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Abstract
The Bethe approximation provides an effective
way for relaxing NP-hard problems of probabilis-
tic inference. However, its accuracy depends on
the model parameters and particularly degrades
if the model undergoes a phase transition. In this
work, we analyze when the Bethe approximation
is reliable and how this can be verified. We show
that it is mostly accurate if it is convex on a sub-
manifold of its domain, the ’Bethe box’. For pro-
ving its convexity, we derive two sufficient con-
ditions that use the definiteness properties of the
Bethe Hessian. We further propose BETHE-MIN,
a projected quasi-Newton method to efficiently
find a minimum of the Bethe free energy.

1. Introduction
Diverse real-world challenges can be cast as fundamental
probabilistic problems, involving the computation of the
partition function or marginal probabilities (Koller &
Friedman, 2009). As these problems are computationally
intractable, one must generally address them in an approxi-
mative manner (Valiant, 1979; Cooper, 1990). A large class
of approximation methods uses variational techniques: first,
probabilistic inference is converted into an optimization
problem and then, to relax the problem complexity, one
aims to optimize an auxiliary objective (Jordan et al., 1999;
Wainwright et al., 2008).

The Bethe approximation is a popular relaxation method,
that often proves to be superior to alternative constructions
in terms of a tradeoff between efficiency and accuracy.
Having its origins in quantum mechanics (Bethe, 1935;
Peierls, 1936), it has been successfully adopted to statistics
and computer science (Yedidia et al., 2005). However,
while being exact on trees, its performance usually suffers
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from multiple and strong interactions in the graph or,
from a physisist’s perspective, a low model temperature
that causes a ’phase transition’ in the model (Mooij &
Kappen, 2005; Weller et al., 2014; Knoll & Pernkopf, 2020;
Leisenberger et al., 2022). This unwanted behavior of the
Bethe approximation is well known; however, a precise
quantification of its reliability is an open problem.

In this work, we analyze the reliability of the Bethe
approximation. We show when its estimates of the partition
function and marginals can be expected to be accurate.
For that purpose, we distinguish between three different
’stages’ of the Bethe free energy: convexity, non-convexity
but uniqueness of a minimum, and multiple minima.
Based on this differentiation, we assess the quality of the
Bethe approximation with respect to its stage. To perform
this analysis, we must estimate the stage of the Bethe
approximation in the current model state. While there exist
methods to prove the uniqueness of a minimum (Heskes
(2004); Ihler et al. (2005); Mooij & Kappen (2007)), this
is not the case for convexity. We address this issue by
deriving two sufficient conditions for convexity of the
Bethe free energy on an appropriately defined submanifold
of its domain, the ’Bethe box’. Both results rely on a
profound second-order analysis of the Bethe free energy,
by characterizing the definiteness properties of its Hessian.
Furthermore, they provide estimates for a phase transition.

Our first result formulates conditions under which the Bethe
Hessian is diagonally dominant and hence positive definite.
We show that diagonal dominance of the Bethe Hessian
reduces to the positivity of a certain set of one-dimensional
polynomials. Our second result decomposes the Bethe
Hessian into a sum of simpler matrices and characterizes
the definiteness properties of the individual matrices
in that sum. We consider a natural decomposition into
’edge-specific Hessians’ that represent the curvature of the
Bethe free energy on individual edges.

After having established the theoretical framework, we
perform an experimental analysis in which we evaluate
the performance of the Bethe approximation on various
graphical models. Specifically, we consider attractive
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models and mixed models on graphs with a varying
structure. For minimizing the Bethe free energy, we
propose a ’projected quasi-Newton’ algorithm (named
BETHE-MIN).

Our experiments show that the Bethe approximation is
mostly accurate if it is convex. If the temperature decreases,
the Bethe free energy changes its stage while it also becomes
much less accurate at some point. We demonstrate that the
estimated temperature at which the Bethe free energy be-
comes non-convex often provides a good estimate of this
phase transition. Our experiments help to assess, whether
the Bethe approximation is reliable or not.

This paper is structured as follows: In Sec. 2 we introduce
background on the Bethe approximation. In Sec. 3 we
present our theoretical results. In Sec. 4 we explain our
algorithm BETHE-MIN and present experimental results.
In Sec. 5 we conclude our work.

We further remark that there exists an extended version
of this paper that includes all results, proofs, and further
experiments in all details (Anomymous, 2024).

2. Background
2.1. Model specification

We consider a set X = {X1, . . . , XN} of binary random
variables taking values in X = {+1,−1} whose joint dis-
tribution is given by

pβ(x) =
1

Z(β)
e−βE(x), (1)

with β = 1
T being the inverse temperature, Z(β) being

the partition function, and E(x) being the state energy as-
signed to a joint realization x = (x1, . . . , xN ) of all vari-
ables. We assume that pβ(x) is modeled by an undirected
graph G, whose nodes i represent the individual variables1

in X and whose edges (i, j) represent pairs of interacting
variables. Then we assume that the energy has the form
E(x) = − ∑

(i,j)∈E

Jijxixj−
∑
i∈X

θixi where the couplings Jij

describe the strength of pairwise interactions and the fields
θi influence the states of individual variables. If Jij > 0
we call the associated edge attractive, if Jij < 0 we call
it repulsive. Models with only attractive (repulsive) edges
are called attractive (repulsive). Models that include both
kind of edges are called mixed. We further denote by N (i)
the set of all nodes that are connected to node i (i.e., the
neighborhood of i in the graph), and by di := |N (i)| the
degree of node i.

1With a slight abuse of notation, we mostly identify variables
Xi with their representing nodes i in the graph.

We consider the following fundamental problems:

(P1) The computation of the partition function Z(β).

(P2) The computation of marginal probabilities of pβ(x),
primarily of singleton marginals pi(xi) and pairwise
marginals pij(xi, xj).

2.2. Variational free energy and Bethe approximation

We can address the computationally intractable problems
(P1) and (P2) by using a variational approach. The idea is to
write the partition function and marginals as minima of the
so-called variational Gibbs free energy, and then to apply
the simpler Bethe approximation whose minima are used to
estimate the solutions to the inference problem (Wainwright
et al., 2008; Mezard & Montanari, 2009). Let q(x) be any
’trial’ distribution over the product space XN . Then we
define the variational Gibbs free energy as the functional

F(q) = Eq(E(x))− 1

β
S(q) (2)

with the average energy Eq(E(x)) and the entropy S(q).
One can show that F(q) is convex and has a unique mini-
mum for q = pβ with the functional value − 1

β logZ(β).

The Bethe free energy FB approximates the Gibbs free ener-
gy by making two relaxations: first, it relaxes the space of
feasible distributions q to the space L of ’pseudo-marginals’
p̃i, p̃ij that must only satisfy local instead of global proba-
bility constraints. More precisely, we define L as

L = {p̃i, p̃ij : XN → R>0 |
∑
xj∈X

p̃ij(xi, xj) = p̃i(xi),∑
xi,xj∈X

p̃ij(xi, xj) = 1,
∑
xi∈X

p̃i(xi) = 1, (i, j) ∈ E, i ∈ X},

and call it the ’local polytope’. Second, it approximates the
entropy S(q) by the Bethe entropy SB that only takes local
entropies Si and pairwise entropies Sij into account:

SB =
∑

(i,j)∈E

Sij −
∑
i∈X

(di − 1)Si (3)

By minimizing FB over L, one aims to estimate the partition
function and marginals according to

min
p̃i,p̃ij ∈L

FB ≈ − 1

β
logZ(β) (4)

argmin
p̃i,p̃ij ∈L

FB ≈ { pi, pij | (i, j) ∈ E and i ∈ X}. (5)

To facilitate the minimization of the Bethe free energy, we
can exclude regions of L where no minimum of FB can lie.
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The idea is to directly parameterize FB over the space of
singleton pseudomarginals p̃i, while removing the depen-
dency on the pairwise pseudomarginals p̃ij . This avoids
redundant information on the behavior of FB on its domain.
More precisely, we have the following Theorem:

Theorem 2.1 (Adopted from Welling & Teh (2001)).
Every minimum of FB is located on an |X|- dimensional
submanifold B of L, the Bethe box, which is defined as

B := {(q; ξ∗(q)) ∈ L : 0 < qi < 1, i ∈ X; where

ξ∗ij(qi, qj) =
1

2αij

(
Qij −

√
Q2

ij − 4αij(1 + αij)qiqj

)
,

αij = e4βJij − 1 and Qij = 1 + αij(qi + qj), (i, j) ∈ E}.

Theorem 2.1 requires some explanation: In this reparamete-
rization of L, the variables qi represent the singleton pseudo-
marginals p̃i(Xi = +1), and the variables ξ∗ij represent
the pairwise pseudo-marginals p̃ij(Xi = +1, Xj = +1).
The dependency on any other pseudo-marginals has been
removed. Also, the variables ξ∗ij(qi, qj) directly depend on
the choice of a pair (qi, qj); i.e., for a given vector q of
singleton pseudo-marginals, there exists a unique vector
ξ∗ of pairwise pseudo-marginals such that (q; ξ∗(q)) is a
potential minimum of FB . Fig. 1 sketches the local polytope
(left) and the Bethe box B (right).

(0, 0, 0)
(1, 0, 0)

(0, 1, 0)

(1, 1, 1)

L

q1

q2

ξ12

(0, 0, 0)
(1, 0, 0)

(0, 1, 0)

(1, 1, 1)

B

q1

q2

ξ∗12(q1, q2)

Figure 1. Local polytope L and its submanifold B, the Bethe box,
with respect to a graph on two vertices and a single edge.

3. Theoretical Results
This section includes our main theoretical contributions.
Particularly, we address the question under which condi-
tions the Bethe free energy is convex and how this can
be verified. After presenting our theoretical results in the
current section, we show in Sec. 4 how convexity of FB can
be used for assessing the quality of the Bethe approximation.
Our notation in this section closely follows that of Welling
& Teh (2001); Weller & Jebara (2013); Leisenberger et al.
(2022). Note that the results in this section are provided
without proofs, which can be found in Anomymous (2024).

For deriving conditions for convexity of the Bethe free ener-
gy, we analyze its second-order properties on the Bethe box

B, i.e., the definiteness properties of its Hessian matrix that
we denote by HB(q). Note that HB(q) is a matrix-valued
function and thus parameterized over B as well. Our analysis
uses the following analytic form of the Bethe Hessian:

Theorem 3.1 (Lemma 9 in Weller & Jebara (2013)).
The second-order partial derivatives of FB on B are

∂2FB

∂qi∂qj
=



1

β

(
− di − 1

qi(1− qi)
+
∑

j∈N (i)

qj(1− qj)

Tij

)
, i = j

1

β

(qiqj − ξ∗ij
Tij

)
, j ∈ N (i)

0 otherwise,

Tij(qi, qj) := qiqj(1− qi)(1− qj)− (ξ∗ij(qi, qj)− qiqj)
2.

FB is strictly convex on B, if HB(q) is positive definite for
all q ∈ B. Unfortunately, the complex analytical form of
HB(q) prevents a direct application of this definition and
requires relaxations to the problem.

3.1. Diagonal Dominance of Bethe Hessian

Our first approach to prove the convexity of FB on B uses
the concept of diagonal dominance, a sufficient condition
for positive definiteness of a matrix. More precisely, a
real quadratic matrix M = (mij)i,j=1,...,n of size n× n is
diagonally dominant if, for each row i, the magnitude of the
corresponding diagonal entry is larger than the sum of the
magnitudes of all other entries in that row, i.e.,

|mii| >
∑
j ̸=i

|mij |.

A diagonally dominant matrix with positive diagonal entries
is positive definite. Let us write the (i, j)-th entry of HB

(i.e., ∂2FB

∂qi∂qj
) as hij . Then the diagonal dominance criterion

says that HB is positive definite in q ∈ B, if

hii −
∑

j∈N (i)

|hij | > 0

for each row of HB , i.e., for all i ∈ X. Note that hii > 0,
and hij = 0 if neither i = j nor j ∈ N (i). If we insert the
expressions from Theorem 3.1 into this inequality, this is
equivalent to

1

β

(
− di − 1

qi(1− qi)
+
∑

j∈N (i)

qj(1− qj)

Tij
−
∑

j∈N (i)

|qiqj − ξ∗ij |
Tij

)
> 0.

To compute the absolute values, we use the following result:

Lemma 3.2 (Lemma 2 in Weller & Jebara (2013)).
For an attractive edge (Jij > 0), we have ξ∗ij > qiqj . For a
repulsive edge (Jij < 0), we have ξ∗ij < qiqj .
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By distinguishing between the two types of edges, we obtain

− di − 1

qi(1− qi)
+

∑
j∈N (i)
Jij>0

qj(1− qj)− ξ∗ij + qiqj

Tij

+
∑

j∈N (i)
Jij<0

qj(1− qj)− qiqj + ξ∗ij
Tij

.

(6)

So far, we have only considered one specific point q ∈ B;
however, to guarantee the convexity of FB on the entire
Bethe box B, the above function (6) must be positive for all
q ∈ B or, equivalently, for the infimum over all q ∈ B. In
summary, we arrive at the following problem:

Proposition 3.3.
Let us denote the function (6) by Ri(q). Then FB is convex
on the Bethe box B if, for all nodes i ∈ X,

inf
q∈B

Ri(q) > 0.

In (Anomymous, 2024), we analyze this problem and show
that it reduces to verifying the positivity of a set of one-
dimensional polynomials. The final result is the following:

Theorem 3.4.
The convexity criterion stated in Proposition 3.3 is equiva-
lent to the following statement: The Bethe free energy FB

is convex on the Bethe box B if, for all nodes i ∈ X, the
one-dimensional polynomial

Ψi(qi) :=− (di − 1)
∏

j∈N (i)

(1 + αijqi)

+
∑

j∈N (i)

(
(1 + αijq

2
i )

∏
k∈N (i)\j

(1 + αikqi)
)

is strictly positive on the interval (0, 0.5].

Fig. 2 shows the behavior of the polynomial Ψi(qi) in de-
pendence of the inverse temperature β.

To apply Theorem 3.4 in practice and prove convexity of
the Bethe free energy on the Bethe box B, we need to verify
for all polynomials Ψi(qi) (for i ∈ X) if none of them has
a root in the interval (0, 0.5]. This can be done efficiently
by computational methods from numerical optimization2.

3.2. Sum Decomposition of Bethe Hessian

Our second approach to prove the convexity of FB on B
decomposes the Bethe Hessian into a sum of sparse matrices

2If an exact statement is desired, one can apply Sturm’s the-
orem which calculates the total number of real roots of any one-
dimensional polynomial in an arbitrary interval (Thomas, 1941).

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

2

β = 0.25

β = 0.55

β∗ ≈ 0.693

β = 0.75

qi

Ψ
i(
q i

)

Ψi(qi)

Figure 2. Development of the polynomial Ψi(qi) for increasing
values of the inverse temperature β, associated to a node i with
three neighbors (di = 3), and a coupling Jij = J = 0.5 that
is shared by all three edges. For β = 0.25 and β = 0.55, the
condition from Theorem 3.4 is satisfied with respect to node i
(blue). β∗ ≈ 0.693 is the critical threshold at which it is violated
for the first time, as Ψi(qi) touches the horizontal axis and takes a
root in the interval (0, 0.5] (orange); for higher values of β (e.g.,
β = 0.75), Ψi(qi) has multiple roots in (0, 0.5] (red).

and derives a sufficient condition for the positive definite-
ness of the individual matrices in that sum. In case that all
H′

B are positive definite over B, their sum HB is positive
definite over B as well. This induces a sufficient condition
for convexity of FB on the Bethe box B. We consider the
following class of sum decompositions: Let us write the
Bethe Hessian as

HB =
∑

(i,j)∈E

H(i,j)
B ,

with the entries of H(i,j)
B – for an arbitrary edge (i, j) and

indices k, l ∈ {1, . . . , |X|} – being defined as

(
H(i,j)

B

)
k,l

=



1

β

(
− sij

(di − 1)

qi(1− qi)
+

qj(1− qj)

Tij

)
, k = l = i

1

β

(
− sji

(dj − 1)

qj(1− qj)
+

qi(1− qi)

Tij

)
, k = l = j

1

β

(qiqj − ξ∗ij
Tij

)
, k, j ∈ {i, j}, k ̸= l

0 otherwise.

Then, to guarantee that the sum decomposition of ’edge-
specific’ Hessians holds, we introduce linear constraints∑

j∈N (i)

sij = 1 (7)

on the parameters sij , sji for all nodes. One favorable prop-
erty of this class of sum decompositions is the sparseness
of its involved matrices. This facilitates our analysis, as we
can focus on studying the definiteness properties of (2× 2)

- submatrices of the edge-specific Hessians H(i,j)
B defined as

H(i,j)
2×2 :=

1

β

−sij
(di−1)
qi(1−qi)

+
qj(1−qj)

Tij

qiqj−ξ∗ij
Tij

qiqj−ξ∗ij
Tij

−sji
(dj−1)
qj(1−qj)

+ qi(1−qi)
Tij

 .
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We can characterize convexity of FB on B as follows:

Proposition 3.5.
Let H(i,j)

2×2 (qi, qj) be the submatrices of the edge-specific

Hessians H(i,j)
B (qi, qj) together with a set of parameters

{sij , sji} for each edge (i, j) satisfying the constraints (7).
Then the Bethe free energy FB is convex on the Bethe box
B, if all submatrices H(i,j)

2×2 (qi, qj) are positive definite for
all (qi, qj) in (0, 1) × (0, 1). If we set sij = 1

di
, then

H(i,j)
2×2 (qi, qj) is positive definite if and only if the deter-

minant of H(i,j)
2×2 (qi, qj) is positive.

In (Anomymous, 2024), we analyze the determinant of the
submatrices H(i,j)

2×2 (qi, qj) and derive a closed-form condi-
tion for the convexity of FB on the Bethe box B:

Theorem 3.6.
Let β be the inverse model temperature. The Bethe free
energy FB is convex on the Bethe box B if, for all edges
(i, j) in the graph with degrees di, dj > 2 of their end nodes,
the following inequality is satisfied:

β <
1

2|Jij |
arccosh

(
1 +

2

didj − di − dj

)

This condition is particularly easy to verify and provides an
explicit estimate of the temperature at which the Bethe free
energy might become non-convex (by taking the greatest
β that simultanously satisfies all inequalities – i.e., for all
edges (i, j) – of the above form). Note that Theorem 3.4
induces such an estimate in implicit form, as the greatest
β such that none of the polynomials Ψi(qi) has a root in
(0, 0.5]. To compute it, one can steadily increase β and stop
when the first polynomial Ψi(qi) has a root in (0, 0.5].

4. Experiments
In this section we perform an experimental analysis to
evaluate the reliability of the Bethe free energy with
respect to its different stages: convexity, non-convexity
but uniqueness of a minimum, and multiple minima. For
that purpose, we must estimate at which stage FB is at the
current state of a model. We use the following results: For
proving its convexity, we use our result based on diagonal
dominance of the Bethe Hessian (Theorem 3.4). For
proving uniqueness of a Bethe minimum, we use a result3

from Mooij & Kappen (2007). To address the practical
issue of minimizing the Bethe free energy, we propose a
projected quasi-Newton algorithm, named BETHE-MIN. A
pseudocode can be found in Anomymous (2024).

3More precisely, we use Corollary 4 of the cited work with
m = 5.

4.1. Minimization of the Bethe Free Energy

For an efficient minimization of the Bethe free energy,
various methods have been proposed: gradient-based
algorithms combined with projection steps (Welling &
Teh, 2001; Shin, 2012); a double-loop algorithm that
decomposes FB into a convex and a concave part and
iterates between these two components (Yuille, 2002);
combinatorial optimization (Weller & Jebara, 2014); and
convex optimization (Weller et al., 2014). A drawback
of these methods is that they do not exploit second-order
properties of the Bethe free energy. Note that also the
well-known loopy belief propagation algorithm can be seen
as a minimization of FB (Heskes, 2003). However, its
convergence rate is often not satisfying (still, several works
have improved on it over time (Sutton & McCallum, 2007;
Knoll et al., 2015; Aksenov et al., 2020)).

In this work, we propose BETHE-MIN, a projected quasi-
Newton method that not only uses the information of the
gradient but also of the Bethe Hessian. While parameter
updates in the ’ordinary’ Newton method require a costly
inversion of the Hessian matrix, a quasi-Newton method
uses an approximation to the inverse Hessian that is updated
in each iteration as well. More precisely, if HB(q

(t)) is the
Bethe Hessian evaluated in the current parameter vector q(t)

at time t and B(t) is an approximation to its inverse, then
we perform the update

q(t+1) = q(t) − ρ(t) · (B(t))T ∇FB(q
(t)), (8)

where ρ(t) > 0 is the step size of the current iteration.
To ensure that the next parameter vector q(t+1) remains
feasible (i.e., a point in the Bethe box B), we project it back
into B if ρ(t) is too large. More precisely, we reduce 4 ρ(t)

until any component q(t+1)
i is a number in (0, 1) so that

q(t+1) lies in B. For a faster convergence, we then optimize
the choice of ρ(t) by applying a line search technique with
respect to the so-called Wolfe conditions (Wolfe, 1969).
After each update of q(t), we also need to update B(t). For
that purpose, we use the relatively robust BFGS update rules
for approximating the inverse Hessian (Nocedal & Wright,
2006). The described steps are iterated, until we arrive at
a stationary point q∗ of FB . All details on BETHE-MIN
including pseudocode are provided in Anomymous (2024).

4.2. Experimental Results

Our experimental setup is as follows: We consider three
different types of graphs: square grid graphs of size 8× 8,
a complete graph on 10 nodes; and random graphs on
25 nodes and an edge probability of 0.2 for each pair of

4Alternatively, one could use an orthogonal projection of q(t+1)
i

into B as, e.g., in Kim et al. (2010). However, this might entail a
significant change of the search direction.
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nodes (Erdos & Renyi, 1959). For each graph, we consider
attractive models (i.e., with all interactions being attractive)
and mixed models (i.e., in which attractive and repulsive
edges occur). For attractive models we uniformly sample
the couplings Jij from the range (0, 1), for mixed models
we uniformly sample them from the range (−1, 1). Also,
we assume that there exist fields θi, that we uniformly
sample from the range (− 1

8 ,
1
8 ). For each type of graphical

model (i.e., with a specific graph structure and either purely
attractive or mixed – i.e., both attractive and repulsive
– couplings), we create 200 different instances; that is,
altogether we create 3 × (200 + 200) = 1200 different
graphical models. For each individual model we increase
the inverse temperature β from 0 to 2 (in steps of 0.1), and
for each value of β we use our algorithm BETHE-MIN
with 100 random initializations of the parameter vector
q(0) to minimize the Bethe free energy and estimate the
marginals and partition function associated to the specific
model and current value of β. We compare the obtained
estimates to the exact marginals and partition function
– computed by the junction tree algorithm (Lauritzen &
Spiegelhalter, 1988) – and evaluate the errors with respect
to the l1−error on the marginals, and the absolute error on
the partition function. We average these errors over 100
runs of BETHE-MIN and afterwards over 200 different
models corresponding to a specific graph type and potential
configuration (with β still fixed to some value between
0 and 2). The errors with standard deviations are shown
in Fig. 3 (attractive models) and Fig. 4 (mixed models)
against the inverse temperature. These figures also show the
estimated values of β at which FB becomes non-convex –
in green, Theorem 3.4 – and develops multiple minima –
in blue, Mooij & Kappen (2007). These values were first
estimated for each model invividually and then averaged
over the 200 different models (together with standard
deviations). Fig. 5 shows the number of required iterations
until BETHE-MIN converges to a stationary point. The
iteration number increases as the inverse temperature
increases, which is most likely due to a changed stage
of the Bethe free energy (in particular, multiple minima)
and the numerical difficulties that arise for regimes of
high inverse temperature; however, this appears to be less
distinct in mixed models (right-hand side) than in attractive
models (left-hand side). The general convergence rate of
BETHE-MIN is higher than 99% (with respect to all 1200
sampled models) which is a convincing result.

Generally, we observe in Fig. 3 and Fig. 4 that the quality of
the Bethe approximation degrades (and later stabilizes at a
high level), if β passes a certain critical threshold (which is
– due to a steeper increase of the errors – more distinct for
attractive models, but also observable for mixed models).
We define this phenomenon to be a phase transition in the

model, i.e., the point at which the Bethe approximation
begins to lose its reliability. Following this interpretation,
different error measures are associated to different phase
transitions. Ideally, we would like to predict the critical β at
which a phase transition occurs (though some errors might
still be tolerable after a phase transition has occurred). The
main focus of our analysis is to show how the predicted
Bethe stage changes can be used to estimate a phase
transition and thus to quantify a reliabilty threshold for the
Bethe approximation.

We first discuss our results on attractive models in more
detail. As can be seen in Fig. 3, phase transitions not
only differ between the considered error measures but
also depend on the graph structure. If the connectivity
among nodes is high (such as in the complete graph),
phase transitions already occur for smaller values of β; if
the graphs are sparse (such as the grid graph), they occur
somewhat later and the subsequent degradation of the
Bethe approximation accuracy happens more slowly. Also,
the phase transition with respect to the partition function
happens earlier, than the phase transition with respect to
the marginal errors (with the singleton marginal phase
transition happening as latest).

If we use the Bethe stage change temperature that is
predicted by Theorem 3.4 (i.e., from convex to non-convex,
drawn by the green solid line) to estimate singleton
marginal phase transitions, we observe that these seem to
be slightly underestimated. Whether the reason for this is
the gap between the predicted and the ’true’ convexity of
FB , or that convexity is less relevant for explaining this
error, is not clear. In any case, the Bethe approximation
is accurate for the predicted β. The Bethe stage change
temperature that is predicted by Mooij & Kappen (2007)
(i.e., from a unique minimum to multiple minima, drawn
by the solid blue line) overestimates the singleton marginal
phase transition. In particular, it predicts some β at which
the singleton marginal error is already considerable; i.e.,
the Bethe approximation is not any longer reliable at this
point. The actual phase transition lies between the values
predicted by these two results. For the pairwise marginals,
Theorem 3.4 predicts the phase transition quite accurately
(with a slight overestimation on the complete graph, where
the associated error already increases very early). Mooij &
Kappen (2007) again overestimate the value of the phase
transition and predict a value of β at which the associated
error is already significant. For the partition function, the
situation is roughly similar as for the pairwise marginals;
generally, however, the absolute error on the partition
function seems always to remain in an acceptable regime
for attractive models.
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Figure 3. attractive models. Errors (drawn in red) induced by the Bethe approximation on three different graph types, in dependence on
the inverse temperature β. The critical point at which an increasing error becomes significant can be interpreted as a phase transition in the
model. The green solid lines estimate the stage changes of FB from convex to non-convex; the blue solid lines estimate the stage changes
of FB from a unique minimum to multiple minima. The dashed lines and error bars represent the corresponding standard deviations
with respect to 200 models, respectively. First column: singleton marginal error; second column: pairwise marginal error; third column:
partition function error.
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Figure 4. Mixed models. Errors (drawn in red) induced by the Bethe approximation on three different graph types, in dependence on the
inverse temperature β. The critical point at which an increasing error becomes significant can be interpreted as a phase transition in the
model. The green solid lines estimate the stage changes of FB from convex to non-convex; the blue solid lines estimate the stage changes
of FB from a unique minimum to multiple minima. The dashed lines and error bars represent the corresponding standard deviations
with respect to 200 models, respectively. First column: singleton marginal error; second column: pairwise marginal error; third column:
partition function error.
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Figure 5. Required iteration number until BETHE-MIN converges
to a stationary point of FB . For attractive models (left-hand side),
the iteration number increases as β increases, with the steepest
decrease for the Erdos-Renyi model. For mixed models (right-hand
side), the iteration number generally keeps at a lower level than for
attractive models.

Second, we discuss our results on mixed models (Fig. 4).
The general development of all three types of errors behaves
differently compared to attractive models. In particular, the
increase of errors at a phase transition happens less abrupt
and subsequently lasts over a longer period. Also, the errors
on the marginals keep at a lower level as in the attractive
case (however, the error on the partition function grows
even stronger, the higher β increases). As for attractive
models, singleton marginal phase transitions occur later
than those with respect to the pairwise marginals and
partition function. For the singleton marginals, Theorem 3.4
clearly underestimates phase transitions, while Mooij &
Kappen (2007) provide accurate estimates (with a slight
over-/ or underestimation depending on the graph type).
The pairwise marginal phase transitions are quite accurately
predicted by Theorem 3.4, while the value predicted Mooij
& Kappen (2007) tend to an overestimation. For the
partition function, the phase transition lies somewhere
between the thresholds that are predicted by the two results.

Our experiments show that both convexity and uniqueness of
a Bethe minimum (resp., the results to predict these stages)
are useful concepts to infer about the reliability of the Bethe
approximation. We summarize our experimental observa-
tions in the following statements:

• The Bethe stage change from convexity to non-
convexity (predicted by Theorem 3.4) accurately pre-
dicts a phase transition with respect to the pairwise
marginals and partition function in attractive models,
and with respect to the pairwise marginals in mixed
models.

• The Bethe stage change from a unique minimum to
multiple minima (as predicted by Mooij & Kappen
(2007)) accurately predicts a phase transition with re-
spect to the singleton marginals in and mixed models.

• A phase transition with respect to the partition function
in mixed models lies between the two Bethe stage
changes described above.

5. Conclusion
In this work, we have considered the Bethe free energy
approximation in the context of probabilistic models on
finite graphs. We have refined the concept of a convex
Bethe free energy by studying its behavior on a specific
submanifold of its domain, the Bethe box. In the theoretical
part, we have presented two sufficient conditions for the
convexity of the Bethe free energy that are easily applicable
in practice. In the experimental part, we have specified
different stages of the Bethe free energy (one of them its
convexity) and analyzed its reliability with respect to its
stage. We have demonstrated with help of our theoretical
results that convexity is a valuable concept for verifying the
reliability of the Bethe approximation in important problems
of probabilistic inference. We have further proposed an
effective algorithm for minimizing the Bethe free energy
that uses the information of its Hessian. To the best of our
knowledge, the analyzes and experiments in this work are
novel and fundamentally improve the understanding and
accessibility of the Bethe free energy approximation.
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