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Abstract

In visual-based Reinforcement Learning (RL), agents often struggle to general-
ize well to environmental variations in the state space that were not observed
during training. The variations can arise in both task-irrelevant features, such as
background noise, and task-relevant features, such as robot configurations, that
are related to the optimal decisions. To achieve generalization in both situations,
agents are required to accurately understand the impact of changed features on
the decisions, i.e., establishing the true associations between changed features and
decisions in the policy model. However, due to the inherent correlations among
features in the state space, the associations between features and decisions be-
come entangled, making it difficult for the policy to distinguish them. To this end,
we propose Saliency-Guided Features Decorrelation (SGFD) to eliminate these
correlations through sample reweighting. Concretely, SGFD consists of two core
techniques: Random Fourier Functions (RFF) and the saliency map. RFF is utilized
to estimate the complex non-linear correlations in high-dimensional images, while
the saliency map is designed to identify the changed features. Under the guidance
of the saliency map, SGFD employs sample reweighting to minimize the estimated
correlations related to changed features, thereby achieving decorrelation in visual
RL tasks. Our experimental results demonstrate that SGFD can generalize well on
a wide range of test environments and significantly outperforms state-of-the-art
methods in handling both task-irrelevant variations and task-relevant variations.

1 Introduction

Learning control from high-dimensional visual observations is a critical requirement for real-world
applications and has received significant attention in recent years [43, 18, 10]. Reinforcement
Learning (RL) has demonstrated its effectiveness in solving visual tasks by learning from compact
representations of sensory inputs [12, 13]. However, current algorithms exhibit limited reliability
when deployed in unseen environments, despite achieving satisfactory performance during training
[7, 48]. It remains an open challenge to learn policies with good generalization across both changed
task-irrelevant and relevant features [24]. Consider a simple example during the evaluation stage:
a well-trained robot may fail to accomplish the task when confronted with task-irrelevant visual
disturbances or changes to the task-relevant robotic arm, as illustrated in Figure 1.

Generalization to task-irrelevant features in vision RL tasks has been widely discussed [49, 11, 6, 3].
Since it is a well-established consensus that task-irrelevant features should not affect the decision,
agents are typically designed to maintain an invariant policy when these features are changed
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Figure 1: Visualizing tasks across different variations. a∗ denotes the optimal decision, which should be invariant
to task-irrelevant features but different to changed task-relevant features. Note that ‘changed feature’ refers to a
feature whose value has changed across tasks.

[25, 28, 31]. To training the invariant policy, previous works have proposed many solutions, such as
bisimulation metric [2, 33], data augmentation [46], and contrastive learning [29], to learn invariant
representations that filter out the environmental variations. However, the invariant representations
may ignore the changed task-relevant features that lead to different optimal decisions, as shown
in Figure 1(c). Although Dunion et al. [15] proposed a disentangled representation to preserve
task-relevant features, this approach could only recover the sub-optimal decisions in the unseen
environment. Therefore, a desired policy should not only remain invariant to task-irrelevant features
but also adapt to changed task-relevant features.

Fundamentally, generalization fails because the agent does not understand how the changed features,
whether they are task-irrelevant or relevant, affect its decisions. From the perspective of causal
inference [14, 35, 39], the associations between features and decisions are often confused with each
other, which can be attributed to the inherent correlations among input features in the training data.
For instance, in a grasping task, heavier objects may more frequently be placed at lower horizontal
heights, which could mislead the robot into adjusting its force based on height. Therefore, a promising
approach is to eliminate these correlations, enabling the agent to distinguish the true association
between each input feature and decisions [51, 26]. However, recent studies have indicated that
achieving perfect decorrelation between all pairs of input features is challenging [45, 44]. This
difficulty is especially pronounced in visual RL tasks, as the high-dimensional images that maintain
sequential relationships result in complex non-linear and strong correlations among features [40].

To this end, we propose the Saliency-Guided Features Decorrelation (SGFD) method to eliminate the
inherent correlations among input features through sample reweighting. Concretely, SGFD consists
of two core components designed to address the challenges presented by non-linear and strong
correlations in visual RL tasks. The first component is Random Fourier Functions (RFF), which has
been demonstrated to assist in approximating the non-linear correlations with linear computational
complexity [51]. SGFD employs the cross-covariance matrix in conjunction with RFF to estimate
the non-linear correlations in high-dimensional images. To address the strong correlations, SGFD
integrates the second component, a classification model specifically designed to distinguish the
sources of the images. Given that the values of changed features are unique to each environment,
these features can be pinpointed by computing a saliency map [5] of the classification model. Guided
by this saliency map, SGFD reweights the training samples to minimize the estimated correlations,
with a particular focus on the identified features. To evaluate SGFD, we conduct various experiments
on visual RL tasks from DeepMind Control Suite [41] and Causal World [4], which range from
scenes with different task-irrelevant features, such as distracting background videos, to task-relevant
features, such as the length of robotic arms. The experimental results demonstrate that our SGFD
method can significantly improve the generalization across various types of environmental variations.

Summary of Contributions. (1) We propose the SGFD model, which achieves improved general-
ization in visual RL tasks, covering both task-relevant and task-irrelevant situations. (2) We design
a sample reweighting method for RL tasks that encourages the agent to understand the impact of
changed features on its decisions. (3) We validate the performance of our algorithm through vari-
ous experiments and demonstrate that SGFD significantly outperforms state-of-the-arts in handling
changed task-relevant features.
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2 Related Work

Generalization in Image-Based Reinforcement Learning. Numerous efforts have been made to
achieve generalization in image-based RL tasks, employing strategies such as image augmentation
[19, 20], encoding inductive biases [3, 29, 36], and learning invariant representations [49, 8], among
other approaches [52, 9]. The fundamental idea behind image augmentation is to bolster the robustness
of representations by introducing image perturbations [7, 30, 21]. Kostrikov et al. [25] applied an
array of augmentation techniques, including cutouts, translation, and cropping, to the RL model.
These augmented images can also be utilized to construct an auxiliary task for encoding inductive
biases [32]. Laskin et al. [28] sought to learn a representation that maximizes the similarity between
different augmentations of the same observation. However, augmentation techniques may not alter
the task-relevant features because they can impact the rewards signal [22] and optimal decision-
making. Invariance techniques strive to learn a representation that disregards distractors in the image,
thereby efficiently generalizing to unseen backgrounds [48, 11, 31]. Recently, there has been an
increasing interest in using varying task-relevant situations as an additional experimental setup to
evaluate a model’s generalization ability [47]. To address this situation, Dunion et al. [15] developed
a representation that compresses changed task-relevant features into a small dimension, ensuring
that the learned behaviors exhibit minimal changes in the test environment. However, this method
requires slight fine-tuning to recover the optimal decisions in the testing environment.

Features Decorrelation in Generalization. A promising direction to achieve generalization is
through features decorrelation, which eliminates the correlation between inputs features[14, 26].
Shen et al. [37], Kuang et al. [27] attempted to achieve global decorrelation on linear regression tasks
by using sample reweighting. Following this, Zhang et al. [51] empirically extended the reweighting
method to deep learning models, noting its great potential. Recently, Xu et al. [44] conducted a
theoretical analysis of feature decorrelation and proved that perfect reweighting could help select
task-relevant features regardless of whether the data generation mechanism is linear or nonlinear.
However, it is not easy to eliminate the correlation between all input features under finite training
samples[45]. This is especially serious in RL tasks because data often exhibit a sequential relationship
[40], resulting in strong correlations between features. To compensate for the imperfection of sample
reweighting, Yu et al. [45] introduce a sparsity constraint under the assumption that the correlation
between the changed features and other features is significantly smaller. However, this assumption
is not applicable to RL tasks because the changed features could be task-relevant and, therefore,
significantly correlated with other features in the task. In contrast, we introduce a saliency-guided
model to identify the changed features without additional assumptions.

3 Preliminaries

Markov Decision Process. We define an environment as a Markov Decision Process (MDP) [34],
represented by a tuple M = (S,A,P,R, γ), where S denotes the high-dimensional state space, A
is the action space, P(s′|s, a) is the state-transition function, R : S ×A → R is the reward function,
and γ ∈ [0, 1) is the discount factor. A decision-making policy, parameterized by ϕ, is a function
πϕ(a|s) that maps a state to distributions over actions. The objective of RL agents is to find a policy
that maximizes the expected cumulative return, expressed as Eπϕ

[
∑∞
t=0 γ

tR(st, at)].

Soft Actor-Critic. We utilize Soft Actor-Critic (SAC) [17] as our base RL algorithm. SAC aims
to maximize a variant of the RL objective augmented with an entropy term: E[

∑
t γ

tR(st, at) +
αH(π(·|st))]. To optimize this objective, SAC learns two models: a state-action value function
Qθ(s, a) and a stochastic policy πϕ(a|s), where θ and ϕ are the parameters for Qθ(s, a) and πϕ(a|s),
respectively. The parameters θ of the state-value function are trained by minimizing the soft Bellman
residual, given as:

JQ(θ) = E(st,at)∼D[
1

2
(Qθ(st, at)− (r(st, at) + γEst+1∼P(·|st,at)[Vθ̄(st+1)]))

2], (1)

where D is the replay buffer storing the data, Vθ̄ denotes the value function, and θ̄ are the target
parameters of θ. The stochastic policy πϕ(a|s) is trained by maximizing the following objective

Jπ(ϕ) = Est∼D[Eat∼πϕ
[α log(πϕ(at|st))−Qθ(st, at)]], (2)

where α is a temperature coefficient.
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Figure 2: The architecture of our SGFD. SGFD aims to reduce correlations in image features by reweighting
samples. This involves five steps: (1) We fetch a sample batch from the replay buffer, which may come from
multiple environments with different backgrounds or robot configurations. (2) The image in the sample is
compressed by an encoder into latent features. (3) Then, we augment these features using multiple Random
Fourier Functions to capture nonlinear correlations. (4) Concurrently, we train a classifier and apply saliency
maps to detect features that shift across environments. (5) Finally, SGFD reweights samples to eliminate the
correlations between identified features and other features.

Notations. For existing visual RL methods [10, 18, 43], the state s is typically compressed into a
compact vector representation z. Therefore, we use z as the default in our calculations unless stated
otherwise. For clarity, we define Zj as the j-th feature in the d-dimensional vector, and zi,j as the
value of Zj in sample i. For instance, if Zj corresponds to the angle of a robot arm, zi,j would
represent the encoded value of the angle in image i.

4 Method

In this section, we introduce the SGFD method, a sample reweighting technique designed to improve
generalization across a broad spectrum of visual RL tasks, as depicted in Figure 2. Specifically, SGFD
utilizes RFF to enrich image features, thereby enabling the estimation of non-linear correlations in
high-dimensional images, as detailed in Section 4.1. Then, SGFD integrates a classifier model and a
saliency map to detect changed features across environments. Based on the estimated correlation
between identified features and other input features, SGFD adjusts the weights of the samples to
achieve decorrelation, as elaborated upon in Section 4.2.

4.1 Decorrelation with RFF

To eliminate the correlation between any pair of features, the first step is to quantify their correlation.
Given a pair of features (Zi,Zj) in the RL states, we gather a batch of n samples from the replay
buffer D, denoted as (z1,i, z1,j), (z2,i, z2,j) . . . (zn,i, zn,j). The primary challenge lies in accurately
estimating the correlation between these two features based on the available samples.

A renowned method for evaluating independence is the Hilbert-Schmidt Independence Criterion
(HSIC), which calculates a cross-covariance operator in the Reproducing Kernel Hilbert Space[16].
However, the computational cost of HSIC can be considerable, especially when the batch size
n is large. To overcome this issue and apply HSIC to modern RL models, we can compute the
independence using the Frobenius norm, shown to be equivalent to the Hilbert-Schmidt norm in
Euclidean space [38]. The cross-covariance matrix can be formulated as follows:

∑̂
ZiZj

=
1

n− 1

n∑
k=1

[(u(zk,i)− E[u(Zi)])T · (v(zk,j)− E[v(Zj)])], (3)

where E[u(Zi)] = 1
n

∑n
k=1 u(zk,i), u and v are vectors, and each component is a function sampled

from the RFF space, formulated as follows:

u(z:,i) = (u1(z:,i), u2(z:,i), . . . , uM (z:,i)), um(z:,i) ∈ HRFF,∀m,
v(z:,j) = (v1(z:,j), v2(z:,j), . . . , vM (z:,j)), vm(z:,j) ∈ HRFF,∀m,

(4)
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where HRFF denotes the RFF space and has been demonstrated to approximate non-linear correlation
between image features [51]. Specifically, we sample M functions from the RFF space, defined as
HRFF = {h : x −→

√
2cos(ωx+ψ)|ω ∼ N (0, 1), ψ ∼ Uniform(0, 2π)}, where ω is sampled from a

standard normal distribution and ψ is sampled from a uniform distribution. The independence between
Zi and Zj can be calculated by the Frobenius norm of the cross-covariance matrix ||∑̂ZiZj

||2F . If
||∑̂ZiZj

||2F is zero, the two features Zi and Zj are considered independent.

We reformulate the task of correlation elimination as an optimization problem aimed at minimizing
the Frobenius norm of the cross-covariance matrix ||∑̂ZiZj

||2F . To this end, we introduce a set of
learnable sample weights, denoted by w ∈ R, subject to the constraint that

∑n
k=1 wk = n. Based on

the weighted samples, the independence can be defined as:

∑̂
ZiZj ;w =

1

n− 1

n∑
k=1

[(wku(zk,i)− E[wu(Zi)])
T · (wkv(zk,j)− E[wv(Zj)])], (5)

where E[wu(Zi)] =
1
n

∑n
k=1 wku(zk,i). The correlation among all features in RL states can be

eliminated by solving the following optimization problem:

w∗ = argmin
w

∑
1≤i<j≤d

||∑̂ZiZj ;w||2F , (6)

where d is the dimension of Z. When the number of samples is not limited, Equation (6) is proved to
have multiple solutions that achieve perfect decorrelation [27].

4.2 Saliency-Guided Decorrelation with RFF

In practice, achieving desirable weights that ensure perfect independence between all pairs of
features with finite samples is a significant challenge [45]. Therefore, relying solely on the features
decorrelation approach introduced in Section 4.1 may not be sufficient. Furthermore, in RL tasks, the
sequential nature of the data creates strong dependencies between features, further complicating the
sample reweighting. To overcome this challenge, we propose a saliency-guided model that prioritizes
the most crucial correlations between changed features and other image features.

The saliency map [5], a well-known computer vision method, uses the backpropagation algorithm
to compute the attributions on neural networks. It is widely used to interpret models by visualizing
which pixels are more important for decision-making. Inspired by the work of Bertoin et al. [7],
we incorporate this functionality into the training phase by introducing a classifier model that
distinguishes the environmental source of states. The contribution of each feature can be determined
by computing a saliency map. For example, the contribution of the i-th feature in the state is
Mi(f, Z) = ∂f(Z)/∂Zi, where f denotes the classifier. If the i-th feature changes across the
environments, it will provide critical information for the classifier’s decisions, leading to a large value
of Mi(f, Z).

Given our focus on the correlations related to changed features, it is anticipated that when a pair
of features is more likely to be part of the changed set, they should be prioritized for decorrelation.
Accordingly, the probability that each feature belongs to the changed part can be calculated by the
saliency map, i.e., p(Zi) = eMi/

∑
1≤j≤d e

Mj . We incorporate this term into the Equation (6),
revising it as:

w∗ = argmin
w

∑
1≤i<j≤d

p(Zi)p(Zj)||∑̂ZiZj ;w||2F . (7)

Based on the weighted samples, we can reformulate the Equation (2) as:

Jπ(ϕ) =
∑
st∼D

wtEat∼πϕ
[α log(πϕ(at|st))−Qθ(st, at)]. (8)

With the reformulated Equation 8, in which the changed features are considered independently from
other features, the agent can learn the actual association with output decisions. More details of SGFD
are described in Appendix A and Appendix B.
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Figure 3: The normalized performance of generalization under changed task-irrelevant and relevant features.
Each polygon represents one algorithm across 10 tasks. Each vertex of the polygon denotes the normalized
performance, which matches counterclockwise from walker-walk to MT-finger-turn. Note that the results related
to task-relevant features are the average of the two settings presented in Table 2.

5 Experiments

To carry out a comprehensive investigation of SGFD, we have performed a series of experiments on
visual RL tasks, utilizing the DeepMind Control Suite [41] and Causal World [4]. We provide a brief
introduction to the tasks, baselines, and evaluation metrics in Section 5.1. In Section 5.2, we verify
the generalization capabilities of SGFD across a variety of tasks, ranging from scenarios with diverse
task-irrelevant features to those with task-relevant features. To gain deeper insight into the workings
of SGFD, we evaluated its decorrelation potential and visualized the weighted samples, as detailed in
Section 5.3. Then, we conducted several ablation experiments on RFF and saliency-guided model in
Section 5.4. Finally, we investigated the interpretability of RL models in Appendix C.

5.1 Experiment Setting

Environments. The DeepMind Control Suite [41] is a widely-used visual control toolkit that offers
a wealth of simulated animal behavior tasks. Drawing on previous works [48, 50], we constructed
environments with both background noises and varying robot settings to test the generalization
capabilities of the SGFD. The backgrounds were sampled from the Kinetics dataset [23], while the
robot settings followed those proposed by Zhang et al. [50]. Furthermore, we utilized the Causal
World [4], which comprises a series of robot manipulation tasks. In these manipulation tasks, we
employed perception states to evaluate the potential of SGFD for decorrelation. More implement
details are provided in Appendix B.

Baselines. We compared our method against several recently established baselines, which we outline
as follows. Our baseline for disentanglement representation is TED [15]. TED compresses changed
features into a small dimension, thereby ensuring that learned behaviors exhibit a minimal change in
the testing environment. We used DBC [48] as a baseline method that learns invariant representations
based on the bisimulation metric. We also compared with AMBS [11], an enhanced version of DBC
that integrates a contrastive method. In addition, we compared with SGQN [7], a novel method that
uses data augmentation and the saliency map to ignore the task-irrelevant features in the images.
Lastly, we included Domain Randomisation (DR) [42] in our comparison, a technique commonly
utilized in control tasks.

Evaluation Metrics. The primary metric under consideration is the cumulative reward from the
testing environments, which reflects the generalization capabilities of the learned policy models.
Additionally, we employed the Pearson correlation coefficient to assess the correlation based on
samples, both with and without weighting. Lastly, we utilized the saliency map as an interpretability
metric to visualize the learned policy models. All experimental assessments calculate the mean and
standard deviation of the results across five seeds unless otherwise stated.
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Table 1: Generalization to changed task-irrelevant features. For each task, we cost 1e6 steps in training
environments and evaluate in the testing environment under background noises.

Tasks SGFD TED AMBS SGQN DBC DR
walker-walk 959.1± 26.3 871.5± 60.6 926.7± 53.2 815.1± 53.9 800.9± 41.4 712.4± 93.7

cheetah-run 599.6± 47.2 544.7± 22.9 517.7± 73.4 332.8± 55.1 312.1± 20.3 340.0± 44.0

finger-spin 965.7± 45.9 932.1± 71.0 925.1± 50.5 943.3± 46.2 663.7± 68.7 860.8± 42.1

walker-run 420.7± 39.2 387.8± 27.1 398.7± 32.0 317.2± 34.5 332.4± 37.1 231.3± 8.9

finger-turn 984.3± 11.5 963.9± 94.5 966.7± 37.0 971.3± 26.0 931.2± 41.6 947.2± 21.7

Total 3929.5 3700.0 3734.9 3379.7 3040.3 3091.7

Table 2: Generalization to changed task-relevant features. For each task, we cost 1e6 steps in training envi-
ronments and evaluate in the testing environment with different robot parameters. We consider two setups for
evaluation: an interpolation setup and an extrapolation setup where the variations in the task-relevant features
are interpolations and extrapolations between the variations of the training environment, respectively.

Tasks SGFD TED AMBS SGQN DBC DR

In
te

rp
ol

at
io

n MT-walker-walk 549.4± 42.5 471.9± 18.3 532.5± 81.7 287.1± 34.5 245.7± 47.4 343.8± 70.6
MT-cheetah-run 395.9± 35.2 367.8± 42.2 298.6± 53.5 225.7± 40.9 191.7± 23.5 216.3± 33.1
MT-finger-spin 234.1± 11.9 201.7± 17.9 161.3± 17.3 135.7± 16.9 221.6± 21.5 207.1± 28.2
MT-walker-run 170.3± 05.7 125.6± 13.2 161.4± 06.7 126.3± 18.6 97.2± 19.0 160.3± 16.6
MT-finger-turn 923.7± 26.1 748.9± 44.3 821.8± 52.3 786.6± 65.6 358.5± 83.9 704.7± 70.1

Total 2273.4 1910.6 1975.6 1561.4 1114.7 1632.2

E
xt

ra
po

la
tio

n MT-walker-walk 541.7± 65.4 365.9± 17.7 467.5± 91.7 271.2± 75.4 229.8± 89.9 307.8± 58.9
MT-cheetah-run 392.3± 32.1 311.9± 52.7 270.2± 35.5 167.2± 39.1 174.0± 45.1 196.6± 49.8
MT-finger-spin 231.8± 11.5 199.7± 18.0 160.2± 17.6 135.6± 11.3 221.4± 43.0 197.1± 21.5
MT-walker-run 170.0± 07.2 126.7± 13.2 156.2± 07.5 118.9± 18.2 89.7± 19.7 156.9± 12.7
MT-finger-turn 917.3± 22.6 743.6± 58.3 803.5± 57.4 653.3± 56.6 335.6± 56.5 611.7± 53.6

Total 2253.1 1747.8 1857.6 1346.2 1050.5 1470.1

5.2 Evaluation on the Generalization of SGFD

Evaluation on Changed Task-Irrelevant Features. In this experiment, we assessed the gener-
alization capability of our SGFD model with respect to different task-irrelevant features. During
the training phase, the policy model was allowed to interact with the environments 1 million times.
During the evaluation, we assessed the cumulative rewards in a testing environment with previously
unseen backgrounds. As indicated in Table 1 and vertices 1−5 of the polygons in Figure 3, our model
outperformed other baselines under the background noises. Although AMBS and SGQN aimed to
direct the policy model to focus on task-relevant features, the learned representations may still contain
partial background features that were not effectively filtered out. Consequently, the policy model
established associations with these tasks-irrelevant features, leading to incorrect decision-making
when the background changed. In contrast, SGFD enabled the policy to understand that background
features should not affect decision-making, thereby achieving superior generalization performance.
The results indicate that decorrelation is effective in RL tasks with background noises and that SGFD
exhibits strong generalization capabilities to new values of task-irrelevant features.

Evaluation on Changed Task-Relevant Features To evaluate the generalization ability of SGFD
with respect to task-relevant features, we conducted evaluations under two experimental setups:
interpolation and extrapolation. In the interpolation setup, task-relevant features underwent changes
that were interpolated between those in the training environments. In contrast, in the extrapolation
setup, changes exceeded the range observed in the training environments. As depicted in Table 2
and at vertices 6−10 of the polygons in Figure 3, SGFD demonstrated superior performance under
both setups. Generally, extrapolation poses a more significant challenge for generalization, as
it necessitates the model to comprehend how changed features impact optimal decision-making.
Owing to the associations between changed features and decisions were not confused, our model
outperformed other baselines, with more substantial performance gaps observed in the extrapolation
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Figure 4: Pearson correlation coefficients among features: a) on raw data, b) on weighted data, c) on saliency-
guided weighted data. The features s1 to s10 represent the state information of the environment and act as
conditional inputs for decision-making πϕ(a|s), such as the coordinates of the object or the angle of the
manipulator. The feature s10 is the one that varies across the environments; thus, the correlations between s10
and other features play a crucial role in generalizations. The strength of the correlation is reflected by the color
intensity - the darker the color, the stronger the correlation.
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(a) 20 states from environments with different background

(b) 20 states from environments with different robot parameters

Figure 5: Visualization of weighted samples obtained from different environments with background noises and
robot parameters. States that belong to the same dotted box with a specific color are considered semantically
similar. SGFD balances the weights of samples to eliminate the correlations between changed features and
other features. As shown in (a), due to the interference of the background noises, the robot fell more often
(states in the green dotted box) than it did without the background. SGFD reduces the weighting of states with
backgrounds and enhances the weighting of states without backgrounds, effectively neutralizing the correlation
between background and body posture. A comparable result was observed in (b), where the reweighting process
aimed to equalize the number of states in each group across environments with different body lengths.

setting. These results demonstrate that SGFD can effectively adapt to new values of task-relevant
features, showing its robust generalization capability in a variety of scenarios.

5.3 Case Studies on the SGFD

Correlation of the Weighted Samples. To evaluate the decorrelation capability of our model, we
implemented a ’Picking’ task in Causal World. This task involves a robotic arm grasping objects,
enabling the model to access the state with physical meaning. We recorded the Pearson correlation
coefficients among features under three conditions: a) on raw data, b) on weighted data, and c) on
saliency-guided weighted data. Among these features, we singled out s10, a feature that represents
mass, as the focal feature for environmental variation. Consequently, when the model is given the
task of handling an object with a new mass, it becomes critical to carefully examine the correlations
between the mass feature and other features. As depicted in Figure 4, due to limited samples and
strong correlations, the effectiveness of direct decorrelation of all features is significantly diminished.
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Figure 6: Ablation studies. (a) The performance difference of ablation studies on the RFF. (b) The performance
difference of ablation studies on the saliency-guided model. The x-axis denotes the steps in the training
environments. The y-axis denotes the cumulative reward recorded in the testing environment with background
noises (Cheetah-run) or varied robot parameters (MT-cheetah-run).

In contrast, our SGFD model can effectively reduce the correlations between the mass feature (s10)
and other features. We also conducted an experiment involving changes in multiple features and
obtained similar results. Detailed information about this experiment is described in Appendix C.1.

Visualization of the Weighted Samples. To delve deeper into the implications of weighted samples
from our SGFD method, we collected 20 state instances during training, each exhibits distinct
backgrounds or robot parameters from various environments. The identified states were sorted into
three groups in each environment, each consisting of multiple similar state instances. As illustrated
in Figure 5 (a), the green dotted boxes indicate several states with "fall" posture. Due to the impact of
background noises on the policy, we identified 4 similar states in the environment a and 2 similar states
in the environment b. After the reweighting process, both environments a and b had approximately
3 similar states, effectively neutralizing the correlation between background and body posture. A
similar outcome was observed in Figure 5 (b), wherein the reweighting process endeavored to balance
the number of states in each group across environments with varied body lengths. As a result of
the correlation removal, the policy model was better equipped to accurately capture the association
between the changed features and decision-making.

5.4 Ablation Studies

Ablation on RFF. To examine the role of RFF, we compared the complete SGFD algorithm, the
decorrelation method without RFF, and the algorithm without any decorrelation. The testing en-
vironments comprise varied backgrounds and robot parameters. As depicted in Figure 6 (a), the
decorrelation without RFF outperforms the approach without decorrelation but is significantly inferior
to SGFD. This discrepancy arises due to the complex nonlinear correlations of features within the
image, which RFF can approximate. Without RFF, the basic decorrelation method can only eliminate
linear correlations, thus achieving limited improvement.

Ablation on Saliency-Guided Model. We conduct a separate ablation study on the saliency-guided
model to evaluate its impact on the generalization capability of the overall model. Analogous to the
RFF study, we test the performance of three distinct approaches: no decorrelation, decorrelation, and
saliency-guided decorrelation. As shown in Figure 6 (b), the performance significantly deteriorates
when the saliency-guided model is removed from SGFD. This outcome is predictable because directly
decorrelating all pairs of features is challenging, thereby complicating the model’s ability to discern
the associations between the variant features and decisions.

We conduct additional ablation studies for further insights into the roles of RFF and the saliency-
guided model. Detailed analyses and results of these studies are available in Appendix C.2. Moreover,
we report on the learning curve of the classifier, as shown in Appendix C.3.

6 Conclusion, Limitations, and Broader Impact

In this work, we introduce SGFD, a sample reweighting method designed to enhance generalization in
visual reinforcement learning tasks across environments with unseen task-irrelevant and task-relevant
features. SGFD is composed of two core components: RFF and a saliency-guided model, which
empower the RL agent to understand the impact of changed features on its decisions. We assess SGFD
using the DMControl benchmark, where it demonstrates significant improvements in generalization
across various environmental variations. Furthermore, our case studies conducted on the Causal
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World benchmark, as well as the visualization of the weighting, highlight the superior decorrelation
achieved by our model. The results from SGFD underscore the potential value of sample reweighting
in generalization RL tasks.

In terms of limitations, we note that our work, like many others [48, 11, 15], relies on stacking
consecutive frames to approximate a fully observable condition. This might not be optimal for all
scenarios, particularly when the changed features cannot be directly observed. A potential solution is
to train an inference model that uses a small amount of data from the deployment environment to
rapidly predict the potential variations. Regarding societal impacts, we do not anticipate any negative
consequences stemming from the practical application of our method.
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Appendix

A Pseudocode of Saliency-Guided Features Decorrelation

In Algorithm 1, we introduce the training process of SGFD. At each step, we apply the policy model
πϕ to interact with training environments and sample a batch of transitions along with environment
labels, as described in lines 3-5. Before the sample reweighting, we assess the current classifier’s
accuracy. If the accuracy exceeds 0.9, we proceed with sample reweighting, as described in lines 6-9.
In contrast, if the accuracy is lower and t > 1e5, we update the classifier based on the cross-entropy
loss, as described in lines 9-13. In experiments, the classifier could be quickly converged. Based on
the converged classifier, SGFD uses Equation (7) to learn a set of sample weights, as described in
lines 14-17. This process also converged quickly, as only 128 parameters (the batch size) needed to
be updated. Finally, SGFD uses Equation (1) and Equation (8) to update state-action value function
Qθ and policy model πϕ based on the weighted data, as described in lines 18-20.

Algorithm 1 Saliency-Guided Features Decorrelation

1: Input: Initialize a policy model πϕ, a state-action value function Qθ, a classifier model fψ,
and a set of training environments with environment labels {e1, e2, . . . , eK}, where ek is a
K-dimensional one-hot vector and the k−th component is 1

2: Output: The learnt policy πϕ∗

3: for t = 1 to T do
4: Applying the policy model πϕ to interact with training environments
5: Sampling a batch of transitions along with environment labels (si, ai, ri, s′i, e

k
i ) ∼ D

6: for iter = 1 to 10 do
7: if t < 1e5 or the accuracy of f(s) > 0.9 then
8: Break this cycle
9: else

10: Sampling a batch of transitions along with environment labels (si, ai, ri, s′i, e
k
i ) ∼ D

11: Update the classifier model fψ by minimizing the following loss
L(ψ) = − 1

N

∑N
i=1

∑K
j=1 e

k
i,j log(fψ(si)j),

where eki,j denotes the j−th component of vector eki , fψ(si)j denotes the predicted
probability of the j−th class

12: end if
13: end for
14: Initialize a set of sample weights that can be learned w
15: for iter = 1 to 10 do
16: Update the sample weights by minimizing Equation (7)
17: end for
18: Update the state-action value function Qθ by minimizing Equation (1)
19: Update πϕ by minimizing Equation (8)
20: end for

B Implement Details

Experimental Setting Details. For task-irrelevant variations, we follow the prior work [30] to sample
several images from Kinetics [23]. In training, we create four parallel environments with different
image backgrounds. In testing, we create a new environment with an unseen image background. For
task-relevant variations, we follow the prior work [50] to revise the robot configures. The controllable
configuration contains 10 different settings for each task, e.g., the length of the robot torso. In training,
we create four parallel environments with different robot configures, where the values of configures
are sampled from a predefined distribution, i.e., a uniform distribution between 1 and 5. In testing,
we exhibit evaluations under two setups: interpolation and extrapolation. In the interpolation setup,
task-relevant features changed in a manner interpolated between those in the training environments,
whereas in the extrapolation setup, changes exceeded the range of those in the training environments,
i.e., the tenth setting with the farthest training distribution. The visualizations are illustrated in
Figure 7.
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Table 3: Architectures of SGFD.

Hyperparameter Value

Encoder architecture

Convolutional layers 4
Latent representation dimension 50
Image size (84,84)
Stacked frames 3
kernel size 3 × 3
Channels 3
stride 2 for the first layer, 4 otherswise
Activation ReLU

Policy and value function
MLP layers 2
Hidden dimension 1024
Activation ReLU

Classifier architecture
MLP layers 2
Hidden dimension 128
Activation ReLU

Table 4: Hyperparameters of SGFD.

Hyperparameter Value

Training for policy

Optimizer Adam
Learning rate 1e-3
Action repeat 2
Replay buffer capacity 1000000
Batch size 128
Target soft-update rate (τ ) 0.01
Actor update frequency 2

Training for sample reweighting

Optimizer SGD
momentum 0.9
Learning rate 1e-2
weight decay 1e-4
The number of RFFs m 5

For each experiment, we report the mean and standard deviation over 10 random seeds.

Compute. Experiments are carried out on NVIDIA GeForce RTX 3090 GPUs and NVIDIA A10
GPUs. Besides, the CPU type is Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz. Each run of the
experiments spanned about 12-24 hours, depending on the algorithm and the complexity of the task.

Architectures. Following AMBS [11], we use the same encoder architecture, which consists of 4
convolutional layers. The encoder weights are shared between the policy and the state-action value
function. Each convolutional layer has a 3 × 3 kernel size and 32 channels. The first layer has a stride
of 2, and all other layer has a stride of 1. There is a ReLU activation between each convolutional layer.
The convolutional layers are followed by a trunk network with a linear layer, layer normalization, and
finally, a tanh activation. As we focus on the sample reweighting, the encoder is updated by referring
to the AMBS method.

The policy πϕ and the state-action value function Qθ are both 2-layer MLPs with a hidden dimension
of 1024. We apply ReLU activations after each layer except the last layer. The classifier is imple-
mented with 2-layer MLPs with a hidden dimension of 128. We also apply ReLU activations after
each layer except the last layer. Table 3 shows the values of the architectures for the encoder, the
policy, the value function, and the classifier.

Hyperparameters. Table 4 shows the hyperparameters used in our SGFD model.
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Figure 8: Pearson correlation coefficients among variables: a) on raw data, b) on weighted data, and c) on
saliency-guided weighted data. The variables S8, S9, and S10 are the ones that have been changed among the
environments.

C Additional Experimental Results

C.1 Additional Correlation Studies on the Weighted Samples

To further evaluate the decorrelation capability of our model, we implement the ‘Pushing’ task in
Causal World and allow the model to access state features that have physical meaning. We record
the Pearson correlation coefficients among features under three conditions: a) on raw data, b) on
weighted data, and c) on saliency-guided weighted data (SGFD). Among these features, we designate
the S8, S9, and S10, which represent the length, width, and height, as the features of interest for
environmental variations. Therefore, when the model is required to push an object with a new
size, the correlation between size and other features needs to be carefully considered. As shown in
Figure 8, due to limited samples and strong correlation between features, the effectiveness of directly
decorrelating all features is greatly reduced. In contrast, SGFD is capable of effectively reducing the
correlation between the size features (S8, S9, and S10) and other features.

C.2 Additional Ablation Studies

We performed additional ablation experiments to test the effect of RFF and the saliency-guided
model. As depicted in Figure 9 (a) and Figure 9 (b), when RFF is removed, the generalization
performance drops significantly. In contrast, the global decorrelation can cause over-adjusting of
samples weighting and impair the performance, as demonstrated by the reward curves in Figure 9 (c).
Due to the need to eliminate correlations between variables using limited samples, the model may
assign very low weights to certain training samples. However, this can potentially harm the efficiency
of training. Thanks to the saliency-guided model, SGFD balances both efficiency and decorrelation.

C.3 Evaluation on the Classification Model

We recorded the converge curve of the classifier during training. The classifier starts to update when
the replay buffer collects 1e5 steps. To avoid overfitting, we stopped to update the classifier when the
accuracy exceeded 0.9. As shown in Figure 10, the classifier converged quickly and achieved the
accuracy of 0.9, which means that the classifier does not take up many computing resources.
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Figure 9: Ablation studies. (a)-(b) The performance difference of ablation studies on the RFF. (c)-(d) The
performance difference of ablation studies on the saliency-guided model. The x-axis denotes the steps in the
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C.4 Saliency Maps on the Policy Models

An intuitive approach to explaining visually-based models involves identifying pixels that have a
significant impact on the final decision [1]. To determine whether the model focuses on the object or
the background during decisions, we visualize the gradient of the action with respect to the input
pixels. Experiments are conducted in environments with varying backgrounds and robot parameters,
as depicted in Figure 11. Saliency maps of the baseline models reveal that various backgrounds
draw considerable attention from the policy model while failing to make decisive contributions to
our model. Moreover, SGFD can notice the changing aspects of the robot’s body that other baseline
models overlook. As a result, the saliency maps demonstrate that the decorrelation benefits the
model’s generalization in both task-relevant and task-irrelevant situations.

C.5 Additional Visualization of the Weighted Samples

In this experiment, we significantly expanded the dataset to include 300 state instances, which is
substantially larger than the 20 states mentioned in Section 5.3. The identified states were also sorted
into three groups in each environment, each consisting of multiple similar state instances. Moreover,
we carefully analyzed the distribution of these states within each group, and the corresponding
proportions are visually depicted in Figure 12. As illustrated in Figure 12 (a), the green dotted
boxes indicate that 50% of the states in environment A and 35.4% of the states in environment B
exhibited similarities. After the reweighting process, both environments A and B had approximately
42% similar states, effectively neutralizing the correlation between background and body posture.
A similar outcome was observed in Figure 12 (b), wherein the reweighting process endeavored to
balance the number of states in each group across environments with varied body lengths.
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Figure 11: Visualization of saliency maps produced by the SGFD and other baselines when the robot with
different backgrounds and robot parameters. The brighter the pixel is, the more contributions it makes to the
decision.

C.6 Evaluation on the Generalization of SGFD

Evaluation on Changed Task-Irrelevant Features. We report the training curves of SGFD in
environments with different task-irrelevant features, where the end points of the curves correspond to
the results in Table 1. As illustrated in Figure 13, our model achieved superior performance compared
to other baselines in previously unseen background environments. As the task becomes difficult
(Figure 13 (b) and Figure 13 (d)), the advantage of SGFD achieves more significance. The results
demonstrate that the decorrelation is suitable for RL tasks with different task-irrelevant features, and
SGFD exhibits strong generalization capabilities to new values of task-irrelevant features.

Evaluation on Changed Task-Relevant Features. We also report the training curves of SGFD in
environments with different task-relevant features, where the end points of the curves correspond to the
results in Table 2. As shown in Figure 14, the reward curve exhibited a consistent positive correlation
between the number of training steps and the average reward in the testing environment under
both interpolation and extrapolation setups. Generally speaking, the extrapolation setting is more
challenging for generalization because it requires the model to fully understand how changed features
affect optimal decisions. Benefiting from decorrelation, our model achieved superior performance
compared to other baselines, where the gaps were more significant under the extrapolation setting,
as illustrated in Figure 14 (f). Our results demonstrate that the decorrelation facilitates our model’s
understanding of the true associations between changed features and decisions, leading to strong
generalization on new values of task-relevant features.
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Mean reweighting
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States in Env D

(a) 300 states from environments with different background

(b) 300 states from environments with different robot parameters
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35.4%
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Figure 12: Visualization of weighted samples obtained from different environments with background noises and
robot parameters. States that belong to the same dotted box with a specific color are considered semantically
similar. SGFD balances the weights of samples to eliminate the correlations between changed features and other
features. As shown in (a), the walker agents in Env A and Env B have different backgrounds, entangled with
different distributions of the body posture. SGFD reduces the weighting of states with backgrounds and enhances
the weighting of states without backgrounds, effectively neutralizing the correlation between background and
body posture. A comparable result was observed in (b), where the reweighting process aimed to equalize the
number of states in each group across environments with different body lengths.
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Figure 13: Generalization to changed task-irrelevant features. The x-axis denotes the number of training steps
taken in training environments, while the y-axis indicates the average reward in the testing environment under
different backgrounds. The reward curve demonstrates that our SGFD model generalizes well to new values of
task-irrelevant features.
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Figure 14: Generalization to changed task-relevant features. The x-axis denotes the number of training steps
taken in training environments, while the y-axis represents the average reward in the testing environment with
different robot parameters. We consider two setups for evaluation: an interpolation setup ((a)-(e)) and an
extrapolation setup ((f)-(j)), where the changes in the task-relevant features are interpolations and extrapolations
between the changes in the training environments, respectively. The reward curve shows that our SGFD
generalizes well to the new values of task-relevant features.
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