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Abstract—We present ArtiGrasp, a novel method to synthesize
bi-manual hand-object interactions that include grasping and
articulation. This task is challenging due to the diversity of the
global wrist motions and the precise finger control that is nec-
essary to articulate objects. ArtiGrasp leverages reinforcement
learning and physics simulations to train a policy that controls
the global and local hand pose. Our framework unifies grasping
and articulation within a single policy guided by a single hand
pose reference. Moreover, to facilitate the training of the precise
finger control required for articulation, we present a learning
curriculum with increasing difficulty. It starts with single-hand
manipulation of stationary objects and continues with multi-agent
training including both hands and non-stationary objects. To
evaluate our method, we introduce Dynamic Object Grasping and
Articulation, a task that aims to bring an object into a target
articulated pose. This task requires grasping, relocation, and
articulation. We show our method’s efficacy towards this task.

I. INTRODUCTION

The ability to manipulate complex objects, such as operating
a coffee machine, opening a laptop, or passing a box, is a
fundamental part of everyday life. Providing systems with
the capability to understand and perform such tasks can
enable effective interactions with the physical world and pro-
vide assistance to humans in various domains. Consequently,
the capacity to generate realistic hand-object interactions is
paramount in fields like animation, AR/VR, human-computer
interaction, and robotics [2, 3]. Traditional methods for cap-
turing human motion in gaming and films, such as multi-view
marker-based setups, can be costly and require substantial data
cleaning for motion capture data [4, 10]. Hence, a model that
can proficiently generate two-handed motions interacting with
objects could reduce the costs associated with motion capture.

Research has turned to synthesizing hand-object interactions
using either data-driven [11, 12] or physics-based methods [1].
While existing data-driven methods generate motions includ-
ing object articulation [12] and two-hand manipulation [11],
these methods typically depend on complete supervision from
precise 3D motion data for each frame. Recently, physics-
based methods that leverage reinforcement learning (RL) in a
simulated environment have been proposed [1]. This approach
reduces the data requirement for motion generation as they
demand only a single hand pose reference per interaction.
While physics-based approaches have primarily focused on
single-hand grasping motions for rigid objects, real world
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hand-object interactions are often bi-manual and include ar-
ticulation. However, a framework for synthesizing bi-manual
grasping and articulation of objects is still missing.

Here, we go beyond single-hand grasping interaction of
rigid objects and present ArtiGrasp, a novel method to synthe-
size dynamic bi-manual grasping and articulation of objects.
We formulate this task as a reinforcement learning problem
and leverage physics simulations. This allows our method to
learn motions resulted from stable hand-object contacts and
forces, ensuring physical plausibility without object interpen-
etration. We propose a general reward function and training
scheme that enables grasping and articulation of a diverse set
of objects without object- or task-specific retraining.

Object articulation and bi-manual grasping present two
key challenges compared to single-hand grasping. First, the
articulation of different objects requires diverse wrist motions,
making it challenging to define a general control strategy.
For example, we show that a simple PD control scheme for
relocation of objects after grasping [1] does not work well in
this setting. To address this, we train an RL-based policy that
learns to i) manipulate an object to a target articulation angle
and ii) achieve natural interactions with the objects by utilizing
only a single hand pose reference as input. The second key
challenge is the precise finger control that is necessary to
achieve successful articulation, where even small deviations
from ideal positions on the target object impact performance.
In the bi-manual manipulation setting, one hand can easily
hinder the other hand from reaching its ideal position. To
deal with this challenge, we introduce a learning curriculum
consisting of two phases. In the first phase, we fix the object
base to the surface and create separate learning environments
for each hand. This allows our policies to focus on learning
precise finger control for articulation. In the second phase,
we fine-tune the policies using non-fixed objects in a shared
physics environment, allowing the hands to cooperate.

In our experiments, we first assess grasping and articulation
separately, and then evaluate the Dynamic Object Grasping
and Articulation task, which involves transitioning an artic-
ulated object from its initial state into a target articulated
object pose. To the best of our knowledge, there are no direct
baselines for this task. Therefore, we adjust the closest related
work [1] and show that simple adaptations lead to low task
success rates. On the other hand, our method achieves perfor-
mance gains of 5× over this baseline. We further in SupMat
show that our method can utilize noisy reconstructed poses



from images with off-the-shelf hand-object pose estimation
models, and ablate the main components of our framework.

Our contributions can be summarized as follows: 1) We
propose a method to achieve Dynamic Object Grasping and
Articulation in a physically plausible manner. 2) Our method
leverages RL and a general reward function to learn fine-
grained wrist and finger control to grasp and articulate dif-
ferent objects without task- or object- specific retraining. 3)
We present a learning curriculum with increasing difficulty to
address the complexity of learning articulation and bi-manual
manipulation. 4) We demonstrate that our method can utilize
hand pose estimates from a single image as input to generate
dynamic grasping and articulation.

II. METHOD

A. Task Definition

The Dynamic Object Grasping and Articulation task is
illustrated in Fig. 2. We are given an articulated object that
consist of two parts rotating about an axis qax, an initial
articulated object pose Ω0, a target articulated object pose
Ω, and two pairs of object-relative hand pose references D
(one for grasping and one for articulation). Our goal is to
generate a sequence of one or two hands interacting with the
object such that the initial object pose Ω0 approaches the
target pose Ω. An articulated object pose Ω is defined by
the 6 DoF global pose of the object base B and the 1 DoF
angle ω of its articulated joint. We define the output sequence
as {(qt

l ,T
t
l ,q

t
r,T

t
r,Ω

t)}Tt=1, where T is the number of time
steps and Ωt is the articulated object pose at time step t. The
hand joint rotations and the global 6D hand pose are defined
by qt

h and Tt
h where h ∈ {l, r}. The hand pose references

D = (ql,Tl,qr,Tr) can be obtained from motion capture or
grasp predictions [4] (see Section III and SupMat).

B. Framework Overview

We provide an overview of our policy learning framework
in Fig. 1. Since we formulate the problem identically for both
hands, we will omit the notation “h” for simplicity in this
section. ArtiGrasp is reinforcement learning based, and takes
as input a state s from a physics simulation, and the hand
pose reference D. A feature extraction layer Φ transforms these
inputs and passes them to our policy network. We train a policy
π(a|Φ(s,D)) for each hand. The policy predicts actions a as
PD-control targets, from which torques τ are computed. The
torques are applied to our controllable hand model’s joints in
the physics simulation and the updated state is again fed to Φ.
In the physics simulation, we create controllable MANO hand
models [8] with the mean shape. The models have 51 DoFs
each and are represented by the local hand pose q ∈ IR45 and
global pose T ∈ IR6. The objects are represented by meshes
taken from the ARCTIC dataset [4]. Each mesh is split into a
base and an articulation part with a single connecting joint.

C. Feature Extraction

The state s at a time step entails the current poses of
the hands and object, as well as the contacts and forces per

hand joint. We convert this information into features for the
policy. Since we train a left-hand and a right-hand policy, the
feature space is hand-specific, however, the overall structure
is identical and defined as follows:

Φ(s,D) = (H,O,G), (1)

where H, O, and G are the hand features, object features, and
goal features, respectively.

The hand features H are defined as H = (q, q̇, f, ˙̃T) where
q and q̇ are the hand joint local rotations and velocities, f are
the net contact forces of each link of the hand, and ˙̃T are the
wrist linear and angular velocities in object-relative frame.

The object features are O = (Ω̃, ˙̃Ω, Iart). The terms Ω̃ and
˙̃Ω indicate the articulated object’s 7 DoF pose and velocity

expressed in wrist-relative frame. We convert global informa-
tion into wrist-relative features (denoted by ·̃) to make the
policy independent of the global state and prevent overfitting.
To provide more information about the object’s state with
regards to articulation to our policy, we introduce the term
Iart = (q̃ax, q̃art, lart,mart,mbase, ), where q̃ax and q̃art are the
direction vector of the articulation axis and the direction vector
from wrist to the axis, represented in wrist-relative frame.
The terms lart, mart and mbase indicate the distance from wrist
to the articulation axis and the weights of the object’s parts,
respectively. We ablate this component Iart in SupMat VII-B.

The goal features G guide the policy towards the hand
pose reference and the target articulation angle. They are
defined as: G = (g̃q, g̃x, gc, ga). In particular, g̃q = q − q
is the distance between the target and the current hand joint
rotations (including wrist). The term g̃x = x−x is the distance
between the target and the current hand joint position, which
can be computed from the hand pose using forward kinematics.
gc = [c|c − c] contains the target contacts and the difference
between the target and the current binary contact vector.
ga = ω − ω is the difference between the the target and the
current object articulation angle. The target position, pose, and
contacts are extracted from the hand pose reference. The target
articulation angle is set to zero for grasping and otherwise
set to a random angle during training. The goal features are
expressed in either the object’s base or articulation coordinate
frame, depending on the part that needs to be manipulated.

D. Reward Function
The individual time-step reward function should guide our

policy towards a solution that imitates the reference pose and
fulfills the task objectives at the same time. Therefore, we
define it as follows:

r = rim + rtask, (2)

where rim is the reward for imitating the reference pose
and rtask contains the task objective. The imitation reward is
defined as:

rim = rp + rc + rreg. (3)

where the formulation of each reward function term is shown
in SupMat. The task reward rtask consists of two incentives:



Fig. 1. Overview of Grasping and Articulation Policy. Our method uses static hand pose references as input (top row) and generates
dynamic sequences (bottom row, where higher transparency represents further in time). We propose a curriculum that starts in a simplified
setting with separate environments per hand and fixed-base objects (gray solid box on the left) and continues training in a shared environment
with non-fixed object base (purple solid box in the middle). Our policies are trained using reinforcement learning and a physics simulation.
Rewards are only used during training. The detailed structure of our policy is shown on the right.

opening the object to a target articulation angle and avoiding
the movement of the object base from its initial pose:

rtask = −wtq||ω − ω|| − wtx||p0 − p||2, (4)

where ω and ω are the the target and the current articulation
angle, p0 and p are the object’s initial and current position.
The weights wtq and wtx are used to balance the terms.

E. Curriculum

Training our policies with non-stationary objects from
scratch makes it difficult to learn the precise control necessary
for fine-grained articulation. To address this, we introduce a
learning curriculum with two phases. In the first phase, we fix
the objects to the table surface and train each hand separately
in its own physics environment (grey shaded box in Fig. 1).
This lets the policies learn precise finger movements and
articulation. It also enables faster training, since the physics
simulation speed scales roughly quadratically with the number
of contacts in the environment. In the second phase, we move
to the more complex setting where the object base is not fixed
to the surface and the hands are both simulated in the same
environment (purple shaded box in Fig. 1). In this setting,
the policies need to learn to articulate the object without
moving the object base or even tipping the whole object over.
Additionally, the hands must collaborate, i.e., one hand should
grasp the object without moving it too much, such that the
other hand can successfully manipulate the object. In SupMat
VII-B, we ablate the effectiveness of our curriculum.

F. Sequence Generation

Given the unified policy per hand that can grasp and articu-
late objects, we now solve the Dynamic Object Grasping and
Articulation task (see Section II-A) by combining the different
subtasks. To achieve this, we use two pairs of hand pose
references Dgrasp and Dart. In the first phase, the hand policies

are executed until a stable grasp is reached. In this case, the
target object articulation angle ω is set to zero and Dgrasp is
used as input. To move the object to its target 6D global pose,
we use the policies to keep a stable grasp on the object and
employ the motion synthesis module following [1]. Note that
in the case where the hand pose reference contains only single
hand manipulation, we simply fix the other hand. After having
relocated the object, we need to transition from grasping into
pre-grasp poses for articulation. This is achieved through a
heuristics-based control scheme. First, we release the grasps
by bringing the fingers into open hand poses and moving them
away from the object following the direction that points from
the object center to the wrist. Next, we linearly interpolate
a trajectory between the hand poses and pre-grasp poses for
articulation Dart. The pre-grasp poses correspond to Dart with
a linear translation in global space. They are computed by
setting them at a small distance away from direction of the
object center to the wrist poses of the reference. In the last
phase, our policy controls the hand to approach the object and
articulate it to reach the target articulation angle.

III. EXPERIMENTS

We conduct several experiments to evaluate our framework.
We first report experimental details in Section III-A. We then
conduct quantitative evaluations on grasping and articulation
individually in Section III-B. We further provide quantitative
evaluation on our Dynamic Object Grasping and Articula-
tiontask in Section III-C. We provide more experiment setting
details and quantitative and qualitative results in SupMat.
Experiments with imperfect hand pose references from images
are shown in SupMat VII-A. And we provide ablations to show
the importance of our method’s components in SupMat VII-B.

A. Experimental Details
Metrics We mostly follow related work [6, 1] and define
three metrics for grasping (success rate, position and angle



Grasping Articulation

Model Suc. G ↑ PE ↓ AE ↓ Suc. A ↑ AAE ↓ SD ↓

PD+IK 0.13 1.20 1.50 0.28 0.80 0.39
D-Grasp 0.72 0.12 0.62 0.22 0.93 0.49
Ours 0.71 0.13 0.69 0.55 0.57 0.01

TABLE I. Quantitative comparison for grasping and articulation

error), three metrics for articulation (success rate, simulated
distance and angle error), and one additional metric for the
Dynamic Object Grasping and Articulation task. We omit the
interpenetration metric since all of our baselines include a
physics simulation which exhibits no interpenetration.
Grasp Success Rate (Suc. G): A grasp is defined as success
if the object is lifted higher than 0.1m and does not fall until
the sequence terminates.
Position Error (PE): The mean position error between the
object’s final and target 3D position in meters.
Angle Error (AE): The mean angle error between the object’s
final and target base orientation measured as geodesic distance
in radians.
Articulation Success Rate (Suc. A): An articulation is defined
as success if the hand can articulate the object for more than
0.3 rad and the articulated part does not slip until sequence
termination.
Articulation Angle Error (AAE): The mean error between
the object final and target articulation angle in radian.
Simulated Distance (SD): As articulation should not move the
object base, we report the average displacement of the object
base in meters.
Task Success Rate (Suc. T): We deem a task as success if
the PE < 0.05m, the AE < 0.2rad, and the AAE < 0.5rad.

Baselines D-Grasp [1] is the most related work to ours, so
we propose baselines following it:
D-Grasp: For grasping, we use vanilla D-Grasp and train the
policies of the two hands directly with non-stationary objects.
To compare D-Grasp to our method for articulation, we adjust
the wrist control in D-Grasp. We first gradually increase the
angle of the articulated joint and calculate the target 6D wrist
pose with inverse kinematics by assuming that the wrist is
fixed to the articulated part of the object. We then feed the
wrist target pose to the PD controller.
PD+IK: We use the hand reference poses and set them as
targets to the PD controller. The wrist for the articulation is
controlled in the same way as in D-Grasp.

B. Individual Grasping and Articulation

For grasping, we pre-sample 30 6D target object poses
randomly (see SupMat VI-C). To control the wrist movement
for relocation after grasping the object with our method and
the PD+IK baseline, we adopt the same motion synthesis
module as in [1] (see Section II-F). For articulation, we
evaluate each hand pose reference on 5 target articulation
angles: {0.5, 0.75, 1.0, 1.25, 1.5} rad. For both tasks, the initial
hand poses are set at a pre-defined distance away in the
direction that points from the object center to the wrist

Models Suc. T ↑ PE ↓ AE ↓ AAE ↓

D-Grasp 0.11 0.05 0.15 0.66
Ours 0.50 0.03 0.10 0.41

TABLE II. Quantitative evaluation of Dynamic Object Grasping
and Articulation.

Fig. 2. Qualitative evaluation of Dynamic Object Grasping and
Articulation. D-Grasp can grasp and relocate the object successfully,
but fails to articulate the object. Our method is more successful at
tackling this task and can articulate the object after relocation.

of the hand pose references, with partially opened hands.
The quantitative results are shown in Tab. I. Our method
significantly outperforms the PD+IK baseline on both grasping
and articulation. Our policy has considerably better articulation
performance and comparable grasping performance compared
with D-Grasp. The results also show the difficulty of artic-
ulation and indicate that our learning-based wrist control is
favorable for articulation compared to D-Grasp’s non learning-
based approach. Qualitative comparisons and more examples
of generated sequences (including motions generated with
noisy reconstructed poses) are presented in SupMat.

C. Dynamic Object Grasping and Articulation

To evaluate this task (see Section II-A), we combine all
grasping hand pose references with all articulation hand pose
references per object, and sample a random target articulated
object pose per trial (see SupMat VI-D). This results in
roughly 7500 evaluation trials in total. We report the average
pose errors and the task success rate in Tab. II. Our method
outperforms D-Grasp significantly in all metrics. For example,
our method achieves a success rate of 5× than that of D-
Grasp. This shows that while D-Grasp can perform well in
grasping when decoupled, it struggles in this composed task.
We provide a qualitative comparison in Fig. 2 and a longer
demonstration with multiple objects in SupMat.

IV. DISCUSSION AND CONCLUSION

We present a method to synthesize physically plausible
bi-manual grasping and articulation of objects with a single
policy. We introduce an RL-based method that learns hand-
object interactions in a physics simulation from static hand
pose references. To address the difficulty in learning precise
control for articulation, we extract articulation features and
propose a curriculum with increasing task difficulty. We show
our method presents a first step towards the Dynamic Object
Grasping and Articulation task. Furthermore, we demonstrate
that noisy hand-object pose estimates obtained from individual
RGB images can be used as input to our method.
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Supplementary Material

We describe implementation details in Section V and ex-
perimental details in Section VI. In Section VII, we provide
additional qualitative and quantitative experiments.

V. IMPLEMENTATION DETAILS

A. Fomulation of rim Terms

Here we show the formulation of each reward function term
of rim, which is defined as:

rim = rp + rc + rreg. (5)

The pose reward rp considers both the joint position and
joint angle error. The joint position error is the weighted sum
of the distances between target and current positions x and x
of every joint, and the joint angle error measures the L2-norm
of the differences between the target and current finger joint
(and wrist) angles q and q:

rp = −
L∑

i=1

wi
px||xi − xi||2 − wpq||q − q||, (6)

where wi
px and wpq are weights for the respective terms. The

contact reward rc is composed of a relative contact term, which
corresponds to the fraction of target contacts c the hand has
achieved, and a contact impulse term, which encourages the
amount of force f applied on desired contact joints, capped
by a factor proportional to the object’s weight mo:

rc = wcc
cT If>0

cT c
+ wcfmin(cT f, λmo), (7)

where wcc and wcf indicate the respective weights. The
term rreg regularizes the linear and angular velocities of the
hand and object:

rreg = −wrh||Ṫ||2 − wro||Ω̇||2. (8)

B. Training details

We use PPO [9] for RL training and RaiSim [5] for the
physics simulation. We train all policies using a single Nvidia
RTX 6000 GPU and 128 CPU cores. Training our method
takes roughly three days. We present an overview of the
important parameters and weight values of the reward function
in Tab. III.

VI. EXPERIMENTAL DETAILS

A. Dataset

We utilize the ARCTIC dataset [4], which contains fully
annotated two-hand interaction sequences including dexterous
grasping and manipulation of articulated objects. We separate
all sequences with available ground-truth annotations (training
and validation sequences) into the different interactions of
grasping and articulation. For each interaction, we extract

Hyperparameters PPO Value

Epochs 1e4
Steps per epoch 6e5
Environment steps per episode 300
Batch size 2000
Updates per epoch 20
Simulation timestep 2.5e-3s
Simulation steps per action 4
Discount factor γ 0.996
GAE parameter λ 0.95
Clipping parameter 0.2
Max. gradient norm 0.5
Value loss coefficient 0.5
Entropy coefficient 0.0
Optimizer Adam [7]
Learning rate 5e-4
Hidden units 128
Hidden layers 2

Weight Parameters Value

wpx 3.0
wpx,fingertip 12.0
wpq 0.2
wcc 1.5
wcf 1.5
wrh 0.5
wro 0.2
wtq 1.5
wtx 0.2
λ 5.0

TABLE III. Hyperparameters of our RL algorithm and the weight
values of the reward function..

a single pair of hand pose references using heuristics (See
Section VI-B). We exclude the three objects ”scissors”,
”capsule machine”, and ”phone” from our experiments.
”Scissors” is different from all other objects as it cannot be
split into a clear base and articulation part and requires in-
hand manipulation. ”Phone” and ”capsule machine” have very
small and thin articulation parts which cannot be modeled
with our method currently. With all the reference poses we
get, we create a custom 65%/35% train/test-split, leading to
a total of 488 and 257 hand pose references for training and
testing, respectively. For the experiments with image-based
estimates, we only use the validation set consisting of 60
hand pose references, because the pose estimation model was
trained on the ARCTIC training set.



B. Hand Pose Reference Generation

We now describe the procedure of retrieving hand pose ref-
erences from motion capture sequences. Since the sequences
contain several different interactions of object manipulation,
from which a lot of hand pose references could be extracted,
we devise heuristics to obtain diverse frames and avoid redun-
dancy. We distinguish between two types of manipulation in
this paper: grasping and articulation.

For each sequence, we first remove all frames where none
of the hands is in contact with an object. Next, we filter all
remaining frames for grasping and articulation. An interaction
is determined as grasping if an object is moved from its
underlying surface, i.e., if the velocity of the object base Ḃ is
higher than a threshold ϵv . On the other hand, if the articulation
angle ω is changed, we deem an interaction as articulation. To
avoid redundancy in hand pose reference frames, we make
the assumption that the hand pose does not drastically change
during one interaction. Hence, we choose one frame per
interaction subsequence.

C. Grasping and Articulation Targets

To evaluate grasping, we generate 30 target 6D object poses
for each hand-pose reference. The target positions are sampled
within a range of [-0.15m, 0.15m] in x and y directions
and [0.15m, 0.45m] for the z direction. The target object
orientation is the initial object orientation disturbed with noise
in the range of [-0.3rad, 0.3rad] for all rotation axes. To
evaluate articulation, we set 5 target joint angles per trial:
0.5rad, 0.75rad, 1.0rad, 1.25rad and 1.5rad.

D. Dynamic Object Grasping and Articulation Targets

For the evaluation of Dynamic Object Grasping and Ar-
ticulation, we randomly sample the target articulated object
poses Ω, which consists of the target 6D base pose and the
target object joint articulation angle. The target base position
is sampled within a range of [-0.1m, -0.05m] in x and y
directions and 0m in z direction, since the objects should be
relocated back onto the table. The target base orientation is
the initial object orientation disturbed with noise in the range
of [-0.4rad, 0.4rad] for the yaw axis. The target articulation
angle is randomly sampled in the range of [0.5rad, 0.6rad].

VII. ADDITIONAL EXPERIMENTS

A. Evaluation with Reconstructed Hand Pose References

We now evaluate our method with hand pose references ob-
tained from image predictions via the off-the-shelf hand-object
pose regressor from ARCTIC [4]. In particular, we estimate
hand and object poses from images of the unseen validation
subject (subject s05) of ARCTIC and use the reconstructed
results as input to our method and baselines. This allows us to
do a direct comparison of individual hand pose references from
motion capture and image-based predictions. Our evaluation
is conducted on 60 hand pose references selected with the
heuristics explained in Section VI-B. We retrieve the images at
the corresponding timesteps and pass them to the image-based
prediction model. We separate the evaluation into grasping

Grasping Articulation

Models Suc.G ↑ PE ↓ AE ↓ Suc.A ↑ AAE ↓ SD ↓

D-Grasp 0.60 0.16 0.78 0.20 1.07 0.63
Ours 0.64 0.16 0.80 0.54 0.55 0.01

Ours∗ 0.67 0.14 0.95 0.54 0.53 0.01

TABLE IV. Results with reconstructed hand pose references. The
asterisk (*) denotes using hand pose references from mocap.

(a) Input image (b) Noisy recon. (c) Our motion generation

Fig. 3. Motion generation. Our method can synthesize new motion
sequences (c) with a noisy hand pose reference (b) reconstructed from
a single RGB image (a).

and articulation and present the results in Tab. IV. Despite
reconstruction noise such as hand-object interpenetration, our
method can retain comparable performance as in the exper-
iment with hand pose references from motion capture. This
indicates our robustness to prediction noise and its potential
to synthesize new motions with hand-object pose references
from single images. An example of our generated motion is
shown in Fig. 3.

B. Ablations

We ablate the impact of the newly introduced components
on our framework. To this end, we compare our full method
against i) training both hands cooperatively and with a non-
stationary object from the start of training (w/o curriculum) ii)
training the hands separately and with a fixed-base object (w/o
cooperation). Additionally, we train our method without the
articulation features Iart (w/o art. features, See Section II-C).
The results are presented in Tab. V. Without the curriculum,
the policy achieves slightly better performance for grasping,
but struggles with articulation. This is because grasping has
different wrist motion with articulation which is easier to
be learnt, which indicates the importance of a controlled
setting to learn fine-grained articulation first. When training the
hands separately without cooperation, grasping performance
decreases because the hands cannot learn to collaborate for
two-handed grasping. Lastly, the articulation features Iart
improve all articulation metrics, indicating that it provides
important information about the object to the policy.

Grasping Articulation

Models Suc. G ↑ PE ↓ AE ↓ Suc. A ↑ AAE ↓ SD ↓

w/o curriculum 0.74 0.13 0.65 0.36 0.77 0.02
w/o cooperation 0.21 0.32 1.43 0.48 0.65 0.02
w/o art. features 0.67 0.15 0.73 0.48 0.67 0.01

Ours 0.71 0.13 0.69 0.55 0.57 0.01

TABLE V. Ablations.



Fig. 4. Qualitative evaluation of grasping. When evaluated only on
grasping, PD+IK often fails to successfully grasp the object. On the
other hand, D-Grasp and ours succeed at the task.

C. Qualitative Evaluation

We provide additional qualitative comparisons of our
method with baselines for grasping and articulation in Fig. 4
and Fig. 5, respectively. Given a pair of policies (one per
hand), our method can generate diverse grasping and artic-
ulation sequences across different objects as shown in Fig. 6,
and complete the task ’task as shown in Fig. 7. Furthermore,
as shown in the qualitative result Fig. 9, we observe some
recovering behavior from failure cases, which indicates the
robustness of our policy. In particular, the agent fails to grasp
first but tries again to find a better grasp until it succeeds in
articulating the object.

D. Unnatural Poses

As shown in Fig. 10, our method can generate unnatural
poses, which we argue occurs because of noisy pose references
from ARCTIC [4]. We find that especially the index finger
is often poorly labeled in the data, which translates to our
policies. Developing hand pose priors to incentivize natural
poses could be one way to mitigate this issue.

E. Long Sequence with Multiple Objects

Our method can generate long motion sequences in environ-
ments with multiple objects, which is shown in Fig. 8. We use
a heuristics-based planner to compose the sequences. Learning
a high-level planning module to couple the different phases is
an interesting direction to explore in the future. Note that while
we propose a controlled setting to evaluate the Dynamic Object
Grasping and Articulation task, the order of manipulations can
also be reversed. For example, an object can first be articulated,
and then be moved to a different location.

Fig. 5. Qualitative evaluation of articulation. When evaluated only
on articulation, both PD+IK and D-Grasp often fail at the task. On
the other hand, our method can articulate the object successfully.

Fig. 6. Qualitative outputs of our method. We provide more
sequences for grasping and articulation, which are generated by our
method with a single pair of hand pose reference label per interaction.
Each sequence is shown from left to right.

Fig. 7. Our method can synthesize physically plausible motions to
grasp and relocate an object with one or two hands, and open it to a
target articulation angle.
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Fig. 8. Long sequence with multiple objects. We show that our method can generate sequences of manipulating multiple objects. (A)
Approaching the mixer with the left hand. (B) Grasping the mixer with the left hand. (C) Articulating the mixer with the right hand while
the left hand is holding it. (D) Putting the mixer down on the table. (E) Approaching the box with both hands. (F) Grasping the box with
both hands. (G) Relocating the box on the table and moving the left hand to the ketchup bottle. (H) Grasping the ketchup bottle with the left
hand and opening the box with the right hand. (I) Relocating the ketchup bottle while the box is being held open. (J) Dropping the ketchup
bottle into the box. (K) Moving the left hand away from the box. (L) Closing the box with the right hand.

RetryApproach First attempt Slip Succeed
Fig. 9. Qualitative articulation result. The hand shows some
recovery ability from failure cases. Zoom in for details.

Fig. 10. Unnatural hand poses (a) Some of the hand pose references
we extract from the ARCTIC dataset contain unnatural hand poses.
(b) Our method can output some unnatural hand poses, which can be
due to noise in the hand pose references or because of the trade-off
in the task objective.
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