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Abstract

Adverse weather conditions can significantly degrade video frames, leading to erro-
neous predictions by current video semantic segmentation methods. Furthermore,
these methods rely on accurate optical flows, which become unreliable under ad-
verse weather. To address this issue, we introduce the novelty of our approach: the
first end-to-end, optical-flow-free, domain-adaptive video semantic segmentation
method. This is accomplished by enforcing the model to actively exploit the tempo-
ral information from adjacent frames through a fusion block and temporal-spatial
teachers. The key idea of our fusion block is to offer the model a way to merge
information from consecutive frames by matching and merging relevant pixels
from those frames. The basic idea of our temporal-spatial teachers involves two
teachers: one dedicated to exploring temporal information from adjacent frames,
the other harnesses spatial information from the current frame and assists the
temporal teacher. Finally, we apply temporal weather degradation augmentation
to consecutive frames to more accurately represent adverse weather degradations.
Our method achieves a performance of 25.4% and 33.0% mIoU on the adaptation
from VIPER [28] and Synthia [29] to MVSS [18], respectively, representing an
improvement of 4.3% and 5.8% mIoU over the existing state-of-the-art method.

1 Introduction

Unsupervised domain adaptation (UDA) is gaining attention in video semantic segmentation, offering
a solution to the challenge of annotations by adapting models from labeled synthetic datasets to
unlabeled real-world scenarios. However, existing video-based UDA methods often falter under
the assumption of ideal conditions, neglecting the drastic impact of adverse weather conditions like
nighttime and fog. These weather conditions can lead to significant degradation in video quality and
result in inaccurate predictions.

The existing UDA methods often rely on two components: pretrained optical flow and pseudo-
labels, where the optical flow is used to warp adjacent frames, and the pseudo-labels are used for
unsupervised training on the target domain [10, 30, 36, 24, 9]. However, when it comes to adverse
weather conditions, the reliability of these components diminishes for two main reasons. Firstly,
adverse weather conditions introduce significant degradation in low-level features, including issues
such as noise and glare effects during nighttime, as well as occlusions in rainy and foggy conditions.
Since existing methods are not inherently designed to handle such low-level degradations, they can
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(a) Image (b) TPS[36] (c) Ours (d) Image (e) TPS[36] (f) Ours

Figure 1: Our model demonstrates enhanced robustness compared to TPS [36] in semantic segmenta-
tion tasks under foggy and snowy conditions. It notably excels by significantly reducing inaccuracies
in the segmented areas.

easily be misled by these adverse effects, leading to inaccurate predictions [20, 19]. Secondly, as
highlighted in [25, 37], adverse weather conditions have distinct styles, which magnify the domain
gaps between synthetic datasets and real-world datasets in adverse weather scenarios.

To address these challenges, the novelty of our method lies in introducing the first end-to-end,
optical-flow-free video domain adaptation strategy, tailored for real-world videos in adverse weather
conditions. Unlike the existing methods, we avoid relying on potentially erroneous optical flows from
pretrained models. Instead, we design a fusion block that merges the feature-level information from
adjacent frames. We simultaneously train the segmentation model and the fusion block, guided by
segmentation losses. Hence, our fusion block learns to combine temporal information which can
benefit the semantic segmentation task, from different frames.

We have developed a temporal-spatial teacher-student learning approach to effectively train the fusion
block and enhance the quality of pseudo-labels. This approach encompasses two teachers, a temporal
teacher and a spatial teacher, who collaboratively instruct a student model. Temporally, the teacher
network receives consecutive frames, including the current frame and its adjacent frames. We use the
predictions of the current frame as our pseudo-labels. The student network also receives the same
adjacent frames, but for the current frame, we provide it with a cropped segment. Then, we enforce
consistency between the student network’s prediction and the pseudo-label. This compels the student
network to actively incorporate temporal information from adjacent frames, enabling it to perform
outpainting on the cropped segment and produce the same prediction as the pseudo-label. Spatially,
the teacher network benefits from a high-resolution version of the cropped segment to create the
pseudo-label, a proven method for enhancing pseudo-label quality, as suggested in [13]. To the best
of our knowledge, integrating temporal and spatial modeling using two teachers and one student to
achieve an optical-flow-free model is novel. Additionally, the fusion block and its integration into our
temporal teacher-student framework have not been explored before.

Augmentation plays a crucial role in enhancing the effectiveness of UDA methods [37, 19, 20]. In
the context of adverse weather conditions, certain weather-specific degradations exhibit temporal
patterns. For instance, areas with low light in one frame during nighttime are likely to persist in
adjacent frames, albeit with potentially varying intensity due to vehicle movement. Similarly, the
presence of fog and the accumulation of rain effects also span consecutive frames, with intensity
changes influenced by shifts in depth [31, 37]. To effectively capture these characteristics of adverse
weather conditions, we introduce a temporal weather degradation augmentation strategy. This strategy
involves applying correlated augmentations to either the same or closely positioned locations in
consecutive frames, with each undergoing gradual changes in intensity.

Fig. 1 compares our method with TPS [36], illustrating our method’s enhanced robustness in adverse
weather conditions, achieved independently of pretrained optical flow. In a summary, our contributions
are as follows:

• We present an end-to-end, optical-flow-free domain adaptation strategy, by incorporating
a fusion block that merges feature-level temporal information. This enables us to bypass
the reliance on potentially erroneous optical flows from pretrained models under adverse
weather conditions. To the best of our knowledge, this is the first strategy of its kind.

• We introduce a temporal-spatial teacher-student learning method, wherein a temporal teacher
guides the student model in gathering information from adjacent frames, and a spatial teacher
concentrates on the current frame. These teachers train the fusion block to actively explore
the temporal information while effectively harnessing spatial information.

• We develop a temporal augmentation strategy that applying weather degradation augmen-
tations to corresponding or closely positioned locations across consecutive frames. This
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approach, featuring gradual intensity variations, effectively captures the dynamic nature of
adverse weather degradations.

Our method achieves a performance of 25.4% and 33.0% mIoU on the adaptation from VIPER [28]
and Synthia [29] to MVSS [18], respectively, representing an improvement of 4.3% and 5.8% mIoU
over the existing state-of-the-art method.

2 Related work

Video semantic segmentation Video semantic segmentation aims to label each pixel in video
frames while maintaining temporal consistency. Unlike image segmentation, it must address the
challenges of temporal coherence and efficiency across sequences. For instance, methods like those
in [17, 35, 32, 22] capture temporal information from consecutive frames by leveraging supervision
from existing labels.

Domain adaptive video semantic segmentation UDA techniques are extensively applied in
various computer vision tasks [33, 31, 8, 23, 12, 13, 37, 20, 2, 4, 1, 39]. Techniques such as
adversarial training involving domain discriminators [33, 31] and pseudo-label-based self-learning
approach [8, 12, 13, 37, 20] are commonly employed in these methods. The primary function of
these approaches is to adapt models from a labeled source domain (for instance, under clear weather
conditions) to an unlabeled target domain (like adverse weather conditions). These techniques enable
the model to perform impressively in the target domain, despite the absence of ground truth labels.

Recent studies have sought to expand UDA methods from image-based to video-based tasks as a
means to circumvent the labor-intensive and costly process of labeling videos [10, 30, 36, 9, 24].
These works typically utilize synthetic datasets like VIPER [28] and Synthia [29] as their source
domains, where semantic segmentation ground truths are automatically generated due to their
synthetic nature. As for the target dataset, they use a real-world urban scene dataset, Cityscapes-Seq
[7]. These studies successfully develop models capable of making predictions on both synthetic and
real-world datasets, thus eliminating the need for manual labeling of the real-world data.

Among these methods, DA-VSN [10] employs a temporal domain discriminative loss to minimize
the differences between source and target domains and uses an intra-domain consistency loss to
improve the accuracy of less confident target predictions. VAT-VST [30] introduces a two-stage UDA
method, initially utilizing a sequence domain discriminator to bridge domain gaps, followed by a
second stage that employs a pseudo-label-based self-learning approach. This approach aggregates
predictions from several preceding frames to create pseudo-labels for the current frame. TPS [36]
presents a cross-frame augmentation and pseudo-labeling technique, where predictions from adjacent
frames serve as pseudo-labels for the current frame. SFC [9] develops a Segmentation-to-Flow
Module (SFM) to involve optical flow in the training of the semantic segmentation model. Random
augmentation applied to the current frame are then reconciled with these pseudo-labels through
a consistency loss, training the model to become robust to these augmentation. It’s important to
highlight that all these methods depend on pretrained optical flow estimations: DA-VSN uses it for
intra-domain consistency loss, VAT-VST for aggregating predictions, TPS for warping pseudo-labels,
and SFC for additional supervision.

Adverse weather degradation Current video-based UDA methods are mainly developed for
adapting models from synthetic to real-world datasets under ideal conditions. However, they fall
short in adverse weather conditions. This limitation is largely due to two key factors in the domain
gap between synthetic and real-world scenes under such conditions: style-related differences, and
significant low-level degradations [25, 21, 19, 3, 5].

The style-related gap refers to the stylistic disparities between synthetic and real-world datasets, which
UDA typically addresses by training models to recognize both styles. In scenarios like Cityscapes-Seq
[7] with ideal conditions, low-level degradations are minimal, allowing existing methods to primarily
tackle the style-related gap. But in adverse weather, as [19] discusses, these degradations can severely
distort features. For example, a car might be obscured by glare from headlights, leading to erroneous
feature extraction. Such challenges render pseudo-labels and pretrained optical flows unreliable.
Therefore, our research focuses on overcoming these obstacles by proposing a video-based UDA
method specifically designed for adverse weather conditions.
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(a) Target Pipeline

(b) Source Pipeline

(c) Fusion Block

Figure 2: Our network comprises two pipelines: the source and the target. (a) Target Pipeline: The
upper teacher (temporal) takes both the current and adjacent frames to create temporal pseudo-labels.
The student, on the other hand, receives a cropped segment of the current frame and a complete
adjacent frame, with a loss function enforcing its predictions align with the temporal teacher. The
lower teacher (spatial) uses the same segment as the student, but from the original image and at a
higher resolution. Similarly, a consistency loss is applied to make the student’s predictions consistent
with the spatial teacher’s pseudo-labels. (b) Source Pipeline: The student model undergoes supervised
learning with consecutive frames as inputs. (c) Fusion Block: This component integrates multiple
offset layers, which adjust pixels from adjacent frames relative to the current frame, and convolutional
layers to merge these pixels.

3 Proposed method

Our proposed method is designed to train a video semantic segmentation model capable of handling
adverse weather conditions using an UDA approach. Distinguishing itself from existing methods,
ours operates efficiently without the requirement of optical flows. In the source pipeline, we leverage
synthetic datasets and their corresponding ground truths for supervised training. This pipeline
takes two inputs: the current frame and an adjacent frame. Upon applying temporal weather
degradation augmentation to both the current and adjacent frames, they are then input into our
network. Subsequently, the network processes the two inputs individually, producing separate sets of
feature maps for each frame. These feature maps are then fused by the fusion block, resulting in the
final prediction for the current frame. A supervised loss is computed based on the prediction and the
ground truth for the current frame,

Lsup = − 1

N

H∑
i=1

W∑
j=1

C∑
c=1

yijc log(pijc), (1)

where, H and W are the height and width of the image, respectively. C is the number of classes. yijc
is from the ground truths indicating whether the class label c is the correct classification for the pixel
at position (i, j). pijc is the predicted probability of the pixel at position (i, j) belonging to class c.
N is the total number of pixels considered in the calculation.

As for the target pipeline, we use real-world video frames captured from adverse weather conditions,
without ground truths. Within this pipeline, we implement a temporal-spatial teacher-student system
involving two teacher models: a temporal teacher and a spatial teacher, and a student model. The
temporal teacher processes two complete frames and uses its predictions as temporal pseudo-labels.
For the student model, we employ the complete adjacent frame and generate a cropped segment
from the current frame. Similarity to the source pipeline, we apply temporal weather degradation
augmentation to both the cropped segment of the current frame and the complete adjacent frame.
These augmented frames are then fed into the student model. A temporal consistency loss ensures that
the student’s predictions, derived from various augmentations, align with the pseudo-labels provided
by the temporal teacher. Therefore, using the cropped segment of the current frame compels the
student to actively extract temporal information from the adjacent frame. Meanwhile, the temporal
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Figure 3: An illustration of optical flows generated using a pretrained FlowNet2 model [27]. The
optical flows are generated by utilizing information from the corresponding frame and its previous
frame. The left two columns display frames and optical flows under ideal conditions, while the right
two columns depict frames and optical flows under adverse weather conditions, with nighttime as
an illustrative example. Under ideal conditions, the optical flows accurately capture vehicle details,
traffic signs, and poles. In contrast, optical flows under nighttime conditions exhibit significant
failures, with missed detection of the middle poles, and erroneous predictions for the bus.

weather degradation augmentation equip the student model to handle real-world conditions where
weather-specific degradations often extend across consecutive frames.

Furthermore, the spatial teacher is provided with a high-resolution version of the cropped segment,
without any augmentation. The predictions made by this teacher before the fusion block act as spatial
pseudo-labels. A spatial consistency loss is then applied, comparing the student model’s predictions
before the fusion block with the spatial pseudo-labels. This process is designed to direct the student
model to effectively harness spatial information from the current frame.

3.1 End-to-end training with fusion block

In video-based UDA, where ground truths are unavailable for the target pipeline, existing methods
rely on pseudo-labels. A common practice in these methods involves using predictions from the
previous frame as pseudo-labels [30, 10, 36, 24, 9]. These pseudo-labels are then warped onto the
current frames based on optical flows generated from pretrained models, providing pseudo-labels for
the current frame. Subsequently, various techniques are employed to leverage these pseudo-labels for
unsupervised training on the current frame [10, 30, 36, 9].

While this approach has shown promise in adapting from synthetic to real-world domains, it faces
challenges in adverse weather conditions. Severe weather conditions can significantly distort visual
appearance, leading to incorrect pseudo-label generation. The optical flow models, originally
pretrained for ideal weather, also suffers from the substantial domain gap between ideal and adverse
weather conditions [40, 6].

An example in Fig. 3 highlights this difference. In the example, we utilize the same pretrained
optical flow model (FlowNet2) [27] used in existing works. Optical flow predictions under ideal
conditions precisely depict object details in images, such as vehicles, poles, and traffic signs, enabling
accurate warping of pseudo-labels from adjacent frames to the current frame. Conversely, optical
flow predictions under adverse weather conditions, such as nighttime, exhibit the model’s inability to
identify the movements of distant cars and middle poles, as well as imprecise tracking of the bus.

To overcome this challenge, we propose an end-to-end approach that eliminates the reliance on
pretrained optical flow. This training approach comprises a fusion block and a temporal teacher
model. The fusion block is specifically designed to merge feature-level information from both
the current frame and its adjacent frames, thereby incorporating temporal information for refining
predictions on the current frame.
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Fusion block The fusion block provides the model an alternative to merge the information from
consecutive frames. This is achieved by matching the relevant pixels from adjacent frames, then
fusing the matched information. We use deformable convolutional layers as offset layers for matching
pixels. We first obtain features from the current frame, denoted as Fcur. The offset layers then map
information from adjacent frames to the current frame, resulting in Fadj. Subsequently, both features
are concatenated and fused with a convolutional layer to form a new Fcur. This process is repeated
several times. Offset and fuse layers are trained end-to-end with segmentation losses, enabling the
fusion block to merge beneficial information from adjacent frames for semantic segmentation.

3.2 Temporal-Spatial Teacher-Student learning

The teacher-student learning paradigm has been increasingly utilized in image-based UDA [8, 16, 37,
13, 20]. In this approach, the teacher and student models share identical architectures. The teacher
model’s parameters are updated using the Exponential Moving Average (EMA) of the student model’s
weights, while the student model is refined through backpropagation with custom loss functions.

Within our proposed methodology, we introduce a dual-teacher system to collaboratively steer the
student model. This system comprises a temporal teacher, tasked with enhancing the model’s ability to
harness temporal information across consecutive frames, and a spatial teacher, focused on extracting
and utilizing spatial details from the current frame. It is noteworthy that the temporal teacher’s
architecture mirrors that of the student model, while the spatial teacher differs by excluding the fusion
block. This architectural distinction is clearly illustrated in Fig. 2.

In the temporal dimension, our model is designed to self-sufficiently extract temporal information
from consecutive frames, diverging from traditional methods that rely on pre-trained optical flows
for information warping. This is achieved by presenting the student model with a randomly cropped
rectangular segment comprising 25% of the current frame alongside its fully intact neighboring
frames. The locations of the rectangle is selected randomly in each iteration of the training process.
Consequently, throughout the entire training process, the model encounters different scenarios where
the locations and content of the cropped regions vary. In contrast, the temporal teacher processes
the entire current frame. The fusion block then combines the feature maps from two complete
frames, utilizing them to generate pseudo-labels. These pseudo-labels further guide the student in
compensating for the missing information in the cropped frame segment, following a temporal loss:

Ltemp = − 1

N

H∑
i=1

W∑
j=1

C∑
c=1

ytemp
ijc log(pijc), (2)

where, ytemp
ijc is derived from the pseudo-labels. Since the student model must derive the missing

information solely from its adjacent frame, the fusion block is specifically trained to harness temporal
cues from these frames to reconstruct a complete prediction for the current frame. Consequently, our
model demonstrates proficiency in synthesizing temporal information in an end-to-end manner. The
entire process is steered by a semantic task-specific loss, ensuring that the fusion block is precisely
tailored to this task. It selectively merges information from adjacent frames that is beneficial for
semantic segmentation. This targeted fusion, guided by the semantic segmentation loss, distinguishes
our approach from existing methods by focusing the training on semantically relevant features rather
than indiscriminate information amalgamation.

Spatially, our approach within the target pipeline integrates an established method, as delineated in
[13]. We adopt this method to ensure the student model can incorporate information from the current
frame with fidelity; it is particularly included to preserve and possibly improve the model’s spatial
accuracy while it learns to integrate temporal information. For the student model, feature maps are
extracted from the cropped segment of the current frame prior to their introduction to the fusion
block. Conversely, the spatial teacher is provided with a high-resolution variant of the same cropped
segment, from which we also derive feature maps before they reach the fusion block. We apply a
spatial consistency loss directly to the feature maps to align the student’s learning with that of the
spatial teacher:

Lspat = − 1

N

H∑
i=1

W∑
j=1

(F spat
ij −F stud

ij )2, (3)

where, F spat are the features from the spatial teacher, and F stud
ij are the features from the student.

F spat is resized to match the dimensions of the cropped segment for loss computation. The efficacy
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(a) Previous Frame (b) Previous with Augs. (c) Current Frame (d) Current with Augs.

Figure 4: This illustration demonstrates the temporal weather degradation augmentation technique.
For enhanced visualization, we have utilized Cityscapes-Seq as an example. Frames (a) and (b) are
consecutive frames captured from a real-world scene under ideal conditions. Frames (c) and (d) show
the same frames, but with applied augmentation, including random noise, a moving glare, a rectangle
"foggy" area with intensity change, and a changing illumination.

of this technique for guiding the student model in learning spatial information from unlabeled target
images (in the context of our work, the current frames) has been validated in [13]. Thus, this loss
safeguards the spatial precision of the model and may also enhance it.

As such, our model innovatively integrates a fusion block, trained using insights from a temporal
teacher, to weave together information from consecutive frames without depending on pretrained
optical flows. This enables the model to inherently learn and apply temporal details for better
current frame predictions. Meanwhile, the spatial teacher ensures the model’s spatial accuracy is not
compromised and even enhances its capability to extract spatial information.

3.3 Temporal weather degradation augmentation

Adverse weather conditions introduce two primary categories of degradation in vision tasks: random
disturbances, such as noise and occlusions, and specific weather-related degradations, like low-light,
glare, and fog. These degradations occur in similar locations across consecutive frames but exhibit
varying intensities due to the movement of objects and the camera.

Our model is strategically developed to counteract such degradations by leveraging the temporal
information from consecutive frames. Our objective is to train it to accurately discern the real scene
obscured by weather-specific degradations, through a detailed analysis of the variations in their
intensity. To achieve this, we simulate weather-induced impairments, including blur, glare, and
changes in illumination and chromaticity to both the source images in the source pipeline and the
target images used for the student model in the target pipeline. These augmentations are consistently
applied to corresponding regions in consecutive frames, with incremental variations in intensity to
mimic the dynamic nature of weather-related visual degradations. An illustration of the augmentation
are presented in Fig. 4.

Further, a consistency loss is employed to ensure that predictions from the augmented frames align
with their corresponding ground truths or pseudo-labels. Hence, these augmentation strategically
trains the model to discern the authentic scene behind weather-induced visual distortions by leveraging
the variability of degradation intensities across frames.

Overall, our pipelines can be described as follows: Let the input image at frame t be denoted as Xi,
with the student encoder as S and the teacher encoder as T . We define the student fusion block as
FS and the teacher fusion block as FT . Thus, for the temporal pipeline, we impose the following
consistency,

FS(S(ATWD(Xt−1)), S(Crop(ATWD(Xt)))) = FT (T (Xt−1, Xt)), (4)

where, ATWD represent the temporal weather degradations, and Crop indicates that the model is
provided with only a cropped segment of the current frame. By enforcing this consistency, we
encourage the student model to align with the teacher’s performance. As a result, the student model
learns to be robust against weather degradation while effectively utilizing information from Xt−1 to
compensate for missing details in the cropped current frame.

For the spatial pipeline, we enforce the following,

S(Crop(ATWD(Xt))) = T (X̂t), (5)
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Table 1: Quantitative results of our method compared to existing UDA methods, with both image-
based and video-based, evaluated against MVSS [18]. Bold numbers are the best scores, and
underline numbers are the second best scores. The IoU (%) of all classes and the average mIoU (%)
are presented. Our method outperforms the best existing method by 4.3 mIoU (%) in average, even
with the absence of pretrained optical flows (NOOF).

UDA from Synthetic to Real under adverse weather condition: VIPER → MVSS
Method Design car bus moto. bicy. pers. light sign sky road side. vege. terr. buil. mIoU

Source-only Image 39.4 2.6 0.0 0.0 27.3 13.6 0.6 39.4 6.6 4.2 46.2 20.2 38.2 18.3
AdvEnt[33] Image 38.3 4.8 0.5 0.0 26.3 14.6 0.7 40.7 18.2 4.4 45.5 20.7 39.1 19.5
FDA[38] Image 38.5 2.2 0.3 0.5 21.8 10.7 0.8 41.8 29.4 4.5 51.4 22.5 39.7 20.3
RDA[15] Image 33.3 5.9 0.9 1.0 21.9 8.2 2.1 43.1 37.3 5.1 49.9 22.8 42.6 21.1
DA-VSN[10] Video 36.0 0.6 0.2 0.0 21.1 0.6 0.9 45.5 34.4 4.0 50.2 23.4 49.0 20.4
SFC[9] Video 41.2 4.0 0.0 0.0 21.3 5.6 0.7 41.4 36.2 4.5 47.2 20.4 38.8 20.1
TPS[36] Video 45.8 5.1 0.0 0.3 18.9 0.0 0.0 39.6 39.7 3.0 49.8 20.8 39.1 20.2
MoDA[26] Video 41.7 5.7 0.0 1.3 14.2 0.2 1.4 36.3 43.3 3.4 46.0 24.7 52.4 20.8

Ours Video,
NOOF 46.0 8.6 0.0 0.5 30.9 1.1 2.3 46.4 60.2 2.7 56.4 20.7 54.3 25.4

where, X̂t represents the same cropped image segment at a higher resolution. By enforcing this
consistency, we ensure that the student model remains robust to weather degradation while preserving
spatial precision.

3.4 Overall loss

The overall loss of the network is defined as:
L = Lsup + α(Ltemp + Lspat), (6)

where, Lsup denotes the supervised loss used in the source pipeline. The temporal loss and spatial
loss in the target pipeline are represented by Ltemp and Lspat, respectively. The parameter α, set
empirically to 0.1, ensures that the losses in the target pipeline do not become overly dominant.

4 Experiments

In this part of the paper, we undertake an extensive analysis of our video semantic segmentation
approach. The evaluation starts with an overview of the datasets utilized, along with a detailed break-
down of the models and settings implemented. Subsequently, we delve into a detailed examination
of our approach, showcasing its capabilities and robustness against a range of challenging weather
conditions through both quantitative metrics and qualitative examples. To conclude, we engage in
ablation studies to discern the impact and necessity of the distinct components integral to our method.

Datasets For our source datasets in the video semantic segmentation work, we select VIPER [28]
and Synthia [29] for their extensive collections of labeled, synthetic urban landscape frames. For
our target dataset, we have chosen MVSS [18], which is characterized by its diverse collection of
real-world urban scenes captured under various adverse weather conditions. Since VIPER, Synthia,
and MVSS have different class protocols, we evaluate only the common classes, following existing
UDA methods. We assess target domain segmentation performance using Intersection over Union
(IoU%), with higher percentages indicating better performance.

Baseline models In our experiments, we compare our method with a range of UDA techniques,
encompassing both image-based and video-based approaches. To ensure equitable comparison,
we adopt the DeeplabV2 architecture [34] across all methods. The image-based and video-based
methods are configured and trained according to their standard settings. For our method, in line
with recommendations from [36], we use the same optimization strategy. This includes consistent
parameters across all methods, such as the number of epochs, batch sizes, learning rates, and the
pretrained backbone, Accel [17].

4.1 Quantitative results

As shown in Tabs. 1 2, our models outperform other methods on the real-world dataset under adverse
weather, MVSS [18]. Our model surpasses the second best method by 4.3% and 5.8% in mIoU,
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Table 2: Quantitative results of our method compared to existing UDA methods, with both image-
based and video-based, evaluated against MVSS [18]. Bold numbers are the best scores, and
underline numbers are the second best scores. The IoU (%) of all classes and the average mIoU (%)
are presented. Our method outperforms the best existing method by 5.8 mIoU (%) in average, even
with the absence of pretrained optical flows (NOOF).

UDA from Synthetic to Real under adverse weather condition: Synthia → MVSS
Method Design car bicy. pers. pole light sign sky road side. vege. mIoU

Source-only Image 29.0 0.5 14.5 0.7 0.2 25.2 15.8 10.0 37.2 38.6 17.2
AdvEnt[33] Image 37.6 2.4 27.0 0.5 0.2 36.1 56.4 12.9 32.2 41.7 24.7
FDA[38] Image 40.0 2.5 30.9 1.7 0.1 38.1 59.5 14.9 34.8 43.7 26.6
RDA[15] Image 42.3 2.3 38.4 0.0 0.1 34.0 68.3 13.1 39.7 37.0 27.5
DA-VSN[10] Video 41.9 1.2 35.7 1.1 0.0 38.0 64.6 14.0 35.1 40.5 27.2
SFC[9] Video 42.7 0.5 33.0 0.0 0.0 27.2 60.6 16.2 37.1 39.4 25.7
TPS[36] Video 36.4 0.7 40.3 0.0 0.1 34.0 65.7 16.0 42.0 42.5 27.8
MoDA[26] Video 35.2 0.5 23.5 0.3 0.0 41.3 64.9 15.7 41.4 47.3 27.0

Ours Video,
NOOF 45.1 1.5 43.1 1.2 0.0 51.1 70.7 19.5 47.4 50.6 33.0

Image TPS [36] Ours Ground Truth

Figure 5: Comparisons on the semantic segmentation performance with TPS [36], Ours, and ground
truths on MVSS under rainy and nighttime conditions.

adapting from VIPER [28] and Synthia [29] to MVSS, respectively, our model mark substantial
advancements. These consistent gains in IoU across most classes highlights our models’ robustness
against various adverse weather conditions.

It is worth noting that all video-based methods outperform image-based ones in ideal conditions.
However, this advantage does not hold in adverse weather, indicating a failure to effectively use
temporal information due to unreliable pseudo-labels and optical flows. In contrast, our end-to-end
designed models consistently leverage temporal information under any condition, showcasing their
versatility.

4.2 Qualitative results

Building on the qualitative insights from Fig. 1 under foggy and snowy conditions, we extend our
performance showcase to include rainy and nighttime scenarios in Fig. 5. Our method is evaluated
alongside TPS [36] and compared to ground truth segmentation maps. The results highlight that,
while TPS tends to yield substantial inaccuracies, our method significantly reduces such errors. This
clearly demonstrates our model’s robustness in the face of adverse weather conditions.

4.3 Ablation studies

We evaluate the effectiveness of each component we implemented on VIPER → MVSS, with the
results detailed in Tab. 3. The table reveals that omitting the pretrained optical flow leads to a decrease
in performance for the Accel baseline. However, this loss in performance is mitigated once we
incorporate our fusion block, underscoring its efficacy as an alternative to pretrained optical flow,
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Table 3: Ablation studies of our proposed techniques. We can observe that each component indepen-
dently contributes to the overall improvement in performance.

Baselines Fus.
Blk

Tem.
Tea.

Spa.
Tea.

Tem.
Augs.

mIoU
(%)TPS Accel

(NOOF)
✓ 20.2

✓ 18.6
✓ ✓ 21.7
✓ ✓ ✓ 23.8
✓ ✓ ✓ ✓ 24.3
✓ ✓ ✓ ✓ ✓ 25.4

especially in adverse weather conditions. Furthermore, a gradual improvement in mIoU (%) is evident
as more techniques are incorporated, affirming the positive contribution of each component to the
overall semantic segmentation performance under adverse weather conditions.

5 Conclusion

In conclusion, our novel end-to-end video-based method significantly enhances video semantic
segmentation in adverse weather conditions, notably achieving this improvement without the reliance
on pretrained optical flows. This method includes a fusion block, a temporal-spatial teacher-student
learning system, and a strategy for temporal weather degradation augmentation. Our fusion block
effectively merges temporal information from adjacent frames, eliminating the reliance on pretrained
optical flows seen in existing works. The teacher-student learning approach uses two teachers: a
temporal teacher for guiding the student to explore the temporal information from adjacent frames,
and a spatial teacher to train the student to harness spatial information from the current frame.
Additionally, we apply temporal weather degradation augmentation to accurately simulate and
respond to weather-related degradations in consecutive frames. Upon evaluating our models on
MVSS dataset featuring real-world adverse weather conditions, we observed that our approach
surpasses many existing image-based and video-based methods in performance.
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Table 4: Comparison of mIoU and Inference Time for Different Models

Model mIoU (%) ↑ Inference Time (s) ↓
FlowNet2+DA-VSN 20.4 0.35
FlowNet2+TPS 20.2 0.17
Ours 25.4 0.11

A Supplemental material

Inference time analysis

Developing efficient video semantic segmentation models has posed a persistent challenge. While
numerous accurate architectures exist, their computational demands hinder real-time video frame
processing, limiting their usability, particularly in scenarios like autonomous driving under ever-
changing conditions.

To address this critical issue, researchers have been exploring time-efficient solutions for video
semantic segmentation [17, 11, 14]. For the existing video-based UDA semantic segmentation
methods, TPS [36] has made strides by improving the processing speed threefold compared to its
predecessor, DA-VSN [10]. Nevertheless, these methods rely on pretrained optical flows, introducing
additional time overhead during execution.

In contrast, our proposed approach eliminates the need for this extra step, granting us a notable
advantage in terms of execution time. To substantiate this claim, we provide a detailed comparison of
inference times in Tab. 4. Inference time is computed by averaging the results from processing 1,000
images on one RTX3090 GPU.

In comparison to existing methods, our approach distinguishes itself by replacing the optical flow
generation process with a lightweight fusion block. This substitution not only reduces inference
time but also enhances semantic segmentation performance. As a result, our method stands out as a
promising candidate for practical deployment in scenarios such as autonomous driving. It excels in
streamlining the inference process, aligning with the demand for efficient real-time video semantic
segmentation.

Analysis on ideal conditions

To demonstrate the generalization ability of our methods, we further assess our approach using
Cityscapes-Seq [7], a dataset comprising real-world urban scenes captured under ideal conditions.
As shown in Tabs. 5 6, where we adapt the models from VIPER and Synthia, to Cityscapes-Seq [7].
Despite being primarily designed for adverse weather, our models demonstrate effective generalization
in ideal conditions, achieving comparable performance to other methods specifically designed for
such conditions, even without using the informative optical flow.

Network configurations

The detailed network structures of the Fusion Block can be found in Tab. 7. C represents the number
of channels, which is defined to be the same as the number of classes. This Fusion Block fuses
information from adjacent frames into the prediction of the current frame by matching relevant
information from the surrounding pixels of the adjacent frame through the offset layers, and then
combining information from different frames. Thus, temporal knowledge is incorporated without the
need for optical flows.
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Table 5: Quantitative results of our method compared to existing UDA methods, with both image-
based and video-based, evaluated against Cityscapes-Seq [7]. Bold numbers are the best scores, and
underline numbers are the second best scores. The IoU (%) of all classes and the average mIoU (%)
are presented.

Under ideal condition: VIPER → Cityscapes-Seq
Method Design mIoU

Source-only Image 37.1
AdvEnt[33] Image 44.5
FDA[38] Image 44.4
RDA[15] Image 44.4
DA-VSN[10] Video 47.8
VAT-VST[30] Video 48.7
SFC[9] Video 51.7
TPS[36] Video 48.9

Ours Video,
NOOF 51.2

Table 6: Quantitative results of our method compared to existing UDA methods, with both image-
based and video-based, evaluated against Cityscapes-Seq [7]. Bold numbers are the best scores, and
underline numbers are the second best scores. The IoU (%) of all classes and the average mIoU (%)
are presented.

Under ideal condition: Synthia → Cityscapes-Seq
Method Design mIoU

Source-only Image 38.3
AdvEnt[33] Image 44.0
FDA[38] Image 45.2
RDA[15] Image 45.1
DA-VSN[10] Video 49.5
VAT-VST[30] Video 47.1
SFC[9] Video 55.3
TPS[36] Video 53.8

Ours Video,
NOOF 51.0

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.
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Table 7: Network Structure of Fusion Block

Fusion Block
Bottleneck Conv, 3 × 3, 2C, stride 1, padding 0
Offset1 Conv, 3 × 3, C, stride 1, padding 1, Sigmoid
Fuse1 DeformConv, 3 × 3, C, stride 1, padding 0
Offset2 Conv, 3 × 3, C, stride 1, padding 1, Sigmoid
Fuse2 DeformConv, 3 × 3, C, stride 1, padding 0
Offset3 Conv, 3 × 3, C, stride 1, padding 1, Sigmoid
Fuse3 DeformConv, 3 × 3, C, stride 1, padding 0
Offset4 Conv, 3 × 3, C, stride 1, padding 1, Sigmoid
Fuse4 DeformConv, 3 × 3, C, stride 1, padding 0

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All the claims are supported by the related experiments, evidences, or refer-
ences.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: Compared to the baselines, the method is robust to different adverse conditions,
while the framework does not introduce additional overhead.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the details are included in the paper, we will also release our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will release our code upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Answer: [Yes]

Justification: The paper includes all the experiment settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include statistical significance experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include resource-related experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

19

https://neurips.cc/public/EthicsGuidelines


• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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