Is Repeatedly Solving the Same Problem Necessary? Rethinking Task
Reasoning through Action Prototype Learning

Anonymous ACL submission

Abstract

Large language models (LLMs) demonstrate
remarkable proficiency across a wide array
of tasks but often struggle with specialized
problem-solving and practical reasoning, es-
pecially in domains such as mathematics. Ex-
isting approaches frequently rely on solving
the same problem multiple times (e.g., 20 iter-
ations) to achieve high precision. We argue
that such redundancy is unnecessary, as hu-
mans rarely solve problems this way. To ad-
dress this, we propose action prototype learn-
ing for task reasoning, where strategies are
systematically organized into discrete action
prototypes, each associated with a semantic
key and prior knowledge, enabling efficient
task alignment and reasoning. Additionally,
we design a contradiction-based answer eval-
uation mechanism to identify logical inconsis-
tencies with problem data, enhancing solution
precision. We also develop an action-matching
inference mechanism that retrieves relevant
prior knowledge, significantly reducing token
consumption while improving inference per-
formance. By leveraging efficient reasoning
strategies, our method requires only a single
pass to achieve high-quality results, minimiz-
ing excessive computations. Extensive eval-
uations across two datasets show that our ap-
proach reduces token usage by approximately
68.5% compared to self-consistency (SC) meth-
ods while maintaining robust reasoning capa-
bilities. This highlights the effectiveness of
leveraging prior knowledge to refine LLM rea-
soning, making it both efficient and practical.

1 Introduction

With the rapid advancement of large language mod-
els (LLMs), techniques such as Chain of Thought
(CoT) and self-consistency (SC) have been pro-
posed to enhance their reasoning capabilities. CoT
enables step-by-step reasoning, allowing models
to articulate intermediate steps. However, the in-
cremental generation process introduces inherent

1 Iteration x 20
I Task Answer20 | Final Answer

O L == .. [==]| [|ivoting
:}@ 2=

I
Task Final Answer

® [T =
— Our model -

69%

10%
~ 0.5
65%
‘ I \ 0.3 (I
0.1 I

Prealgebra Algebra Geometry

Answer |

-

5 70%

i

1

#Tokens (million)
Accuracy(%)

Prealgebra Algebra Geometry

ESC-20 mESC ®=Ours ESC-20 mESC ®Ours

Figure 1: SC Models vs. Our Model for Task Reasoning. (a)
Pipeline of SC Models: In traditional approaches, multiple
passes through the model (e.g., 20 iterations) are typically used
to refine the reasoning process. (b) The Proposed Method:
In contrast, our proposed method only requires a single pass
for task reasoning. Specifically, for Prealgebra problems, our
model not only improves accuracy by around 10%, but also
achieves a substantial reduction in token consumption—up to
70% by leveraging a more efficient and effective structure.

randomness, especially when sampling strategies
like temperature or Top-p sampling are used. This
randomness often results in inconsistent outputs,
limiting the reliability of CoT for tasks that require
precise reasoning, such as mathematical problem-
solving.

To address these inconsistencies, SC generates
multiple answers in parallel and selects the most
frequent one as the final output, which improves
reliability. However, this method significantly in-
creases token consumption, as even generating a
single answer with CoT requires multiple reasoning
steps. SC amplifies this cost by repeatedly generat-
ing answers for the same question. Early-stopping
self-consistency (ESC) mitigates this by detecting
convergence during repeated answers, reducing to-
ken usage. However, because its underlying logic
remains probabilistic, ESC struggles to further re-

duce token consumption.

To this end, inspired by human reasoning, we
propose incorporating prior knowledge into LLMs
to enhance both efficiency and accuracy. Just as hu-
mans refine their reasoning by leveraging insights
from similar problems or lessons learned from past
mistakes (Wu et al., 2024), we design a proof-by-
contradiction approach, where candidate answers
are tested by substituting them back into the prob-
lem to check for logical inconsistencies. This
method outputs a Boolean value (True or False)
to verify reasoning accuracy. To further enhance ef-
ficiency, we design an action knowledge space that
distills problem-solving techniques into distinct
action prototypes, each with semantic keys and as-
sociated prior knowledge. During inference, the
model selects the most relevant action prototypes
based on similarity scores, enabling task-specific
reasoning while minimizing redundancy. We exper-
imentally compare our method with SC methods in
Fig. 1, where it is evident that our approach only
requires a single pass for task reasoning, showcas-
ing a significant improvement in token efficiency
and accuracy increase.

In summary, our contributions are three-fold:

(1) Compared to solving the same problem re-
peatedly, we argue that such redundancy is ineffi-
cient, as humans rarely solve a problem multiple
times in this way. To address this issue, we propose
the concept of action knowledge space and develop
action prototype learning to handle task reason-
ing for LL.Ms. It distills and explicitly represents
problem-solving techniques as action prototypes,
each connected to a semantic key and relevant prior
knowledge, enhancing both the efficiency and ef-
fectiveness of LLM inference.

(2) We present a contradiction-based answer
evaluation mechanism that verifies candidate an-
swers by substituting them back into the original
problem and checking for logical conflicts. This
approach enhances the model’s reasoning accuracy
and robustness, particularly in complex tasks.

(3) We propose an efficient reasoning mecha-
nism that aligns tasks with relevant actions from
the action knowledge space. By integrating the
prior knowledge of the matched actions with the
contradiction-based evaluation mechanism, the
model refines its answers. This greatly reduces
token consumption while improving both inference
efficiency and reasoning performance.

2 Related Work

2.1 Chain of Thought (CoT) Reasoning

Chain of Thought (CoT) (Wei et al., 2022) reason-
ing enhances large language models (LLMs) by
prompting intermediate reasoning steps, enabling
better performance on tasks such as mathematical
problem-solving (Patel et al., 2021; Miao et al.,
2020), logical reasoning (Geva et al., 2021; Yang
et al., 2018), and commonsense inference (Talmor
etal., 2019; Aggarwal et al., 2021). Extensions of
CoT include automating reasoning step generation
and integrating external tools to further improve
performance. However, CoT’s reliance on incre-
mental generation introduces randomness through
sampling strategies like temperature, Top-k, or Top-
p sampling (Touvron et al., 2023; Achiam et al.,
2023), which can lead to inconsistent reasoning
paths and incorrect answers. These limitations
reduce CoT’s reliability for tasks requiring high
accuracy and consistency.

2.2 Self-Consistency-Based Reasoning

Self-Consistency (SC) (Wang et al., 2022) im-
proves CoT by generating multiple reasoning paths
in parallel and selecting the most frequent answer
(Yang et al., 2024), leveraging diversity to enhance
reliability. However, SC significantly increases to-
ken consumption, as each reasoning path is gener-
ated step-by-step. Early-Stopping Self-Consistency
(ESC) (Li et al., 2024) addresses this by detect-
ing consecutive identical answers and terminat-
ing generation early, reducing computational cost
while maintaining accuracy. Despite these improve-
ments, both SC and ESC rely on repeated answer-
ing, which can lead to redundancy and diminishing
returns, particularly when answers from multiple
attempts show little variation. This highlights the
need for more efficient inference strategies that bal-
ance accuracy, diversity, and computational cost.

2.3 Contradiction-Based Answer Evaluation

Contradiction-based evaluation substitutes candi-
date answers back into the problem to check for
conflicts with the problem’s information, inspired
by proof-by-contradiction principles (Lewkowycz
et al., 2022; Xie et al., 2024; Chen et al., 2024,
Yao et al., 2024). This approach has been applied
to tasks like verifying logical consistency or vali-
dating mathematical solutions. Methods such as
Self-refine (Madaan et al., 2024) and Self-check
(Miao et al., 2023) enable models to evaluate and

Training Stage
raining 14 Key generated by LLM

cal squares are placed side by side to forma 1
E rectangle with a perimeter of 104 inches. what is the area,
1 in square inches, of each square?)

«+ area and perimeter calculation with
transformation and ratio analysis

« radical simplification

Phase 3: Optimize Prototypes
Key embedding

search @ "o key

U=] . embedding i
EQ - Negative key
d e - embedding

push

pull

BGE-M3 ——| [* . ° Task
® o> .
~ . embedding

Value 1
o~
AN
: Score sheet of Value
a2, pred
AZNZN x
Steps of Answer Action Prototype Space LLM
v +1 -2
Answer Example | |vauegeneralec by LM | W .
—— - - i
i « Let the side length of each square be s. ! 3 « use of related shape dimension formulgs: the ' X 12 -1
« The rectangle's height is s, and its length is 3s. | 1 method employs fundamental geometric formulas | {
i g g g i . ! H Val Value 2 K-V List
} * The perimeter of the rectangle is 2(s+3s)=8s. || for rectangle perimeters. ! Value 1 4™ Value | Y st
i * Given the perimeter is 104, we have: 8s=104. ! i - o .) ! i Value 2| S <<y 1: Value m i
i+ Dividing both sides by 8: s=13. Lt Recognition of special properties: certain H : i Create K-V List
' - -7 1+ geometric figures, hold unique traits that can | Key n: Value 2 | ¥
! - o i Key 1 Key n H

simplify calculations.

+ D * l *
40 —> @—» }hswer)redl—-'-b@ Yes/No I—> }hswer_predl

Contradictory Proof

Please evaluate whether the

answer is correct?

If No, restart from value i + 1

fYes
Output Answer

Inference Stage Task embedding
Testing set Start from value 1
g se [] L J
®...0 Value 1
Key 1| | RSN
Task n @ ° ° \ NAAA
@ \,. Top3 Value 2
o — Matching — [LGH | | s
z = S
= j E ey 3| ISR)
I--- ... ® AN
L] °

If all answers are evaluated as

Action Prototypes Key embedding

with an error prompt.

No, restart from all error answers

.\’\

Answer_predl

4 Error prompt = q@—» Output Answer

Figure 2: The architecture of the proposed method. It consists of two stages: training and inference. In the training stage,
problem-solving techniques are distilled and explicitly represented as action prototypes, each associated with a semantic key and
relevant prior knowledge. During the inference stage, we design an efficient contradiction-based reasoning method, which aligns
tasks with the most relevant actions from the action knowledge space.

adjust their outputs without relying on external in-
formation (Shinn et al., 2024; Yeo et al., 2024).
However, these methods often struggle with in-
sufficient context for effective corrections. Our
approach integrates contradiction-based evaluation
with action prototypes (Jiang et al., 2022), allowing
for dynamic error correction and improved reason-
ing accuracy by aligning tasks with relevant prior
knowledge.

2.4 Task-Specific Knowledge and Action
Matching

Task-specific knowledge is a well-established
strategy for improving reasoning performance.
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020; Gao et al., 2023) retrieves relevant ex-
ternal knowledge to assist in reasoning, while prob-
lem decomposition techniques break down com-
plex tasks into simpler subproblems (Khot et al.,
2022; Zhang et al., 2021; Perez et al., 2020; Rad-
hakrishnan et al., 2023; Dua et al., 2022). However,
these approaches often rely on external resources
or annotations, which may not always be avail-
able. Recent advances in contrastive learning have
shown promise in associating tasks with relevant
knowledge representations, but few studies explic-
itly model problem-solving techniques as reusable

actions. This lack of explicit representation limits
LLMs’ ability to generalize across tasks and effi-
ciently apply prior knowledge. Addressing these
challenges requires integrating reusable actions,
contradiction-based evaluation, and efficient token
usage to balance accuracy, efficiency, and consis-
tency (Yu et al., 2024; Yao et al., 2024).

3 Method

To address the limitations of iterative calculations
in existing inference strategies for large language
models (LLMs), we propose a novel method that
integrates an action knowledge space, a random
walk-based action prototype optimization algo-
rithm, and a contradiction-based reasoning mech-
anism. This framework systematically models
reusable problem-solving strategies as structured
actions, optimizes their effectiveness through train-
ing, and incorporates them into the reasoning pro-
cess, which enhances both accuracy and efficiency.

3.1 The Architecture

The architecture of the proposed method is pre-
sented in Fig. 2. It consists of two stages: training
and inference. During the training stage, reasoning
steps are clustered into action prototypes, repre-
sented by action labels (K) and action values (V). A

semantic embedding model, bge-m3, is fine-tuned
with contrastive learning to capture the functional
similarities between tasks and action prototypes,
enabling accurate task-action matching. Addition-
ally, a random walk-based algorithm is employed
to optimize the action prototypes, improving their
quality and ensuring they are closely aligned with
specific tasks. In the inference phase, tasks are
matched to the most relevant action prototypes.
A contradiction-based reasoning mechanism then
evaluates each generated answer for logical consis-
tency. If contradictions persist after three iterations,
the conflicting answers are treated as negative ex-
amples, which helps refine the final output. The
framework utilizes LLaMA3-8B (Meta, 2024) as
the backbone LLM, effectively balancing accuracy
and efficiency throughout the reasoning process.

3.2 Action Knowledge Space

The action knowledge space is a key component
designed to distill and represent reusable problem-
solving techniques derived from the training data
(Shridhar et al., 2022). It consists of two main
elements: action labels, which are semantic iden-
tifiers that categorize the various actions involved
in problem-solving, and action prototypes, which
refers to prior knowledge distilled from reasoning
steps. Together, these form a structured repository
that aids LLMs in solving new tasks by providing
them with efficient, contextually relevant strategies.
This space ensures that LL.Ms can quickly access
and apply effective actions without the need for
redundant recalculations, significantly improving
reasoning efficiency.

For each task in the training set, we leverage
its corresponding answer, typically provided in a
Chain of Thought (CoT) format. By segmenting
the CoT answer into individual sentences, we iso-
late the distinct reasoning steps that lead to the
solution of the task. These reasoning steps are
then aggregated across all tasks in the training set,
forming a comprehensive collection of problem-
solving strategies. This compilation of reasoning
steps serves as the foundation for building the ac-
tion knowledge space, where each step can be cate-
gorized and linked to relevant task-specific action
prototypes, enabling more efficient and effective
task reasoning.

To identify common patterns and problem-
solving techniques, we apply unsupervised clus-
tering to the extracted reasoning steps. Each result-
ing cluster represents a distinct action, correspond-

ing to a specific problem-solving skill or method.
For every cluster, we assign an action label, which
serves as a semantic identifier, and an action pro-
totype, which encapsulates the prior knowledge
distilled from the reasoning steps within that clus-
ter. While the action labels remain fixed after ini-
tialization, the action prototype undergoes further
optimization during the training process. This en-
sures that the action knowledge is continuously re-
fined, enhancing its utility in supporting the LLM’s
reasoning and improving the overall task-solving
efficiency.

3.3 Task-Action Matching via Contrastive
Learning

To effectively match tasks with the most relevant ac-
tion prototypes in the action knowledge space, we
fine-tune a pre-trained sentence embedding model
(e.g., bge-m3) using contrastive learning. Unlike
traditional semantic similarity models that focus on
surface-level matching, our fine-tuning process is
specifically designed to capture the functional rela-
tionship between tasks and actions. This allows the
model to identify actions that are functionally rele-
vant to solving a given task, even if their semantic
representations differ significantly. By emphasiz-
ing functional relevance rather than purely seman-
tic similarity, the model is better equipped to match
tasks with the most appropriate problem-solving
techniques, improving task reasoning accuracy and
efficiency.

Contrastive Learning Objective. The fine-
tuning process follows a contrastive learning frame-
work (Khosla et al., 2020; Tian et al., 2020; Le-
Khac et al., 2020; Chen et al., 2020), in which the
model is trained to map both tasks and action la-
bels into a shared embedding space. In this space,
tasks are aligned with actions that represent effec-
tive problem-solving techniques, rather than sim-
ply semantically similar concepts. To achieve this
alignment, we construct training triplets of the form
(t,a™,a™), where t is the embedding of a task, a™
is the embedding of a positive action label that cor-
responds to an action prototype offering a relevant
problem-solving technique for the task, and a™ is
the embedding of a negative action label, repre-
senting an action prototype that is not functionally
relevant to the task.

Subsequently, the contrastive loss function can
be defined as in Eq. (1):

ey
Leont = — log exp(Sim(tf'ﬂ)—&-zaf exp(ﬁm(’:“i))
)

where sim(-, -) represents the cosine similarity
between two embeddings, and T is a temperature
parameter that controls the sharpness of the similar-
ity distribution. This loss function encourages the
model to maximize the similarity between the task
embedding ¢ and the positive action label embed-
ding a™, while minimizing the similarity between
t and the negative action label embedding a~, en-
abling the model to effectively associate tasks with
relevant actions.

Action Prototype Learning. To construct the
training data, we utilize the action knowledge space
and the training task set. For each task, we extract
the corresponding answer, typically provided in a
Chain of Thought (CoT) format, and break it down
into individual reasoning steps. These reasoning
steps have been pre-assigned to specific action pro-
totypes through the unsupervised clustering process
(Likas et al., 2003), ensuring that each step is natu-
rally associated with a corresponding prototype in
the action knowledge space.

For each reasoning step in a task, the correspond-
ing action prototype is treated as a positive example
(a™), as it represents the relevant problem-solving
technique for that step. On the other hand, action
prototypes that do not include any reasoning steps
from the task are treated as negative examples (a ™).
By constructing training triplets (¢, a*,a™) in this
way, the model learns the functional relationship
between tasks and actions. This method utilizes the
inherent structure of the action knowledge space,
eliminating the requirement for additional match-
ing or alignment procedures. It ensures that the
model can directly associate tasks with their most
relevant problem-solving techniques based on their
functional relevance, streamlining the learning pro-
cess.

Fine-Tuning Phase. The sentence embedding
model (e.g., bge-m3) is initialized with pre-trained
weights to take advantage of its general-purpose
semantic representation capabilities. To capture
the functional relationship between tasks and ac-
tions, the model is fine-tuned using the constructed
triplets (¢, a™, a™) along with the contrastive loss
function. During fine-tuning (Hu et al., 2021), the
model adjusts the embedding space so that the task

embeddings are positioned closer to the embed-
dings of their functionally relevant actions while
being pushed further apart from irrelevant actions.
This optimization process ensures that the model
learns to align tasks with actions based on their
functional relevance, moving beyond surface-level
semantic similarity.

Inference Phase. In the inference phase, the fine-
tuned model is employed to identify the most rel-
evant action prototypes for a given task. The task
is first encoded into an embedding vector using
the fine-tuned model. Meanwhile, the embeddings
of all action labels in the action knowledge space
are precomputed and stored. The cosine similarity
between the task embedding and each action label
embedding is then computed. Based on these sim-
ilarity scores, the top three action labels with the
highest similarity are selected as the most relevant
action prototypes for the task. These selected ac-
tion prototypes represent the prior knowledge that
best aligns with the task’s requirements and are
used to guide the reasoning process.

3.4 Random Walk-Based Action Prototype
Optimization

While the initial action prototype in the action
knowledge space provides a useful starting point,
its utility in assisting LLM reasoning may vary
across different tasks. To enhance the effectiveness
of this action knowledge, we propose a random
walk-based optimization algorithm (Wang et al.,
2024). This algorithm dynamically adjusts the
quality and relevance of each action prototype by
exploring and refining the action space iteratively.
Through this process, the action prototypes are re-
fined to become more task-specific, ensuring that
only the most relevant and high-quality prototypes
are used during inference.

For each task in the training set, we first identify
the most relevant action prototypes by matching
the task with the action labels in the knowledge
space. Once selected, we generate multiple can-
didate descriptions representing different aspects
or formulations of the action knowledge. These
descriptions augment the task, providing additional
context and guidance for the LLM during reasoning.
To evaluate their utility, we compare the baseline
answer (produced without action knowledge) and
the knowledge-augmented answers (generated with
the descriptions) against the ground truth.

The evaluation process adjusts the scores of

Algorithm 1 Random Walk-Based Action Prototype Opti-
mization Algorithm

Input: Action space A = {A1, Aa,..., A,} with initial
prototypes P = { Py, P, ..., P,}; Training set D; with M
tasks; Ground truth answers G for tasks in D;; Maximum
attempts per task Timax.
Output: Optimized Action
{P{,P5,...,P}}.

1: for each task T; € D, do

Prototypes P~ =

2: Find relevant action A; for T; in A
3: if C4, is not initialized then
4 Initialize candidate set Ca, « {P; € P}
5: end if
6: Initialize attempt counter 7 <— 0
7: Initialize a counter for visited prototypes v <— 0
8: while 7 < T and v < |Cy,| do
9: Select the highest-scoring prototype P; from Ca4,,
excluding previously visited prototypes
10: Knowledge-Augmented Answer <— LLM(P;, T;)
11: if Knowledge-Augmented Answer matches G[T;]
then
12: Increment score for P;
13: break
14: else
15: Decrement score for P;
16: Generate a new prototype P/ < Refine P;
17: Add P/ to candidate set C4,
18: end if
19: Increment visited counter v <— v + 1
20: Increment attempt counter 7 <— 7 + 1
21: end while
22: end for

23: Update P by selecting the highest-scoring prototype from
each candidate set C 4,
24: return Optimized Action Prototypes P*

candidate descriptions based on their relative per-
formance. Candidate descriptions that enhance
the accuracy of the LLM’s answers are rewarded,
while those that degrade performance are penalized.
The magnitude of these adjustments depends on
whether the baseline answer is correct or incorrect,
with greater emphasis placed on cases where the
knowledge-augmented answer corrects an initially
incorrect baseline answer. This iterative scoring
process is applied to all tasks in the training set,
enabling the algorithm to continuously refine the
action knowledge. As the process progresses, the
action knowledge for each prototype is fine-tuned,
optimizing its effectiveness in guiding LLM reason-
ing. At the end of the optimization cycle, the action
knowledge is more precise and better aligned with
the task requirements. The detailed steps of this
optimization process are outlined in Algorithm 1.

3.5 Contradiction-Based Reasoning

To ensure logical consistency and accuracy in the
reasoning process, we integrate a contradiction-
based mechanism inspired by the principle of proof
by contradiction. This method leverages the capa-

bilities of LLMs to assess the logical coherence
of their outputs. When inconsistencies or contra-
dictions are identified in the initial response, the
mechanism iteratively refines the answer by de-
tecting and resolving conflicting elements. This
process allows the model to gradually enhance its
reasoning, ensuring the final output remains logi-
cally consistent and more likely to be accurate. By
utilizing contradiction detection, we strengthen the
robustness of the reasoning process, enabling the
model to self-correct and refine its answers through
logical validation.

Proof by contradiction is a well-established tech-
nique in formal reasoning, where an assumption
is tested by deriving its logical consequences and
identifying any contradictions with established
facts. In our framework, the task and the action
knowledge corresponding to the most relevant ac-
tion prototypes (determined through task-action
matching) are provided as input to the LLM to
generate an initial answer. This answer is then eval-
uated by substituting it into the problem context to
identify any potential contradictions. If no contra-
dictions are found, the answer is accepted as the
final result. However, if a contradiction is detected,
the reasoning process is iteratively refined by incor-
porating additional action knowledge or adjusting
the reasoning steps, ensuring that the final output
is logically consistent and accurate.

This iterative mechanism not only ensures that
the final answer adheres to the logical constraints
of the problem but also strengthens the robustness
of the reasoning process by systematically elimi-
nating invalid solutions. By integrating proof-by-
contradiction principles into LLM reasoning, our
framework offers a scalable and efficient solution
for complex tasks—such as mathematical problem-
solving and logical inference—where consistency
and accuracy are paramount.

4 [Experiments

4.1 Datasets

We evaluate our method on two datasets: GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021). GSMS8K is a widely recognized benchmark
for arithmetic reasoning tasks, designed to eval-
uate the ability to perform multi-step numerical
reasoning. MATH, on the other hand, is a compre-
hensive dataset that encompasses a wide variety of
mathematical domains. It is further divided into
subcategories, including algebra, geometry, num-

GSMS8k MATH-probability

MATH-geometry

MATH-number theory =~ MATH-precalculus

Accuracy Tokens Accuracy Tokens Accuracy Tokens Accuracy Tokens Accuracy Tokens
COoT 0.774 0.30m 0.166 0.18m 0.169 0.19m 0.167 0.21m 0.172 0.33m
SC-10 0.835 3.03m 0.224 1.83m 0.200 1.88m 0.267 2.05m 0.243 3.16m
SC-20 0.840 6.06m 0.283 3.64m 0.232 3.76m 0.291 4.14m 0.262 6.26m
ESC 0.838 2.19m 0.274 3.31m 0.213 3.37m 0.300 3.69m 0.254 5.59m
Ours 0.838 1.43m 0.258 1.36m 0.232 1.32m 0.270 1.22m 0.196 2.20m

Table 1: Performance evaluation of the proposed method against state-of-the-art methods on GSM8k, MATH-probability,
MATH-geometry, MATH-number theory, and MATH-precalculus. The best performance is highlighted in bold red, and the

second-best performance is highlighted in bold blue.

ber theory, precalculus, probability, prealgebra, and
intermediate algebra. These subcategories enable
a fine-grained evaluation of reasoning capabilities
across distinct mathematical topics.

4.2 Baselines

To assess the performance of our method, we com-
pare it against three baseline approaches. The first
baseline is Chain-of-Thought (COT) prompting
(Wei et al., 2022), which generates reasoning steps
sequentially without incorporating additional sam-
pling or optimization techniques. The second base-
line is Self-Consistency (SC) prompting (Wang
et al., 2022), which samples multiple reasoning
paths and determines the final answer via majority
voting. Two variants of SC are evaluated, denoted
as SC-10 and SC-20, corresponding to sampling
10 and 20 reasoning paths, respectively. The third
baseline is Early-Stopping Self-Consistency (ESC)
(Li et al., 2024), which improves upon SC by in-
troducing a sliding-window mechanism to detect
consecutive identical answers. Once a confident
majority is detected, the generation process is ter-
minated early to reduce computational cost.

4.3 Evaluation Metrics

The methods are evaluated using two key metrics.
The first metric is accuracy, which represents the
proportion of correctly solved problems within
each dataset or subcategory. The second metric
is token consumption, which measures the total
number of tokens generated during the reasoning
process and reflects the computational cost associ-
ated with each method.

4.4 Results on GSMSK and MATH

We conduct experiments on GSM8K and MATH,
and the experimental results are summarized in
Table 1 and Table 2.

On the GSMS8K dataset, our method achieves
competitive accuracy while significantly reduc-
ing token consumption compared to the baselines.

Specifically, our method attains an accuracy of
0.838, which is higher than SC-10 (0.824) and
comparable to SC-20 (0.841). In terms of token
consumption, our method reduces the total token
to 1.43 million tokens, which is a 52.8% reduc-
tion compared to SC-10’s 3.03 million tokens and
a 70.3% reduction compared to SC-20’s 4.81 mil-
lion tokens. On the MATH dataset, our method
consistently achieves competitive accuracy while
maintaining a low computational cost. On average,
our model reduces the token count by 67.1% com-
pared to SC-20 and 61.5% compared to ESC, with
an accuracy drop of less than 1%. This substantial
reduction in token consumption highlights the effi-
ciency of our approach, particularly in tasks where
both accuracy and computational cost are critical
considerations.

In the subcategory evaluation, for instance, in the
prealgebra subcategory, our method achieves an ac-
curacy of 0.612, which is significantly higher than
SC-20 (0.550) and ESC (0.556). Our token con-
sumption is reduced to 2.12 million tokens, com-
pared to 6.23 million tokens for SC-20 (a reduction
of 65.9%) and 4.51 million tokens for ESC (a re-
duction of 53.0%). In other subcategories, such
as probability, our method achieves an accuracy of
0.258 with a token consumption of 1.36 million
tokens, which is lower than SC-10 (1.83 million
tokens, a reduction of 25.7%), SC-20 (2.91 million
tokens, a reduction of 53.3%), and ESC (3.31 mil-
lion tokens, a reduction of 58.9%). Similarly, in
the algebra subcategory, our method obtains an ac-
curacy of 0.498 with a token consumption of 2.35
million tokens, which is comparable to ESC (0.502
accuracy, 5.69 million tokens) but with a signif-
icantly lower computational cost, reducing token
consumption by 58.7%. However, in certain subcat-
egories, such as precalculus, our method exhibits a
slight drop in accuracy, achieving 0.196 compared
to 0.243 for SC-10, 0.257 for SC-20, and 0.254
for ESC. This performance gap can be attributed to

MATH-algebra MATH-prealgebra

MATH-intermediate algebra MATH-average

Accuracy Tokens Accuracy Tokens
COoT 0.364 0.37m 0.332 0.23m
SC-10 0.463 3.71m 0.441 2.27m
SC-20 0.499 7.47m 0.468 4.56m
ESC 0.502 5.69m 0.474 3.63m
Ours 0.498 2.35m 0.573 1.38m

Accuracy Tokens Accuracy Tokens
0.133 0.53m 0.237 0.32m
0.178 5.18m 0.315 3.13m
0.191 10.43m 0.344 6.29m
0.192 9.69m 0.343 5.38m
0.151 3.58m 0.335 2.07m

Table 2: Performance evaluation of the proposed method against state-of-the-art methods on MATH-algebra, MATH-prealgebra,
MATH-intermediate algebra, and MATH-average. The best performance is highlighted in bold red, and the second-best

performance is highlighted in bold blue.

the insufficient exploitation of prior knowledge for
this subcategory, which affects the reliability of the
counterexample-based evaluation employed by our
method.

Compared to ESC, our method demonstrates
a more substantial reduction in token consump-
tion while achieving comparable or better accuracy
across most subcategories. Although ESC reduces
token consumption by terminating the sampling
process early via a sliding-window mechanism, it
still fundamentally relies on repeated sampling. In
contrast, our method leverages prior knowledge
from the action knowledge space, enabling it to
achieve similar or better performance with signifi-
cantly fewer tokens. For instance, in the probability
subcategory, ESC consumes 3.31 million tokens,
while our method reduces this to 1.36 million to-
kens, a reduction of 58.9%.

Overall, the experimental results demonstrate
that our method effectively balances accuracy and
computational efficiency. By leveraging prior
knowledge, our approach achieves significant re-
ductions in token consumption while maintaining
competitive accuracy across diverse datasets and
subcategories. Compared to SC-10, our method
not only achieves higher accuracy but also requires
far fewer tokens. When compared to SC-20, our
method achieves nearly the same accuracy with just
one-third of the token consumption. Furthermore,
compared to ESC, our method achieves more sub-
stantial reductions in token consumption, thanks
to its ability to incorporate prior knowledge. This
makes it a highly efficient solution for reasoning
tasks, offering a promising trade-off between per-
formance and computational cost.

4.5 Ablation Studies

To evaluate the effectiveness of the contradiction
component in the proposed method, we conduct
ablation studies by comparing three models: (1) the
baseline chain-of-thought (CoT) reasoning model;

Models GSM8k MATH-algebra
COT 0.774 0.364
w/o Contradiction 0.803 0.393
Our full model 0.838 0.498

Table 3: Ablation study on the component of the proposed
method.

(2) our model without the contradiction component;
and (3) our full model. The results, shown in Table
3, demonstrate that the contradiction component
improves performance by 10% for MATH-algebra
and 3.5% for GSM8K. These findings highlight the
significance of the contradiction-based reasoning
mechanism in enhancing the reasoning capabilities
of our model.

5 Conclusions

In this paper, we propose a novel method for
task reasoning in large language models (LLMs)
through the design of an action prototype space,
which efficiently organizes problem-solving strate-
gies using unsupervised clustering and contrastive
learning. Our method significantly reduces the
need for repetitive computations, requiring only
a single pass to achieve high-quality results, un-
like traditional methods that rely on multiple itera-
tions. By incorporating a contradiction-based an-
swer evaluation mechanism and an action-matching
inference mechanism, our approach enhances rea-
soning accuracy while dramatically reducing token
consumption. Extensive experiments across three
datasets demonstrate that our method outperforms
self-consistency approaches, achieving a reduction
of up to 68.5% in token usage while maintaining
strong reasoning capabilities. This work highlights
the potential of leveraging structured prior knowl-
edge to optimize the efficiency and effectiveness
of LLM reasoning, making it more computation-
ally viable and aligned with human-like problem-
solving strategies.

Limitations

First, our method was only tested on a limited num-
ber of datasets, and its generalizability to more
diverse or complex datasets remains to be vali-
dated. Second, while our approach significantly
reduces token consumption, its performance in cer-
tain scenarios is indeed inferior to results obtained
through extensive iterative sampling, which may
limit its effectiveness in specific complex tasks. Fi-
nally, the exploration of prior knowledge related to
action prototypes can be further improved, and fu-
ture work could focus on developing more efficient
methods to enhance the discovery and utilization
of such knowledge.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Shourya Aggarwal, Divyanshu Mandowara, Vishwajeet
Agrawal, Dinesh Khandelwal, Parag Singla, and Di-
nesh Garg. 2021. Explanations for commonsenseqa:
New dataset and models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3050-3065.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In /n-
ternational conference on machine learning, pages
1597-1607. PMLR.

Zhaorun Chen, Zhuokai Zhao, Zhihong Zhu, Ruiqi
Zhang, Xiang Li, Bhiksha Raj, and Huaxiu Yao.
2024. Autoprm: Automating procedural supervision
for multi-step reasoning via controllable question de-
composition. arXiv preprint arXiv:2402.11452.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and
Matt Gardner. 2022. Successive prompting for
decomposing complex questions. arXiv preprint
arXiv:2212.04092.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the

Association for Computational Linguistics, 9:346—
361.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra
Molina, Aaron Donsbach, Michael Terry, and Carrie J
Cai. 2022. Promptmaker: Prompt-based prototyping
with large language models. In CHI Conference on
Human Factors in Computing Systems Extended Ab-
stracts, pages 1-8.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. Advances in neural
information processing systems, 33:18661-18673.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2022. Decomposed prompting: A modular
approach for solving complex tasks. arXiv preprint
arXiv:2210.02406.

Phuc H Le-Khac, Graham Healy, and Alan F Smeaton.
2020. Contrastive representation learning: A frame-
work and review. leee Access, 8:193907-193934.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, and 1 others. 2020. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Ad-
vances in Neural Information Processing Systems,

33:9459-9474.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, and 1 others. 2022. Solving quan-
titative reasoning problems with language models.
Advances in Neural Information Processing Systems,
35:3843-3857.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan,
Xinglin Wang, Bin Sun, Heda Wang, and Kan Li.
2024. Escape sky-high cost: Early-stopping self-
consistency for multi-step reasoning. arXiv preprint
arXiv:2401.10480.

Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek.
2003. The global k-means clustering algorithm. Patz-
tern recognition, 36(2):451-461.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2024. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36.

Al Meta. 2024. Introducing meta llama 3: The most
capable openly available 1lm to date. Meta Al

Ning Miao, Yee Whye Teh, and Tom Rainforth.
2023. Selfcheck: Using llms to zero-shot check
their own step-by-step reasoning. arXiv preprint
arXiv:2308.00436.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, Online. Association for
Computational Linguistics.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun
Cho, and Douwe Kiela. 2020. Unsupervised ques-
tion decomposition for question answering. arXiv
preprint arXiv:2002.09758.

Ansh Radhakrishnan, Karina Nguyen, Anna Chen,
Carol Chen, Carson Denison, Danny Hernandez, Esin
Durmus, Evan Hubinger, Jackson Kernion, Kamilé
Lukosiuté, and 1 others. 2023. Question decompo-
sition improves the faithfulness of model-generated
reasoning. arXiv preprint arXiv:2307.11768.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2022. Distilling reasoning capabilities
into smaller language models. arXiv preprint
arXiv:2212.00193.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. 2020. What
makes for good views for contrastive learning? Ad-
vances in neural information processing systems,
33:6827-6839.

10

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liang-
ming Pan, Wenhu Chen, and William Yang Wang.
2024. Understanding the reasoning ability of lan-
guage models from the perspective of reasoning paths
aggregation. arXiv preprint arXiv:2402.03268.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

Shuang Wu, Liwen Zhu, Tao Yang, Shiwei Xu, Qiang
Fu, Yang Wei, and Haobo Fu. 2024. Enhance reason-
ing for large language models in the game werewolf.
arXiv preprint arXiv:2402.02330.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen
Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. 2024. Monte carlo tree search boosts
reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451.

Joshua C Yang, Marcin Korecki, Damian Dailisan, Ca-
rina [Hausladen, and Dirk Helbing. 2024. Llm vot-
ing: Human choices and ai collective decision mak-
ing. arXiv preprint arXiv:2402.01766.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

ShunYi Yeo, Gionnieve Lim, Jie Gao, Weiyu Zhang, and
Simon Tangi Perrault. 2024. Help me reflect: Lever-
aging self-reflection interface nudges to enhance de-
liberativeness on online deliberation platforms. In
Proceedings of the CHI Conference on Human Fac-
tors in Computing Systems, pages 1-32.

Zhongzhi Yu, Zheng Wang, Yuhan Li, Ruijie Gao, Xi-
aoya Zhou, Sreenidhi Reddy Bommu, Yang Zhao,
and Yingyan Lin. 2024. Edge-1lm: Enabling efficient

large language model adaptation on edge devices via
unified compression and adaptive layer voting. In
Proceedings of the 61st ACM/IEEE Design Automa-
tion Conference, pages 1-6.

Yi Zhang, Sujay Kumar Jauhar, Julia Kiseleva, Ryen
White, and Dan Roth. 2021. Learning to decompose
and organize complex tasks. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 2726-2735.

A Prompt 1: Step-by-Step Mathematical
Problem Solving

Profile: Language: English

Description: You need to answer some math
questions. Please answer the given questions step
by step and ultimately provide the answers to those
questions. In each response, I will provide a de-
scription of the mathematical methods related to
the problem, and you should use both the ques-
tion itself and this description to formulate your
answers. We hope that these mathematical method
descriptions will help you better solve the problem
rather than mislead you, so we encourage you to
extract useful information from them to address the
issue effectively.

Constraint:
boxed{number}.

Output Example: First we try factoring the left
side to simplify it:

The answer must include

Az — 12 A(x — 3)

4
22 +2r—15 (v —3)(x+5)

r+5

Now we can multiply both sides by (z + 5) and
solve for x:

x+5::c—|-2 =
4=(r+5)(z+2) =
=22+ 7 +10 =
0=a2>4+7x+6 =

=(x+6)(x+1).

Sop = —1and ¢ = —6, making p — q :.

The cube root of 1000 is 10; the cube root of any
number smaller than 1000 is less than 10. So, the
whole numbers from 1 to 999 are the only positive
whole numbers with cube roots less than 10. There
are such numbers.

Annie and Barbara will be meeting up at the
midpoint of (6, —20) and (1, 14). We only need
to find the y-coordinate of the midpoint since the

11

problem says they only walk upwards from the
midpoint to get to Charlie’s location. (If you want,
you can verify that the z-coordinate of the midpoint
equals 7/2.) The y-coordinate of the midpoint is
% = —3. To get to Charlie at y = 2, the girls
walk 2 — (—3) = |5 | units upward.

B Prompt 2: Evaluation of Mathematical
Answers

Profile: Language: English

Description: I will give you a math problem
along with an answer. Please evaluate whether the
provided answer is correct based on the problem’s
context. If the answer logically fits the question,
then it is correct; if it contradicts the description in
the question, then it is incorrect. If you believe this
answer is correct, you should first provide suitable
reasons. Only when the reasons are sufficiently
convincing should you make a judgment; other-
wise, do not trust certain answers too readily. Your
final output can include your thought process, but
please conclude with #### true or ##i## false.

Constraint: Please pay attention to whether
your final output includes ####. If it does not,
it is considered a formatting error. Note that the
final output should not just be #### true or ####
false; you should write the reasons you believe
the answer is correct or incorrect beforehand.

Output Example: To verify whether the an-
swer 77 is correct, we will substitute it into the
conditions of the problem and look for contradic-
tions. The problem states that four positive integers
satisfy the following conditions: 1. a®> = b% 2.
S=d*3.c—a=177

The answer we are checking is d — b = 77.
Assuming d — b = 77, this can be expressed as:

d=0b+4T71.

From the first condition ¢® = b2

that b = a3/2. Therefore,

, we can derive

d=a*?+171.

Now consider the second condition ¢® = d*. Sub-
stituting d into this equation gives:

& = (@®? +717)%

Meanwhile, the third condition states that ¢ = a +
77. Substituting ¢ = a + 77 into ¢® = d* yields:

(a+77)° = (a®? +17)%.

Now, we need to look for contradictions in this
equation. Clearly, the two sides represent different
forms. The left-hand side is a polynomial of degree
five in a, while the right-hand side is a polynomial
of degree four. Thus, the answer is #### false.

12

	Introduction
	Related Work
	Chain of Thought (CoT) Reasoning
	Self-Consistency-Based Reasoning
	Contradiction-Based Answer Evaluation
	Task-Specific Knowledge and Action Matching

	Method
	The Architecture
	Action Knowledge Space
	Task-Action Matching via Contrastive Learning
	Random Walk-Based Action Prototype Optimization
	Contradiction-Based Reasoning

	Experiments
	Datasets
	Baselines
	Evaluation Metrics
	Results on GSM8K and MATH
	Ablation Studies

	Conclusions
	Prompt 1: Step-by-Step Mathematical Problem Solving
	Prompt 2: Evaluation of Mathematical Answers

