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Abstract

Balancing computational efficiency with robust predictive performance is cru-
cial in supervised learning, especially for safety-critical applications. While deep
learning models are accurate and scalable, they often lack calibrated predictions
and uncertainty quantification. Bayesian methods address these issues but are of-
ten computationally expensive. We introduce CAVI-CMN, a fast, gradient-free
variational method for training conditional mixture networks (CMNs), a prob-
abilistic variant of the mixture-of-experts (MoE) model. Using conjugate priors
and Pólya-Gamma augmentation, we derive efficient updates via coordinate ascent
variational inference (CAVI). We apply this method to train conditional mixture
networks on classification tasks from the UCI repository. CAVI-CMN achieves
competitive and often superior predictive accuracy compared to backpropagation
(i.e., maximum likelihood estimation) while maintaining posterior distributions
over model parameters. Moreover, computation time scales in model complex-
ity competitively to both MLE and other gradient-based solutions like black-box
variational inference (BBVI), while running overall much faster than BBVI and
sampling-based inference and with similar speed to MLE. This combination of
probabilistic robustness and computational efficiency positions CAVI-CMN as a
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building block for constructing discriminative models that are fast, gradient-free,
and Bayesian.

1 Introduction
Modern machine learning methods attempt to learn functions of complex data (e.g., images, audio,
text) to predict information associated with that data, such as discrete labels [Bernardo et al., 2007].
Deep neural networks (DNNs) have demonstrated success in this domain, owing to their universal
function approximation properties [Park and Sandberg, 1991] and scalable optimization algorithms
for training them [Amari, 1993]. Despite their performance and scalability, DNNs do not provide
well calibrated predictions and uncertainty estimates [Wang et al., 2021, Shao et al., 2020]. This
limits the applicability and reliability of using DNNs in safety-critical applications like autonomous
driving, medicine, and disaster response [Papamarkou et al., 2024].

Here we introduce a gradient-free variational learning algorithm for a probabilistic variant of a two-
layer, feedforward neural network — the conditional mixture network or CMN — and measure its
performance on supervised learning benchmarks. This method rests on coordinate ascent variational
inference (CAVI) [Wainwright et al., 2008, Hoffman et al., 2013] and hence we name it CAVI-CMN.
CAVI-CMN maintains the predictive accuracy and scalability of an architecture-matched feedfor-
ward neural network fit with maximum likelihood estimation, while maintaining full distributions
over its parameters and generating calibrated predictions, as measured in relationship to state-of-the-
art Bayesian methods like the No U-Turn Sampler (NUTS) algorithm for Hamiltonian Monte Carlo
[Hoffman et al., 2014] and black-box variational inference [Ranganath et al., 2014].

We summarize the contributions of this work below:

• Introduce and derive a coordinate ascent variational inference scheme for the conditional
mixture network, which we term CAVI-CMN.

• CAVI-CMN matches, and sometimes exceeds, the performance of maximum likelihood
estimation (MLE) in terms of predictive accuracy, while maintaining probabilistic benefits
like high log predictive density and low calibration error. This is shown across a suite of 8
different supervised classification tasks.

• CAVI-CMN requires drastically less time to converge and overall runtime than the other
state-of-the-art Bayesian methods like NUTS and BBVI.

2 Methods
Here, we introduce a variant of the Mixture-of-Experts (MoE) model [Jacobs et al., 1991] that makes
its parameters amenable to gradient-free Bayesian learning. Jacobs et al. [1991] originally intro-
duced MoEs as a way to improve the performance of neural networks by combining the strengths of
multiple specialized models [Gormley and Frühwirth-Schnatter, 2019]. Non-Bayesian approaches
to MoE typically rely on maximum likelihood estimation (MLE) [Jacobs et al., 1991], which can
suffer from overfitting and poor generalization due to the lack of regularization mechanisms [Bishop
and Svenskn, 2003].

The approach we propose, CAVI-CMN takes advantage of the conditional conjugacy of a mixture
of linear experts, along with Pólya-Gamma (PG) augmentation [Polson et al., 2013] for the softmax
layers, to make all parameters amenable to variational Bayesian inference. We use coordinate ascent
variational inference (CAVI) to obtain posteriors over the weights of both the individual experts and
the gating network [Bishop and Nasrabadi, 2006, Blei et al., 2017], without resorting to costly
gradient or sampling computations.

2.1 The conditional mixture network
The conditional mixture network maps from a continuous input vector xxx0 ∈ Rd to its label y ∈
{1, . . . , L}. This is achieved with two layers: a conditional mixture of linear experts, which outputs
a joint continuous-discrete latent

(
xxx1 ∈ Rh, z1 ∈ {1, . . . ,K}

)
and a multinomial logistic regression

or softmax layer, which maps from the continuous latent xxx1 to the corresponding label y. Given a
dataset of input-label pairs (XXX0, Y ) = {xxxn0 , yn}

N
n=1, the CMN defines a joint distribution over labels

Y , latentsXXX1, Z1, and parameters ΘΘΘ:
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p(YYY ,XXX1,ZZZ1,ΘΘΘ|XXX0) = p (ΘΘΘ)

N∏
n=1

pβ1β1β1

(
yn|xxx1

)
pλλλ1

(
xxxn1 |xxxn0 , zn1

)
pβββ0

(
zn1 |xxxn0

)
p (ΘΘΘ) = p (βββ1) p (βββ0) p (λλλ1)

(1)

where pλλλ1

(
xxxn1 |xxxn0 , zn1

)
refers to a mixture of linear models with parameters λλλ1 = AAA1:K ,ΣΣΣ

−1
1:K ,

while pβββ0

(
zn1 |xxxn0

)
is a multinomial logistic (softmax) layer that outputs a probability over discrete

latent zn1 , which selects which of K experts to use in predicting xxxn1 . pβ1β1β1

(
yn|xxx1

)
parameterizes a

final (softmax) likelihood over the label yn. A Bayesian network representation of the two layer
CMN architecture is shown in Figure 1.

xxxn1

zn1

AAAk

ΣΣΣ−1
kxxxn0

yn

βββk,0

βββl,1

K − 1

N

K

L− 1

Figure 1: A Bayesian network representation of the two-layer conditional mixture network, with an
input-output pair xxxn0 , y

n and latent variables xxxn1 , z
n
1 . Observations are shaded nodes, while latents

and parameters are transparent.

2.2 Coordinate ascent variational inference with conjugate priors

In this section we summarize a variational approach for inverting the probabilistic model described
in Equation (1). We posit the following approximate posterior over latents and parameters:

p
(
XXX1,ZZZ1,ΘΘΘ|Y,XXX

)
≈ q (ΘΘΘ)

N∏
n=1

q (zn1 ) q
(
xxxn1 |zn1

)
q (ΘΘΘ) = q (βββ1) q (βββ0) q(λλλ1) (2)

where q (xxxn1 , z
n
1 ) corresponds to an approximate posterior over continuous xxx1 and discrete z1 latent

variables.

The mean-field factorized form of the approximate posterior [Svensén, 2003], combined with conju-
gate priors over the parametersΘΘΘ (see Appendix A for their form), allows us to derive conditionally-
conjugate updates for q (XXX1, Z1) and q (ΘΘΘ). We use an iterative update scheme for the parameters
of the approximate posterior, often referred to as variational Bayesian expectation maximisation
(VBEM) [Beal, 2003] or coordinate ascent variational inference (CAVI) [Bishop and Nasrabadi,
2006]. This consists in alternating updates to the posterior over latents and the posterior over pa-
rameters, split into a variational E-step and a variational M-step. Each step maximizes the evidence
lower bound (ELBO), conditioned on the current setting of the other factor (i.e., q (XXX1, Z1) or
q (ΘΘΘ)).
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Figure 2: Performance and runtime results of the different inference algorithms on the ‘Pinwheel’
dataset from Johnson et al. [2016]. The standard deviation (vertical lines) of the performance metric
is depicted together with the mean estimate (circles) over different model initializations. The top row
of subplots show test accuracy (top left); log predictive density (top center), and expected calibration
error (top right) as a function of training set size. The bottom row shows runtime metrics as a
function of increasing training set size: the number of iterations required to achieve convergence
(lower left); and the total runtime (in seconds, lower right). See Appendix G for details on run-time
metrics.

Update to latents (‘E-step’)

qt (xxx
n
1 , z

n
1 ) ∝ exp

{
Eqt−1(ΘΘΘ)

[
ln pΘΘΘ(y

n,xxxn1 , z
n
1 |xxxn0 )

]}
Update to parameters (‘M-step’)

qt (ΘΘΘ) ∝ exp

{
Eqt−1(xxxn

1 ,z
n
1 )
[
ln pΘΘΘ(y

n,xxxn1 , z
n
1 |xxxn0 )

]} (3)

The functional forms of these equations and the PG augmentation scheme needed to turn them into
conditionally-conjugate updates, are given in detail in Appendix A and Appendix B.

3 Results
We fit CAVI-CMN on several real and synthetic datasets and compared it to three alternative infer-
ence methods for fitting the parameters of the CMN:

MLE — We obtained point estimates for the parametersΘΘΘ of the CMN using maximum-likelihood
estimation (backpropagation to minimize the negative log likelihood).

NUTS-HMC — The No-U-Turn Sampler (NUTS), an extension to Hamiltonian Monte Carlo
(HMC) that incorporates adaptive step sizes [Hoffman et al., 2014]. This provides sam-
ples from a posterior distribution over ΘΘΘ.

BBVI — Black-Box Variational Inference (BBVI) method [Ranganath et al., 2014]. BBVI maxi-
mizes the evidence lower bound (ELBO) using stochastic estimation of its gradients with
respect to variational parameters.

Appendix C contains details of the hyperparameters used for each inference algorithm.

3.1 Predictive performance and efficiency

We fit all the inference algorithms on the Pinwheels dataset [Johnson et al., 2016] and 7 datasets from
the UCI Machine Learning repository [Kelly et al., 2024]. The upper row of Figure 2 visualizes three
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different performance metrics for the Pinwheels dataset as a function of the size of the training set.
The CAVI-based approach achieves competitive test accuracy to MLE, as well as comparable log
predictive density (LPD) and expected calibration error (ECE) to the other two Bayesian methods;
all three Bayesian approaches outperform maximum likelihood estimation in LPD and ECE. This
finding holds for 6 of the 7 datasets we tested (see Appendix E), and also holds across training
set sizes, indicating robust sample efficiency and calibration. To further study the probabilistic
performance of CAVI-CMN, we computed the widely applicable information criterion (WAIC), an
approximate estimate of leave-one-out cross-validation [Vehtari et al., 2017, Watanabe and Opper,
2010]. Table 1 shows the WAIC scores for all methods evaluated on 7 UCI datasets. The CAVI-
CMN approach consistently provided higher WAIC scores compared to the MLE algorithm, and
WAIC scores that were on par with BBVI and NUTS.

The bottom row of Figure 2 shows that across training set sizes, all three gradient-based algorithms 4

exhibit an increase in runtime as the number of training data increases (which also scales the number
of parameters for BBVI and CAVI). However the rate of increase varies significantly across different
algorithms, with CAVI-CMN approach showing the best scaling behavior, both in terms of steps-to-
convergence and absolute runtime. CAVI-CMN’s runtime also scales competitively with MLE and
BBVI along two other dimensions of model complexity: input dimension d and number of expert
learners K (see Appendix F).

Thus, CAVI-CMN retains the probabilistic benefits of state-of-the-art Bayesian methods, as mea-
sured by metrics like test accuracy, LPD, and ECE, while also offering substantial advantages in
terms of computational efficiency.

Rice Breast Cancer Waveform Vehicle Silh. Banknote Sonar Iris
CAVI -0.1820 -0.0504 -0.2921 -0.3281 -0.0206 -0.1544 -0.0747
MLE -0.3599 -0.3133 -0.5759 -0.7437 -0.3133 -0.3133 -0.5514
NUTS -0.1278 -0.0324 -0.3753 -0.3767 -0.0110 -0.0306 -0.0413
BBVI -0.1739 -0.0763 -0.3618 -0.4154 -0.0382 -0.0583 -0.1544

Table 1: Comparison of widely-applicable information criterion (WAIC) for different methods eval-
uated on 7 different UCI datasets. The highest WAIC score for each dataset is highlighted in bold-
face.

4 Conclusion
We introduced CAVI-CMN, a computationally efficient Bayesian approach for conditional mixture
networks (CMN) that outperforms maximum likelihood estimation (MLE) in terms of predictive
performance and calibration, as measured by LPD and ECE, and is competitive in terms of test accu-
racy on held out data. CAVI-CMN offers significant computational advantages over other Bayesian
methods like Black-Box Variational Inference (BBVI) and the No-U-Turn Sampler (NUTS). While
NUTS excels in inference quality, its computational cost is prohibitive for complex models. BBVI,
though efficient, converges slower and has overall slower run-time than CAVI when applied to the
CMN model.

The benchmark results demonstrate that CAVI-CMN matches the performance of BBVI and NUTS
in terms of predictive accuracy, log-predictive density, and expected calibration error, while be-
ing considerably faster. The conjugate-exponential form of CAVI-CMN also makes it amenable to
online learning with mini-batches of data, suggesting the extension of CAVI-CMN to deeper ar-
chitectures and larger datasets. Overall, CAVI-CMN presents a promising tool for building fast,
gradient-free and scalable Bayesian machine learning models.
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Code availability

The code for using CAVI and the other 3 methods to fit the CMN model on the pinwheel and UCI
datasets is available on the ‘cavi-cmn’ repository, hosted on the VersesTech GitHub organization:
https://github.com/VersesTech/cavi-cmn.

A Coordinate ascent variational inference for conditional mixture networks

In this section we detail a variational approach for inverting the probabilistic model described in
Equation (1) and computing an approximate posterior over latents and parameters specified as

p
(
XXX1,ZZZ1,ΘΘΘ|Y,XXX

)
=
p (Y,XXX1,ZZZ1,ΘΘΘ,XXX)

p
(
Y |XXX

) ≈ q (ΘΘΘ)

N∏
n=1

q (zn1 ) q
(
xxxn1 |zn1

)
(4)

where q
(
xxxn1 |zn1

)
corresponds to a component specific multivariate normal distribution, and q (zn1 )

to a multinomial distribution. Importantly, the approximate posterior over parameters q (ΘΘΘ) further
factorizes [Svensén, 2003] as

q (ΘΘΘ) =

L−1∏
l=1

q
(
βββl,1

)K−1∏
k=1

q
(
βββk,0

) K∏
j=1

q
(
AAAj ,ΣΣΣ

−1
j

)
︸ ︷︷ ︸

=q(λλλ1)

q
(
βββl,1

)
= N

(
βββl,1;µµµl,1,ΣΣΣl,1

)
q
(
βββk,0

)
= N

(
βββk,0;µµµk,0,ΣΣΣk,0

)
q
(
AAAj |ΣΣΣ−1

j

)
= MN

(
AAAj ;MMM j ,ΣΣΣj ,VVV j

)
q
(
ΣΣΣ−1
j

)
=

h∏
i=1

Γ
(
σ−2
i,j ; aj , bi,j

)
(5)

We use the following conjugate priors for the parameters of the linear experts λλλ1 = (AAA1:K ,ΣΣΣ
−1
1:K)

and the regression coefficients βββ0,βββ1:

p
(
AAAk|ΣΣΣ−1

k

)
= MN (AAAk; 000,ΣΣΣk, v0IIId+1)

p

(
ΣΣΣ−1
k ≡ diag

(
σσσ−2
k

))
=

h∏
i=1

Γ
(
σ−2
k,i ; a0, b0

)
p
(
βββk,0

)
= N

(
βββk,0; 000, σ

2
0IIId+1

)
p
(
βββl,1

)
= N

(
βββl,1; 000, σ

2
1IIIh+1

)
(6)

The above form of the approximate posterior, in combination with the conjugate priors in Equa-
tion (6), allows us to define tractable conditionally conjugate updates for each factor. This becomes
evident from the following expression for the evidence lower bound (ELBO) on the marginal log
likelihood

L(q) = Eq(XXX1,ZZZ1)q(ΘΘΘ)

 N∑
n=1

ln
pΘΘΘ
(
yn,xxxn1 , z

n
1 |xxxn0

)
q
(
zn1
)
q
(
xxxn1 |zn1

)
+ Eq(ΘΘΘ)

[
ln
p (βββ1) p (βββ0) p (λλλ1)

q (βββ1) q (βββ0) q (λλλ1)

]
(7)

We maximize the ELBO using an iterative update scheme for the parameters of the approximate
posterior, often referred to as variational Bayesian expectation maximisation (VBEM) [Beal, 2003]
or coordinate ascent variational inference (CAVI) [Bishop and Nasrabadi, 2006, Blei et al., 2017].
The procedure consists of two parts:
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First, we fix the posterior over the parameters (to randomly initialized values). Given the posterior
over parameters, we update the posterior over latent variables (variational E-step) as

qt
(
xxxn1 |zn1

)
∝ exp

{
Eqt−1(βββ1)qt−1(λλλ1)

[
ln pβββ1

(
yn|xxxn1

)
+ ln pλλλ1

(
xxxn1 |xxxn0 , zn1

)]}

qt (z
n
1 ) ∝ exp

Eqt−1(ΘΘΘ)

[〈
ln pβββ1,λλλ1

(
yn,xxxn1 |xxxn0 , zn1

)〉
qt(xxxn

1 |zn1 )
+ ln pβββ0

(
zn1 |xxxn0

)]
(8)

Second, the posterior over latents that was updated in the E-step, is used to update the posterior over
parameters (variational M-step) as

qt (βββ1) ∝ exp


N∑
n=1

Eqt(xxxn
1 ,z

n
1 )

[
ln pβββ1

(
yn|xxxn1

)]
qt (βββ0) ∝ exp


N∑
n=1

Eqt(zn1 )
[
ln pβββ1

(
zn1 |xxxn0

)]
qt (λλλ1) ∝ exp


N∑
n=1

Eqt(xxxn
1 ,z

n
1 )

[
ln pλλλ1

(
xxxn1 |zn1 ,xxxn0

)]
(9)

In the variational inference literature, the distinction between latents and parameters is often de-
scribed in terms of ‘local’ vs ‘global’ latent variables [Hoffman et al., 2013], where local variables
are datapoint-specific, and global variables are shared across datapoints. To detail the form of the
updates to the parameters of the linear experts in Equation (9), i.e. qt(λλλ1) = qt(AAA1:K ,ΣΣΣ

−1
1:K), first

we note the form of the approximate posteriors over the latent variables q(XXX1, Z1):

q
(
XXX1|Z1

)
=

N∏
n=1

K∏
k=1

N (xxxn1 ;µµµ
n
k,1,ΣΣΣ

n
k,1)

q (Z1) =

N∏
n=1

Cat(zn1 ;γγγ
n) (10)

The update to the kth expert’s parameters q(AAAk,ΣΣΣ−1
k ) can written in terms of weighted updates to the

Matrix Normal Gamma’s canonical parametersMMMk,VVV k, ak and bk, where the weights are provided
by the sufficient statistics of {q

(
xxx11|z11=k

)
, q
(
xxx21|z21=k

)
, . . . , q

(
xxxN1 |zN1 =k

)
}:

VVV −1
k = VVV −1

k,0 +

N∑
n=1

γnkxxx
n
0 (xxx

n
0 )

⊤

MMMk =

MMMk,0VVV
−1
k,0 +

N∑
n=1

γnkµµµ
n
k,1 (xxx

n
0 )

⊤

VVV k
ak = ak,0 +

∑N
n=1 γ

n
k

2

bi,k = bi,k,0 +
1

2

 N∑
n=1

γnk

[
ΣΣΣnk,1 +µµµnk,1(µµµ

n
k,1)

⊤
]
ii
−
[
MMMkVVV

−1
k MMMT

k

]
ii
+
[
MMMk,0VVV

−1
k,0MMM

T
k,0

]
ii


(11)

where the notation [·]ii selects the ith element of the diagonal of the matrix in the brackets.
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However, the update equations described in Equation (8) and in the first two lines of Equation (9)
for q(βββ0), q(βββ1) are not computationally tractable without an additional approximation, known as
Pólya-Gamma augmentation of the multinomial distribution. The full details of the augmentation
procedure are described below in Appendix B. Here we will briefly sketch the main steps and de-
scribe the high level, augmented update equations. The Pólya-Gamma augmentation introduces
datapoint-specific auxiliary variables (ωωωn1 ,ωωω

n
0 ), that help us transform the log-probability of the

multinomial distribution into a quadratic function [Polson et al., 2013, Linderman et al., 2015] over
coefficients (βββ1,βββ0), and latents xxxn1 . This quadratic form enables tractable update of q

(
xxxn1 |zn1

)
in

the form of a multivariate normal distribution, and a tractable updating of posteriors over coefficients
q (βββ1) and q (βββ0).

With the introduction of the auxiliary variables the variational expectation and maximisation steps
are expressed as

Update latents (‘E-step’)

qt
(
xxxn1 |zn1

)
∝ exp

{
Eqt−1(βββ1)qt−1(λλλ1)

[〈
l (yn,xxxn1 ,ωωω

n
1 ,βββ1)

〉
qt−1(ωωωn

1 |yn)
+ ln pλλλ1

(
xxxn1 |xxxn0 , zn1

)]}

qt
(
ωωω1|yn

)
∝ p

(
ωωωn1 |yn

)
exp

{
Eqt−1(βββ1)qt(xxxn

1 |zn1 )
[
l (yn,xxxn1 ,ωωω

n
1 ,βββ1)

]}
qt
(
ωωω0|zn1

)
∝ p

(
ωωωn0 |zn1

)
exp

{
Eqt−1(βββ0)

[
l (zn1 ,xxx

n
0 ,ωωω

n
0 ,βββ0)

]}
qt (z

n
1 ) ∝ exp

{
Eqt−1(ΘΘΘ)

[
l̄zn1 ,t (y

n,βββ1) +Rzn1 ,t (xxx
n
0 ,λλλ1) + l̄t (z

n
1 ,xxx

n
0 ,βββ0)

]}
Update parameters (‘M-step’)

qt (βββ1) ∝ exp


N∑
n=1

Eqt(xxxn
1 ,z

n
1 )qt(ωωωn

1 |yn)
[
l(yn,xxxn1 ,βββ1,ωωω

n
1 )
]

qt (βββ0) ∝ exp


N∑
n=1

Eqt(zn1 )qt(ωωωn
0 |zn1 )

[
l(zn1 ,xxx

n
0 ,βββ0,ωωω

n
0 )
]

(12)

where we skipped the terms whose form did not change. Rzn1 ,t (xxx
n
0 ,λλλ1) reflects a contribution to

q(zn1 ) that depends on the expected log partition of the linear (Matrix Normal Gamma) likelihood
pλλλ1

(xxxn1 |xxxn0 , zn1 ). Note that the updates to each subset of posteriors (latents or parameters) have an
analytic form due to the conditional conjugacy of the model. Importantly, both priors and posterior
of the auxiliary variables are Pólya-Gamma distributed [Polson et al., 2013].

Finally, in the above update equations, we have replaced instances of the multinomial distribution
p
(
z|xxx,βββ

)
with its augmented form p

(
ω|z
)
el(z,xxx,ωωω,βββ) where the function l (·) is quadratic with

respect to the coefficients βββ and the input variables xxx, leading to tractable update equations.

B Variational Bayesian Multinomial Logistic Regression

In this section, we focus on a single multinomial logistic regression model (not in the context of the
CMN), but the ensuing variational update scheme derived in Appendix B.4 is applied in practice to
both the gating network’s parameters βββ0 as well as those of the final output likelihood for the class
label βββ1.

B.1 Stick-breaking reparameterization of a multinomial distribution

Multinomial logistic regression considers the probability that an outcome variable y belongs to one
of K mutually-exclusive classes or categories. The probability of y belonging to the kth class is
given by the categorical likelihood:
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p(y = k|xxx,βββ) = pk (13)

The problem of multinomial logistic regression is to identify or estimate the values of regression
coefficients βββ that explain the relationship between some dataset of given continuous input re-
gressors XXX = (xxx1,xxx2, . . . ,xxxN ) and corresponding categorical labels Y = (y1, y2, . . . , yN ), yn ∈
1, 2, . . . ,K.

We can use a stick-breaking construction to parameterize the likelihood over y using a set of K − 1
stick-breaking coefficients: πππ = (π1, . . . , πK−1). Each coefficient is parameterized with an input
regressor xxx, and a corresponding set of regression weights βββj . Stick-breaking coefficient πj is then
given by a sigmoid transform of the product of the regression weights and the input regressors:

πj = σ
(
βββj [xxx; 1]

)
,

where σ
(
βββj [xxx; 1]

)
=

1

1 + exp
{
−βββj [xxx; 1]

} ,
and βββj [xxx; 1] =

d∑
i=1

wj,ixi + aj .

(14)

The outcome likelihood is then obtained via stick breaking transform5 as follows

pk = πK

K−1∏
j=1

(1− πj) = σ
(
βββK [xxx; 1]

)K−1∏
j=1

(
1− σ

(
βββj [xxx; 1]

))
=

K−1∏
j=1

exp
{
βββj [xxx; 1]

}
1 + exp

{
βββj [xxx; 1]

} (15)

where πK = 1, and βββK = 0⃗.

Finally, we can express the likelihood in the form of a Categorical distribution as

Cat (y;xxx,βββ) =
K−1∏
k=1

(
exp

{
βββk [xxx; 1]

})δk,y

(
1 + exp

{
βββk [xxx; 1]

})Nk,y
. (16)

where Nk,y = 1 for k ≤ y, and Nk,y = 0 otherwise (or Nk,y = 1 −
∑k−1
j=1 δj,y), and δk,y = 1 for

k = y and is zero otherwise.

B.2 Pólya-Gamma augmentation

The Pólya-Gamma augmentation scheme [Polson et al., 2013, Linderman et al., 2015, Durante and
Rigon, 2019] is defined as

(
eψ
)a(

1 + eψ
)b = 2−beκψ

∫ ∞

0

e−ωψ
2/2p(ω) dω (17)

where κ = a − b/2 and p
(
ω|b, 0

)
is the density of the Pólya-Gamma distribution PG(b, 0) which

does not depend on ψ. The useful properties of the Pólya-Gamma are the exponential tilting property
expressed as

PG(ω; b, ψ) =
e−ωψ

2/2PG(ω; b, 0)

E
[
e−ωψ2/2

] (18)

5This blog post has helpful discussion on the stick-breaking form of the multinomial logistic likelihood and
provides more intuition behind its functional form.
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the expected value of ω, and e−ωψ
2/2 given as

E [ω] =

∫ ∞

o

ωPG(ω; b, ψ) dω =
b

2ψ
tanh

(
ψ

2

)
,

E
[
e−ωψ

2/2
]
= cosh−b

(
ψ

2

) (19)

and the Kulback-Leibler divergence between q (ω) = PG(ω; b, ψ) and p (ω) = PG(ω; b, 0) ob-
tained as

DKL

[
q (ω) ||p (ω)

]
= −E [ω]

ψ2

2
+ b ln cosh

(
ψ

2

)
= −bψ

4
tanh

(
ψ

2

)
+ b ln cosh

(
ψ

2

)
. (20)

We can express the likelihood function in Equation (16) using the augmentation as

p(y,ωωω|ψψψ) = p
(
y|ψψψ
)
p
(
ωωω|y,ψψψ

)
=

K−1∏
k=1

2−bk,yeκk,yψk−ωkψ
2
k/2PG(ωk; bk,y, 0)

p
(
y|ψψψ
)
=

K−1∏
k=1

2−bk,yeκk,yψk

∫ ∞

0

e−ωkψ
2
k/2PG(ωk; bk,y, 0) dωk

p
(
ωωω|y,ψψψ

)
=

K−1∏
k=1

PG
(
ωk; bk,y, ψk

)
(21)

where bk,y ≡ Nk,y , κk,y = δk,y − Nk,y/2, and ψk = βkβkβk [xxx; 1]. Given a prior distribution p (ψψψ) =
p (βββ) p (xxx), we can write the joint p (y,ωωω,ψψψ) as

p (y,ωωω,ψψψ) = p
(
ωωω|y
)
p (ψψψ) el(y,ψψψ,ωωω) ,

l (y,ψψψ,ωωω) =

K−1∑
k=1

lk (y, ψk, ωk) ,

lk (y, ψk, ωk) = κy,kψk − by,k ln 2− ωkψ
2
k/2 .

(22)

B.3 Evidence lower-bound

Given a set of observations DDD =
(
y1, . . . , yN

)
the augmented joint distribution can be expressed as

p (DDD,ΩΩΩ,XXX,βββ) = p (βββ)

N∏
n=1

p (xxxn) p
(
ωωωn|yn

)
el(y

n,ψψψn,ωωωn)

We can express the evidence lower-bound (ELBO) as

L(q) = Eq(ΩΩΩ)q(XXX)q(βββ)

− ln q (βββ) +

N∑
n=1

ln
p (yn,ψψψn,ωωωn)

q (ωωωn) q (xxxn)


= Eq(ΩΩΩ)q(XXX)q(βββ)

ln p (βββ)
q (βββ)

+

N∑
n=1

l (yn,ψψψn,ωωωn) + ln
p
(
ωωωn|yn

)
q (ωωωn)

+ ln
p (xxxn)

q (xxxn)


≥ ln p (DDD)

(23)
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where we use the following forms for the approximate posterior

q
(
ΩΩΩ|Y

)
=

N∏
n=1

q
(
ωωωn|yn

)
=

N∏
n=1

K−1∏
k=1

PG
(
bk,yn , ξk,n

)
,

q (XXX) =

N∏
n=1

q (xxxn) =

N∏
n=1

N (xxxn;µµµn,ΣΣΣn) ,

q (βββ) =

K−1∏
k=1

N (βββk;µµµk,ΣΣΣk) .

(24)

B.4 Coordinate ascent variational inference for the PG-augmented model

The mean-field assumption in Equation (24) allows the implementation of a simple CAVI algorithm
[Wainwright et al., 2008, Beal, 2003, Hoffman et al., 2013, Blei et al., 2017] which sequentially max-
imizes the evidence lower bound in Equation (23) with respect to each factor in q

(
ΩΩΩ|Y

)
q (XXX) q (βββ),

via the following updates:

Update to latents (‘E-step’)

q(t,l) (xxxn) ∝ p (xxxn) exp
{
Eq(t−1)(βββ)q(t,l−1)(ωωωn)

[
l (yn,ψψψn,ωωωn)

]}
q(t,l)

(
ωnk |yn

)
∝ p

(
ωnk |yn

)
exp

{
Eq(t−1)(βββ)q(t,l)(xxxn)

[
lk (y

n, ψnk , ω
n
k )
]}

∀n ∈ {1, . . . , N} , and for q(t,0)
(
ωωωn|yn

)
= q(t−1,L)

(
ωωωn|yn

)
Update to parameters (‘M-step’)

q(t) (βββk) ∝ exp


N∑
n=1

Eq(t)(xxxn)q(t)(ωωωn|yn)
[
l (yn,ψψψn,ωωωn)

]

(25)

at each iteration t, and multiple local iteration l during the variational expectation step—until the
convergence of the ELBO.

Specifically, the update equations for the parameters of the latents (the ‘E-step’) are:

q(t,l) (xxxn) ∝ N
(
xxxn; 0,−2λλλ2,0

)
exp


K∑
k=1

κk,ynTr
(
µµµ
(t−1)
k [xxxn; 1]

T
)
− ⟨ωk⟩

2
Tr
(
MMM

(t−1)
k [xxxn; 1] [xxxn; 1]

T
)

λλλ
(n,t,l)
1 =

K−1∑
k=1

{
κk,yn

[
µµµ
(t−1)
k

]
1:D

− ⟨ωnk ⟩t,l−1

[
MMM

(t−1)
k

]
D+1,1:D

}

λλλ
(n,t,l)
2 = λλλ2,0 −

1

2

K−1∑
k=1

⟨ωnk ⟩t,l−1 [MMMk]1:D,1:D

MMM
(t−1)
k = ΣΣΣ

(t−1)
k +µµµ

(t−1)
k

[
µµµ
(t−1)
k

]T
(26)

and

q(t,l)
(
ωnk |yn

)
∝ e−ω

n
k ⟨ψ2

k⟩/2PG
(
ωnk ; bk,yn , 0

)
ξnk =

√
Eq(t−1)(βββ)q(t,l)(xxxn)

[
ψ2
k

]
ξnk =

√
Tr
(
MMM

(t−1)
k M̂MM

(n,t,l)
)

where M̂MM
(n,t,l)

=

 MMM (n,t,l) µµµ(n,t,l)[
µµµ(n,t,l)

]T
1

 , andMMM (n,t,l) = ΣΣΣ(n,t,l) +µµµ(n,t,l)
[
µµµ(n,t,l)

]T
.

(27)
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Similarly, for the parameter updates (‘M-step’) we get

q(t) (βββk) ∝ N
(
βββk; 0,−2λλλ′2,0

)
exp


N∑
n=1

κk,ynTr
(
µ̂µµ(n,t)βββTk

)
− ⟨ωk⟩nt

2
Tr
(
M̂MM

(t)

i βββkβββ
T
k

)
λλλ
(t)
k,1 =

∑
i

κk,ynµ̂µµ
(n,t)

λλλ
(t)
k,2 = λλλ′2,0 −

1

4

N∑
n=1

bk,yn

ξ
(n,t)
k

tanh

(
ξ
(n,t)
k

2

)
M̂MM

(n,t)

(28)

where µ̂µµ(n,t) =
[
µµµ(n,t); 1

]
.

C Hyperparameters

C.1 Common hyperparameters

For the Bayesian methods (CAVI, NUTS, and BBVI), we used the same form for the CMN priors
(see Equation (6) for their parameterization) and fixed the prior parameters to the following values,
used for all datasets: v0 = 10, a0 = 2, b0 = 1, σ0, σ1 = 5. For all datasets, we fixed the dimension
of the continuous latent xxx1 to be h = L − 1, where L is the number of classes. For the Pinwheels
dataset (see Appendix D.1 below), we set the number of linear experts (and hence the dimension of
the discrete latent zzz1) at K = 10, while for all other datasets we used K = 20.

C.2 Posterior Initialization for CAVI-CMN

We initialized the posterior parameters of the Matrix Normal Gamma distributions for each linear
expert in the conditional mixture layer of the network in the following way:

• Each element Mij of the posterior mean matrixMMMk∈1:K was independently sampled from
a uniform distribution U(−3√

d
, 3√

d
), where U(lb, ub) represents the uniform distribution with

bounds lb and ub, and d is the input dimension.

• The initial posterior values of VVV k∈1:K were set to identity matrices.

• The initial posteriors for ak∈1:K and bk∈1:K were set to 2.0 and 1.0, respectively.

We initialized the posterior parameters of the two Multinomial Logistic Regressions (one for the
conditional mixture layer, one for the terminal layer) in the following way:

• The posterior mean and covariance of the kth row of stick-breaking weights were
multivariate normal distributions N (βββk;µµµk,ΣΣΣk) with the following parameters µµµk =(
0, 0, . . . ,− log(K − k)

)
, Σk = 0.01 ID. The mean of the kth bias term was initialized

to a ‘stick-breaking correction term’ − log(K − k) in order to induce a flat prior over the
K categories. In the absence of this correction, the stick-breaking parameterization assigns
non-uniform probability across categories, whereby categories with lower indices in the
ordering k ∈ (1, 2, . . . ,K) are assigned higher likelihood a priori.

C.3 Maximum Likelihood Estimation

For gradient-based optimization of the loss function (the negative log likelihood), we used the Ad-
aBelief optimizer with parameters set to its default values as introduced in Zhuang et al. [2020]
(α = 1e − 3, β1 = 0.9, β2 = 0.999), and ran the optimization for 20, 000 steps. This implements
deterministic gradient descent, not stochastic gradient descent, because we fit the model in ‘full-
batch’ mode, i.e., without splitting the data into mini-batches and updating model parameters using
noisy gradient estimates.
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C.4 No U-Turn Sampler

Markov Chain Monte Carlo converges in distribution to samples from a target distribution, so for this
method we obtain samples from a joint distribution p(AAA1:K ,ΣΣΣ

−1
1:K ,βββ0,βββ1|Y,XXX0) that approximate

the true posterior. We used 800 warm-up steps, 16 independent chains, and 64 samples for each
chain.

C.5 Black box variational inference

While BBVI does not require conjugate relationships in the generative model, we use the same CMN
model and variational distributions as we use for CAVI-CMN, in order to ensure fair comparison.
For stochastic optimization, we used the AdaBelief optimizer with learning rateα = 5e−3 β1 = 0.9,
β2 = 0.999, used 8 samples to estimate the ELBO gradient (the num particles argument of the
Trace ELBO() class), and ran the optimizer for 20, 000 steps).

D Dataset Descriptions

We fit all inference methods using different training set sizes, where each next training set was
twice as large as the previous. This was done in order to study the robustness of performance in
the low data regime. For each training size, we used the same test-set to evaluate performance. The
test set was ensured to have the same relative class frequencies as in the training set(s). For each
inference method and examples set size, we fit using the same batch of training data, but with 16
randomly-initialized models (different initial posterior samples or parameters).

D.1 Pinwheels Dataset

The pinwheels dataset is a synthetic dataset designed to test a model’s ability to handle nonlinear
decision boundaries and data with non-Gaussian densities. The dataset consists of multiple clusters
arranged in a pinwheel pattern, posing a challenging task for mixture models [Johnson et al., 2016]
due to the curved and elongated spatial distributions of the data. The structure of the pinwheels
dataset is determined by 4 parameters: the number of clusters or distinct spirals; the angular devia-
tion, which defines how far the spiralling clusters deviate from the origin; the tangential deviation,
which defines the noise variance of 2-D points within each cluster; and the angular rate, which de-
termines the curvature of each spiral. For evaluating the four methods (CAVI-CMN, MLE, BBVI,
and NUTS) on the synthetic pinwheels dataset, we generated a dataset with 5 clusters, with an an-
gular deviation of 0.7, tangential deviation of 0.3 and angular rate of 0.2. We selected these values
by looking at the maximum achieved test accuracy across all the methods for different parameter
combinations and tried to upper-bound it 80%, which provides a low enough signal-to-noise ratio
to be able to meaningfully show differences in probabilistic metrics like calibration and WAIC. For
pinwheels, we trained using train sizes 50 to 1600, doubling the number of training examples at each
successive training set size. We tested using 500 held-out test examples generated using the same
parameters as used for the training set(s).

D.2 Waveform Domains Dataset

The Waveform Domains dataset consists of synthetic data generated to classify three different wave-
form patterns, where each class is described by 21 continuous attributes [Breiman and Stone, 1988].
For waveform domains, we fit each model on train sizes ranging from 60 to 3840 examples, and
tested on a held-out size of 1160 examples. See here for more information about the dataset.

D.3 Vehicle Silhouettes Dataset

This dataset involves classifying vehicle silhouettes into one of four types (bus, van, or two car
models) based on features extracted from 2D images captured at various angles [Mowforth and
Shepherd]. We fit each model on train sizes ranging from 20 to 650 examples, and tested on a
held-out size of 205 examples. See here for more information about the dataset.
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D.4 Rice Dataset

The Rice dataset contains measurements related to the classification of rice varieties, specifically
Cammeo and Osmancik [mis, 2019]. We fit each model on train sizes ranging from 40 to 2560
examples, and tested on a held-out size of 1250. See here for more information about the dataset.

D.5 Breast Cancer Dataset

The ‘Breast Cancer Diagnosis’ dataset [Wolberg et al., 1995] contains features extracted from breast
mass images, which are then used to classify tumors as malignant or benign. See here for more
information about the dataset. We fit each model on train sizes ranging from 25 to 400 examples,
and tested on a held-out size of 169.

D.6 Sonar (Mines vs Rocks) Dataset

The Sonar (Mines vs Rocks) dataset consists of sonar signals bounced off metal cylinders and rocks
under various conditions. The dataset includes 111 patterns from metal cylinders (mines) and 97
patterns from rocks. Each pattern is represented by 60 continuous attributes corresponding to the
energy within specific frequency bands [Sejnowski and Gorman]. The task is to classify each pattern
as either a mine (M) or a rock (R). For this dataset, we fit each model on train sizes ranging from 8
to 128 examples and tested on a held-out size of 80 examples. See here for more information about
the dataset.

D.7 Banknote Authentication Dataset

The ‘Banknote Authentication’ dataset [Lohweg, 2013] contains features extracted from images of
genuine and forged banknotes. It is primarily used for binary classification tasks to distinguish
between authentic and counterfeit banknotes. See here for more information about the dataset.

E UCI Performance Results

In Figures 3 to 8 we report the same performance and runtime metrics as in Figure 2 for 7 UCI
datasets, and find that with the exception of the Sonar dataset, CAVI performs competitively with or
better than MLE on all datasets, and always outperforms MLE in terms of LPD and ECE. Runtime
scaling is similar as reported for the Pinwheels dataset in the main text; CAVI-CMN always con-
verges in fewer steps and is faster than BBVI, and either outperforms or is competitive with MLE in
terms of runtime.

F Relative runtime results

F.1 Runtime comparison

In this subsection, we analyze the runtime efficiency of the MLE and BBVI algorithms for CMN
models, in comparison to a CAVI-based approach. The focus is on comparing the computation time
as the number of parameters increases along different components of the model.

To ensure comprehensive comparison, we varied the complexity of the models by adjusting the num-
ber of components, the dimensionality of the input space, and the dimensionality of the continuous
latent variables. These modifications effectively increase the number of parameters allowing us to
observe how each algorithm scales with different ways of manipulating of model complexity.

In Figure 9 we plot the relative runtimes of Maximum Likelihood, CAVI, and BBVI (proportional
to the runtime of the least complex variant), as we increase the number of parameters along dif-
ferent dimensions. This shows how CAVI-CMN scales competitively with gradient-based meth-
ods like BBVI and Maximum Likelihood Estimation. However, the rightmost subplot indicates
that as we increase the dimensionality of the latent variable XXX1, CAVI-CMN scales more dra-
matically than the other two methods. This inherits from the computational overhead of matrix
operations required by storing multivariate Gaussians posteriors over each continuous latent, i.e.,
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Figure 3: Performance and runtime results of the different models on the ‘Waveform Domains’
dataset. Descriptions of each subplot are same as in the Figure 2 legend.

Figure 4: Performance and runtime results of the different models on the ‘Vehicle Silhouettes’
dataset. Descriptions of each subplot are same as in the Figure 2 legend.
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Figure 5: Performance and runtime results of the different models on the ‘Rice’ dataset. Descriptions
of each subplot are same as in the Figure 2 legend.

Figure 6: Performance and runtime results of the different models on the ‘Breast Cancer’ dataset.
Descriptions of each subplot are same as in the Figure 2 legend.
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Figure 7: Performance and runtime results of the different models on the ‘Connectionist Bench
(Sonar, Mines vs. Rocks)’ dataset. Descriptions of each subplot are same as in the Figure 2 legend..

Figure 8: Performance and runtime results of the different models on the ‘Banknote Authentication’
dataset. Descriptions of each subplot are same as in the Figure 2 legend.
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q(xxxn1 |zn1 ) = N (xxxn1 ;µµµ
n
1 ,ΣΣΣ

n
1 ). Running the CAVI algorithm involves operations (like matrix in-

versions and matrix-vector products) whose (naive) complexity is quadratic in matrix size. This
explains the nonlinear scaling of runtime as a function of h, the dimension ofXXX1. There are several
ways to address this issue:

• Low-Rank Approximations: Use low-rank approximations to the covariance matrix ΣΣΣn1
(e.g., Cholesky or eigendecompositions).

• Diagonal Covariance Structure: Further constrain the covariance structure of q(xxxn1 )
by forcing the latent dimensions to be independent in the posterior, i.e., q(xxxn1 |zn1 ) =∏h
i=1 N (xni,1;µ

n
i,1, (σ

n
i,1)

2). This would then mean that the number of parameters to store
would only grow as K(2h) in the size of the dataset, rather than as K(h+O(h2)).

• Full Mean-Field Approximation: Enforce a full mean-field approximation between XXX1

and Z1, so that one only needs to store q(xxxn1 )q(z
n
1 ) rather than q(xxxn1 |zn1 )q(zn1 ). This would

reduce the number of multivariate normal parameters that would have to be stored and
operated upon by a factor of K.

• Shared Conditional Covariance Structure: Assume that the conditional covariance struc-
ture is shared across all training data points, i.e., ΣΣΣn1 = ΣΣΣ1, for all n ∈ {1, 2, . . . , n}.

All of these adjustments would help mitigate the quadratic runtime scaling of CAVI-CMN as the
latent dimension h increases.

Figure 9: Relative scaling of fitting time in seconds for Maximum Likelihood, BBVI, and CAVI, as
a function of the number of parameters. The number of parameters itself was manipulated in three
illustrative ways: changing the input dimension d, changing the number of linear experts K in the
conditional mixture layer, and changing the dimensionality of the continuous latent variable h.

G Model Convergence Determination

For each inference algorithm, the number of iterations taken to converge was determined by running
each algorithm for a sufficiently high number of gradient (respectively, CAVI update) steps such
that the ELBO (or log likelihood - LL - for MLE) stopped significantly changing. This was deter-
mined (through anecdotal inspection over many different initializations and runs across the different
UCI datasets) to be 20,000 gradient steps for BBVI, 20,000 gradient steps for MLE, and 500 com-
bined CAVI update steps for CAVI-CMN. To determine the time taken to sufficiently converge, we
recorded the value of the ELBO or LL at each iteration, and fit an exponential decay function to
the negative of each curve. The parameters of the estimated exponential decay were then used to
determine the time at which the curve decayed to 95% decay of its value. This time was reported as
the number of steps taken to converge.
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