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ABSTRACT

In this paper, a discriminative two-phase dictionary learning
framework is proposed for classifying human action by sparse
shape representations, in which the first-phase dictionaryis
learned on the selected discriminative frames and the second-
phase dictionary is built for recognition using reconstruction
errors of the first-phase dictionary as input features. We
propose a ”zeroth class” trick for detecting undiscriminating
frames of the test video and eliminating them before voting
on the action categories. Experimental results on benchmarks
demonstrate the effectiveness of our method.

Index Terms— Human action recognition, sparse coding,
dictionary learning, fractional Fourier descriptor

1. INTRODUCTION

Recently, human action recognition has gained much interest
for its great potential in many application areas such as video
surveillance and human-computer interaction. The challenge
of human action recognition usually results from the problem
that different action classes often share some common motion
patterns. Moreover, the action videos usually include many
redundant frames indicating the background, large noise, clut-
ter or small movements that are with limited help for recogni-
tion [1]. For action video classification, if the training and test
videos contain some frames representing the common motion
components among different action classes, or some redun-
dant frames with large noise or useless clutters, then the dis-
criminability of classifier learnt from training frames will be
corrupted, and the recognition result of test video will also get
corrupted when the labels of undiscriminating test frames are
used to determine the class label of test video.

Sparse coding based recognition approaches have at-
tracted much attention in the field of computer vision [2].
To learn a well-adapted dictionary for obtaining good re-
construction and recognition performance, many algorithms
[3, 4, 5] for training dictionary with label information anddis-
criminative criterion have been proposed. These algorithms
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can only work well for the cleaning training samples or train-
ing samples with small corruption [6]. So the efforts for
learning low-rank and discriminative dictionary are made in
[6, 7] to solve this problem. However, the previous methods
can not handle the problem resulted from the undiscrimi-
nating test frame samples for video recognition. Imagining
the test video contains many frames representing the useless
clutters or some common components among different video
classes, the label of test video will get corrupted by these
undiscriminating test frames. So it is necessary to developa
discriminative dictionary for the situation that both the train-
ing and test videos contain many corrupted or uninteresting
frame samples.

In this paper, we attempt to learn a discriminative dictio-
nary for action recognition to handle the situation that both the
training and test videos contain undiscriminating frames with
common components, redundant components, background,
clutter or large noise. We propose a recognition framework
for human action recognition in video by learning a discrim-
inative dictionary called zeroth class dictionary. The ”ze-
roth class” trick is proposed for detecting and filtering out
the undiscriminating frames of the test video to eliminate the
negative effect resulted from these frames during voting the
action category of test video. The zeroth class dictionary
method is a two-phase dictionary learning system [8, 9] in-
cluding three steps:

(1)Firstly, the discriminative frames of training videos are
selected by Gentle Adaboost algorithm to learn the first-phase
dictionary. The left undiscriminating frames are relabeled and
assigned to the zeroth class. The zeroth class is a virtual class
indicating undiscriminating frames which are with limited
help for recognition, such as frames with common poses
shared by different actions, frames with clutter or noise, and
other redundant frames. Then the first-phase dictionary is
learnt on the selected discriminative frames; the reconstruc-
tion errors of all frames corresponding to each dictionary
atom are collected to build the new frame representations.

(2)Using the new frame representations, we learn the
class-specific dictionary in which the sub-dictionary of each
action class is learned on the corresponding selected discrim-
inative frames and the zeroth class sub-dictionary is learnt on
the undiscriminating frames. Then we obtain the preliminary
labels of the test frames based on the learnt class-specific dic-
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tionary. The zeroth class is used for recognizing the redundant
frames of test video, which are filtered out afterwards.

(3)After the undiscriminating frames of test video are ex-
cluded, the final action label is voted by all remained dis-
criminative frames of the test video. Experimental results
on benchmark data show that our method outperforms most
state-of-the-art approaches.

The rest of the paper is organized as follows: Sect.2 re-
views the relative works. Sect.3 presents the zeroth class
dictionary learning framework for human action recognition.
Experimental setup and results on benchmark datasets are
presented in Sect.4, and conclusions are given in Sect.5.

2. RELATIVE WORKS

Many efforts [10, 11, 12] have been devoted to studying ac-
tion recognition by sparse representation and dictionary learn-
ing. Guha and Ward [10] provide a sparse representation for
human action recognition by learning the over-complete bases
on the local motion patterns. Zhang et al. [11] learn dictio-
nary from spatiotemporal salient patches and use the sparse
reconstruction coefficients of patches to represent image se-
quences of action videos. Wang et al. [12] propose a sparse
model incorporating the similarity constrained term and the
dictionary incoherence term for human action recognition.

Our work is also similar to the silhouette based action
recognition approaches [13, 14, 15, 16]. Chaaraoui et al.
[13] develop a human action recognition method through ex-
tracting multi-view key poses sequences and handling vari-
ations in shape by dynamic time warping. Cheema et al.
[14] propose a human action recognition method by extract-
ing a scale invariant contour-based pose feature and cluster-
ing the features to construct distinctive key poses. Cai and
Feng [15] present a human action recognition method by de-
scribing contour-based shape feature using fractional Fourier
transform. Cheng et al. [16] propose a human action recogni-
tion approach based on human silhouettes by supervised tem-
poral t-stochastic neighbor embedding and incremental learn-
ing via low-dimensional embedding.

3. ZEROTH CLASS DICTIONARY LEARNING
BASED ACTION RECOGNITION FRAMEWORK

3.1. Feature extraction

We use the fractional Fourier shape descriptor [15] to repre-
sent each frame of action videos. The fractional Fourier shape
descriptor is built on the human pose represented by contour
points of the binary silhouette. Given an image extracted from
the action video, its binary silhouette is obtained from theseg-
mented foreground region. Then the boundary of silhouette
is extracted and the position of all points{(x(i), y(i))}Ni=1

along the boundary is represented as a complex sequence
{s(i)|s(i) = x(i) + jy(i)}Ni=1, wherex(i) andy(i) denote

the horizontal and vertical coordinate of theith point respec-
tively. HereN is the total number of contour points, andj
denotes the imaginary unit. Then we shift the base point of
coordinate system to the center of mass(xc, yc) of contour
points along the boundary.

x̃(i) = x(i)− xc ỹ(i) = y(i)− yc (1)

After that, the length of sequence is normalized to a pre-
determined valueL through down-sampling the contour. In
our experiments, the normalized lengthL is set as 100.

x̂(i) = x̃(⌈i ∗
N

L
⌉) ŷ(i) = ỹ(⌈i ∗

N

L
⌉) (2)

Afterwards, we compute the discrete fractional Fourier
transform of the transformed contours{ŝ(i) : x̂(i)+jŷ(i)}Li=1,
and get the response{S(i)}Li=1 in the fractional Fourier do-
main. For a continuous signal̂s(t), its p order continuous
fractional Fourier transform is defined as:

Sp(u) =




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
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
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∫∞
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cotα− jtu
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)ŝ(t)dt

α 6= nπ

ŝ(t) α = 2nπ

ŝ(−t) α = (2n± 1)π

(3)

whereα = pπ/2 is the rotation angle andBα =
√

1−jcotα
2π

.
Heren denotes an integer. The orderp is set as0.9 in our ex-
periments. For digital computation, we use a sampling-type
discrete fractional Fourier transform proposed in [17] to cal-
culate the response{S(i)}Li=1.

Then the amplitude of fractional response,|S(i)|, is cal-
culated and normalized to obtain a scale invariant descriptor.

d(i) =
|S(i)|2

∑L

i=1
|S(i)|2

(4)

{d(i)}Li=1 consists the fractional Fourier shape descriptor
of human pose contour. For each training video, we assign its
action class label to its all affiliated frames.

3.2. First-phase dictionary learning

Firstly, the Gentle AdaBoost algorithm is employed to select
discriminative training frames. Gentle AdaBoost providesan
approach for reweighting data points by updating weights of
base classifiers and puts higher weights on undiscriminating
data points than discriminative points [18]. Regression stump
is used as the base classifier. The regression stump is a simple
additive logistic regression based classifier, which classifies
data points according to only one input dimension. For an
input samplex whosekth dimensional feature is denote as
x(k), the output class labelf(x) of regression stump is de-
fined by only four parameters(w, v, k, th), and represented
as follows.

f(x) = w ∗ sign(x(k)− th) + v (5)



The ”one-against-the-rest” technique is employed to extend
the primary binary classification problem to multi-class case.
A training frame with high weight imply that it contains com-
mon and undiscriminating patterns between different action
categories. We select the frames with the lowest weights from
the training frame set of each action class at a rate ofR to
build the discriminative subset for generating the first-phase
dictionary, and the remained frames are pushed into a pool
where they are relabeled as the zeroth class and will be used
for detecting undiscriminating frames of the test video later.

After the discriminative subset of the training frames is
selected out, we generate a dictionaryD on this set. The aim
is to learn a dictionaryD so that the selected discriminative
frames have a sparse representationB over the dictionary. It
can be written as the following optimization problem [19]:

minD,B‖Y −DB‖2F s.t. |bi‖0 ≤ C, ∀i (6)

whereY is the selected discriminative subset of training
frames represented by the fractional Fourier descriptor;D is
the learned dictionary on the discriminative subset;bi is the
ith column of sparse coefficients matrixB, denoting the rep-
resenting coefficient ofith frame.C is the parameter control-
ling the sparsity of coefficients.‖ · ‖F denotes the Frobenius
norm, and‖ · ‖0 is thel0 norm enforcing the coefficients to be
sparse.

Then for a framey, the reconstruction error corresponding
to theith atom of the dictionaryD is computed as [20]:

ei(y) = ‖y −Dδi(β̂)‖
2

β̂ = argminβ‖y −Dβ‖2 s.t. ‖β‖0 ≤ C
(7)

where the functionδi(β) sets thejth dimension ofβ as
0 if j 6= i. Supposem is the atom number of dictionaryD,
then the vector[e1(y), ..., em(y)]T makes up a new feature of
framey, which would be used as the new frame feature in the
next phase dictionary learning.

3.3. Second-phase dictionary learning

After the new features of all frames in both training and test
videos are computed, the class-specific dictionary learning
[12] is performed. SupposeK is the number of action cat-
egories. Using the training frames belonging to thekth (k
= 0, 1, ...,K) class (including the zeroth class), we learn
the class-specific dictionaryDk using the new feature rep-
resented by reconstruction errors on the first-phase dictio-
nary. The sub-dictionaryDk associated with thekth(k =
1, ...,K) nonzero action class is learnt on the correspond-
ing selected discriminative frames of thekth class, and the
zeroth class dictionaryD0 is learnt on the undiscriminating
frames. Then the whole dictionarȳD is constructed by con-
catenating all the class-specific dictionaries, that is to say,
D̄ = [D0|D1|D2|...|DK ].

After the whole dictionarȳD is learned, the sparse repre-
sentationai of a framex̌i of the test video can be estimated
as follows.

ai = argmina‖x̌i − D̄a‖2 s.t. ‖a‖0 ≤ C (8)

The reconstruction errorrk(x̌i) associated with thekth class
can be defined as:

rk(x̌i) = ‖x̌i − D̄Θk(ai)‖
2 k = 0, 1, ...,K (9)

whereΘk(ai) produces a vector whose nonzero entries are
coefficients ofai associated with thekth class .

Then each frame of the test video is assigned to the class
that corresponds to the minimum of reconstruction error with
respect to each class(including the zeroth class). The esti-
mated preliminary clasški of the test framěxi is given as:

ǩi = argmink∈{0,1,...,K}rk(x̌i) (10)

Afterwards, we filtered out the undiscriminating frames
in the test video which are labeled as the zeroth class. Then
the max pooling or sum pooling criteria is used to vote the ac-
tion label by the remained discriminative frames correspond-
ing to nonzero classes of the test video. For max pooling pol-
icy, each frame of the test video is classified to the nonzero
class that corresponds to the minimum of reconstruction error
with respect to each non-zero class. Then the estimated action
classk̂ of the test video is given as:

k̂ = argmink∈{1,...,K}minî∈{i|ǩi 6=0}rk(x̌î) (11)

For sum pooling policy, an overall residual is constructed
by summing up the reconstruction errors corresponding to
nonzero classes of each frames in the test video; then the test
video is assigned to the nonzero class with respective to the
minimum of overall error. The estimated action classk̂ of the
test video is given as:

k̂ = argmink∈{1,...,K}

∑

î∈{i|ǩi 6=0}

rk(x̌î) (12)

4. EXPERIMENTAL RESULTS

In order to evaluate the performance and practicability of the
proposed approach, two human action recognition datasets,
the Weizmann dataset [21] and the MuHAVi-MAS14 dataset
[22], are used as benchmarks. For each class, we select
frames with the lowest Gentle Adaboost weights as the dis-
criminative subset at a rate ofR. The leave-one-out cross
validation strategy is employed to separate the training video
set and test video set. All parameters are tuned by grid
searching. The best recognition rates on Weizmann dataset
and MuHAVI-MAS14 dataset are achieved as 97.85% and
95.59% respectively whenR is set as0.2 andC is set as15.
We also compare the accuracy of our method to the reported



accuracy of other state-of-the-art methods. The comparison
results are presented in Table1. Although the action features
employed in most listed methods are different to ours, our
method still shows a considerable performance and outper-
forms most listed methods on the benchmarks.

Table 1. Comparison of methods on benchmarks

Method Weizmann MuHAVi-
MAS14

Our method(sum pooling) 97.85% 95.59%
Our method(max pooling) 95.70% 95.59%
Chaaraoui et al. [13] 92.77% 91.18%
Cheema et al. [14] 91.6% 86.03%
Singh et al. [22] 82.35%
Wang et al. [12] 96.7%
Cheng et al. [16] 94.44%
Cai and Feng [15] 93.55%

Analysis of the relation between recognition accuracy and
the size of zeroth class set has also been carried out. Figure1
and Figure 2 show the relation between accuracy and the rate
R on Weizmann and MuHAVI-MAS14 dataset respectively.
Experiment results demonstrate that our framework outper-
forms the ordinary two-phase dictionary learning framework
without the discriminative frame detection and filtering stage
at most time. However, if too many undiscriminating frames
are selected into the zeroth class training set for the first-phase
dictionary learning , the performance of the framework will
decline. The experimental results demonstrate introducing
the zeroth class is effective if a proper proration of zeroth
class of the training set is set. We have also analyzed the re-
lation between accuracy of our method and the parameterC.
The experimental results on Weizmann and MuHAVI-MAS14
dataset are illustrated in Figure 3 and Figure 4 respectively.
The results demonstrate that it is easy to find a proper param-
eterC for achieving good classification performance through
the zeroth class dictionary learning framework.

5. CONCLUSION

This paper presents an action recognition method by using ze-
roth class dictionary. The zeroth class dictionary provides a
method to detect and delete undiscriminating frames of test
video for improving the classification accuracy. The recogni-
tion framework is validated on benchmarks, showing a con-
siderable performance.
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