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Abstract

CLIP showcases exceptional cross-modal matching capabilities due to its training
on text-image matching tasks. However, without specific optimization for unimodal
scenarios, its performance in single-modality feature extraction might be subopti-
mal. Despite this, some studies have directly used CLIP’s image encoder for tasks
like few-shot classification, introducing a misalignment between its pre-training
objectives and feature extraction methods. This inconsistency can diminish the
quality of the image feature representation, adversely affecting CLIP’s effective-
ness in targeted tasks. In this paper, we view text features as precise neighbors
of image features in CLIP’s space and present a novel CrOss-moDal nEighbor
Representation (CODER) based on the distance structure between images and
their neighbor texts. This feature extraction method aligns better with CLIP’s
pre-training objectives, thereby fully leveraging CLIP’s robust cross-modal capa-
bilities. The key to constructing a high-quality CODER lies in how to create a vast
amount of high-quality text to match with images. We introduce the Auto Prompt
Generator (APG) to autonomously produce the required text in a data-free and
training-free manner. We apply CODER to CLIP’s zero-shot and few-shot image
classification tasks. Experimental results across various datasets and architectures
confirm CODER’s effectiveness.

1 Introduction

In recent years, text-image multimodal models have garnered widespread attention, with CLIP Rad-
ford et al. [2021] standing out as a notably powerful exemplar. Trained on a vast array of image-text
pairs through text-image matching tasks, CLIP boasts impressive text-to-image retrieval capabilities.
And it has been applied to fields like image classification Radford et al. [2021], object detection Gu
et al. [2022], Li et al. [2022c], semantic segmentation Li et al. [2022a], Xu et al. [2022], video under-
standing Luo et al. [2022], voice classification Guzhov et al. [2022], text-to-image generation Zhou
et al. [2022b], Tao et al. [2023], model pretraining Wei et al. [2022], and beyond Shen et al. [2022],
Zhang et al. [2022a].

Some existing works Zhang et al. [2022b], Wei et al. [2022], Vinker et al. [2022] extract image
features directly from CLIP’s image encoder for intra-modal tasks, like image matching in few-
shot classification. However, this method overlooks CLIP’s multi-modal capabilities, leading to
a misalignment with CLIP’s pre-training objectives. Furthermore, since CLIP isn’t optimized for
uni-modal scenarios, its performance in intra-modal tasks isn’t guaranteed. To optimize the image
features extracted by CLIP, we ask:

Can we leverage CLIP’s powerful multimodal capability to extract better image
feature, enabling better performance of CLIP on downstream tasks?
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Figure 1: Illustration of image’s CrOss-moDal nEighbor Representation (CODER). CLIP’s powerful
text-image matching ability endows it with a favorable cross-modal neighbor relation. The left half of the image
depicts that CLIP’s Zero-Shot Image Classification process can be interpreted as using a 1NN algorithm to
find the image’s nearest text, with the text’s category determining the image’s predicted class. Inspired by this
interpretation, we expand the image’s neighbor range to leverage its distances to all texts for constructing the
CODER.

In this paper, we introduce an enhanced image representation based on the distance between images
and their neighboring texts in CLIP’s feature space. This idea stems from our re-examination
of CLIP’s robust zero-shot classification capability from the perspective of nearest neighboring:
Previous perspective views the text features extracted by CLIP as classifiers and use them to get the
classification result. Different from this perspective, we interpret CLIP’s zero-shot image classification
as a 1NN problem, as shown in the left of Figure 1. We treat text samples as the image samples’
neighbors in the CLIP feature space. Then for each image, CLIP identifies the closest text sample and
assigns its category as the image’s predicted class. This 1NN approach delivers good performance
because CLIP’s robust text-image matching ensures images are closer to its semantically related
texts. This suggests that the cross-modal distance relation between an image and its neighboring texts
captures inherent information of the image itself, such as its category.

In zero-shot image classification, CLIP only considers the distance relation between an image and
its nearest neighbor text. However, it loses the information implied in the distance relation between
the image and other text samples. To make full use of those information, we expand each image’s
neighbor range to utilize its distance to K Nearest Neighbor (KNN) texts for constructing image
representation, as depicted in the right half of Figure 1. Here K denotes the total number of texts.
We refer to this representation as CrOss-moDal nEighbor Representation (CODER). We believe
samples with closer CODER values are more similar. This aligns with intuition: If two objects share
the same sets of similar and dissimilar items, they’re likely similar to each other.

Previous work Zhou et al. [2015], Wu [2011] has noted that dense sampling of neighbor samples
is critical for building neighbor representations. This inspires us to use various high-quality text
samples related to target categories for dense sampling in CLIP’s space. To autonomously generate
high-quality prompts, we’ve introduced the Auto Prompt Generator (APG). It can produce a diverse
and effective set of prompts based on target dataset class names without the need for data and training.
These diverse, high-quality text samples enhance the density of neighboring texts for image samples
in CLIP’s feature space, helping to build a better CODER.

We apply CODER to CLIP’s zero-shot and few-shot image classification tasks. For the former,
we discover that employing a simple heuristic classifier to the image’s CODER yields impressive
results. For the latter, we match test images to samples in the support set using the CODER. Based
on this match and CLIP’s zero-shot classification logits, we determine the final category prediction.
Experiment results on various datasets and different CLIP model architectures confirm that CODER
enhances CLIP’s performance in both zero-shot and few-shot image classification.

2 Notations and Background

Using CLIP to match text and image. CLIP encodes both images and texts into a joint space using
CLIP’s image encoder or text encoder. Equation 1 describes this process. Here CLIP’s image encoder
fCLIP extracts the feature x̂i of input image xi, while a text tj is mapped to the same space with the
text encoder gCLIP. D1 refers to the dimension of CLIP’s feature space.

x̂i = fCLIP(xi), t̂j = gCLIP(tj). (1)
2
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Figure 2: An example of CODER correcting wrong distance relation between images. dimg
ij refers to the

cosine distance between the i-th and the j-th image. r1 and r2 refers to the cosine distance between neighbor
text and image samples. The left side of the figure indicates that even though samples of the same class share
similar distances to their neighboring texts, this doesn’t ensure that their feature representations are closely
aligned. The right side of the figure shows that CODER corrects the wrong distance relation by utilizing the
text-image distance relation.

ŷ = argmax
j∈[1,··· ,K]

x̂⊤
i t̂j

∥x̂i∥ · ∥t̂j∥
. (2)

We can calculate the cosine similarity between features of texts and photos. These scores indicate
how well each image and text match. The text with the highest similarity to the image is chosen as
the final match, as shown in Equation 2.

3 Method

3.1 Understand the advantage of Cross-Modal Neighbor Representation.

We construct the CODER for the current image by tapping into the precise image-text distance
relationship within the CLIP feature space. As shown in equation 3, we use the CODER construct
function ϕ to build image’s CODER ϕ (x̂i) based on its original feature x̂i.

ϕ (x̂i) =
[
ψ
(
d
(
x̂i, t̂1

))
, · · · , ψ

(
d
(
x̂i, t̂K

))]
∈ RK . (3)

The specific implementation of ϕ is to obtain the corresponding element in CODER based on the
image-text distance d

(
x̂i, t̂j

)
using mapping function ψ. In this paper, we use cosine distance for d

and cosine similarity for ψ. Then we can rewrite Equation 3 as Equation 4. However, we emphasize
that their implementations can be further refined.

ϕ (x̂i) =

[
x̂⊤
i t̂1

∥x̂i∥ · ∥t̂1∥
, · · · , x̂⊤

i t̂K

∥x̂i∥ · |t̂K∥

]
∈ RK . (4)

We highlight CODER’s advantages over CLIP’s original image features using an example. Figure
2’s left side depicts a bad case for CLIP. For simplicity, we consider situations where test images
share a single neighboring text in CLIP’s feature space. While CLIP’s cross-modal pre-training
ensures accurate image-text distances, it doesn’t always capture precise distances between images.
This results in cases where the intra-image distance for same-class samples dimg

21 exceeds that of
different-class samples dimg

23 . To solve this problem, CODER uses CLIP’s accurate text-image
distances to build image representations. As samples of the same class have similar distances to their
common neighboring text, their CODER align more closely. Thus, CODER addresses the wrong
distance relation.

We then focus on the key element of building a good CODER. Previous studies have emphasized
that dense sampling of neighboring samples is vital for algorithms based on nearest neighbor. For
example, only when the training samples are densely sampled will the error rate of theKNN classifier
remain within twice that of the Bayes optimal classifier. Inspired by these works, we try to optimize
our CODER by increasing the number of texts. For increasing the number of texts, we use our
designed Auto Prompt Generator (APG) to achieve this objective.
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3.2 Use Auto Prompt Generator to generate high-quality prompts.

As previously mentioned, accurate and diverse prompts can increase the sampling density of images’
neighbor text samples for constructing better CODER. To automatically generate a plethora of
high-quality prompts adaptive to downstream tasks, we introduce the Auto Prompt Generator (APG)
module. It automatically extracts diverse knowledge from external experts like ChatGPTOuyang et al.
[2022] and WordNet Miller [1995] to construct high-quality prompts. In our implementation, APG
can construct five types of text samples: (1) Category name-based texts; (2) Attribute-based texts;
(3) Analogous-based texts; (4) Synonym-based texts; (5) 1v1-based texts. The first two texts are
proposed by previous work, while the latter three are innovations introduced in this paper. We will
then delve deeper into the design rationale and generation process of these last three type of texts.

(1) Analogous Class-based Texts. If someone describes a clouded leopard as resembling a cheetah,
you can envision its appearance even if you’ve never seen a clouded leopard. Your familiarity with
the cheetah helps in this visualization. This scenario illustrates how inter-object similarities can help
humans leverage their experience with known categories to recognize new ones. Inspired by this, we
first query ChatGPT to obtain analogous categories for a given object. Then we insert the analogous
category names into the template “a {target class} similar to {analogous class}” to
form a complete prompt. By inputting this prompt into CLIP’s text encoder, we obtain analogous
class-based text samples in the CLIP space.

(2) Synonym-based Texts. Objects can have multiple names. For instance, “forest” and “woodland”
both mean “land covered with trees and shrubs”. CLIP may prefer common terms over lesser-known
synonyms due to data frequency. To address this, we use WordNet to find synonyms for the current
category and format them as “a photo of {synonym class}”. These prompts are then processed
by CLIP’s text encoder to generate synonym-based text samples.

(3) 1v1-based Texts: Similar categories often have shared features, leading APG to produce nearly
identical descriptors. For instance, APG might describe both “butterfly” and “dragonfly” with
“two pairs of wings" and “six jointed legs”, making it challenging for CLIP to differentiate related
classes. To address this, we introduce 1v1-based texts. We query ChatGPT to obtain distinguishing
1v1 descriptors that can differentiate similar categories A and B. Then, we insert the obtained 1v1
descriptors into some templates like “Because of {1v1 descriptor}, {class name 1} is
different from {class name 2}”. We input these prompts into CLIP’s text encoder to generate
1v1-based text samples within the CLIP space.

3.3 Use Cross-Modal neighbor representation on image classification tasks.

Zero-Shot Image Classification. For zero-shot image classification, our classification process is
divided into two stages: the Preliminary Classification Phase and the Re-ranking Phase. In the
Preliminary Classification Phase, we first utilize all texts in prompt set P = [t1, · · · , tK ] generated
by APG, excluding the 1v1-based texts, to construct the CODER for test images. This process is
shown in Equation 5 and 6. Here W ∈ RD1×K1 refers to the text samples’ feature in the CLIP
feature space. And si ∈ RK1 represents the CODER of present test image xi. K1 refers to the total
number of prompts excluding 1v1-based texts.

W =

[
t̂1

∥t̂1∥
, · · · , t̂K

∥t̂K∥

]
. (5)

si = ϕ (x̂i) =
x̂⊤
i

∥x̂i∥
W . (6)

Then, we employ a heuristic classifier h on the test image ’s CODER si to obtain the preliminary
classification logits vector oi. The computation process is illustrated in the Equation 7 and 8. Here
ŝij represents the portion of the test image’s CODER corresponding to the text samples of the
j-th category. soriij , sattij , sanaij , ssynij refers to sj’s portion of category name-based texts, attribute-
based texts, analogous-based texts and synonym-based texts, respectively. ⊕ refers to the vector
concatenation operation.

sij = soriij ⊕ sattij ⊕ sanaij ⊕ ssynij . (7)

oij = h(sij) = mean
(
sattij ⊕ sanaij ⊕

[
max(soriij ⊕ ssynij )

])
. (8)
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For each category, the heuristic classifier h first gets the largest element in the test image’s CODER
portion corresponding to the category name-based texts and synonym-based texts. This step is
intuitive: Humans can recognize an object by knowing just one of its names. Then h calculates the
mean of max(soriij ⊕ ssynij ) and all elements in the sij ’s portion corresponding to the attribute-based
texts and analogous-based texts. This value can be seen as preliminary classification logits oij
belonging to class j.

In the Re-ranking Phase, We re-rank the top two predicted classes within the logits vector oi. We
construct a 1v1 CODER s1v1i ∈ RU for test image using only the 1v1-based texts between these two
classes. This process is shown in Equation 9 and 10. Here W1v1 ∈ RD1×U refers to the 1v1-based
text samples’ feature and U refers to the total number of 1v1-based text samples.

W1v1 =

[
t̂1v11

∥t̂1v11 ∥
, · · · , t̂1v1U

∥t̂1v1U ∥

]
. (9)

s1v1i =
x̂⊤
i

∥x̂i∥
W1v1. (10)

We calculate the mean values of the elements in the 1v1 CODER for each class as their logits. The
class with the higher logits value is chosen as the final prediction ĉi.

ĉi = argmax
j∈[0,1]

[
mean

(
s1v1ij

)]
. (11)

We observe that the smaller the logits gap between the top two predictions in the preliminary logits
vector oi, the higher the likelihood of a misclassification. Hence, in our experiments, we only perform
re-ranking on samples with a logits gap below a specified threshold.

Few-Shot Image Classification. For Few-Shot Image Classification, we improve the Tip-
Adapter Zhang et al. [2022b] by replacing the original CLIP image feature with our CODER
in its image matching progress. We refer to the improved method as CrOss-MoDal NEighbor
Representation CLIP Adapter (CODER-Adapter). Given the N -way K-shot support set image
instances Ik, we first calculate their CODER Ftrain ∈ RNM×K using their original CLIP feature
fCLIP (Ik) ∈ RNM×D1 and text samples gCLIP (P ) ∈ RD1×K generated by APG. And we perform
one-hot encoding on the their labels L to get one-hot labels matrix Ltrain ∈ RNM×C . C refers to
the number of categories. We perform row-wise L2 normalization on fCLIP (Ik) and column-wise L2
normalization on gCLIP (P ), respectively. This process is shown in Equation 12 and 13.

Ftrain = fCLIP (Ik) g
CLIP (P ) . (12)

Ltrain = OneHot (L) . (13)
For the present test image xi, we also construct its CODER ai ∈ RK in the same manner as we do
for the support set samples.

ai = fCLIP (xi) g
CLIP (P ) . (14)

We then calculate the affinity A ∈ R1×NM between test image’s CODER ai ∈ RK and support set
images’ CODER Ftrain ∈ RNM×K using the Equation 15. Here q refers to the data normalization
operation like L2-normalization and min-max normalization. β and T are hyperparameters to control
the sharpness of A’s distribution.

A = exp

(
−β ·

(
1−

q
(
aiF

⊤
train

)
T

))
. (15)

The affinity A ∈ R1×NM can serve as a weight factor for Ltrain. By calculating the weighted sum
of sample labels in Ltrain, we can refine the original zero-shot prediction results ozs

i using Equation
16. Here α controls the degree of correction.

oi = α ·ALtrain + ozs
i . (16)

Finally, we select the category corresponding to the largest logits in oi as the prediction result.

4 Experiments

In the experimental section, we demonstrate the superiority of CODER via zero-shot and few-shot
image classification tasks. We present more detailed results in the Appendix.
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Table 1: Zero-Shot Image Classification Average Accuracy of different methods across 9 datasets.

Average

Architecture CLIP VCD Ours ∆
ViT-B/32 59.19 62.68 64.13 1.45
ViT-B/16 61.92 65.98 68.52 2.54
ViT-L/14 66.40 69.48 72.63 3.15
ViT-L/14@336px 67.31 70.28 73.33 3.05

Table 2: Few-Shot Image Classification Average Accuracy of different methods across different shots.

Average

Method 1-shot 2-shots 4-shots 8-shots 16-shots
TIP-Adapter 61.19 63.65 65.65 67.70 69.49
TIP-X 62.54 64.27 66.41 68.62 70.59
Ours 63.67 65.52 67.65 69.52 71.65

4.1 Experiment Setup

Dataset. For the zero-shot image classification, we follow the eight datasets used in the VCD Menon
and Vondrick [2023] and additionally incorporated the widely-used Caltech-101 dataset Fei-Fei et al.
[2007]. For the few-shot image classification, we refer to previous work and conduct tests on 10
datasets.

Model. For the zero-shot experiments, we followed the four CLIP models used in VCD, namely ViT-
B-32, ViT-B-16, ViT-L-14, and ViT-L-14-336px Dosovitskiy et al. [2021]. In few-shot experiments,
consistent with previous studies, we employed ResNet 50 He et al. [2016] as CLIP’s image encoder.

4.2 Zero-Shot Image Classification Performance

For zero-shot image classification, we compare our method with two baselines: Vanilla CLIP and
VCD Menon and Vondrick [2023]. Table 1 displays the zero-shot image classification results using our
proposed CODER. Our proposed CODER consistently boosts CLIP’s zero-shot image classification
average accuracy across various model architectures. This demonstrates APG’s ability to produce
high-quality, dataset-relevant prompts and the effectiveness of the resulting image’s CODER. The
detailed results for each dataset are presented in the appendix A.3.

4.3 Few-Shot Image Classification Performance

For few-shot image classification, we use two CLIP’s training-free few-shot image classification
methods TIP-Adapter Zhang et al. [2022b] and TIP-X Udandarao et al. [2022] as our baselines. Table
2 shows the few-shot image classification average accuracy of our CODER-Adapter on 10 datasets
excluding EuroSAT. Our method surpasses present SoTA CLIP few-shot training-free adaptation
methods. The experimental detail is presented in the appendix A.3.

5 Conclusion

In this paper, we address the misalignment between CLIP’s image feature extraction method and
its pre-training paradigm. Initially, we present a novel perspective based on nearest neighbors to
comprehend CLIP’s strong zero-shot image classification capabilities. Our key observation is that
CLIP’s strong text-image matching capability lets image-text distances contain image’s information.
Inspired by this, we propose the CrOss-moDal nEighbor Representation (CODER) to leverage the
cross-modal distance relation for image representation. Additionally, we introduce the Auto Prompt
Generator to autonomously generate a vast array of texts, ensuring dense sampling of neighbor
samples. This is essential for better CODER construction. Experimental results in both zero-shot
and few-shot image classification underscore the superiority of our proposed method.
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A Appendix

A.1 Related Work

Vision-Language Models. Vision-Language Models (VLMs) represent a class of multimodal
models adept at correlating textual and visual information. Prominent models in this domain include
CLIP Radford et al. [2021], ALIGN Jia et al. [2021], FLAVA Singh et al. [2022], Florence Yuan
et al. [2021], and GLIP Li et al. [2022b], among others. These models typically comprise two main
components: an image encoder and a text encoder, both of which are often implemented using
transformer Vaswani et al. [2017]. VLMs are trained on extensive text-image pairs through tasks like
text-image matching, endowing them with powerful text-image matching capability. In this paper, we
leverage this capability of CLIP to generate our CODER for image samples.

Prompt Engineering. Prompt Engineering is a vital approach to enhancing VLMs. It focuses on
optimizing the input of the text encoder to obtain a more robust classifier, thereby improving VLMs’
performance. There are mainly three prevalent methods currently. The first involves human experts
manually designing prompt templates Radford et al. [2021], which is labor-intensive. The second
method entails automatically learning prompts from samples, as seen in methods like CoOp Du
et al. [2022], CoCoOp Zhou et al. [2022a], TPT Shu et al. [2022], etc. This approach is reliant on
sample data and is susceptible to training data bias. The third approach leverages external experts to
automatically generate prompts Menon and Vondrick [2023], Ge et al. [2023], Pratt et al. [2022], Mao
et al. [2023]. In this paper, we consolidate and expand on the third method by introducing the Auto
Prompt Generator (APG) to automatically generate a comprehensive and effective set of prompts.

Using CLIP for Zero-Shot and Few-Shot Transfer. CLIP is widely used for zero-shot and few-shot
image classification. For zero-shot image classification, CLIP computes features of the image and
texts. Then it calculates the cosine similarity between the test image and texts and selects the category
with the highest score as the classification result. In few-shot image classification, several works
have explored enhancing CLIP’s performance on target tasks using limited samples. CoOp Du et al.
[2022] and CoCoOp Zhou et al. [2022a] learn continuous prompts to generate novel text classifiers.
CLIP-Adapter Gao et al. [2023] employs two fully connected neural networks to fine-tune the original
image features and text classifier respectively. TiP-Adapter Zhang et al. [2022b] matches test samples
with a few training samples to obtain prediction refinements. TaskRes Yu et al. [2023] learns a
residual vector to adjust the existing text classifier. In this paper, based on our proposed CODER, we
design a heuristic classifier and the CODER-Adapter to enhance CLIP’s performance in zero-shot
and few-shot image classification tasks, respectively.

A.2 Details of Auto Prompt Generator

We present the specific details of various text generations in the Auto Prompt Generator (APG).

(1) Category Name-based Texts. We input the category names corresponding to the object classes
of each dataset into the template “a photo of {class name}” to generate Category Name-based texts.

(2) Attribute-based Texts. For datasets in VCD [Menon and Vondrick, 2023] with provided attribute
descriptors, we directly use VCD’s attribute descriptors. For those without attribute descriptors in
VCD, we retrieve the respective descriptors from ChatGPT using the following query prompt:

Q: What are useful visual features for distinguishing a {class name}
in a photo?

A: There are several useful visual features to tell there is a
{class name} in a photo:
_

Then we insert the attribute descriptors and its corresponding class name into the template “{class
name} which has {attribute descriptor}” to generate Attribute-based texts.

(3) Analogous Class-based Texts. We first query ChatGPT to obtain analogous categories for a
given object using the following query prompt:

Q: What other categories are {class name} visually similar to?
A: _

9



Then we insert the analogous category names and original category names into the template “a
{original class} similar to {analogous class}” to form an analogous class-based texts.

(4) Synonym-based Texts. We use WordNet [Miller, 1995] to find synonyms for the current category
and format them as “a photo of {synonym class}” to get Synonym-based texts.

(5) 1v1-based Texts. We uses the following query prompt to guide ChatGPT in generating the most
distinguishing features between similar categories A and B:

Q: What are different visual features between a {class name 1}
and a {class name 2} in a photo? Focus on their key differences.
A: _

Using the prompt, we generated distinguishing descriptors that differentiate class 1 from class 2.
We use butterfly and dragonfly as an example. For butterfly, some of the exemplified descriptors
include: [“Butterflies typically have larger and more colorful wings compared to dragonflies.”]. For
dragonflies, some of the descriptors produced are: [“They have transparent wings that are typically
held out horizontally when at rest.”]. From the new descriptors, we observe that: (1) The descriptors
underscore the key differences between butterfly and dragonfly like wing characteristics. (2) These
descriptors emphasize the comparison between the two, as seen in terms like “larger” "more” and
“compared to”.

Then, we insert the obtained 1v1 descriptors into some templates including “Because of {1v1
descriptor}, {class name 1} is different from {class name 2}”, “{class name
1} can be distinguished from {class name 2} by the characteristics of {1v1
descriptor}” to get 1v1-based texts.

A.3 Experiment Detail

Zero-Shot Image Classification. For zero-shot image classification, we compare our method
with two baselines: Vanilla CLIP and VCD Menon and Vondrick [2023]. For Vanilla CLIP’s
implementation, we build the classifiers using the prompt “A photo of {class name}”. For
VCD, we use the original paper’s attribute descriptors with the template “{class name} which
has {descriptor}” to create attribute classifiers, which we then use it with Vanilla CLIP’s class
classifiers.

Table 3 displays the zero-shot image classification results using our proposed CODER. CODER
consistently boosts CLIP’s zero-shot image classification accuracy across various datasets and model
architectures. For the CLIP model ViT-B/32 on the EuroSAT dataset, our method exhibit an unusual
performance drop. We believe this isn’t because of the APG-generated prompts’ quality, but an
issue with the RN50 CLIP’s text mapping accuracy. As evidence, prompts of EuroSAT consistently
improve performance of other more robust CLIP models like ViT-B-32, ViT-B-16 and so on.

To validate the efficacy of the texts produced by APG, we conduct ablation studies. We utilize
different prompts on various architectures to assess their impact on model performance. Table 4
shows that our introduced analogous-based texts, synonym-based texts and 1v1-based texts each
enhance performance.

Few-Shot Image Classification. For few-shot image classification, we use two CLIP’s training-free
few-shot image classification methods TIP-Adapter Zhang et al. [2022b] and TIP-X Udandarao et al.
[2022] as our baselines. TIP-Adapter leverages features from CLIP’s image encoder for matching
test samples and support set samples. While TIP-X uses vectors based on similarity scores between
images and prompts generated by CUPL Pratt et al. [2022] to do it.

Contrasting with prior work, we innovatively construct CLIP’s image representation from a nearest-
neighbor perspective. Inspired by the dense sampling needed for neighboring representations, we
advocate for richer and higher-quality neighbor texts to elevate the performance of our proposed
CODER. This unique perspective and optimization strategy set our study apart as a novel contribution
compared to earlier research.

Figure 3 shows the few-shot image classification results of our CODER-Adapter on 10 datasets. We
use category name-based texts, attribute-based texts, analogous-based texts to construct the image’s
CODER. Following the TIP-Adapter approach, we fine-tune hyperparameters using the validation
set on datasets like Caltech-101. Our method surpasses present SoTA CLIP few-shot training-free
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Table 3: Accuracy gains over VCD and CLIP baseline. We see a consistent ∼1-3% improvement
across model sizes for ImageNet and ImageNetV2, as well as up to ∼ 7% on other datasets.

ImageNet CUB200 EuroSAT

Architecture CLIP VCD Ours ∆ CLIP VCD Ours ∆ CLIP VCD Ours ∆
ViT-B/32 59.07 62.02 64.30 2.28 51.83 52.27 54.28 2.01 44.87 49.96 42.94 -7.02
ViT-B/16 63.5 68.29 69.69 1.4 55.85 57.49 58.54 1.05 49.63 47.85 54.35 6.5
ViT-L/14 70.58 75.01 76.21 1.2 62.18 63.89 65.08 1.19 53.46 52.7 58.37 5.67
ViT-L/14@336px 71.83 76.07 77.24 1.17 63.46 65.1 66.75 1.65 54.92 53.11 58.9 5.79

Describable Textures Places365 Food101

Architecture CLIP VCD Ours ∆ CLIP VCD Ours ∆ CLIP VCD Ours ∆
ViT-B/32 40.37 42.87 49.62 6.75 36.42 39.1 40.84 1.74 80.3 83.54 84.41 0.87
ViT-B/16 39.04 45.53 51.75 6.22 37.31 39.89 41.75 1.86 86 88.82 89.33 0.51
ViT-L/14 50.58 52.76 59.09 6.33 37.04 39.58 42.24 2.66 89.86 92.81 93.63 0.82
ViT-L/14@336px 51.96 53.77 60.21 6.44 37.25 40.6 42.86 2.26 91.08 93.64 94.33 0.69

Caltech101 Oxford Pets ImageNetV2

Architecture CLIP VCD Ours ∆ CLIP VCD Ours ∆ CLIP VCD Ours ∆
ViT-B/32 79.03 88.94 91.12 2.18 81.65 82.74 85.5 2.76 51.8 55.02 57.31 2.29
ViT-B/16 80.06 92.22 93.2 0.98 83.94 87.76 89.53 1.77 57.23 61.71 62.99 1.28
ViT-L/14 79.6 87.84 93.2 5.36 87.92 91.25 93.21 1.96 64.34 69.34 70.41 1.07
ViT-L/14@336px 80.18 88.82 93.43 4.61 87.78 91.11 92.94 1.83 65.63 70.61 71.62 1.01

Table 4: Average Accuracy of different methods. The meaning of each symbol in the table are:
P : Using category name-based texts. Att: Using attribute-based texts. Ana: Using analogous
class-based texts. S: Using synonum-based texts. 1v1: Using 1v1-based texts.

Average

Architecture CLIP VCD P+Att+Ana P+Att+Ana+S P+Att+Ana+1v1 All
ViT-B/32 59.19 62.68 63.69 63.82 64.12 64.13
ViT-B/16 61.92 65.98 68.28 68.4 68.46 68.52
ViT-L/14 66.40 69.48 71.97 72.22 72.52 72.63
ViT-L/14@336px 67.31 70.28 72.87 72.87 73.25 73.33

adaptation methods TIP-Adapter and TIP-X on most datasets. We notice that CODER-Adapter’s
performance on EuroSAT is unsatisfactory, but this meet our expectations. Since EuroSAT has
only 10 classes and 95 text samples generated by APG, this insufficient sample size fails to satisfy
CODER’s need for dense text sampling, impacting the adapter’s performance. It further highlights the
importance of dense sampling for CODER. We calculate the average accuracy for different methods
on nine datasets, excluding EuroSAT. On average, we outperform TIP-Adapter and TIP-X by 2.11%
and 1.2% across all shots, respectively.

A.4 Class separability of CODER

We compared the original CLIP features with our proposed CODER, using different shot training
samples to construct Prototypes and evaluated the Prototype classification accuracy on various
downstream datasets. This comparison serves to gauge the effectiveness of both feature types. Table
5 presents our experimental results. From the table, we can draw the following conclusions:

1) CODER has the capability to refine original image features, as observed by the consistent
improvement in prototype accuracy on the Oxford-Pets dataset.

2) CODER is especially suited for scenarios with limited samples, showing a greater advantage
over the original features in contexts like 1-shot, 2-shot, and 4-shot settings.

3) On some datasets, like EuroSAT, CODER underperforms. This is in line with our expec-
tations because EuroSAT has fewer categories and consequently fewer Prompt texts. This
shortfall doesn’t meet the dense sampling criteria needed for nearest neighbor representation,
leading to reduced performance.
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Figure 3: Results for the training-free few-shot regime across 10 datasets. We compare the CODER-
Adapter with the state-of-the-art CLIP few-shot image classification methods. Our CODER-Adapter
achieves the best performance on most datasets.

Table 5: The accuracy of datasets prototypes under different shot number

16 Shots ImageNet Aircraft OxfordPets EuroSAT Caltech101 Cars SUN397 DTD Flowers102 Food101 UCF101

CLIP 49.59 29.49 68.98 71.79 87.74 57.99 63.11 58.98 91.59 66.17 67.14
CODER 51.63 22.53 85.60 58.48 88.68 57.31 63.02 57.44 86.27 67.22 67.90

8 Shots ImageNet Aircraft OxfordPets EuroSAT Caltech101 Cars SUN397 DTD Flowers102 Food101 UCF101

CLIP 45.12 25.86 60.53 61.41 85.39 51.61 60.08 54.96 88.34 60.15 63.20
CODER 48.04 22.02 84.90 53.38 86.77 54.26 60.63 54.55 84.57 63.94 65.58

4 Shots ImageNet Aircraft OxfordPets EuroSAT Caltech101 Cars SUN397 DTD Flowers102 Food101 UCF101

CLIP 38.36 21.87 54.02 60.70 83.24 45.01 54.08 47.93 82.41 52.97 60.16
CODER 41.57 21.57 81.00 49.13 83.40 49.07 55.29 52.24 81.44 57.98 62.88

2 Shots ImageNet Aircraft OxfordPets EuroSAT Caltech101 Cars SUN397 DTD Flowers102 Food101 UCF101

CLIP 30.85 17.88 37.17 57.13 77.89 34.41 44.25 40.01 69.02 42.01 51.33
CODER 34.27 18.63 72.93 44.06 80.20 43.00 47.26 44.44 72.71 47.86 56.54

1 Shot ImageNet Aircraft OxfordPets EuroSAT Caltech101 Cars SUN397 DTD Flowers102 Food101 UCF101

CLIP 22.46 14.52 30.03 47.30 67.62 24.14 33.31 28.60 56.02 30.37 41.21
CODER 25.13 16.83 66.01 40.01 73.54 33.29 36.30 29.96 61.22 36.80 47.02

Additionally, we calculate the ratio of within-class scatter to between-class scatter to demonstrate
that CODER from the same category are closer, while those from different categories are more
distinct. Table 6 shows the results of this ratio across various datasets. As we can see, these values
are relatively low, validating our hypothesis.

We also generate some t-SNE visualizations to compare the original CLIP image features with
our CODER. As seen in Figure 4, our CODER reduces the within-class scatter and increases the
between-class scatter of the original CLIP image features, resulting in a more effective image’s
feature representation.
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Table 6: Ratio of within-class scatter to between-class scatter

ImageNet Aircraft OxfordPets EuroSAT Caltech101 Cars SUN397 DTD Flowers102 Food101 UCF101

0.053 0.022 0.042 0.003 0.037 0.054 0.038 0.078 0.049 0.007 0.018
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Figure 4: The t-SNE Visualization of the Oxford-Pets dataset. The left is the t-SNE visualization of
the original images feature extracted by CLIP image encoder, while the right is the t-SNE visualization
of features extracted by CODER.
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