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ABSTRACT

Electrocardiogram (ECG) signals, profiling the electrical activities of the heart,
are used for a plethora of diagnostic applications. However, ECG systems re-
quire multiple leads or channels of signals to capture the complete view of the
cardiac system, which limits their application in smartwatches and wearables. In
this work, we propose a modally reduced representation learning method for ECG
signals that is capable of generating channel-agnostic, unified representations for
ECG signals. Through joint optimization of reconstruction and alignment, we en-
sure that the embeddings of the different channels contain an amalgamation of
the overall information across channels while also retaining their specific infor-
mation. On an independent test dataset, we generated highly correlated channel
embeddings from different ECG channels, leading to a moderate approximation of
the 12-lead signals from a single-channel embedding. Our generated embeddings
can work as competent features for ECG signals for downstream tasks.

1 INTRODUCTION

Electrocardiogram (ECG) signals are used in the diagnosis of cardiovascular diseases—the leading
cause of death worldwide, claiming a life every 33 seconds in the USA 1. ECG signals represent the
electrical activities of a heart during the cardiac cycle Hannun et al. (2019). Utilizing ECG signals to
their fullest potential requires conventional 12-lead ECG recorder H. Bunce et al. (2020). This limits
the use cases of near-clinical ECG in wearables and smartwatches. Hence, the growing interest in
developing competent diagnosis algorithms with a limited set of channelsReyna et al. (2021), which
introduces new levels of complexity and algorithmic challenges Reyna et al. (2022).

Oriented to specific applications, ECG investigations have used a variety of feature extraction meth-
ods, e.g., transformations Mohonta et al. (2022), decompositions Ibtehaz et al. (2019), fiducial point
features Ullah et al. (2023), etc. However, features competent for one application seldom translates
well to a different one Singh & Krishnan (2023). Observing the impact of representation learning in
a multitude of domains Bengio et al. (2013), it becomes desirable to develop general representation
learners for ECG Mehari & Strodthoff (2022), most notably using masked autoencoders He et al.
(2021), which have proven to be quite competent Sawano et al. (2022); Yang et al. (2022); Zhang
et al. (2023); Wang et al. (2023a). However, such models were assessed on a specific task Sarkar &
Etemad (2022) and sometimes evaluated on only a portion of the pretraining dataset Sawano et al.
(2022) while requiring all 12 channels Zhang et al. (2023) for satisfactory performance.

While these approaches partially address the issue of task-specific feature extraction, the require-
ment for multiple ECG leads persists. To explore mode (ECG lead) reduction, one can adopt the
perspective of multi-modal learning. Meta-learning has been used to reconstruct missing modes
from available ones Ma et al. (2021), and other solutions have relied on a shared embedding to
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achieve this Wang et al. (2023b). Semantic alignment of heterogeneous data modes in a shared
vector space has also been used through joint learning of co-embeddings Mortazavi (2020). ECG
signals represent a special case of homogeneous multi-modal data, i.e., cardiac electric activity of the
same heart from different viewpoints (leads). As a result, some correlations already exist between
the different modalities, i.e., channels of the ECG signal; for instance, channel II can be treated as
the sum of channels I and III based on Einthoven’s law Silverman & Willis Hurst (1992).

In this work, we propose a unified ECG representation learning method that is channel-independent
based on simultaneous alignment and reconstruction. We achieve this by representing the differ-
ent ECG channels in a joint embedding space, maintaining semantic alignment through contrastive
learning while at the same time using an auto-encoder-based reconstruction objective so that the
essential channel-specific information can survive in the alignment process.

2 METHOD

Abstractions and High-level Assumptions. As activity snapshots, the 12-lead ECG signal x(t) =
{x[1](t), x[2](t), x[3](t), . . . , x[12](t)} ∈ R12 represent the state of a heart H at an instant t, where
each channel x[i](t) corresponds to a projection Pi, i.e., x[i](t) = Pi(H@t). We train encoder
networks Ei, i = 1 . . . 12 to extract latent representations h[i](t) of a heart from the input signals
x[i](t). The representations of the different channel signals of the same heart should be correlated,
i.e., h[i](t) ≡ Ei(x[i](t)) ≈ H@t, i = 1 . . . 12 and should also be “complete” in the sense that
individual signals can be retrieved from them by a set of decoders, i.e., Di, i = 1 . . . 12, i.e., x̂[i](t) ≡
Di(h

[i](t)) ≈ x[i](t).

Core Model Architecture. For our representation learner (Ei−Di), we have developed a 1-D version
of the original Masked AutoEncoder (MAE) architecture He et al. (2021). Our architecture follows
the conventional style of having a strong encoder in conjunction with a weak decoder, and vanilla
ViT layers Dosovitskiy et al. (2021) are used to as the building blocks. Our encoder and decoder
have 12 and 8 blocks, with embedding dimension of 768 and 512, respectively. The model takes
T = 5 sec, fs = 500 Hz signals as input and breaks them into 100 samples or 0.2 sec long non-
overlapping patches, for further processing.

Alignment and Reconstruction Losses. We distribute the task of 12-lead ECG representation learn-
ing to 12 1-D MAE models each assigned to a particular channel. Our models encode-decode to
reconstruct their designated channels while producing correlated embeddings as approximation of
the latent heart state by jointly optimizing on alignment and reconstruction losses. Expected mean-
squared error (MSE) of the predictions x̂[i](t) over a minibatch B provides a reconstruction loss:

reconstruction loss = EB [
1

12× T

12∑
i=1

T∑
t=0

(x[i](t)− x̂[i](t))2] (1)

Triplet loss helps correlate the h[i](t), i = 1 . . . 12 of different channel signals of the same heart:

alignment loss = TripletB(A,P,N) (2)

Here, anchor A corresponds to all the signals in the minibatch, positive P and negative N correspond
to signals of different channels from the same vs. different hearts, respectively.

Combining Losses. Jointly optimizing these losses often led to trivial embeddings—highly cor-
related but unable to reconstruct the signals. To prevent this, we designed a curriculum which
gradually shifts focus from reconstruction to alignment losses:

Loss@epoch−i = sin(
i

Nepochs

π

2
)× alignment loss + cos(

i

Nepochs

π

2
)× reconstruction loss (3)

Pretraining Dataset. As a large 12-lead ECG signal database for pretraining, we selected the Phy-
sioNet Computing in Cardiology Challenge 2021 dataset Reyna et al. (2021); Perez Alday et al.
(2020); Goldberger et al. (2000), which includes 88,000 public ECG recordings compiled from 6
sources. We only used ECG signals recorded at 500 Hz sampling frequency (fs) to train our mod-
els. The recordings from PTB and INCART databases were used as test dataset. For training and
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inference, a random Ts = 5 s long window was cropped from the signals, and mean normalization
was performed without any additional filtering or preprocessing steps.

Distributed Training. We adopted a distributed training protocol where MAE models are trained
separately on their individual channels, with a coordinator exchanging embeddings required for
computing alignment losses. We used AdamW Loshchilov & Hutter (2019) with default parameters
to jointly optimize reconstruction and alignment. The models were trained with a base leaning rate
of 1e−3 accompanied by a cosine learning rate scheduler, for 200 epochs with a batch size of 256.

3 RESULTS

We assessed different aspects of our method and some downstream tasks on several independent test
datasets varying in terms of acquisition protocol, demographics, signal quality, sampling rate, etc.

Correlating Embeddings of Dissimilar Signal Channels. Our primary objective is to develop a
unified representation for ECG signals irrespective of the signal channel. In order to validate our
joint optimization strategy, we took 590 signals from PTB R. Bousseljot et al. (1995) and INCART
Tihonenko et al. (2008) databases, with sampling rates of 1000 and 257 Hz, respectively. For ran-
domly cropped 5-second-long signals, we computed the similarity between signals of two channels
and the corresponding embeddings using cross-correlation coefficient and cosine similarity, respec-
tively. We performed this random experiment 10 times for each channel pair. The overall correlation,
presented in Fig. 1B, reveals that our pipeline managed to generate strongly correlated embeddings,
even when the signals are weakly correlated (e.g. V5-aVR). Conversely, for already correlated chan-
nel pairs, our embeddings either retained (e.g. V1-V2) or improved (e.g. V4-V5) the correlations.

Reconstructing Disparate Signals from Unified Embeddings. In order to assess our reconstruction
performance, we have used 827 ECG recordings used in Ribeiro et al. (2020) (fs = 400Hz). In
Fig. 1C, we have presented an example of 2 sec reconstruction of a random sample. Since, our
generated embeddings are correlated, we have tried to reconstruct all the channel signals both from
the native channel and channel 1 signals individually, after masking 75% of the signals. Overall,
the reconstructed signals follow the morphology of the original signal, the model failed to reach the
full amplitude of the R-peaks, despite predicting a sharp peak. This is a limitation of MAE, which
usually reconstructs blurry images He et al. (2021), and for ECG reconstruction, reduces the signal
magnitude to a fraction Sawano et al. (2022). Additionally, we computed mean absolute error values
of reconstructing each of the channel signals from the different input channels (Fig. 1D), and we
can observe that due to the correlation of our generated embeddings, the reconstruction losses stay
within ±5% of the loss for native channel as input. Interestingly, for V1, the native embeddings
seem to perform worse, which is also apparent from Fig. 1C. This is likely due to the V1 channel
signals of this dataset being substantially different from our pretraining dataset.

Improving Single-Channel Myocardial Infraction Prediction. The diagnosis of myocardial infrac-
tion, one important application of ECG signals, substantially benefits from multi-channel informa-
tion Gupta et al. (2021). Therefore, we aim to investigate whether the proposed unification of the
embeddings across channels can help improve single-channel predictions. In order to assess this, we
trained baseline MAE models for the individual channels without any embedding alignment and per-
formed a 5-fold cross-validation on the PTB dataset R. Bousseljot et al. (1995). Next, for each of the
different channels, embeddings were extracted from the correlated and baseline MAE models and
logistic regression classifiers were used. From the F1 scores presented in Fig. 1F, it can be observed
that the correlated models performed better in all the cases. They not only managed to improve the
less informative channels (I and aVL) but also retained the superior performance of the highly infor-
mative channels (V5 and V6) Gupta et al. (2021). Therefore, our proposed embedding correlation
injects more information to less informative channels, without hampering the representations of the
highly informative channels.

Implicitly Learning ECG Biometric Authentication. Since the alignment objective distinguishes
and aligns ECG embeddings from an individual’s heart, we used the ECG-ID benchmark dataset Lu-
govaya (2005); Nemirko & Lugovaya (2005) to assess model performance in biometric authentica-
tion. In order to capture the entire ECG signature, we avoided any masking during this inference
and the class token embedding was obtained from the model. A t-SNE van der Maaten & Hinton
(2008) plot presented in Fig 1E shows that the ECG embeddings of different individuals are clus-
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Figure 1: A) Our proposed architecture for correlating Masked AutoEncoders. (B) Signal (lower triangle) versus embedding similarity (upper
triangle) for pairs of ECG channels on INCART and PTB datasets. (C) 2s ECG reconstruction of a sample from the test set: blue represents the
original signal, while green and yellow correspond to reconstruction from the native versus channel 1 embedding, respectively. The red boxes
denotes the masked windows. (D) Mean absolute error values of reconstructing each of the channel signals from different channels, computed
on the test set. (E) t-SNE plot of the embeddings of the signals of different individuals from the ECG-ID dataset. (F) Improvement in the
single-channel myocardial infarction diagnosis task on the PTB dataset.

tered together. Moreover, as a true assessment of the quality of our embeddings, we used a 1-KNN
classifier and achieved an accuracy of 99.68% from 10-fold cross-validation. This is indeed impres-
sive as without any finetuning, on an independent test dataset, we are on par with state-of-the-art
methods Ibtehaz et al. (2022) which are explicitly trained on that dataset for this task.

4 CONCLUSION

In this work, we have explored the possibility of correlating the representations of the different ECG
channels to pave the path to a competent unified embedding and evaluated it on several independent
test datasets. Our current system fails to reconstruct of sharp changes, which can be improved
by refinement through a generative adversarial network Fei et al. (2023). We believe our mode-
reduction approach has the potential to deliver generalized, channel-agnostic ECG feature extractors.
The broader impact of this approach is to improve the versatility of wearable and smartwatch-based
ECG sensors towards medical-grade ECG sensors.
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A METHOD OVERVIEW

Our proposed method aims at correlating multiple representation learners, each handling a different
modality.

Algorithm 1 Modally Reduced ECG Representation Learning Pipeline

Encoder : Ei, i = 1, 2, 3, . . . , 12
Decoder : Di, i = 1, 2, 3, . . . , 12
Input signal : x[i], i = 1, 2, 3, . . . , 12

for i=1 to 12 do
h[i] = Ei(x[i])
x̂[i] = Di(h[i])

end for
for i=1 to 12 do

reconstruction loss+ = MSE(x[i], x̂[i])
end for
alignment loss = Triplet(x[i], x[j], x′[k])

B ARCHITECTURAL DETAILS

Our developed Masked AutoEncoder architecture is a 1-D variant of the original Masked AutoEn-
coder. Since we are working with 1D signals instead of 2D images, we have modified the patch en-
coder layer using 1D convolutions, discarding the overlapping nature, i.e., stride = window len.
After the patches or windows are embedded, we use conventional sine-cosine position embedding
to preserve the temporal information.

The patches equipped with temporal identity are then passed through the encoder network, which is
a sequence of ViT layers. The encoder can be summarized as:

Encoder = [V iT Layer(embed dim = 768,

num heads = 8,

mlp ratio = 4,

qkv bias = True,

norm layer = LayerNorm)]×12

The decoder network is similar to the encoder network, only difference being reduced complexity
in terms of depth and embedding dimension.

Decoder = [V iT Layer(embed dim = 512,

num heads = 16,

mlp ratio = 4,

qkv bias = True,

norm layer = LayerNorm)]×8

C DATASET DESCRIPTION

The pretraining data contains twelve-lead ECGs from various sources. The twelve leads are the
standard ones, i.e., I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6. These signals also contain
information related to cardiac abnormalities, but they were ignored in the pretraining.

The sources of the pretraining database are:
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• CPSC Database and CPSC-Extra Database
• INCART Database
• PTB and PTB-XL Database
• The Georgia 12-lead ECG Challenge (G12EC) Database
• Chapman-Shaoxing and Ningbo Database
• The University of Michigan (UMich) Database
• Augmented Undisclosed Database

These databases contain more than 100,000 signals, and out of them 88,000 signals are considered
as the public training data, which is the split we also used for pretraining. These signals comprise
individuals from four countries across three continents.

We used the signals with sampling frequency of 500 Hz for our pretraining. INCART and PTB
consists of signals of different sampling frequency which were used for testing.
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