grassmann manifold

The Grassmann manifold GR(m, r) consists of r-dimensional linear subspaces of Rm (r ≤ m) and is rep-
resented as GR(m, r) = {colspan(W)|W ∈ Rm×r, WT W = Ir}, where colspan denotes the column space.

10
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The tangent space at W is TWGR(m, r) = {U ∈ Rm×r|U ∈ Rm×r, WT U = Or} where Or ∈ Rr×r

is zero matrix (Edelman et al., 1998). The Riemannian metric is induced by the Euclidean metric
⟨U, V⟩GR

W = Tr[UT V] for U, V ∈ TWGR(m, r). (Edelman et al., 1998). The reference point for Algo-
rithm 2 is Ŵ = [e1, . . . er] ∈ Rm×r, the metric at Ŵ is ⟨U, V⟩GR“w = Tr(UT V) and tangent space at Ŵ
simplifies as T”WGR(m, r) = {0}r×r × R(m−r)×r, where we denote {0}r×r as the singleton set of zero ma-
trix of size r × r. Similar to the Stiefel case, we use the vector transport may as the preferred isometric
transportation procedure (Huang et al., 2017). The sampling implementation is shown in Algorithm 10 with
computational cost O(mr2). The implicit basis that is being used by Algorithm 10 is

BGR
W = {W⊥ẽieT

j : i = 1, . . . , m − r, j = 1, . . . , r},

where ei ∈ Rr, ẽi ∈ Rm−1 denote the standard basis vectors for i = 1, . . . , m − 1 and W⊥ ∈ Rm×(m−r)

denotes a matrix such that the columns form an orthonormal basis of the orthogonal complement of the
column space of W.

Algorithm 10: Sampling on Grassmann manifold
Input : Base point W ∈ GR(m).
Output: Tangent Gaussian sample, U ∼ NW(0, σ2).

1 Generate a normal random vector a ∼ N (0, σ2I(m−r)×r) and reshape into A ∈ R(m−r)×r.

2 Ŵ = [e1, . . . , er] , A =
ï
Or

A

ò
∈ Rm×r.

3 U = VT”W→W(A).

5 Private Riemannian variance reduced stochastic optimization

Variance reduced stochastic optimization methods (Roux et al., 2012; Johnson & Zhang, 2013; Defazio
et al., 2014; Reddi et al., 2016) employ a hybrid update rule that uses both full gradient and stochastic
gradient information simultaneously. By doing so, variance reduced methods improve the gradient complexity
compared to the stochastic and the full gradient descent methods by requiring less gradient calls to achieve
the same convergence rates than the full gradient descent method. Many variance reduction strategies that
work in the Euclidean space have also been generalized to manifolds (Zhang et al., 2016; Sato et al., 2019;
Zhou et al., 2019; Han & Gao, 2021).

In this section, we privatize the Riemannian stochastic variance reduced gradient (RSVRG) algorithm (Zhang
et al., 2016) for solving (1) and develop a differentially private RSVRG algorithm, henceforth denoted by DP-
RSVRG. Our proposed DP-RSVRG is summarized in Algorithm 11. DP-RSVRG with restart is presented
as Algorithm 12.

DP-RSVRG has two loops. In the inner loop, an unbiased variance reduced stochastic gradient is constructed
by correcting the Riemannian stochastic gradient with the full gradient calculated at the outer loop. We
add noise from the tangent Gaussian distribution to the variance reduced gradient. The clipping operation
clipτ : TwM → TwM is defined as clipτ (ν) = min

¶∥ν∥w

τ , 1
©

ν and it ensures that the norm of ν is at most τ .
The norm of the full gradient is clipped with parameter C0 and the variance reduced gradient with parameter
C1, respectively. PT refers to the parallel transport operation.

5.1 Privacy guarantee

In this section, we analyze the privacy guarantees of DP-RSVRG. We begin by noting that the variance
reduced stochastic gradient has a deterministic and a subsampled component. Hence, Step 7 of Algorithm
11 can be equivalently re-written as

vs+1
t = clipC1 (grad f(ws+1

t ; zit
)) − PT‹ws→ws+1

t
(
clipC1 (grad f(w̃s; zit

)) − (gs+1 + ξs
t1)
)

+ ξs
t2, (2)

11
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Algorithm 11: DP-RSVRG
Input : update frequency m, learning rate η, number of epochs S, clipping parameters C0, C1, and

initial iterate w0.
1 initialize w̃ = w0.
2 for s = 0, 1, . . . , S − 1 do
3 ws+1

0 = w̃s.

4 gs+1 = 1
n

∑n
i=1 clipC0 (grad f(w̃s; zi)).

5 for t = 0, 1, . . . , m − 1 do
6 Randomly pick it ∈ {1, . . . , n}.
7 vs+1

t = clipC1 (grad f(ws+1
t ; zit)) − PT‹ws→ws+1

t
(
clipC1 (grad f(w̃s; zit)) − gs+1)+ ϵs+1

t , where
ϵs+1

t ∼ Nws+1
t

(0, σ2).
8 ws+1

t+1 = Expws+1
t

(−ηvs+1
t ).

9 Set w̃a = ws+1
m .

10 Output I : wpriv = w̃S .

11 Output II : wpriv is choosen uniformly randomly from {{ws+1
t }m−1

t=0 }S−1
s=0 .

Algorithm 12: DP-RSVRG with restarts
Input : update frequency m, learning rate η, number of epochs S, and initial iterate w0.

1 for k = 0, 1, . . . , K − 1 do
2 wk+1 = DP-RSVRG(m, η, S, wk) with output option II.

where ξs
t1 ∼ N‹ws(0, σ2

1) and ξs
t2 ∼ Nws+1

t
(0, σ2

2). Specifically, the noise variance σ2 is split into into σ2
1 for

the full gradient query and σ2
2 for the variance reduced stochastic gradient query such that σ2

1 + σ2
2 = σ2.

Claim 2 ensures that PT‹ws→ws+1
t ξs

t1+ξs+1
t2 = ϵs+1

t ∼ Nws+1
t

(0, σ2). Hence, (2) can be viewed as a composition
of a full gradient tangent Gaussian mechanism

Rs(Z) = rs+1 = 1
n

n∑
i=1

clipC0 (grad f(w̃s; zi)) + ξs
t1,

where ξs
t1 ∼ N‹ws(0, σ2

1) and a variance reduced Gaussian mechanism

Rs+1
t (Z) = clipC1 (grad f(ws+1

t ; zit
)) − PT‹ws→ws+1

t
(
clipC1 (grad f(w̃s; zit

)) − rs+1)+ ξs+1
t2 ,

where ξs+1
t2 ∼ Nws+1

t
(0, σ2

2). We now prove the moments bounds on the full gradient mechanism KRs and
variance reduced mechanism KRs+1

t
in the following claims and the proofs are given in Section B.3.1.

Claim 3. The moments bounds satisfy

KRs(λ) ≤ 2λ(λ + 1)C2
0

n2σ2
1

and KRs+1
t

(λ) ≤ 8λ(λ + 1)C2
1

σ2
2

.

Now we derive the moments bound on subsampled version of Rs+1
t using the results given in (Wang et al.,

2019b;c) and the proof is given in Section B.3.2.
Claim 4. Define subsample : Zn → Z as the process of sampling a single data point from n data points
uniformly randomly. Define the subsampled mechanism for Rs+1

t as subRs+1
t = Rs+1

t ◦ subsample. Suppose
σ2 ≥ 12C2

1 and λ ≤ 2/3σ2
2 log

(
n(λ + 1)(1 + (σ2

2/16C2
1))
)
, we have

KsubRs+1
t

(λ) ≤ 28λ(λ + 1)C2
1

n2σ2
2

.

12
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The full mechanism R can be seen as an adaptive composition of {{KsubRs+1
t

}m−1
t=0 }S−1

s=0 and {{KRs}m−1
t=0 }S−1

s=0 .

Since σ2
1 +σ2

2 = σ2, we can rewrite σ2
1 = ασ2, σ2

2 = (1−α)σ2 for some α ∈ (0, 1). Using this claim, minimizing
over α, and setting C = max{C0, C1}, we have

KR(λ) ≤
m∑

t=0

S−1∑
s=0

KsubRs+1
t

(λ) +
m∑

t=0

S−1∑
s=0

KRs+1(λ) ≤ 2mSλ(λ + 1)C2
0

n2σ2
1

+ 28mSλ(λ + 1)C2
1

n2σ2
2

⇒ KR(λ) ≤ min
α∈(0,1)

mSλ(λ + 1)C2

n2σ2

ï 2
α

+ 28
1 − α

ò
. (3)

It should be noted that for a given λ, the minimization over α has a closed-form solution.

The moments bound KR given in (3) can be converted to (ϵ, δ) guarantee using conversion rules, e.g., based
on (Mironov, 2017, Proposition 3): Given 0 < δ < 1, ϵ = minλ≥1

KR(λ−1)+log 1/δ
λ−1 . Recently, however, the

optimal conversion rule has been given in (Asoodeh et al., 2020, Theorem 3) for which there exists no closed-
form expression but can be solved numerically to get ϵ. The solver is available in the autodp library (Wang
et al., 2019c). The above result connecting the moment bound KR with α in (3) implies that tighter (ϵ, δ)
guarantees can be obtained by optimizing over α, i.e., by exploiting the inter-play between the the noise
added to the full gradient and that to the variance reduced gradient.

It should be emphasized that in the Euclidean setting, Wang et al. (2017) have not considered optimization
of α as in (3). We empirically show that such an optimization of α obtains significant improvement in privacy
in Section 6.2. We end this section with the following privacy result for Algorithms 11 and 12.
Claim 5. Algorithms 11 and 12 are (ϵ, δ)-differentially private with σ2 ≥ c1

mS log(1/δ)C2

n2ϵ2 and σ2 ≥
c2

mSK log(1/δ)C2

n2ϵ2 , respectively, for some positive constants c1, c2 and C = max{C0, C1}.

5.2 Utility guarantee

In this section, we prove the utility guarantees of DP-RSVRG under various function classes on manifolds
including geodesic strong convex functions, general nonconvex functions, and functions that satisfy the
Riemannian Polyak–Łojasiewicz (PL) condition. In particular, the geodesic strong convexity and Riemannian
PL conditions generalize the notions of strong convexity and PL condition from the Euclidean space to
manifolds, allowing fast convergence (for problems satisfying these conditions) to global optimality when
optimizing on manifolds. The proofs of the results discussed in this section are included in Sections B.4.1-
B.4.3.

Let W ⊆ M be a totally normal neighborhood and DW denotes its diameter and κmin is the lower bound
on curvature of W (discussed in details in Section 2). Following (Zhang & Sra, 2016; Han & Gao, 2021; Han
et al., 2022a), we make the below standard assumption.
Assumption 1. Each fi in (1) is L-geodesically smooth and L0-geodesically Lipschitz over W.

The gradient complexity of an algorithm is measured in the number of incremental first-order oracle
(IFO) calls needed. An IFO (Agarwal & Bottou, 2015) takes an index i ∈ [n], w ∈ W and returns
(fi(w), grad fi(w)) ∈ R × TwM. Also, for readability we hide the log factors through notation ‹O in the
utility bounds and gradient complexities. The exact expressions are in (11), (12) for µ-strongly convex func-
tions; (16), (17) for non-convex functions; and (18), (19) for functions with the Riemannian PL condition in
the appendix section.
Theorem 6 (Utility under geodesic strong convexity). Suppose that Assumption 1 holds and F is µ-
strongly geodesic convex over W. If we run the Algorithm 11 with learning rate η = O( µ

ζL2 ), fre-
quency m = ‹O( ζL2

µ2 ) for S = O(log( nϵµ
log (1/δ)ζL2

0d
)) outer loops with output I, then E[F (wpriv) − F (w∗)] =‹O (dζLL2

0 log(1/δ)E[dist2(w0,w∗)]
µ2n2ϵ2

)
. Furthermore, the gradient complexity is given by ‹O(n + ζL2

µ2 ).

Theorem 7 (Utility under nonconvex functions). Suppose that Assumption 1 holds. If we run the Algo-
rithm 11 with output II, learning rate η = O( 1

Ln2/3ζ1/2 ), frequency m = Θ(n) and for S =
√

Lζ
d log(1/δ)

n2/3ϵ
L0

13



Published in Transactions on Machine Learning Research (02/2023)

outer loops, then E∥ grad F (wpriv)∥2 ≤ L0
√

dL log(1/δ)E[F (w0)−F (w∗)]
nϵ . The gradient complexity is given by

O(
√

Lζ
d log(1/δ)

n5/3ϵ
L0

).

We now use Algorithm 12 to achieve utility guarantee under the Riemannian PL condition.
Theorem 8 (Utility under Riemannian PL condition). Suppose that Assumption 1 holds and F =
1
n

∑n
i=1 fi(w) satisfies the Riemannian PL condition with parameter τ . If we run Algorithm 12 with

learning rate η = O( 1
Ln2/3ζ1/2 ), frequency m = Θ(n), S = O(1), and K = log( n2ϵ2

dLτ2 log(1/δ)L2
0
), then

E[F (wpriv) − F (w∗)] ≤ ‹O( dLτ2 log(1/δ)L2
0

n2ϵ2 ). Furthermore, the gradient complexity is given by ‹O(Lτζ1/2n2/3).

5.3 Discussion: DP-RGD vs DP-RSGD vs DP-RSVRG

In this section, we compare our proposed DP-RSVRG with DP-RGD (Han et al., 2022a) and DP-RSGD
(Han et al., 2022a).

1. Strongly geodesic convex: DP-RSGD and DP-RGD both assume fi in (1) to be µ−strongly
g-convex. In contrast, DP-RSVRG in Theorem 6 just assumes that F =

∑n
i=1 fi to be µ-strongly

g-convex, which is a much weaker assumption. Furthermore, DP-RSVRG assumes fi to be L-g-
smooth, while DP-RGD, DP-RSGD do not make any smoothness assumption.
For µ-strongly g-convex functions, DP-RGD and DP-RSGD obtain the utility bound
O
(

dζL2
0 log (1/δ)E[dist2(w0,w∗)]

µn2ϵ2

)
with gradient complexities n2 and n3, respectively (Han et al., 2022a,

Theorem 3). On the other hand, DP-RSVRG obtains a utility bound ‹O (dζLL2
0 log(1/δ)E[dist2(w0

S ,w∗)]
µ2n2ϵ2

)
in ‹O(n + ζL2

µ2 ) IFO calls. DP-RSVRG bounds are worse in terms of condition number L/µ due to
the weaker assumption as discussed above.

2. Riemannian PL condition: DP-RSGD and DP-RGD both assume fi in (1) to satisfy the Rie-
mannian PL condition with parameter τ . On the other hand, DP-RSVRG in Theorem 8 assumes
that F =

∑n
i=1 fi satisfies the same condition, which is weaker.

DP-RGD and DP-RSGD obtain utility bound of ‹O ( τ−1d log(1/δ)L2
0E[F (w0)−F (w∗)]

n2ϵ2

)
in

n log
(

n2ϵ2

dL2
0 log(1/δ)

)
and log

(
n2ϵ2

dL2
0 log(1/δ)

)
IFO calls, respectively. DP-RSVRG obtains a utility

bound ‹O (dLτ2 log(1/δ)L2
0

n2ϵ2

)
in ‹O(Lτζ1/2n2/3) IFO calls. DP-RSVRG bounds are worse in terms of

PL parameter τ because of weaker assumption as mentioned above.

3. Nonconvex: In the nonconvex setting, only a bound on the gradient norm can be obtained instead
of a bound on the excess risk. Both DP-RGD and DP-RSGD obtain bound on gradient norm as
O( L0

√
dL log(1/δ)

nϵ ) in O(
√

Ln2ϵ

L0
√

d log(1/δ)
) and O(

√
Lnϵ

L0
√

d log(1/δ)
) iterations respectively (Han et al., 2022a,

Theorem 5). From Theorem 7, DP-RSVRG obtains bound on gradient as O( L0
√

dL log(1/δ)
nϵ ) in

O(
√

Lζ
d log(1/δ)

n5/3ϵ
L0

) iterations. Hence, in this case, DP-RGD, DP-RSGD, and DP-RSVRG have the
same matching utility bounds.

6 Experiments

In this section, we illustrate the efficacy of the proposed sampling procedures and the proposed DP-RSVRG
algorithm. We also show the benefit of α optimization (Section 5.1) in terms of the gain in privacy guarantee.

6.1 Benchmarking of different sampling procedures

We benchmark our proposed isometric transportation (Algorithm 2) based sampling, denoted as ‘Trans-
portation’, with the following three baselines.
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Figure 1: Benchmarking of different sampling strategies. As can be seen, our proposed method ‘Transporta-
tion’ consistently outperforms the other baselines on the manifolds.

1. Sampling using Gram-Schmidt. We perform Gram-Schmidt orthogonalization on the basis B
that is orthonormal wrt the Euclidean metric. This is a baseline for the SPD and Lorentz hyperboloid
manifolds because for other manifolds, the orthonormal basis with respect to the underlying metric
⟨., .⟩w can be simply obtained by scaling B. This is denoted as ‘Gram-Schmidt’.

2. Sampling using explicit basis. We take the implicit bases generated by the isometric trans-
portation strategy (Algorithm 2) and generate them explicitly, i.e., construct the full basis and then
perform linear combinations. This is denoted as ‘Explicit’.

3. Sampling using explicit basis by exploiting sparsity. As an additional baseline, we implement
sampling with explicit basis construction using sparse operations. Sparsity is present in Stiefel,
Grassmann, and Poincaré ball bases, and is therefore a baseline only for these three manifolds. This
is denoted as ‘Explicit-Sparse’.

In Figure 1, we benchmark the sampling time for generating a single sample from the tangent Gaussian
distribution on various manifolds discussed in Section 4. For SPD(m), we consider m = {5, 10, 20, 30, 50}.
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Table 2: Overhead of privatizations for DP-RSGD (with 3 × 105 epochs) for the SPD Fréchet mean and
the principal eigenvector problems. Our proposed isometric transportation based sampling strategy lead to
orders of magnitude improvements than those of Han et al. (2022a).

Manifold Size Han et al. (2022a) This work

SPD 11 × 11 660 hrs 41 seconds (∼ 104 improvement)
Sphere 786 668 seconds 24 seconds (∼ 10 improvement)

For PB(m), LH(m), and SP(m), we consider m = {250, 500, 1000, 1500, 2000}. For GR(m, r) and ST(m, r),
we consider m = {100, 250, 500, 750, 1000} and r = {10, 20}.

Figure 1 shows the average sampling time over five different base points chosen at random. From the figure,
we see that the transportation sampling strategy is faster by two to four orders of magnitude than all the
considered baselines. It also shows the benefit of the transportation strategy as a unified sampling framework.

We study the benefits of the proposed sampling procedures in two problems: private estimation of the SPD
Fréchet mean and the principal eigenvector (discussed in Section 6.3). We use DP-RSGD algorithm for both
problems and compare our sampling strategy with that developed in (Han et al., 2022a). The results are
shown in Table 2. We observe that the proposed sampling strategy offers significant improvements leading
to minimal overhead due to privatization.

6.2 Optimizing α in moments bound for better (ϵ, δ) guarantees

0 20 40
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Figure 2: Improving pri-
vacy with α.

We now show that better privacy guarantees can be empirically achieved by op-
timizing α in moments bound (Section 5.1). To this end, we use the autodp
library (Wang et al., 2019c) and set σ1 =

√
ασ, σ2 =

√
(1 − α)σ instead of the

standard setting σ1 = σ2 = σ/
√

2. We fix C1 = 0.1, C2 = 0.01 and frequency
to m = 10000 and n = 100000. The results are shown in Figure 2 for epochs
S = {1, 5, 10, 25, 50, 100} and noise σ = {0.1, 0.05}. We observe that our pro-
posal to optimize over α significantly improves the privacy guarantees than the
standard setting. For noise level σ = 0.05, we obtain ϵ = 0.47, while the standard
setting achieves ϵ = 0.64 leading to a 1.6× improvement in privacy guarantee.

6.3 Benchmarking DP-RSVRG

In this section, we compare our proposed DP-SVRG with DP-RGD and DP-RSGD (Han et al., 2022a) for
the task of computing the Fréchet mean and leading eigenvector with privacy configuration ϵ = {0.1, 0.3, 0.5}
and δ = 10−6. The parameter details for all the algorithms are in Section C.

Private Fréchet mean on SPD manifold. We consider the problem of privately estimating the Fréchet
mean of SPD matrices under the Affine-Invariant metric. We select images from PATHMNIST medical
imaging dataset (Yang et al., 2021) and pass them through the covariance descriptor pipeline to generate
images, each represented as a SPD matrix of size 11 × 11. Please refer to Section C.1 for more details
on the problem formulation and covariance descriptors. We consider the two sets consisting of 10704 and
10356 images from two different classes. For each set, we compute the optimal Fréchet mean by running
the (non-private) RGD for 1000 epochs with learning rate set to 0.5. For both the sets, we plot excess risk
against the IFO calls in Figure 3a averaged over five randomized runs. The plots corresponding to the two
sets are shown in the two rows of Figure 3a.

Private principal eigenvector computation on sphere. We also consider the problem of computing the
leading eigenvector a symmetric matrix, details in Section C.2. We take images from two classes of MNIST
and generate 784 vectors to form two sets of 6903 and 7877 images. For each set, we compute the covariance
matrix and compute its leading eigenvector by using eigen-decomposition of matrix 1/n

∑n
i=1 zizT

i to find
the optimal solution. We plot the excess risk against the IFO calls in Figure 3b averaged over five randomized
runs. The plots corresponding to the two sets are shown in the two rows of Figure 3b.
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(a) Private Fréchet mean of the medical imaging data on the SPD manifold.
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(b) Private principal eigenvector on MNIST dataset.
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Figure 3: Comparison between DP-RGD, DP-RSGD, and DP-RSVRG. Each row in (a), (b), and (c) corre-
sponds to consistent dataset. We see the proposed DP-SVRG achieves a comparable excess risk compared
to the baselines with lower number of IFO calls.
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Private Fréchet mean of the Poincaré word embeddings. We generate the hierarchy tree of transitive
closure of mammal subtree of the WordNet dataset (Miller, 1995), a lexical database, and compute the private
Fréchet mean of the Poincaré word embeddings (Nickel & Kiela, 2017). WordNet provides relationship
between pairs of concepts. For instance, the ‘mammal’ subtree of WordNet has the concept ‘mammal’ as the
root node and the ‘is-a’ (hypernymy) relationship defines its edges: ‘tiger’ is-a ‘mammal’, ‘lion’ is-a ‘rodent’,
etc. The mammal subtree consists of 1180 nodes and 6540 edges. The results are shown in Figure 3c.

Results. In Figure 3a, we observe that the proposed DP-RSVRG obtains an overall better excess risk
in computing the private Fréchet mean of the two classes (corresponding to the two rows in Figure 3a)
on medical imaging data. In Figure 3a) first row, DP-RSVRG performs consistently better than both the
baselines. In Figure 3a) second row, DP-RSVRG performs better than DP-RGD and is similar to DP-SRGD.
In Figure 3b, the benefit of variance reduction is clearly observed. In both rows of Figure 3b, the proposed
DP-SVRG consistently outperforms DP-RGD and DP-RSGD in the gradient calls and achieves a good excess
risk. On the Fréchet mean computation of the Poincaré embeddings (Figure 3c), we see that the benefit
of variance reduction as well as the proposed DP-RSVRG performs better than DP-RSGD especially in
low ϵ regime (more stringent private setting). In all cases, DP-RGD performs the best and our proposed
DP-RSVRG matches the performance in the initial iterations.

Overall, we observe that the proposed DP-RSVRG obtains better or comparable excess risk against DP-GD
and DP-SGD with generally fewer IFO calls across different levels of noise injection.

7 Conclusion

In this work, we have improved the framework of differentially private Riemannian optimization via efficient
sampling and variance reduction. We have proposed a linear isometry based sampling strategy to generate
tangent Gaussian samples. This largely reduces the cost of privatizing Riemannian optimization. In addition,
we have shown how variance reduction improves the gradient complexity in practice. We believe this work
allows Riemannian optimization to be privatized efficiently for large-scale applications.
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A Details about parallel transport and vector transport

A.1 Parallel transport expressions for SPD, hyperbolic, and sphere manifolds

SPD manifold. For the Affine-Invariant and the Log-Euclidean metrics, the parallel transport operation
of a tangent vector U ∈ SYM(m) from Ŵ to W, Ŵ, W ∈ SPD(m) is available is closed form (Bhatia, 2009;
Pennec et al., 2006; Thanwerdas & Pennec, 2023).

For the Bures-Wasserstein metric, there is no closed-form expression for the parallel transport operation for
general Ŵ, W. However, when Ŵ and W commute, there exists a closed-form expression (Thanwerdas &
Pennec, 2023). We exploit this for our case as Ŵ = I (Algorithm 4), i.e., any base point always commutes
with the reference point. Below, we list the parallel transport expressions for all the three metrics, i.e.,

Affine-Invariant: PT”W→W(U) = (WŴ
−1

) 1
2 U(Ŵ

−1
W) 1

2 ,

Bures-Wasserstein: PT”W→W(U) = P
î
KBW ⊙

Ä
PT UP

äó
PT ,

Log-Euclidean: PT”W→W(U) = P
î
KLE ⊙

Ä
PT UP

äó
PT ,

where KBW ∈ Rm×m such that (KBW)rs = λr+λs

δr+δs
, KLE ∈ Rm×m such that (KLE)rs = f(λr, λs). Here,

f(x, y) = x−y
exp (x)−exp (y) if x ̸= y else f(x, y) = 1

exp (x) when x = y and (δ1, . . . , δm) and (λ1, . . . , λm) ∈ Rm

denotes the eigenvalues of Ŵ and W, respectively.

Hyperbolic manifold. The parallel transport expressions can be found in (Lou et al., 2020),

Poincaré ball: PT“w→w(u) = 1 − ∥w∥2
2

1 − ∥“w∥2
2

gyr[w, −“w](u), gyr[“w, w](u) = (o ⊖ (“w ⊕ w)) ⊕ (“w ⊕ (w ⊕ u)),

where “w ⊕ w = [(1 + 2⟨“w, w⟩2 + ∥w∥2
2)“w + (1 − ∥“w∥2

2)w]
[1 + 2⟨“w, w⟩2 + ∥“w∥2

2 ∥w∥2
2]

,“w ⊖ w = “w ⊕ −w.

Lorentz hyperboloid: PT“w→w(u) = u − ⟨w, u⟩L

1 − ⟨“w, w⟩L
(“w + w).

Sphere manifold. The parallel transport expression can be found in (Absil et al., 2009; Boumal, 2022),

PT“w→w(u) =
Å

I + (cos ∥v∥2 − 1) vvT

∥v∥2
− sin ∥v∥2

“wvT

∥v∥2

ã
u,

where v = Exp−1“w w = arccos ⟨“w, w⟩2
(I − “w“wT )(w − “w)

∥(I − “w“wT )(w − “w)∥2
.

A.2 Vector transport for Stiefel and Grassmann manifolds

Efficient vector transport on the Stiefel and Grassmann manifolds are provided in (Huang et al., 2017) which
proposes a strategy called transportation by parallelization (Huang et al., 2015). For the exact algorithms,
see (Huang et al., 2017, Algorithms 3, 4, and 5).

B Proofs

B.1 Proof of Lemma 1

Theorem 9 (Change of variable formula). Let X, Y be measurable space and ϕ : X → Y and f : Y → R is
measurable mapping and let λ be measure on X and ϕ∗λ denote the pushforward measure of λ through ϕ on
Y then

∫
Y

fd(ϕ∗λ) =
∫

X
f ◦ ϕ dλ.
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Proof.
1. Let µ⃗ ∈ Rd denote the coordinates of µ and consider the normalizing constant

Cw,σ =
∫

TwM
exp
Ç

−
∥ν − µ∥2

w

2σ2

å
d(ϕ∗λ)(ν) (∗)=

∫
Rd

exp

Ö
−

∥∥∥∑d
i=1 ciβi −

∑d
i=1 µ⃗iβi

∥∥∥2

w

2σ2

è
dλ(c)

=
∫
Rd

exp
(

−
∑d

i=1
∑d

j=1⟨(ci − µ⃗i)βi, (cj − µ⃗j)βj⟩w

2σ2

)
dλ(c) (∗∗)=

∫
Rd

exp
Ç

−
∑d

i=1(ci − µ⃗i)2

2σ2

å
dλ(c)

(†)= (2πσ2)d/2, (4)

where we use the change of variable rule (Theorem 9) under transformation ϕ in (∗), that (β1, . . . , βd)

is orthonormal tangent vectors in (∗∗), and that
∫
Rd exp(−

∑d

i=1
(ci−µ⃗i)2

2σ2 )dλ is the normalizing constant of
N (µ⃗i, σ2.I) in (†).

2.

Now, let ξ ∼ Nw(µ, σ2), we show that ξ⃗ ∼ N (µ⃗, σ2Id). Let A ⊆ Rd be a measurable set, then consider

Pr[ξ⃗ ∈ A] = Pr[ξ ∈ ϕB(A)] =
∫

ϕB(A)

1
(2πσ2)d/2 exp

Ç
−

∥ν − µ∥2
w

2σ2

å
d(ϕ∗λ)(ν)

=
∫

A

1
(2πσ2)d/2 exp

Ç
−

∑d
i=1(ci − µ⃗i)2

2σ2

å
dλ(c).

The last equality is obtained similarly as in (4). Since the last expression is exactly probability that a random
vector distributed as N (µ⃗, σ2Id) belongs to set A, we are done. The converse is shown in a similar way.

3. This simply follows Statement 2 of Lemma 1 and the variance bound from the standard Gaussian
distribution.

B.2 Proof of Claim 2

Proof. Given that LI“w→w is a linear isometric mapping, one can show that it is invertible and its inverse is
again isometry, which we will denote by LIw→“w. If ϕ∗λ is Lebesuge measure on Tw1M then LIw1→w

∗ (ϕ∗λ)
is the Lebesgue measure on TwM. This can be seen by observation that, if B = {β1, . . . , βd} is orthonormal
basis for T“wM then {LI“w→wβ1, . . . , LI“w→wβd} is orthonormal basis for TwM. Let ξ ∼ N“w(µ, σ2), we will
show that LI“w→wξ ∼ Nw(LI“w→wµ, σ2). consider measurable set S ⊆ TwM

Pr
î
LI“w→w(ξ1) ∈ S

ó
= Pr

î
ξ1 ∈ LIw→“w(S)

ó
=

∫
LIw→ŵ(S)

1
(2πσ2)d/2 exp

Ç
−

∥ν − µ∥2“w
2σ2

å
d(ϕ∗λ)(ν)

(∗)=
∫

S

1
(2πσ2)d/2 exp

Ö
−

∥∥∥LIw→“w(ν) − µ)
∥∥∥2“w

2σ2

è
d
Ä
LI“w→w

∗ (ϕ∗λ)
ä

(ν)

(∗∗)=
∫

S

1
(2πσ2)d/2 exp

Ö
−

∥∥∥ν − LI“w→w(µ)
∥∥∥2

w

2σ2

è
d
Ä
LI“w→w

∗ (ϕ∗λ)
ä

(ν),

where we used change of variables formula Theorem 9 (with X = LIw→“w(S), Y = S and ϕ = LI“w→w)
and that LI is isometry in (∗∗) . Since LI“w→w

∗ (ϕ∗λ) is the Lebesuge measure on TwM, we have that
LI“w→wξ ∼ Nw(LI“w→wµ, σ2).

25



Published in Transactions on Machine Learning Research (02/2023)

B.3 Proofs of Section 5

B.3.1 Proof of Claim 3

Proof. Let Qs+1 denote the full gradient query given by Qs+1(Z) = 1
n

∑n
i=1 grad f(w̃s; zi). Let Z, Z ′ ∈ Zn

denote adjacent datasets, consider the sensitivity, denoted as ∆s,

∆s+1 = sup
Z∼Z′

∥Qs+1(Z) − Qs+1(Z ′)∥ ≤ 1
n

[∥ grad f(w̃s; zn)∥‹ws + ∥ grad f(w̃s; z′
n)∥‹ws ] ≤ 2C0

n
. (5)

Following (Han et al., 2022a, Lemma 2), the moments bound of the full gradient mechanism Rs is given by

KRs(λ) ≤ λ(λ + 1)
2σ2

1
(∆s)2

(5
) ≤2λ(λ + 1)C2

0
n2σ2

1
.

Let Qs+1
t denote the variance reduced stochastic gradient query given by Qs+1

t (Z) = grad f(ws+1
t ; z) −

PT‹ws→ws+1
t (grad f(w̃s; z) − gs+1). Let Z, Z ′ ∈ Z denote adjacent datasets, consider its sensitivity, denoted

at ∆s
t+1,

∆s+1
t

= sup
Z∼Z′

∥∥Qs+1
t2 (Z) − Qs+1

t2 (Z ′)
∥∥

ws+1
t

(∗)
≤ sup

Z∼Z′

ï∥∥grad f(ws+1
t ; z) − grad f(ws+1

t ; z′)
∥∥

ws+1
t

+
∥∥∥PT‹ws→ws+1

t (grad f(w̃s; z) − grad f(w̃s; z′))
∥∥∥

ws+1
t

ò
(†)= sup

Z∼Z′

[∥∥grad f(ws+1
t ; z) − grad f(ws+1

t ; z′)
∥∥

ws+1
t

+ ∥grad f(w̃s; z) − grad f(w̃s; z′)∥‹ws

]
≤ sup

Z∼Z′

[∥∥grad f(ws+1
t ; z)

∥∥
ws+1

t

+
∥∥grad f(ws+1

t ; z′)
∥∥

ws+1
t

+ ∥grad f(w̃s; z)∥‹ws + ∥grad f(w̃s; z′)∥‹ws

]
(‡)
≤ 4C1, (6)

where we used linearity of parallel transport and triangle’s inequality in (∗) and that parallel transport is
isometric in (†) and triangle inequality and assumption of lipschitz in (‡). Now moments bound of Rs+1

t is
given by,

KRs+1
t

(λ) ≤ λ(λ + 1)
2σ2

2
(∆s+1

t )2
(6)
≤ 8λ(λ + 1)C2

1
σ2

2
. (7)

B.3.2 Proof of Claim 4

Proof. By using (Wang et al., 2019b, Lemma 3.7) and by choice of parameters σ2, λ we have

KsubRs+1
t (λ) ≤ 3.5

n2 KRs+1
t

(λ)
(7)
≤ 28λ(λ + 1)C2

1
σ2n2 .

B.3.3 Proof of Claim 5

Proof. For R can be show (ϵ, δ)-differentially private by solving for ϵ and δ as follows, i.e.,

min
α∈(0,1)

mSλ(λ + 1)C2

n2σ2

ï 2
α

+ 28
1 − α

ò
= mSλ(λ + 1)C2

n2σ2

ï 2
α∗ + 28

1 − α∗

ò
≤ λϵ

2 , exp
Å

−λϵ

2

ã
≤ δ, (8)
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where α∗ = (
√

14 − 1)/13 and there exists constant c1 > 0 such that σ2 ≥ c1
mS log(1/δ)C2

n2ϵ2 satisfies (8). Hence,
Algorithm 11 satisfies (ϵ, δ)-DP. For Algorithm 12 using similar arguments there exists constant c2 > 0 such
that σ2 ≥ c2

mSK log(1/δ)C2

n2ϵ2 guarantees (ϵ, δ)-DP .

B.4 Proofs of Section 5.2

Lemma 10 (Trigonometric distance bound (Zhang & Sra, 2016)). Let w0, w1, w2 ∈ W ⊆ M lie in totally
normal neighborhood of Riemannian manifold with curvature lower bounded by κmin and ℓ0 = dist(w0, w1)
and ℓ1 = dist(w1, w2) and ℓ2 = dist(w0, w2). Denote θ as the angle on Tw0M such that cos(θ) =

1
ℓ0ℓ1

⟨Exp−1
w0

(w1), Exp−1
w0

(w2)⟩w0 . Let DW be the diameter of W i.e., DW := maxw,w′ dist(w, w′). Define curva-
ture constant ζ =

√
κmin

tanh √
κmin

if κmin < 0 and ζ = 1 if κmin ≥ 0. Then, we have that ℓ2
1 ≤ ζℓ2

0 +ℓ2
2 −2ℓ0ℓ2 cos θ.

Lemma 11.

Eit,ϵt∥vs+1
t ∥2

ws+1
t

≤ Eit∥ grad f(ws+1
t ; zit) − PT‹ws→ws+1

t (grad f(w̃s; zit) − gs+1)∥2
ws+1

t
+ dσ2. (9)

Proof.

Eit,ϵt
∥vs+1

t ∥2
ws+1

t
= Eit,ϵt

∥ grad f(ws+1
t ; zit

) − PT‹ws→ws+1
t (grad f(w̃s; zit

) − gs+1) + ϵt∥2
ws+1

t

= Eit,ϵt
∥ grad f(ws+1

t ; zit
) − PT‹ws→ws+1

t (grad f(w̃s; zit
) − gs+1)∥2

ws+1
t

+ Eϵt
∥ϵt∥2

ws+1
t

+ ⟨Eit
grad f(ws+1

t ; zit
) − PT‹ws→ws+1

t (grad f(w̃s; zit
) − gs+1),Eϵt

[ϵt]⟩ws+1
t

≤ Eit
∥ grad f(ws+1

t ; zit
) − PT‹ws→ws+1

t (grad f(w̃s; zit
) − gs+1)∥2

ws+1
t

+ dσ2,

where we used that Eϵt
[ϵt] = 0 and Eϵt

∥ϵt∥2
ws+1

t

≤ dσ2 in last inequality.

B.4.1 Proof of Theorem 6

Proof. We bound first term Eit
∥ grad f(ws+1

t ; zit
) − PT‹ws→ws+1

t (grad f(w̃s; zit
) − gs+1)∥2

ws+1
t

as in (Zhang
et al., 2016)

Eit

∥∥∥grad f(ws+1
t ; zit

) − PT‹ws→ws+1
t (grad f(w̃s; zit

) − gs+1)
∥∥∥2

ws+1
t

≤ Eit

∥∥∥grad f(ws+1
t ; zit

) − PT‹ws→ws+1
t grad f(w̃s; zit

) + PT‹ws→ws+1
t

Ä
grad F (w̃s) − PT‹w∗→‹ws

grad F (w∗)
ä∥∥∥2

ws+1
t

≤ 2Eit

∥∥∥grad f(ws+1
t ; zit

) − PT‹ws→ws+1
t grad f(w̃s; zit

)
∥∥∥2

ws+1
t

+ 2Eit

∥∥∥PT‹ws→ws+1
t

Ä
grad F (w̃s) − PT‹w∗→‹ws

grad F (w∗)
ä∥∥∥2

ws+1
t

= 2Eit

∥∥∥grad f(ws+1
t ; zit

) − PT‹ws→ws+1
t grad f(w̃s; zit

)
∥∥∥2

ws+1
t

+ 2Eit

∥∥∥grad F (w̃s) − PT‹w∗→‹ws

grad F (w∗)
∥∥∥2‹ws

≤ 4L2∥Exp−1
ws+1

t

(w∗)∥2
ws+1

t
+ 6L2 ∥∥Exp−1‹ws w∗∥∥2‹ws

= 4L2dist2(ws+1
t , w∗) + 6L2dist2(w̃s, w∗). (10)

Using the trigonometric distance bound in Lemma 10 with w0 = xs+1
t , w1 = ws+1

t+1 , w2 = w∗,

dist2(ws+1
t+1 , w∗) ≤ ζdist2(ws+1

t+1 , ws+1
t ) + dist2(ws+1

t , w∗) − 2⟨Exp−1
xs+1

t

(ws+1
t+1 ), Exp−1

ws+1
t

(w∗)⟩ws+1
t

= ζ
∥∥∥Exp−1

ws+1
t

ws+1
t+1

∥∥∥2

ws+1
t

+ dist2(ws+1
t , w∗) − 2⟨−ηvs+1

t , Exp−1
ws+1

t

(w∗)⟩ws+1
t

= ζη2 ∥∥vs+1
t

∥∥2
ws+1

t

+ dist2(ws+1
t , w∗) + 2η⟨vs+1

t , Exp−1
ws+1

t

(w∗)⟩ws+1
t

.
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Applying expectation we have

dist2(ws+1
t+1 , w∗)

≤ ζη2Eit,ϵt

∥∥vs+1
t

∥∥2
ws+1

t

+ dist2(ws+1
t , w∗) + 2η⟨Eit,ϵtv

s+1
t , Exp−1

ws+1
t

(w∗)⟩ws+1
t

= ζη2L2 [4dist2(ws+1
t , w∗) + 6dist2(w̃s, w∗)

]
+ 2η⟨grad F (ws+1

t ), Exp−1
ws+1

t

(w∗)⟩ws+1
t

+ dζη2σ2

≤ ζη2L2 [4dist2(ws+1
t , w∗) + 6dist2(w̃s, w∗)

]
+ 2η[F (w∗) − F (ws+1

t ) − µ

2 dist2(ws+1
t , w∗)] + dζη2σ2

≤ (1 + 4ζη2L2 − ηµ)dist2(ws+1
t , w∗) + 6ζη2L2dist2(w̃s, w∗) + dζη2σ2.

Defining ut = dist2(ws+1
t+1 , w∗), q = (1 + 4ζη2L2 − ηµ), p = 6ζη2L2, c = dζη2σ2 we have following recurrence

ut+1 − pu0 ≤ q(ut − pu0) + c from which we have that um ≤ (p + qm(1 − p))u0 +
∑m−1

i=1 qic. Now choosing
η = µ

17ζL2 and m ≥ 10ζL2

µ2 . we get q = 1 − µ2

10ζL2 and p = 1/5. Note that 0 < µ2

10ζL2 < 1 ( L > µ, ζ ≥ 1) and
hence 0 < q < 1 and from which we have that (p + qm(1 − p)) = 1/2.

E[d2(ws+1
m , w∗)] ≤ E[dist2(ws

m, w∗)] + dζ
µ2σ2

289ζ2L4

m−1∑
i=1

Å
1 − µ2

10ζL2

ãi

≤ E[dist2(ws
m, w∗)] + dζ

µ2σ2

289ζ2L4

∞∑
i=1

Å
1 − µ2

10ζL2

ãi

= E[dist2(ws
m, w∗)] + dζ

µ2σ2

289ζ2L4
10ζL2

µ2 = E[dist2(ws
m, w∗)] + d

10σ2

289L2 ,

from which we have

E[dist2(wS
m, w∗)] = 2−SE[dist2(w0

m, w∗)] + d
10σ2

289L2

S∑
i=0

1
2i

≤ 2−SE[dist2(w0
m, w∗)] + 2dc−1 10

289L2
mS log(1/δ)L2

0
n2ϵ2

≤ 2−SE[dist2(w0
m, w∗)] + d

200ζ

289µ2
S log(1/δ)L2

0
n2ϵ2 .

E [f(xa) − f(w∗)] ≤ 1
2E
[
Ldist2(xa, w∗)

]
≤ 2−SLE[dist2(w0, w∗)] + Ld

ζ

µ2
S log(1/δ)L2

0
n2ϵ2 .

Now, setting 2−S = d ζ
µ2

log(1/δ)L2
0

n2ϵ2E[dist2(w0,w∗)] =⇒ 2S = n2ϵ2289µ2E[dist2(w0,w∗)]
d100ζ log(1/δ)L2

0
=⇒ S =

O
(

log
(

nϵµE[dist2(w0,w∗)]
log (1/δ)ζL0d

))
, substituting this we have that, and now for S = O

(
log
(

nϵµE[dist2(w0,w∗)
log (1/δ)ζL2

0d

))
E [f(xa) − f(w∗)] ≤ O

Ç
dζLL2

0 log(1/δ)E[dist2(w0, w∗)]
µ2n2ϵ2 log

Å
nϵµ

ζL2
0d log(1/δ)

ãå
. (11)

Gradient complexity: S ×n plus m × 2 IFO calls = 2nS + 2mS,

O
ÇÅ

n + ζL2

µ2

ã
log
Ç

nϵµE[dist2(w0, w∗)]
log (1/δ)ζL0d

åå
. (12)

This completes the proof.

B.4.2 Proof of Theorem 7

Before proving Theorem 7, we state and prove following lemma that we will be using later.
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Lemma 12. Assume that each fi is L-g-smooth, the sectional curvature in X is lower bounded by κmin and we
run Algorithm 11 with Option II. For ct, ct+1, β, η > 0 and suppose we have ct = ct+1(1+βη+2ζL2η2)+L3η2

and δ(t) = η − ct+1η
β − Lη2 − 2ct+1ζη2 > 0, then the iterate ws+1

t satisfies the bound

E∥ grad f(ws+1
t )∥2 ≤

Rs+1
t − Rs+1

t+1
δt

+
( 1

2 dLη2 + ct+1ζdη2)
δt

σ2,

where Rs+1
t := E[F (ws+1

t ) + ct

∥∥Exp‹wsws+1
t

∥∥] for 0 ≤ s ≤ S − 1.

Proof. The proof is adapted from (Zhang et al., 2016, Lemma 2). Denoting ∆s+1
t = grad f(ws+1

t ; zit
) −

PT‹ws→ws+1
t grad f(w̃s; zit) it can be seen that Eit|x̃s,ws+1

t
[∆s+1

t ] = grad F (ws+1
t ) − PT‹ws→ws+1

t grad F (w̃s)

Eit,ϵt

∥∥vs+1
t

∥∥2
ws+1

t

(9)
≤ Eit

∥∥∥grad f(ws+1
t ; zit) − PT‹ws→ws+1

t (grad f(w̃s; zit) − gs+1)
∥∥∥2

ws+1
t

+ dσ2

= Eit

∥∥∆s+1
t − Eit

∆s+1
t + grad F (ws+1

t )
∥∥2

ws+1
t

+ dσ2

(∗)
≤ 2Eit

∥∥∆s+1
t − Eit

∆s+1
t

∥∥2 + 2
∥∥grad F (ws+1

t )
∥∥2

ws+1
t

+ dσ2

(∗∗)
≤ 2Eit

∥∥∆s+1
t

∥∥2
ws+1

t

+ 2
∥∥grad F (ws+1

t )
∥∥2

ws+1
t

+ dσ2

(†)
≤ 2L2 ∥∥Exp−1‹ws (ws+1

t )
∥∥2‹ws + 2

∥∥grad F (ws+1
t )

∥∥2
ws+1

t

+ dσ2,

where ∥a + b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 in (∗) and Eit

∥∥∆s+1
t − Eit∆s+1

t

∥∥2 = Eit

∥∥∆s+1
t

∥∥2 −
∥∥E∆s+1

t

∥∥2 ≤
Eit

∥∥∆s+1
t

∥∥2 in (∗∗) and assumption that fi is L-g-smooth in (†). Taking full expectation we have

E
∥∥vs+1

t

∥∥2
ws+1

t

≤ 2L2 ∥∥Exp−1‹ws (ws+1
t )

∥∥2‹ws + 2
∥∥grad F (ws+1

t )
∥∥2

ws+1
t

+ dσ2. (13)

For bounding the Lyapunov function Rs+1
t+1 := E

î
F (ws+1

t+1 ) + ct+1
∥∥Exp‹ws(ws+1

t+1 )
∥∥2ó, we need to bound on

E[F (ws+1
t+1 )], E[

∥∥Exp‹ws(ws+1
t+1 )

∥∥2], First consider

E
[
F (ws+1

t+1 )
]

(∗)
≤ E

ï
F (ws+1

t ) +
〈

grad F (ws+1
t ), Exp−1

ws+1
t

(ws+1
t+1 )

〉
ws+1

t

+ L

2

∥∥∥Exp−1
ws+1

t

(ws+1
t+1 )

∥∥∥2

ws+1
t

ò
(∗∗)
≤ E

ï
F (ws+1

t ) − η
∥∥grad F (ws+1

t )
∥∥2

ws+1
t

+ Lη2

2
∥∥vs+1

t

∥∥2
ws+1

t

ò
(13)
≤ E

ï
F (ws+1

t ) − η
∥∥grad F (ws+1

t )
∥∥2

ws+1
t

+ Lη2

2
(
2L2∥Exp−1‹ws (ws+1

t )∥2 + 2∥ grad F (ws+1
t )∥2 + σ2d

)ò
= (Lη2 − η)∥ grad F (ws+1

t )∥2 + F (ws+1
t ) + L3η2∥Exp−1‹ws (ws+1

t )∥2 + 1
2dLη2σ2, (14)

where we used the assumption that fi is L-g-smooth implies that F is L-g-smooth in (∗) and Exp−1
ws+1

t

= vs+1
t

and E
[
vs+1

t

]
= grad F (ws+1

t ) in (∗∗). Using the trigonometric distance bound on ws+1
t , ws+1

t+1 , w̃s we have,

∥∥Exp−1‹ws (ws+1
t+1 )

∥∥2‹ws ≤
∥∥Exp−1‹ws (ws+1

t )
∥∥2‹ws + ζ

∥∥∥Exp−1
ws+1

t

(ws+1
t+1 )

∥∥∥2

ws+1
t

−
〈

Exp−1
ws+1

t

(ws+1
t+1 ), Exp−1

ws+1
t

(w̃s)
〉

ws+1
t

=
∥∥Exp−1‹ws (ws+1

t )
∥∥2 + ζη2 ∥∥vs+1

t

∥∥2 + 2η⟨grad F (ws+1
t ), Exp−1

ws+1
t

(w̃s)⟩.
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Taking the expectation we have

E
∥∥Exp−1‹ws (ws+1

t+1 )
∥∥2‹ws

≤ E
[∥∥Exp−1‹ws (ws+1

t )
∥∥2 + ζη2∥vs+1

t ∥2 + 2η⟨grad F (ws+1
t ), Exp−1

ws+1
t

(w̃s)⟩
]

≤ E
ï∥∥Exp−1‹ws (ws+1

t )
∥∥2 + ζη2 ∥∥vs+1

t

∥∥2 + 2η

ï 1
2β

∥∥grad f(ws+1
t )

∥∥2 + β

2

∥∥∥Exp−1
ws+1

t

(w̃s)
∥∥∥2òò

≤ E
î
(1 + βη)

∥∥Exp−1‹ws (ws+1
t )

∥∥2 + ζη2
î
2L2 ∥∥Exp−1‹ws (ws+1

t )
∥∥2 + 2

∥∥grad F (ws+1
t )

∥∥2 + σ2d
óó

+ E
ï

η

β

∥∥grad f(ws+1
t )

∥∥2
ò

=
(
1 + 2ζη2L2 + ηβ

) ∥∥Exp−1‹ws (ws+1
t )

∥∥2 +
Å

2ζη2 + η

β

ã ∥∥grad F (ws+1
t )

∥∥2 + ζdη2σ2. (15)

Putting (14) and (15) into Rs+1
t+1 , we have

Rs+1
t+1 := E[f(ws+1

t+1 ) + ct+1
∥∥Exp−1‹ws (ws+1

t+1 )
∥∥2]

= ct+1
(
1 + 2ζη2L2 + ηβ

) ∥∥Exp−1‹ws (ws+1
t )

∥∥2 + ct+1

Å
2ζη2 + η

β

ã∥∥grad F (ws+1
t )

∥∥2 + ct+1ζdη2σ2

+ (Lη2 − η)
∥∥grad F (ws+1

t )
∥∥2 + F (ws+1

t ) + L3η2 ∥∥Exp−1‹ws (ws+1
t )

∥∥2 + 1
2dLη2σ2

= F (ws+1
t ) + (ct+1

(
1 + 2ζη2L2 + ηβ

)
+ L3η2)

∥∥Exp−1‹ws (ws+1
t )

∥∥2

+
Å

Lη2 − η + ct+1

Å
2ζη2 + η

β

ãã∥∥grad F (ws+1
t )

∥∥2 +
Å1

2dLη2 + ct+1ζdη2
ã

σ2

= Rs+1
t −

Å
−Lη2 + η − ct+1

Å
2ζη2 + η

β

ãã
∥ grad F (ws+1

t )∥2 +
Å1

2dLη2 + ct+1ζdη2
ã

σ2.

Rearranging, we getÅ
η − Lη2 − ct+1

Å
2ζη2 + η

β

ãã
E∥ grad F (ws+1

t )∥2 ≤ Rs+1
t − Rs+1

t+1 +
Å1

2dLη2 + ct+1ζdη2
ã

σ2

from which we have

E∥ grad F (ws+1
t )∥2 ≤

Rs+1
t − Rs+1

t+1Ä
η − Lη2 − ct+1

Ä
2ζη2 + η

β

ää +
( 1

2 L + ct+1ζ
)

dη2Ä
Lη2 − η − ct+1

Ä
2ζη2 + η

β

ääσ2.

We now give the proof of Theorem 7.
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Proof. The proof is adapted from (Zhang et al., 2016, Theorems 2, 6 and Corollary 6). Let δn = mint δt and
T = mS

m−1∑
t=0

E
∥∥grad f(ws+1

t )
∥∥2

≤
m−1∑
t=0

Rs+1
t − Rs+1

t+1
δt

+
( 1

2 L + ct+1ζ
)

dη2

δt
σ2

(∗)
≤ Rs+1

0 − Rs+1
m

δn
+
( 1

2 L + ct+1ζ
)

mdη2

δn
σ2

=
E
î
F (ws+1

0 ) − F (ws+1
m ) + c0

∥∥Expws̃
(ws+1

0 )
∥∥2 − cm

∥∥Expws̃
(ws+1

m )
∥∥2ó

δn
+
( 1

2 L + c0ζ
)

mdη2

δn
σ2

(∗∗)
≤

E
[
F (w̃s) − F (w̃s+1)

]
δn

+
( 1

2 L + c0ζ
)

mdη2

δn
σ2,

where δt ≥ δn, ct ≤ c0 is used in (∗) and that ws+1
0 = w̃s, ws+1

m = w̃s+1 and that cm = 0, c0 ≥ 0 in (∗∗).

Now, summing the gradient norm square over all the epochs and using F (w∗) ≤ F (w̃m), we get

1
T

S−1∑
s=0

m−1∑
t=0

E
∥∥grad f(ws+1

t )
∥∥2 ≤

E
[
F (w̃0) − F (w∗)

]
Tδn

+
( 1

2 L + c0ζ
)

dη2

δn
σ2.

Choosing β = Lζ1−α2/nα1/2 and solving recurrence relation ct using η, m given by theorem as (Zhang et al.,
2016, Theorem 2) one can get c0 = µ0L

nα1/2ζ
(e − 1) . Substituting that in δn ≥ ν

Lnα1 ζα2 and finally using this
we have

1
T

S−1∑
s=0

m−1∑
t=0

E
∥∥grad f(ws+1

t )
∥∥2

≤ c
µ0Lnα1ζα2

νnS
E
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F (w̃0) − F (w∗)

]
+

Lnα1ζα2
Ä

1
2 L + µ0L

nα1/2ζ
(e − 1)ζ

ä
µ2

0
L2n2α1 ζ2α2

ν
dσ2.

Finally, putting the values of α1 = 2/3, α2 = 1/2µ0 = 1/10, ν = 1/2, and σ2 = c2
mS log(1/δ)L2

0
n2ϵ2 = c3

S log(1/δ)L2
0

nϵ2

one can get that

E ∥grad f(wa)∥2 ≤ c4

Ç
Lζ1/2

n1/3S
E
[
F (w̃0) − F (w∗)

]
+
ï 1

n2/3ζ1/2 + 1
nζ1/2

ò
dS log(1/δ)L2

0
nϵ2

å
≤ c4

Ç
Lζ1/2

n1/3S
E
[
F (w̃0) − F (w∗)

]
+ dS log(1/δ)L2

0
n5/3ζ1/2ϵ2

å
.

Setting S =
√

LζE[F (‹w0)−F (w∗)]
d log(1/δ)

n2/3ϵ
L0

, we have

E ∥grad f(wa)∥2 ≤ c4
L0
√

dL log(1/δ)E [F (w̃0) − F (w∗)]
nϵ

. (16)

The gradient complexity is given by

S(n + 2m) =
 

LζE [F (w̃0) − F (w∗)]
d log(1/δ)

n2/3ϵ

L0

(
n + n

30

)
=
 

LζE [F (w̃0) − F (w∗)]
d log(1/δ)

n5/3ϵ

L0
. (17)

This completes the proof.
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B.4.3 Proof of Theorem 8

Proof. With the values given in the theorem statement, σ2 = mSK log(1/δ)L2
0

n2ϵ2 =
Kn⌈6+ 18

n−3 ⌉Lτζ1/2 µ0
νn1/3 log(1/δ)L2

0

3µ0n2ϵ2 =
K⌈6+ 18

n−3 ⌉Lτζ1/2 log(1/δ)L2
0

νn1/3
3nϵ2 . This implies that
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2τ

E
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+
ï 1
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ò
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2τ
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]
+ 24dKLτ log(1/δ)L2

0
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Using the Riemannian PL condition, we have

E
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≤ τE[
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∥∥2] ≤ 1

2E
[
F (wk) − F (w∗)

]
+ 24dKLτ2 log(1/δ)L2

0
3n2ϵ2 .

Recursively applying the above for k = 0 to K − 1, we have

E
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]
≤ 1

2K
E
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]
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1
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= 1
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Putting K = log
Å

n2ϵ2E[F (w0)−F (w∗)]
dLτ2 log(1/δ)L2

0

ã
there is a constant c such that

E
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dLτ2 log(1/δ)L2
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Ignoring the log factors,

E
[
f(wK) − f(w∗)
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= O

Å
dLτ2 log(1/δ)L2

0
n2ϵ2

ã
. (18)

Finally, the gradient complexity is given by,

KS(n + 2m) = log
Ç

n2ϵ2E
[
F (w0) − F (w∗)

]
dLτ2 log(1/δ)L2

0

åÅ
⌈6 + 18
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ãÅ
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Ç

n2ϵ2E
[
F (w0) − F (w∗)

]
dLτ2 log(1/δ)L2

0

å
. (19)

C Additional experiments and more experimental details for Section 6

Details on the parameter configurations of DP-RSVRG, DP-RSGD, and DP-RGD. For DP-
RGD, we tune the clipping parameters from the set C = {1, 0.1, 0.01} and the number of epochs from
{10, 20, 30}. For DP-RSGD, clipping parameter is chosen from C = {1, 0.1, 0.01} and number of epochs
from {n, n ∗ 5, n ∗ 10, n ∗ 20, n ∗ 30}. For DP-RSVRG number of epochs is chosen from {5, 10} and set the
frequency as m = n/10 and full gradient clipping parameter C is tuned from {1, 0.1} and variance reduced
gradient clipping parameter C2 from {1, 0.1, 0.01}. For all three algorithms, we tune the learning rate from
η = {5e−5, 1e−55e−4, 1e−4, . . . , 5e−1, 1e−1, 1, 2, . . . , 5}. In all our experiments, we use geomstats (Miolane
et al., 2020; 2021; Myers et al., 2022)
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C.1 Details on the the Fréchet mean of SPD matrices computation and the covariance descriptors

The Riemannian distance induced by the metric is given by dist(Z1, Z2) = ∥Logm(Z−1/2
2 Z1Z−1/2

2 )∥F,
where Logm denotes matrix logarithm. Given points {Z1, . . . , Zn} ∈ SPD(m),
the Fréchet mean is defined as the solution to following optimization problem:
minW∈SPD(m)

¶
F (W) = 1

n

∑n
i=1 f(W; Zi) = 1

n

∑n
i=1 ∥logm(W−1/2ZiW−1/2)∥2

F

©
. Riemannian gra-

dient of f is given in terms inverse Exponential map grad f(W, Xi) = −2Exp−1
W (Xi) =

−2W1/2Logm(W−1/2XiW−1/2)W1/2. We take first two classes from PATHMNIST (Kather et al.,
2019) (ADI, adipose tissue; BACK, background).

Covariance descriptors. Let I ∈ Rh×w×3 denote a RGB image with height h and width w. Let ϕ :
Rh×w×3 → Rhw×k be a feature extractor of dimension k, i.e. ϕ(I)(x) is a k-dimensional vector at each spatial
coordinate x in the image’s domain S. Given a small η > 0, the covariance descriptor Rη : Rh×w×3 → SPD(k)
associated with ϕ is defined as

Rη(I) =
[

1
|S|

∑
x∈S

(ϕ(I)(x) − µ)(ϕ(I)(x) − µ)T

]
+ η.I,

where µ = |S|−1 ∑
x∈S ϕ(I)(x), and η.I ensures Rη(I) ∈ SPD(k). Our experiments on the private Fréchet

mean computation problem (Section 6.3) use the covariance descriptors with following feature vector:

ϕ(I)(x) =
ï
x, y, I, |Ix|, |Iy|, |Ixx|, |Iyy|,

»
|Ix|2 + |Iy|2, arctan

Å |I|x
|I|y

ãò
,

where x = (x, y), intensities derivatives are denoted by Ix, Iy, Ixx, Iyy and η = 10−6. Let ⋆ denote convolution
operation, then first and second order intensity derivatives are computed as below,

Ix = I ⋆
1
4

+1 0 −1
+2 0 −2
+6 0 −12

 , Ix = I ⋆
1
4

+1 0 −1
+2 0 −2
+6 0 −12

 ,

Ixx = I ⋆
1
32


+1 0 −2 0 1
+4 0 −8 0 4
+6 0 −12 0 6
+4 0 −8 0 4
+1 0 −2 0 1

 , Iyy = I ⋆
1
32


+1 +4 +6 +4 +1
0 0 0 0 0

−2 −8 −12 −8 −2
0 0 0 0 0

+1 +4 +6 +4 +1

 .

For RGB images, ϕ(I)(x) is a 11-dimensional vector that makes Rη(I) a 11 × 11 SPD matrix.

C.2 Details on the private leading eigenvector computation problem

The problem of computing the leading eigenvector of sample covariance matrix is
minw∈Sm

{
F (w) = 1

n

∑n
i=1 f(w; zi) = − 1

n

∑n
i=1 wT (zizT

i )w
}

. It has been shown that above problem
satisfies Riemannian PL condition (Zhang et al., 2016) while the problem is nonconvex in the Euclidean
setting. Riemannian gradient of f is given by grad f(w; zi) = −2(Id+1 − wwT )zizT

i w.
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