
Is Repeatedly Solving the Same Problem Necessary? Rethinking Task
Reasoning through Action Prototype Learning

Anonymous ACL submission

Abstract001

Large language models (LLMs) demonstrate002
remarkable proficiency across a wide array003
of tasks but often struggle with specialized004
problem-solving and practical reasoning, es-005
pecially in domains such as mathematics. Ex-006
isting approaches frequently rely on solving007
the same problem multiple times (e.g., 20 iter-008
ations) to achieve high precision. We argue009
that such redundancy is unnecessary, as hu-010
mans rarely solve problems this way. To ad-011
dress this, we propose action prototype learn-012
ing for task reasoning, where strategies are013
systematically organized into discrete action014
prototypes, each associated with a semantic015
key and prior knowledge, enabling efficient016
task alignment and reasoning. Additionally,017
we design a contradiction-based answer eval-018
uation mechanism to identify logical inconsis-019
tencies with problem data, enhancing solution020
precision. We also develop an action-matching021
inference mechanism that retrieves relevant022
prior knowledge, significantly reducing token023
consumption while improving inference per-024
formance. By leveraging efficient reasoning025
strategies, our method requires only a single026
pass to achieve high-quality results, minimiz-027
ing excessive computations. Extensive eval-028
uations across two datasets show that our ap-029
proach reduces token usage by approximately030
68.5% compared to self-consistency (SC) meth-031
ods while maintaining robust reasoning capa-032
bilities. This highlights the effectiveness of033
leveraging prior knowledge to refine LLM rea-034
soning, making it both efficient and practical.035

1 Introduction036

With the rapid advancement of large language mod-037

els (LLMs), techniques such as Chain of Thought038

(CoT) and self-consistency (SC) have been pro-039

posed to enhance their reasoning capabilities. CoT040

enables step-by-step reasoning, allowing models041

to articulate intermediate steps. However, the in-042

cremental generation process introduces inherent043

Figure 1: SC Models vs. Our Model for Task Reasoning. (a)
Pipeline of SC Models: In traditional approaches, multiple
passes through the model (e.g., 20 iterations) are typically used
to refine the reasoning process. (b) The Proposed Method:
In contrast, our proposed method only requires a single pass
for task reasoning. Specifically, for Prealgebra problems, our
model not only improves accuracy by around 10%, but also
achieves a substantial reduction in token consumption—up to
70% by leveraging a more efficient and effective structure.

randomness, especially when sampling strategies 044

like temperature or Top-p sampling are used. This 045

randomness often results in inconsistent outputs, 046

limiting the reliability of CoT for tasks that require 047

precise reasoning, such as mathematical problem- 048

solving. 049

To address these inconsistencies, SC generates 050

multiple answers in parallel and selects the most 051

frequent one as the final output, which improves 052

reliability. However, this method significantly in- 053

creases token consumption, as even generating a 054

single answer with CoT requires multiple reasoning 055

steps. SC amplifies this cost by repeatedly generat- 056

ing answers for the same question. Early-stopping 057

self-consistency (ESC) mitigates this by detecting 058

convergence during repeated answers, reducing to- 059

ken usage. However, because its underlying logic 060

remains probabilistic, ESC struggles to further re- 061

1

duce token consumption.062

To this end, inspired by human reasoning, we063

propose incorporating prior knowledge into LLMs064

to enhance both efficiency and accuracy. Just as hu-065

mans refine their reasoning by leveraging insights066

from similar problems or lessons learned from past067

mistakes (Wu et al., 2024), we design a proof-by-068

contradiction approach, where candidate answers069

are tested by substituting them back into the prob-070

lem to check for logical inconsistencies. This071

method outputs a Boolean value (True or False)072

to verify reasoning accuracy. To further enhance ef-073

ficiency, we design an action knowledge space that074

distills problem-solving techniques into distinct075

action prototypes, each with semantic keys and as-076

sociated prior knowledge. During inference, the077

model selects the most relevant action prototypes078

based on similarity scores, enabling task-specific079

reasoning while minimizing redundancy. We exper-080

imentally compare our method with SC methods in081

Fig. 1, where it is evident that our approach only082

requires a single pass for task reasoning, showcas-083

ing a significant improvement in token efficiency084

and accuracy increase.085

In summary, our contributions are three-fold:086

(1) Compared to solving the same problem re-087

peatedly, we argue that such redundancy is ineffi-088

cient, as humans rarely solve a problem multiple089

times in this way. To address this issue, we propose090

the concept of action knowledge space and develop091

action prototype learning to handle task reason-092

ing for LLMs. It distills and explicitly represents093

problem-solving techniques as action prototypes,094

each connected to a semantic key and relevant prior095

knowledge, enhancing both the efficiency and ef-096

fectiveness of LLM inference.097

(2) We present a contradiction-based answer098

evaluation mechanism that verifies candidate an-099

swers by substituting them back into the original100

problem and checking for logical conflicts. This101

approach enhances the model’s reasoning accuracy102

and robustness, particularly in complex tasks.103

(3) We propose an efficient reasoning mecha-104

nism that aligns tasks with relevant actions from105

the action knowledge space. By integrating the106

prior knowledge of the matched actions with the107

contradiction-based evaluation mechanism, the108

model refines its answers. This greatly reduces109

token consumption while improving both inference110

efficiency and reasoning performance.111

2 Related Work 112

2.1 Chain of Thought (CoT) Reasoning 113

Chain of Thought (CoT) (Wei et al., 2022) reason- 114

ing enhances large language models (LLMs) by 115

prompting intermediate reasoning steps, enabling 116

better performance on tasks such as mathematical 117

problem-solving (Patel et al., 2021; Miao et al., 118

2020), logical reasoning (Geva et al., 2021; Yang 119

et al., 2018), and commonsense inference (Talmor 120

et al., 2019; Aggarwal et al., 2021). Extensions of 121

CoT include automating reasoning step generation 122

and integrating external tools to further improve 123

performance. However, CoT’s reliance on incre- 124

mental generation introduces randomness through 125

sampling strategies like temperature, Top-k, or Top- 126

p sampling (Touvron et al., 2023; Achiam et al., 127

2023), which can lead to inconsistent reasoning 128

paths and incorrect answers. These limitations 129

reduce CoT’s reliability for tasks requiring high 130

accuracy and consistency. 131

2.2 Self-Consistency-Based Reasoning 132

Self-Consistency (SC) (Wang et al., 2022) im- 133

proves CoT by generating multiple reasoning paths 134

in parallel and selecting the most frequent answer 135

(Yang et al., 2024), leveraging diversity to enhance 136

reliability. However, SC significantly increases to- 137

ken consumption, as each reasoning path is gener- 138

ated step-by-step. Early-Stopping Self-Consistency 139

(ESC) (Li et al., 2024) addresses this by detect- 140

ing consecutive identical answers and terminat- 141

ing generation early, reducing computational cost 142

while maintaining accuracy. Despite these improve- 143

ments, both SC and ESC rely on repeated answer- 144

ing, which can lead to redundancy and diminishing 145

returns, particularly when answers from multiple 146

attempts show little variation. This highlights the 147

need for more efficient inference strategies that bal- 148

ance accuracy, diversity, and computational cost. 149

2.3 Contradiction-Based Answer Evaluation 150

Contradiction-based evaluation substitutes candi- 151

date answers back into the problem to check for 152

conflicts with the problem’s information, inspired 153

by proof-by-contradiction principles (Lewkowycz 154

et al., 2022; Xie et al., 2024; Chen et al., 2024; 155

Yao et al., 2024). This approach has been applied 156

to tasks like verifying logical consistency or vali- 157

dating mathematical solutions. Methods such as 158

Self-refine (Madaan et al., 2024) and Self-check 159

(Miao et al., 2023) enable models to evaluate and 160

2

Figure 2: The architecture of the proposed method. It consists of two stages: training and inference. In the training stage,
problem-solving techniques are distilled and explicitly represented as action prototypes, each associated with a semantic key and
relevant prior knowledge. During the inference stage, we design an efficient contradiction-based reasoning method, which aligns
tasks with the most relevant actions from the action knowledge space.

adjust their outputs without relying on external in-161

formation (Shinn et al., 2024; Yeo et al., 2024).162

However, these methods often struggle with in-163

sufficient context for effective corrections. Our164

approach integrates contradiction-based evaluation165

with action prototypes (Jiang et al., 2022), allowing166

for dynamic error correction and improved reason-167

ing accuracy by aligning tasks with relevant prior168

knowledge.169

2.4 Task-Specific Knowledge and Action170

Matching171

Task-specific knowledge is a well-established172

strategy for improving reasoning performance.173

Retrieval-Augmented Generation (RAG) (Lewis174

et al., 2020; Gao et al., 2023) retrieves relevant ex-175

ternal knowledge to assist in reasoning, while prob-176

lem decomposition techniques break down com-177

plex tasks into simpler subproblems (Khot et al.,178

2022; Zhang et al., 2021; Perez et al., 2020; Rad-179

hakrishnan et al., 2023; Dua et al., 2022). However,180

these approaches often rely on external resources181

or annotations, which may not always be avail-182

able. Recent advances in contrastive learning have183

shown promise in associating tasks with relevant184

knowledge representations, but few studies explic-185

itly model problem-solving techniques as reusable186

actions. This lack of explicit representation limits 187

LLMs’ ability to generalize across tasks and effi- 188

ciently apply prior knowledge. Addressing these 189

challenges requires integrating reusable actions, 190

contradiction-based evaluation, and efficient token 191

usage to balance accuracy, efficiency, and consis- 192

tency (Yu et al., 2024; Yao et al., 2024). 193

3 Method 194

To address the limitations of iterative calculations 195

in existing inference strategies for large language 196

models (LLMs), we propose a novel method that 197

integrates an action knowledge space, a random 198

walk-based action prototype optimization algo- 199

rithm, and a contradiction-based reasoning mech- 200

anism. This framework systematically models 201

reusable problem-solving strategies as structured 202

actions, optimizes their effectiveness through train- 203

ing, and incorporates them into the reasoning pro- 204

cess, which enhances both accuracy and efficiency. 205

3.1 The Architecture 206

The architecture of the proposed method is pre- 207

sented in Fig. 2. It consists of two stages: training 208

and inference. During the training stage, reasoning 209

steps are clustered into action prototypes, repre- 210

sented by action labels (K) and action values (V). A 211

3

semantic embedding model, bge-m3, is fine-tuned212

with contrastive learning to capture the functional213

similarities between tasks and action prototypes,214

enabling accurate task-action matching. Addition-215

ally, a random walk-based algorithm is employed216

to optimize the action prototypes, improving their217

quality and ensuring they are closely aligned with218

specific tasks. In the inference phase, tasks are219

matched to the most relevant action prototypes.220

A contradiction-based reasoning mechanism then221

evaluates each generated answer for logical consis-222

tency. If contradictions persist after three iterations,223

the conflicting answers are treated as negative ex-224

amples, which helps refine the final output. The225

framework utilizes LLaMA3-8B (Meta, 2024) as226

the backbone LLM, effectively balancing accuracy227

and efficiency throughout the reasoning process.228

3.2 Action Knowledge Space229

The action knowledge space is a key component230

designed to distill and represent reusable problem-231

solving techniques derived from the training data232

(Shridhar et al., 2022). It consists of two main233

elements: action labels, which are semantic iden-234

tifiers that categorize the various actions involved235

in problem-solving, and action prototypes, which236

refers to prior knowledge distilled from reasoning237

steps. Together, these form a structured repository238

that aids LLMs in solving new tasks by providing239

them with efficient, contextually relevant strategies.240

This space ensures that LLMs can quickly access241

and apply effective actions without the need for242

redundant recalculations, significantly improving243

reasoning efficiency.244

For each task in the training set, we leverage245

its corresponding answer, typically provided in a246

Chain of Thought (CoT) format. By segmenting247

the CoT answer into individual sentences, we iso-248

late the distinct reasoning steps that lead to the249

solution of the task. These reasoning steps are250

then aggregated across all tasks in the training set,251

forming a comprehensive collection of problem-252

solving strategies. This compilation of reasoning253

steps serves as the foundation for building the ac-254

tion knowledge space, where each step can be cate-255

gorized and linked to relevant task-specific action256

prototypes, enabling more efficient and effective257

task reasoning.258

To identify common patterns and problem-259

solving techniques, we apply unsupervised clus-260

tering to the extracted reasoning steps. Each result-261

ing cluster represents a distinct action, correspond-262

ing to a specific problem-solving skill or method. 263

For every cluster, we assign an action label, which 264

serves as a semantic identifier, and an action pro- 265

totype, which encapsulates the prior knowledge 266

distilled from the reasoning steps within that clus- 267

ter. While the action labels remain fixed after ini- 268

tialization, the action prototype undergoes further 269

optimization during the training process. This en- 270

sures that the action knowledge is continuously re- 271

fined, enhancing its utility in supporting the LLM’s 272

reasoning and improving the overall task-solving 273

efficiency. 274

3.3 Task-Action Matching via Contrastive 275

Learning 276

To effectively match tasks with the most relevant ac- 277

tion prototypes in the action knowledge space, we 278

fine-tune a pre-trained sentence embedding model 279

(e.g., bge-m3) using contrastive learning. Unlike 280

traditional semantic similarity models that focus on 281

surface-level matching, our fine-tuning process is 282

specifically designed to capture the functional rela- 283

tionship between tasks and actions. This allows the 284

model to identify actions that are functionally rele- 285

vant to solving a given task, even if their semantic 286

representations differ significantly. By emphasiz- 287

ing functional relevance rather than purely seman- 288

tic similarity, the model is better equipped to match 289

tasks with the most appropriate problem-solving 290

techniques, improving task reasoning accuracy and 291

efficiency. 292

Contrastive Learning Objective. The fine- 293

tuning process follows a contrastive learning frame- 294

work (Khosla et al., 2020; Tian et al., 2020; Le- 295

Khac et al., 2020; Chen et al., 2020), in which the 296

model is trained to map both tasks and action la- 297

bels into a shared embedding space. In this space, 298

tasks are aligned with actions that represent effec- 299

tive problem-solving techniques, rather than sim- 300

ply semantically similar concepts. To achieve this 301

alignment, we construct training triplets of the form 302

(t, a+, a−), where t is the embedding of a task, a+ 303

is the embedding of a positive action label that cor- 304

responds to an action prototype offering a relevant 305

problem-solving technique for the task, and a− is 306

the embedding of a negative action label, repre- 307

senting an action prototype that is not functionally 308

relevant to the task. 309

Subsequently, the contrastive loss function can 310

be defined as in Eq. (1): 311

4

Lcont = − log
exp

(
sim(t,a+)

τ

)
exp

(
sim(t,a+)

τ

)
+
∑

a− exp
(

sim(t,a−)
τ

)
(1)312

where sim(·, ·) represents the cosine similarity313

between two embeddings, and τ is a temperature314

parameter that controls the sharpness of the similar-315

ity distribution. This loss function encourages the316

model to maximize the similarity between the task317

embedding t and the positive action label embed-318

ding a+, while minimizing the similarity between319

t and the negative action label embedding a−, en-320

abling the model to effectively associate tasks with321

relevant actions.322

Action Prototype Learning. To construct the323

training data, we utilize the action knowledge space324

and the training task set. For each task, we extract325

the corresponding answer, typically provided in a326

Chain of Thought (CoT) format, and break it down327

into individual reasoning steps. These reasoning328

steps have been pre-assigned to specific action pro-329

totypes through the unsupervised clustering process330

(Likas et al., 2003), ensuring that each step is natu-331

rally associated with a corresponding prototype in332

the action knowledge space.333

For each reasoning step in a task, the correspond-334

ing action prototype is treated as a positive example335

(a+), as it represents the relevant problem-solving336

technique for that step. On the other hand, action337

prototypes that do not include any reasoning steps338

from the task are treated as negative examples (a−).339

By constructing training triplets (t, a+, a−) in this340

way, the model learns the functional relationship341

between tasks and actions. This method utilizes the342

inherent structure of the action knowledge space,343

eliminating the requirement for additional match-344

ing or alignment procedures. It ensures that the345

model can directly associate tasks with their most346

relevant problem-solving techniques based on their347

functional relevance, streamlining the learning pro-348

cess.349

Fine-Tuning Phase. The sentence embedding350

model (e.g., bge-m3) is initialized with pre-trained351

weights to take advantage of its general-purpose352

semantic representation capabilities. To capture353

the functional relationship between tasks and ac-354

tions, the model is fine-tuned using the constructed355

triplets (t, a+, a−) along with the contrastive loss356

function. During fine-tuning (Hu et al., 2021), the357

model adjusts the embedding space so that the task358

embeddings are positioned closer to the embed- 359

dings of their functionally relevant actions while 360

being pushed further apart from irrelevant actions. 361

This optimization process ensures that the model 362

learns to align tasks with actions based on their 363

functional relevance, moving beyond surface-level 364

semantic similarity. 365

Inference Phase. In the inference phase, the fine- 366

tuned model is employed to identify the most rel- 367

evant action prototypes for a given task. The task 368

is first encoded into an embedding vector using 369

the fine-tuned model. Meanwhile, the embeddings 370

of all action labels in the action knowledge space 371

are precomputed and stored. The cosine similarity 372

between the task embedding and each action label 373

embedding is then computed. Based on these sim- 374

ilarity scores, the top three action labels with the 375

highest similarity are selected as the most relevant 376

action prototypes for the task. These selected ac- 377

tion prototypes represent the prior knowledge that 378

best aligns with the task’s requirements and are 379

used to guide the reasoning process. 380

3.4 Random Walk-Based Action Prototype 381

Optimization 382

While the initial action prototype in the action 383

knowledge space provides a useful starting point, 384

its utility in assisting LLM reasoning may vary 385

across different tasks. To enhance the effectiveness 386

of this action knowledge, we propose a random 387

walk-based optimization algorithm (Wang et al., 388

2024). This algorithm dynamically adjusts the 389

quality and relevance of each action prototype by 390

exploring and refining the action space iteratively. 391

Through this process, the action prototypes are re- 392

fined to become more task-specific, ensuring that 393

only the most relevant and high-quality prototypes 394

are used during inference. 395

For each task in the training set, we first identify 396

the most relevant action prototypes by matching 397

the task with the action labels in the knowledge 398

space. Once selected, we generate multiple can- 399

didate descriptions representing different aspects 400

or formulations of the action knowledge. These 401

descriptions augment the task, providing additional 402

context and guidance for the LLM during reasoning. 403

To evaluate their utility, we compare the baseline 404

answer (produced without action knowledge) and 405

the knowledge-augmented answers (generated with 406

the descriptions) against the ground truth. 407

The evaluation process adjusts the scores of 408

5

Algorithm 1 Random Walk-Based Action Prototype Opti-
mization Algorithm
Input: Action space A = {A1, A2, . . . , An} with initial
prototypes P = {P1, P2, . . . , Pn}; Training set Dt with M
tasks; Ground truth answers G for tasks in Dt; Maximum
attempts per task τmax.
Output: Optimized Action Prototypes P∗ =
{P ∗

1 , P
∗
2 , . . . , P

∗
n}.

1: for each task Ti ∈ Dt do
2: Find relevant action Ai for Ti in A
3: if CAi is not initialized then
4: Initialize candidate set CAi ← {Pj ∈ P}
5: end if
6: Initialize attempt counter τ ← 0
7: Initialize a counter for visited prototypes v ← 0
8: while τ < τmax and v < |CAi | do
9: Select the highest-scoring prototype Pi from CAi ,

excluding previously visited prototypes
10: Knowledge-Augmented Answer← LLM(Pi, Ti)
11: if Knowledge-Augmented Answer matches G[Ti]

then
12: Increment score for Pi

13: break
14: else
15: Decrement score for Pi

16: Generate a new prototype P ′
i ← Refine Pi

17: Add P ′
i to candidate set CAi

18: end if
19: Increment visited counter v ← v + 1
20: Increment attempt counter τ ← τ + 1
21: end while
22: end for
23: Update P by selecting the highest-scoring prototype from

each candidate set CAi

24: return Optimized Action Prototypes P∗

candidate descriptions based on their relative per-409

formance. Candidate descriptions that enhance410

the accuracy of the LLM’s answers are rewarded,411

while those that degrade performance are penalized.412

The magnitude of these adjustments depends on413

whether the baseline answer is correct or incorrect,414

with greater emphasis placed on cases where the415

knowledge-augmented answer corrects an initially416

incorrect baseline answer. This iterative scoring417

process is applied to all tasks in the training set,418

enabling the algorithm to continuously refine the419

action knowledge. As the process progresses, the420

action knowledge for each prototype is fine-tuned,421

optimizing its effectiveness in guiding LLM reason-422

ing. At the end of the optimization cycle, the action423

knowledge is more precise and better aligned with424

the task requirements. The detailed steps of this425

optimization process are outlined in Algorithm 1.426

3.5 Contradiction-Based Reasoning427

To ensure logical consistency and accuracy in the428

reasoning process, we integrate a contradiction-429

based mechanism inspired by the principle of proof430

by contradiction. This method leverages the capa-431

bilities of LLMs to assess the logical coherence 432

of their outputs. When inconsistencies or contra- 433

dictions are identified in the initial response, the 434

mechanism iteratively refines the answer by de- 435

tecting and resolving conflicting elements. This 436

process allows the model to gradually enhance its 437

reasoning, ensuring the final output remains logi- 438

cally consistent and more likely to be accurate. By 439

utilizing contradiction detection, we strengthen the 440

robustness of the reasoning process, enabling the 441

model to self-correct and refine its answers through 442

logical validation. 443

Proof by contradiction is a well-established tech- 444

nique in formal reasoning, where an assumption 445

is tested by deriving its logical consequences and 446

identifying any contradictions with established 447

facts. In our framework, the task and the action 448

knowledge corresponding to the most relevant ac- 449

tion prototypes (determined through task-action 450

matching) are provided as input to the LLM to 451

generate an initial answer. This answer is then eval- 452

uated by substituting it into the problem context to 453

identify any potential contradictions. If no contra- 454

dictions are found, the answer is accepted as the 455

final result. However, if a contradiction is detected, 456

the reasoning process is iteratively refined by incor- 457

porating additional action knowledge or adjusting 458

the reasoning steps, ensuring that the final output 459

is logically consistent and accurate. 460

This iterative mechanism not only ensures that 461

the final answer adheres to the logical constraints 462

of the problem but also strengthens the robustness 463

of the reasoning process by systematically elimi- 464

nating invalid solutions. By integrating proof-by- 465

contradiction principles into LLM reasoning, our 466

framework offers a scalable and efficient solution 467

for complex tasks—such as mathematical problem- 468

solving and logical inference—where consistency 469

and accuracy are paramount. 470

4 Experiments 471

4.1 Datasets 472

We evaluate our method on two datasets: GSM8K 473

(Cobbe et al., 2021) and MATH (Hendrycks et al., 474

2021). GSM8K is a widely recognized benchmark 475

for arithmetic reasoning tasks, designed to eval- 476

uate the ability to perform multi-step numerical 477

reasoning. MATH, on the other hand, is a compre- 478

hensive dataset that encompasses a wide variety of 479

mathematical domains. It is further divided into 480

subcategories, including algebra, geometry, num- 481

6

GSM8k MATH-probability MATH-geometry MATH-number theory MATH-precalculus

Accuracy Tokens Accuracy Tokens Accuracy Tokens Accuracy Tokens Accuracy Tokens
COT 0.774 0.30m 0.166 0.18m 0.169 0.19m 0.167 0.21m 0.172 0.33m

SC-10 0.835 3.03m 0.224 1.83m 0.200 1.88m 0.267 2.05m 0.243 3.16m
SC-20 0.840 6.06m 0.283 3.64m 0.232 3.76m 0.291 4.14m 0.262 6.26m
ESC 0.838 2.19m 0.274 3.31m 0.213 3.37m 0.300 3.69m 0.254 5.59m
Ours 0.838 1.43m 0.258 1.36m 0.232 1.32m 0.270 1.22m 0.196 2.20m

Table 1: Performance evaluation of the proposed method against state-of-the-art methods on GSM8k, MATH-probability,
MATH-geometry, MATH-number theory, and MATH-precalculus. The best performance is highlighted in bold red, and the
second-best performance is highlighted in bold blue.

ber theory, precalculus, probability, prealgebra, and482

intermediate algebra. These subcategories enable483

a fine-grained evaluation of reasoning capabilities484

across distinct mathematical topics.485

4.2 Baselines486

To assess the performance of our method, we com-487

pare it against three baseline approaches. The first488

baseline is Chain-of-Thought (COT) prompting489

(Wei et al., 2022), which generates reasoning steps490

sequentially without incorporating additional sam-491

pling or optimization techniques. The second base-492

line is Self-Consistency (SC) prompting (Wang493

et al., 2022), which samples multiple reasoning494

paths and determines the final answer via majority495

voting. Two variants of SC are evaluated, denoted496

as SC-10 and SC-20, corresponding to sampling497

10 and 20 reasoning paths, respectively. The third498

baseline is Early-Stopping Self-Consistency (ESC)499

(Li et al., 2024), which improves upon SC by in-500

troducing a sliding-window mechanism to detect501

consecutive identical answers. Once a confident502

majority is detected, the generation process is ter-503

minated early to reduce computational cost.504

4.3 Evaluation Metrics505

The methods are evaluated using two key metrics.506

The first metric is accuracy, which represents the507

proportion of correctly solved problems within508

each dataset or subcategory. The second metric509

is token consumption, which measures the total510

number of tokens generated during the reasoning511

process and reflects the computational cost associ-512

ated with each method.513

4.4 Results on GSM8K and MATH514

We conduct experiments on GSM8K and MATH,515

and the experimental results are summarized in516

Table 1 and Table 2.517

On the GSM8K dataset, our method achieves518

competitive accuracy while significantly reduc-519

ing token consumption compared to the baselines.520

Specifically, our method attains an accuracy of 521

0.838, which is higher than SC-10 (0.824) and 522

comparable to SC-20 (0.841). In terms of token 523

consumption, our method reduces the total token 524

to 1.43 million tokens, which is a 52.8% reduc- 525

tion compared to SC-10’s 3.03 million tokens and 526

a 70.3% reduction compared to SC-20’s 4.81 mil- 527

lion tokens. On the MATH dataset, our method 528

consistently achieves competitive accuracy while 529

maintaining a low computational cost. On average, 530

our model reduces the token count by 67.1% com- 531

pared to SC-20 and 61.5% compared to ESC, with 532

an accuracy drop of less than 1%. This substantial 533

reduction in token consumption highlights the effi- 534

ciency of our approach, particularly in tasks where 535

both accuracy and computational cost are critical 536

considerations. 537

In the subcategory evaluation, for instance, in the 538

prealgebra subcategory, our method achieves an ac- 539

curacy of 0.612, which is significantly higher than 540

SC-20 (0.550) and ESC (0.556). Our token con- 541

sumption is reduced to 2.12 million tokens, com- 542

pared to 6.23 million tokens for SC-20 (a reduction 543

of 65.9%) and 4.51 million tokens for ESC (a re- 544

duction of 53.0%). In other subcategories, such 545

as probability, our method achieves an accuracy of 546

0.258 with a token consumption of 1.36 million 547

tokens, which is lower than SC-10 (1.83 million 548

tokens, a reduction of 25.7%), SC-20 (2.91 million 549

tokens, a reduction of 53.3%), and ESC (3.31 mil- 550

lion tokens, a reduction of 58.9%). Similarly, in 551

the algebra subcategory, our method obtains an ac- 552

curacy of 0.498 with a token consumption of 2.35 553

million tokens, which is comparable to ESC (0.502 554

accuracy, 5.69 million tokens) but with a signif- 555

icantly lower computational cost, reducing token 556

consumption by 58.7%. However, in certain subcat- 557

egories, such as precalculus, our method exhibits a 558

slight drop in accuracy, achieving 0.196 compared 559

to 0.243 for SC-10, 0.257 for SC-20, and 0.254 560

for ESC. This performance gap can be attributed to 561

7

MATH-algebra MATH-prealgebra MATH-intermediate algebra MATH-average

Accuracy Tokens Accuracy Tokens Accuracy Tokens Accuracy Tokens
COT 0.364 0.37m 0.332 0.23m 0.133 0.53m 0.237 0.32m

SC-10 0.463 3.71m 0.441 2.27m 0.178 5.18m 0.315 3.13m
SC-20 0.499 7.47m 0.468 4.56m 0.191 10.43m 0.344 6.29m
ESC 0.502 5.69m 0.474 3.63m 0.192 9.69m 0.343 5.38m
Ours 0.498 2.35m 0.573 1.38m 0.151 3.58m 0.335 2.07m

Table 2: Performance evaluation of the proposed method against state-of-the-art methods on MATH-algebra, MATH-prealgebra,
MATH-intermediate algebra, and MATH-average. The best performance is highlighted in bold red, and the second-best
performance is highlighted in bold blue.

the insufficient exploitation of prior knowledge for562

this subcategory, which affects the reliability of the563

counterexample-based evaluation employed by our564

method.565

Compared to ESC, our method demonstrates566

a more substantial reduction in token consump-567

tion while achieving comparable or better accuracy568

across most subcategories. Although ESC reduces569

token consumption by terminating the sampling570

process early via a sliding-window mechanism, it571

still fundamentally relies on repeated sampling. In572

contrast, our method leverages prior knowledge573

from the action knowledge space, enabling it to574

achieve similar or better performance with signifi-575

cantly fewer tokens. For instance, in the probability576

subcategory, ESC consumes 3.31 million tokens,577

while our method reduces this to 1.36 million to-578

kens, a reduction of 58.9%.579

Overall, the experimental results demonstrate580

that our method effectively balances accuracy and581

computational efficiency. By leveraging prior582

knowledge, our approach achieves significant re-583

ductions in token consumption while maintaining584

competitive accuracy across diverse datasets and585

subcategories. Compared to SC-10, our method586

not only achieves higher accuracy but also requires587

far fewer tokens. When compared to SC-20, our588

method achieves nearly the same accuracy with just589

one-third of the token consumption. Furthermore,590

compared to ESC, our method achieves more sub-591

stantial reductions in token consumption, thanks592

to its ability to incorporate prior knowledge. This593

makes it a highly efficient solution for reasoning594

tasks, offering a promising trade-off between per-595

formance and computational cost.596

4.5 Ablation Studies597

To evaluate the effectiveness of the contradiction598

component in the proposed method, we conduct599

ablation studies by comparing three models: (1) the600

baseline chain-of-thought (CoT) reasoning model;601

Models GSM8k MATH-algebra

COT 0.774 0.364
w/o Contradiction 0.803 0.393

Our full model 0.838 0.498

Table 3: Ablation study on the component of the proposed
method.

(2) our model without the contradiction component; 602

and (3) our full model. The results, shown in Table 603

3, demonstrate that the contradiction component 604

improves performance by 10% for MATH-algebra 605

and 3.5% for GSM8K. These findings highlight the 606

significance of the contradiction-based reasoning 607

mechanism in enhancing the reasoning capabilities 608

of our model. 609

5 Conclusions 610

In this paper, we propose a novel method for 611

task reasoning in large language models (LLMs) 612

through the design of an action prototype space, 613

which efficiently organizes problem-solving strate- 614

gies using unsupervised clustering and contrastive 615

learning. Our method significantly reduces the 616

need for repetitive computations, requiring only 617

a single pass to achieve high-quality results, un- 618

like traditional methods that rely on multiple itera- 619

tions. By incorporating a contradiction-based an- 620

swer evaluation mechanism and an action-matching 621

inference mechanism, our approach enhances rea- 622

soning accuracy while dramatically reducing token 623

consumption. Extensive experiments across three 624

datasets demonstrate that our method outperforms 625

self-consistency approaches, achieving a reduction 626

of up to 68.5% in token usage while maintaining 627

strong reasoning capabilities. This work highlights 628

the potential of leveraging structured prior knowl- 629

edge to optimize the efficiency and effectiveness 630

of LLM reasoning, making it more computation- 631

ally viable and aligned with human-like problem- 632

solving strategies. 633

8

Limitations634

First, our method was only tested on a limited num-635

ber of datasets, and its generalizability to more636

diverse or complex datasets remains to be vali-637

dated. Second, while our approach significantly638

reduces token consumption, its performance in cer-639

tain scenarios is indeed inferior to results obtained640

through extensive iterative sampling, which may641

limit its effectiveness in specific complex tasks. Fi-642

nally, the exploration of prior knowledge related to643

action prototypes can be further improved, and fu-644

ture work could focus on developing more efficient645

methods to enhance the discovery and utilization646

of such knowledge.647

References648

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama649
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,650
Diogo Almeida, Janko Altenschmidt, Sam Altman,651
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-652
cal report. arXiv preprint arXiv:2303.08774.653

Shourya Aggarwal, Divyanshu Mandowara, Vishwajeet654
Agrawal, Dinesh Khandelwal, Parag Singla, and Di-655
nesh Garg. 2021. Explanations for commonsenseqa:656
New dataset and models. In Proceedings of the 59th657
Annual Meeting of the Association for Computational658
Linguistics and the 11th International Joint Confer-659
ence on Natural Language Processing (Volume 1:660
Long Papers), pages 3050–3065.661

Ting Chen, Simon Kornblith, Mohammad Norouzi, and662
Geoffrey Hinton. 2020. A simple framework for663
contrastive learning of visual representations. In In-664
ternational conference on machine learning, pages665
1597–1607. PMLR.666

Zhaorun Chen, Zhuokai Zhao, Zhihong Zhu, Ruiqi667
Zhang, Xiang Li, Bhiksha Raj, and Huaxiu Yao.668
2024. Autoprm: Automating procedural supervision669
for multi-step reasoning via controllable question de-670
composition. arXiv preprint arXiv:2402.11452.671

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,672
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias673
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro674
Nakano, and 1 others. 2021. Training verifiers675
to solve math word problems. arXiv preprint676
arXiv:2110.14168.677

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and678
Matt Gardner. 2022. Successive prompting for679
decomposing complex questions. arXiv preprint680
arXiv:2212.04092.681

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,682
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen683
Wang. 2023. Retrieval-augmented generation for684
large language models: A survey. arXiv preprint685
arXiv:2312.10997.686

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 687
Dan Roth, and Jonathan Berant. 2021. Did aristotle 688
use a laptop? a question answering benchmark with 689
implicit reasoning strategies. Transactions of the 690
Association for Computational Linguistics, 9:346– 691
361. 692

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 693
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- 694
cob Steinhardt. 2021. Measuring mathematical prob- 695
lem solving with the math dataset. arXiv preprint 696
arXiv:2103.03874. 697

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 698
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 699
and Weizhu Chen. 2021. Lora: Low-rank adap- 700
tation of large language models. arXiv preprint 701
arXiv:2106.09685. 702

Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra 703
Molina, Aaron Donsbach, Michael Terry, and Carrie J 704
Cai. 2022. Promptmaker: Prompt-based prototyping 705
with large language models. In CHI Conference on 706
Human Factors in Computing Systems Extended Ab- 707
stracts, pages 1–8. 708

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron 709
Sarna, Yonglong Tian, Phillip Isola, Aaron 710
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su- 711
pervised contrastive learning. Advances in neural 712
information processing systems, 33:18661–18673. 713

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao 714
Fu, Kyle Richardson, Peter Clark, and Ashish Sab- 715
harwal. 2022. Decomposed prompting: A modular 716
approach for solving complex tasks. arXiv preprint 717
arXiv:2210.02406. 718

Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. 719
2020. Contrastive representation learning: A frame- 720
work and review. Ieee Access, 8:193907–193934. 721

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 722
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 723
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 724
täschel, and 1 others. 2020. Retrieval-augmented 725
generation for knowledge-intensive nlp tasks. Ad- 726
vances in Neural Information Processing Systems, 727
33:9459–9474. 728

Aitor Lewkowycz, Anders Andreassen, David Dohan, 729
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, 730
Ambrose Slone, Cem Anil, Imanol Schlag, Theo 731
Gutman-Solo, and 1 others. 2022. Solving quan- 732
titative reasoning problems with language models. 733
Advances in Neural Information Processing Systems, 734
35:3843–3857. 735

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan, 736
Xinglin Wang, Bin Sun, Heda Wang, and Kan Li. 737
2024. Escape sky-high cost: Early-stopping self- 738
consistency for multi-step reasoning. arXiv preprint 739
arXiv:2401.10480. 740

Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. 741
2003. The global k-means clustering algorithm. Pat- 742
tern recognition, 36(2):451–461. 743

9

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler744
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,745
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,746
and 1 others. 2024. Self-refine: Iterative refinement747
with self-feedback. Advances in Neural Information748
Processing Systems, 36.749

AI Meta. 2024. Introducing meta llama 3: The most750
capable openly available llm to date. Meta AI.751

Ning Miao, Yee Whye Teh, and Tom Rainforth.752
2023. Selfcheck: Using llms to zero-shot check753
their own step-by-step reasoning. arXiv preprint754
arXiv:2308.00436.755

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.756
2020. A diverse corpus for evaluating and developing757
English math word problem solvers. In Proceedings758
of the 58th Annual Meeting of the Association for759
Computational Linguistics, Online. Association for760
Computational Linguistics.761

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.762
2021. Are nlp models really able to solve763
simple math word problems? arXiv preprint764
arXiv:2103.07191.765

Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun766
Cho, and Douwe Kiela. 2020. Unsupervised ques-767
tion decomposition for question answering. arXiv768
preprint arXiv:2002.09758.769

Ansh Radhakrishnan, Karina Nguyen, Anna Chen,770
Carol Chen, Carson Denison, Danny Hernandez, Esin771
Durmus, Evan Hubinger, Jackson Kernion, Kamilė772
Lukošiūtė, and 1 others. 2023. Question decompo-773
sition improves the faithfulness of model-generated774
reasoning. arXiv preprint arXiv:2307.11768.775

Noah Shinn, Federico Cassano, Ashwin Gopinath,776
Karthik Narasimhan, and Shunyu Yao. 2024. Re-777
flexion: Language agents with verbal reinforcement778
learning. Advances in Neural Information Process-779
ing Systems, 36.780

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya781
Sachan. 2022. Distilling reasoning capabilities782
into smaller language models. arXiv preprint783
arXiv:2212.00193.784

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and785
Jonathan Berant. 2019. CommonsenseQA: A ques-786
tion answering challenge targeting commonsense787
knowledge. In Proceedings of the 2019 Conference788
of the North American Chapter of the Association for789
Computational Linguistics: Human Language Tech-790
nologies, Volume 1 (Long and Short Papers), Min-791
neapolis, Minnesota. Association for Computational792
Linguistics.793

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,794
Cordelia Schmid, and Phillip Isola. 2020. What795
makes for good views for contrastive learning? Ad-796
vances in neural information processing systems,797
33:6827–6839.798

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 799
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 800
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 801
Azhar, and 1 others. 2023. Llama: Open and effi- 802
cient foundation language models. arXiv preprint 803
arXiv:2302.13971. 804

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liang- 805
ming Pan, Wenhu Chen, and William Yang Wang. 806
2024. Understanding the reasoning ability of lan- 807
guage models from the perspective of reasoning paths 808
aggregation. arXiv preprint arXiv:2402.03268. 809

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 810
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 811
Denny Zhou. 2022. Self-consistency improves chain 812
of thought reasoning in language models. arXiv 813
preprint arXiv:2203.11171. 814

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 815
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 816
and 1 others. 2022. Chain-of-thought prompting elic- 817
its reasoning in large language models. Advances 818
in neural information processing systems, 35:24824– 819
24837. 820

Shuang Wu, Liwen Zhu, Tao Yang, Shiwei Xu, Qiang 821
Fu, Yang Wei, and Haobo Fu. 2024. Enhance reason- 822
ing for large language models in the game werewolf. 823
arXiv preprint arXiv:2402.02330. 824

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen 825
Kan, Timothy P Lillicrap, Kenji Kawaguchi, and 826
Michael Shieh. 2024. Monte carlo tree search boosts 827
reasoning via iterative preference learning. arXiv 828
preprint arXiv:2405.00451. 829

Joshua C Yang, Marcin Korecki, Damian Dailisan, Ca- 830
rina I Hausladen, and Dirk Helbing. 2024. Llm vot- 831
ing: Human choices and ai collective decision mak- 832
ing. arXiv preprint arXiv:2402.01766. 833

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, 834
William Cohen, Ruslan Salakhutdinov, and Christo- 835
pher D. Manning. 2018. HotpotQA: A dataset for 836
diverse, explainable multi-hop question answering. 837
In Proceedings of the 2018 Conference on Empirical 838
Methods in Natural Language Processing. Associa- 839
tion for Computational Linguistics. 840

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 841
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 842
2024. Tree of thoughts: Deliberate problem solving 843
with large language models. Advances in Neural 844
Information Processing Systems, 36. 845

ShunYi Yeo, Gionnieve Lim, Jie Gao, Weiyu Zhang, and 846
Simon Tangi Perrault. 2024. Help me reflect: Lever- 847
aging self-reflection interface nudges to enhance de- 848
liberativeness on online deliberation platforms. In 849
Proceedings of the CHI Conference on Human Fac- 850
tors in Computing Systems, pages 1–32. 851

Zhongzhi Yu, Zheng Wang, Yuhan Li, Ruijie Gao, Xi- 852
aoya Zhou, Sreenidhi Reddy Bommu, Yang Zhao, 853
and Yingyan Lin. 2024. Edge-llm: Enabling efficient 854

10

large language model adaptation on edge devices via855
unified compression and adaptive layer voting. In856
Proceedings of the 61st ACM/IEEE Design Automa-857
tion Conference, pages 1–6.858

Yi Zhang, Sujay Kumar Jauhar, Julia Kiseleva, Ryen859
White, and Dan Roth. 2021. Learning to decompose860
and organize complex tasks. In Proceedings of the861
2021 Conference of the North American Chapter of862
the Association for Computational Linguistics: Hu-863
man Language Technologies, pages 2726–2735.864

A Prompt 1: Step-by-Step Mathematical865

Problem Solving866

Profile: Language: English867

Description: You need to answer some math868

questions. Please answer the given questions step869

by step and ultimately provide the answers to those870

questions. In each response, I will provide a de-871

scription of the mathematical methods related to872

the problem, and you should use both the ques-873

tion itself and this description to formulate your874

answers. We hope that these mathematical method875

descriptions will help you better solve the problem876

rather than mislead you, so we encourage you to877

extract useful information from them to address the878

issue effectively.879

Constraint: The answer must include880

boxed{number}.881

Output Example: First we try factoring the left882

side to simplify it:883

4x− 12

x2 + 2x− 15
=

4(x− 3)

(x− 3)(x+ 5)
=

4

x+ 5
.884

Now we can multiply both sides by (x + 5) and885

solve for x:886

4

x+ 5
= x+ 2 ⇒887

4 = (x+ 5)(x+ 2) ⇒888

= x2 + 7x+ 10 ⇒889

0 = x2 + 7x+ 6 ⇒890

= (x+ 6)(x+ 1).891

So p = −1 and q = −6, making p− q = 5 .892

The cube root of 1000 is 10; the cube root of any893

number smaller than 1000 is less than 10. So, the894

whole numbers from 1 to 999 are the only positive895

whole numbers with cube roots less than 10. There896

are 999 such numbers.897

Annie and Barbara will be meeting up at the898

midpoint of (6,−20) and (1, 14). We only need899

to find the y-coordinate of the midpoint since the900

problem says they only walk upwards from the 901

midpoint to get to Charlie’s location. (If you want, 902

you can verify that the x-coordinate of the midpoint 903

equals 7/2.) The y-coordinate of the midpoint is 904
−20+14

2 = −3. To get to Charlie at y = 2, the girls 905

walk 2− (−3) = 5 units upward. 906

B Prompt 2: Evaluation of Mathematical 907

Answers 908

Profile: Language: English 909

Description: I will give you a math problem 910

along with an answer. Please evaluate whether the 911

provided answer is correct based on the problem’s 912

context. If the answer logically fits the question, 913

then it is correct; if it contradicts the description in 914

the question, then it is incorrect. If you believe this 915

answer is correct, you should first provide suitable 916

reasons. Only when the reasons are sufficiently 917

convincing should you make a judgment; other- 918

wise, do not trust certain answers too readily. Your 919

final output can include your thought process, but 920

please conclude with #### true or #### false. 921

Constraint: Please pay attention to whether 922

your final output includes ####. If it does not, 923

it is considered a formatting error. Note that the 924

final output should not just be #### true or #### 925

false; you should write the reasons you believe 926

the answer is correct or incorrect beforehand. 927

Output Example: To verify whether the an- 928

swer 77 is correct, we will substitute it into the 929

conditions of the problem and look for contradic- 930

tions. The problem states that four positive integers 931

satisfy the following conditions: 1. a3 = b2 2. 932

c5 = d4 3. c− a = 77 933

The answer we are checking is d − b = 77. 934

Assuming d− b = 77, this can be expressed as: 935

d = b+ 77. 936

From the first condition a3 = b2, we can derive 937

that b = a3/2. Therefore, 938

d = a3/2 + 77. 939

Now consider the second condition c5 = d4. Sub- 940

stituting d into this equation gives: 941

c5 = (a3/2 + 77)4. 942

Meanwhile, the third condition states that c = a+ 943

77. Substituting c = a+ 77 into c5 = d4 yields: 944

(a+ 77)5 = (a3/2 + 77)4. 945

11

Now, we need to look for contradictions in this946

equation. Clearly, the two sides represent different947

forms. The left-hand side is a polynomial of degree948

five in a, while the right-hand side is a polynomial949

of degree four. Thus, the answer is #### false.950

12

	Introduction
	Related Work
	Chain of Thought (CoT) Reasoning
	Self-Consistency-Based Reasoning
	Contradiction-Based Answer Evaluation
	Task-Specific Knowledge and Action Matching

	Method
	The Architecture
	Action Knowledge Space
	Task-Action Matching via Contrastive Learning
	Random Walk-Based Action Prototype Optimization
	Contradiction-Based Reasoning

	Experiments
	Datasets
	Baselines
	Evaluation Metrics
	Results on GSM8K and MATH
	Ablation Studies

	Conclusions
	Prompt 1: Step-by-Step Mathematical Problem Solving
	Prompt 2: Evaluation of Mathematical Answers

