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Reaching Nirvana: Maximizing the Margin in Both
Euclidean and Angular Spaces for Deep

Neural Network Classification
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Abstract— The classification loss functions used in deep neural
network classifiers can be split into two categories based on
maximizing the margin in either Euclidean or angular spaces.
Euclidean distances between sample vectors are used during clas-
sification for the methods maximizing the margin in Euclidean
spaces whereas the Cosine similarity distance is used during the
testing stage for the methods maximizing the margin in the angu-
lar spaces. This article introduces a novel classification loss that
maximizes the margin in both the Euclidean and angular spaces
at the same time. This way, the Euclidean and Cosine distances
will produce similar and consistent results and complement each
other, which will in turn improve the accuracies. The proposed
loss function enforces the samples of classes to cluster around
the centers that represent them. The centers approximating
classes are chosen from the boundary of a hypersphere, and the
pair-wise distances between class centers are always equivalent.
This restriction corresponds to choosing centers from the vertices
of a regular simplex inscribed in a hypersphere. The proposed
loss function can be effortlessly applied to classical classification
problems as there is a single hyperparameter that must be
set by the user, and setting this parameter is straightforward.
Additionally, the proposed method can effectively reject test
samples from unfamiliar classes by measuring their distances
from the known class centers, which are compactly clustered
around their corresponding centers. Therefore, the proposed
technique is especially suitable for open set recognition problems.
Despite its simplicity, experimental studies have demonstrated
that the proposed method outperforms other techniques in
both open set recognition and classical classification problems.
Interested individuals can access the source code for the proposed
approach at https://github.com/Cevikalp/dsc.

Index Terms— Classification, computer vision, deep learning,
neural collapse, open set recognition, simplex classifier.

I. INTRODUCTION

DEEP neural network classifiers have been dominating
many fields including computer vision by achieving

the state-of-the-art accuracies in many tasks such as visual
object, activity, face, and scene classification. Therefore, new
deep neural network architectures and different classification
losses have been constantly developing. The softmax loss

Manuscript received 27 February 2023; revised 17 October 2023 and 4 April
2024; accepted 29 July 2024. Date of publication 12 August 2024; date of
current version 5 May 2025. This work was supported by the Scientific and
Technological Research Council of Türkiye (TUBİTAK) under Grant EEEAG-
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function is the most common function used for classification
in deep neural network classifiers. Although the softmax loss
yields satisfactory accuracies for general object classification
problems, its performance for discrimination of the instances
coming from the same class categories (e.g., face recognition)
or open set recognition (a classification scenario that allows
the test samples to come from the novel classes) is not
satisfactory. The performance decrease is typically attributed
to two factors: there is no mechanism for enforcing large-
margin between classes and the softmax does not attempt to
minimize the within-class scatter which is critical for obtaining
good accuracies in open set recognition problems.

To improve the classification accuracies of the deep neural
network classifiers, many researchers focused on maximizing
the margin between classes. The recent methods can be
roughly grouped into two categories based on maximizing the
margin in either Euclidean or angular spaces. The methods tar-
geting margin maximization in the Euclidean spaces attempt to
minimize the Euclidean distances among the samples coming
from the same classes and maximize the distances among the
samples coming from different classes. Euclidean distances
are used during the testing stage after the network is trained.
In contrast, the methods maximizing the margin in the angular
spaces use the cosine distances for classification.

In this article, we propose a novel method that maximizes
the margin in both the Euclidean and angular spaces at
the same time. The proposed methodology first selects class
centers from the vertices of a regular simplex inscribed in a
hypersphere and utilizes a loss function that minimizes the
distances between the samples and their corresponding class
centers.

A. Related Work

Wen et al. [1], [2] introduced the center loss for face
recognition to maximize the margin Euclidean space, and
they reported significant improvements over the method using
the softmax loss function in the context of face recognition.
The range loss is combined with the softmax loss function
in [3] to maximize the margin in Euclidean spaces. Wei
et al. [4] proposed a classifier that combines the softmax
loss and center loss functions with the minimum margin
loss. A method combining the softmax loss function with
the marginal loss is proposed by Deng et al. [5]. Cevikalp
et al. [6] proposed a deep neural network based open set
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recognition method that returns compact class acceptance
regions for each known class. In this framework, hinge loss
and polyhedral conic functions are used for the between-
class separation. The methods using contrastive loss [7] also
return compact class acceptance regions. To this end, they
minimize the Euclidean distances of the positive sample pairs
and penalize the negative pairs that have a distance smaller
than a given margin threshold. In a similar manner, Schroff
et al. [8], Hoffer and Ailon [9], Sohn [10], and Roy et al.
[11] employ triplet loss function that uses triplets including a
positive sample, a negative sample and an anchor. An anchor
is also a positive sample, thus the within-class compactness is
achieved by minimizing the Euclidean distances between the
anchor and positive samples whereas the distances between the
anchor and negative samples are maximized for the between-
class separation. The employment of contrastive or triplet loss
functions in methods has a significant drawback, which is the
quadratic or cubic growth of the number of sample pairs or
triplets compared to the total number of samples. This leads
to slow convergence and instability in the training process,
necessitating cautious data sampling/mining to mitigate these
issues. Overall, the majority of the methods maximizing mar-
gin in the Euclidean spaces have shortcomings in a way that
they are too complex since the user has to set many weighting
and margin parameters. Furthermore, many of these methods
are not suitable for open set recognition problems since they
do not return compact acceptance regions for classes.

The methods that enlarge the margin in the angular spaces
typically revise the classical softmax loss functions to maxi-
mize the angular margins between rival classes. These methods
use either multiplicative or additive margins for the inter-
class separations in the angular spaces. Among these, the
SphereFace [12], [13] and the RegularFace [14] methods
employ multiplicative margins whereas the CosFace [15] and
the ArcFace [16] methods use additive margins. Majority
of these methods normalize the feature vectors, classifier
weights or both of them since the similarities are computed
by using the angles. We would like to point out that almost
all methods that maximize the margin in the angular space
are proposed for face recognition. As indicated in [6], these
methods use subspace approximations for the classes and the
similarities are measured by using the angles between sample
vectors. However, subspace approximations work well for the
classification settings where the number of the features is
much larger than the number of class specific samples. This is
typically satisfied for the face recognition problems, but there
are many classification tasks that do not satisfy this criterion.
In addition to this problem, these methods are also complex
since they have many parameters that must be set by the user
as in the methods that maximize the margin in the Euclidean
spaces.

The methods that are most closer to the proposed method-
ology are proposed in [17], [18], and [19]. These methods
introduce loss functions for learning uniformly distributed
representations on the hypersphere manifold through potential
energy minimization. However, these studies consider the layer
regularization problem rather than the direct classification
problem and apply hyperspherical uniformity to the learned

weights. The main idea is to learn diverse deep neural network
weights that are uniformly distributed on a hypersphere in
order to reduce the redundancy. Therefore, these methods are
more complex (in some sense it is also more sophisticated
since it applies the hyperspherical uniformity to all neural
network layers). Consequently, there are many hyperparame-
ters that must be fixed in the resulting method. Also, when
this idea is used in the classification layer, the distances
between the resulting class representative weights are not
equivalent as in our proposed method. A related study called
UniformFace [20] used the same idea in the classification layer
only and introduced uniform loss function to learn equidis-
tributed representations for face recognition. Another similar
method using class centroids is introduced in [21] for distance
metric learning. Although this study focuses on distance metric
learning, it uses class centers chosen as the basis vectors
of C-dimensional space as anchors. Then, as in triplet loss,
it attempts to minimize the distances between the data samples
and the corresponding class centers and to maximize the
distances between the samples and rival class centers. The
selected class centers are fixed as in our proposed method and
it has a restriction that the feature dimension size must be
larger than or equal to the number of classes similar to our
case. Compared to this method, our proposed method is much
simpler and the run-time complexity of the proposed method
is significantly less. Additionally, there are two significant
oversights made by the authors in their proposed method-
ology. The initial oversight concerns their choice of centers,
which are selected from the surface of a unit hypersphere (a
hypersphere with a radius of 1). As expounded upon below,
it becomes apparent that data samples tend to cluster near the
surface of an expanding hypersphere as the dimensionality
increases. Consequently, establishing the hypersphere radius
as 1 is not well-suited for high-dimensional feature spaces,
a viewpoint that is supported with findings reported in studies
such as ArcFace [16] and CosFace [15]. The second con-
cern revolves around the exclusive use of a fully connected
layer to increase dimensionality, particularly when the feature
dimension is smaller than the number of classes. A fully
connected layer just uses the linear combination of existing
features and the resulting space has the same dimensionality
as in the original feature space in the best case scenario (this
issue is explained in more details below). As a result, the
dimensionality is not increased, and this method will not work
for large-scale problems where the number of classes is very
large.

There are studies using or mentioning simplex centers as
in our proposed method. Among these methods, Papyan et al.
[22] shows that the samples of different classes cluster around
the class centers forming the vertices of a regular simplex (as
we proposed in this study) at the last stages of the learning
process when the linear classifiers are used with the softmax
loss function and feature dimension is higher than the number
of classes. They show that the lengths of the vectors of the
class means (after centering by their global mean) converge
to the same length and the angles between pair-wise center
vectors become equal during the last training stages (it is called
terminal phase of the training in the study) of the deep neural
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networks using linear classifiers. This method is different than
our proposed method in the sense that they do not use fixed
class centers chosen from the vertices of a simplex. Instead,
they directly use the softmax loss function and learn class
weights. In general, they simply provide theoretical arguments
showing that using the softmax loss function with the linear
classifiers yields embeddings where the class samples cluster
around vertices of a regular simplex after some kind of
normalizations. Pernici et al. [23], [24], Kasarla et al. [25],
and Bytyqi et al. [26] use fixed centers chosen from the
vertices of a regular simplex as in our proposed method.
But, all of them utilize variants of the softmax loss function
including hyperparameters that must be fixed by the user.
None of them proposes a simple loss function as in our
proposed method. Using the softmax loss function yields radial
distributions as illustrated in these studies. Therefore, their
success is not satisfactory especially in open set recognition
problems since the resulting embeddings are not compact as
in our proposed method, please see related discussion given
in Section II-C below. Also, none of the studies considered
the case when the dimension is smaller than the number of
samples and conducted experiments on this setting. For such
cases, we need to increase the dimension of the feature space
and we propose solutions to handle this case. In contrast, none
of these methods propose an effective solution for this case.
Yang et al. [27] introduced an alternative loss function named
dot regression loss, which, like our proposed method, utilizes
centers selected from the vertices of a regular simplex. How-
ever, their approach requires the selection of two parameters,
making our method comparatively simpler. Additionally, the
loss function described in [27] mandates that feature samples
conform to the surface of a hypersphere with a predefined
radius, akin to the spherical embeddings used in the ArcFace
method [16]. In contrast, our method does not impose such
constraints, allowing the samples to occupy the full feature
space for embedding.

B. Contributions

The methods that maximize the margin in Euclidean or
angular spaces mentioned above have the shortcomings in the
ways that the objective loss functions include many terms that
need to be weighted, the class acceptance regions are not com-
pact, or they need additional hard-mining algorithms. In this
study, we propose a simple yet effective method that does not
have these limitations. Our proposed method maximizes the
margin in both the Euclidean and angular spaces. To the best
of our knowledge, our proposed method is the first method
that maximizes the margin in both spaces. To accomplish this
goal, we train a deep neural network that enforces the samples
to gather in the vicinity of the class-specific centers that lie on
the boundary of a hypersphere whose center is set to the origin.
Each class is represented with a single center, and the distances
between the class centers are equivalent. This corresponds to
selection of class centers from the vertices of a regular simplex
inscribed in a hypersphere. Both the Euclidean distances and
angular distances between class centers are equivalent to each
other.

Our proposed method has many advantages over other
margin maximizing deep neural network classifiers. These
advantages can be summarized as follows.

1) The proposed method is very straightforward in the
sense that one needs to fix only one parameter,
the hypersphere radius. Prior research on classifica-
tion methods employing hyperspherical embeddings has
already investigated the selection of this parameter,
with [15] offering lower bounds for its determination.
Therefore, setting this parameter is extremely easy for
the users. For open set recognition, the user has to set
two parameters if the background class samples are used
for learning.

2) The proposed method returns compact and interpretable
acceptance regions for each class, thus it is very suit-
able for open set recognition problems. Other methods
utilizing simplex vertices for classification purposes use
variants of the softmax loss function and return radial
distributions which is not compact. Therefore, their
accuracies are not satisfactory for open set recognition.

3) The distances between the samples and their corre-
sponding centers are minimized independently of each
other, thus the proposed method also works well for
imbalanced datasets.

4) We investigate scenarios where the utilization of cen-
ters from a regular simplex is unfeasible due to the
dimensionality of the feature space being less than the
number of classes minus one (d < C − 1). In such
instances, neural collapse does not occur, and the case
where d < C − 1 remains largely unexplored with
no proposed efficient solutions. Here, we address this
issue by introducing a new module that augments the
dimensionality of the feature space, as elaborated upon
below.

Against all these advantages, there is only one limitation of the
proposed method: The dimension of the CNN features must
be larger than or equal to the total number of classes minus 1.
To overcome this limitation, we introduced two solutions: The
first solution uses a dimension augmentation module (DAM)
whereas the second solution revises the existing deep neural
network architectures.

II. METHOD

A. Motivation

In this study, we introduce a simple yet effective deep neural
network classifier that maximizes the margin in both Euclidean
and angular spaces. To this end, we propose a novel classi-
fication loss function that enforces the samples to compactly
cluster around the class-specific centers that are selected from
the outer boundaries of a hypersphere. The Euclidean distances
and angles between the centers are equivalent. Please not that
in terms of margin maximization the distances between the
class centers are the maximum values for angular distances.
In a similar manner, for Euclidean distances, if the class
centers are enforced to lie on the boundary of a hypersphere,
the distances among the classes again become the best optimal
solution we can get. Theoretical proofs of this fact can be
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Fig. 1. In the proposed method, class samples are enforced to lie closer to the class-specific centers representing them, and the class centers are located on
the boundary of a hypersphere. All the distances between the class centers are equivalent, thus there is no need to tune any margin term. The class centers
form the vertices of a regular simplex inscribed in a hypersphere. Therefore, to separate C different classes, the dimensionality of the feature space must be
at least C − 1. The figure on the left shows the separation of two classes in 1-D space, the middle figure depicts the separation of three classes in 2-D space,
and the figure on the right illustrates the separation of four classes in 3-D space. For all cases, the centers are chosen from a regular C−simplex.

found in both [19] and [26]. Using simplex vertices as class
centers is illustrated in Fig. 1. In this figure, the centers
representing the classes are denoted by the star symbols
whereas the class samples are represented with circles having
different colors based on the class memberships. As seen in
the figure, all pair-wise distances between the class centers are
equivalent, and class centers are located on the boundary of a
hypersphere. Moreover, if the hypersphere center is set to the
origin, then the angles between the class centers are also same,
and the lengths of the centers are equivalent, i.e., ∥si∥ = u,
(u is the length of the center vectors). After learning stage,
if the class samples are compactly clustered around the centers
representing them, we can classify the data samples based on
the Euclidean or angular distances from the class centers. Both
distances yield the same results if the hypersphere center is
set to the origin.

At this point, the question of whether enforcing data sam-
ples to lie around the simplex vertices is appropriate or not
comes to mind. In fact, high-dimensional spaces are quite
different than the low-dimensional spaces, and there are many
studies showing that the data samples lie on the boundary of
a hypersphere when the feature dimensionality, d , is high and
the number of samples, n, is small. For example, Jimenez and
Landgrebe [28] theoretically shows that the high-dimensional
spaces are mostly empty and data concentrate on the outside of
a shell (on the outer boundary of a hypersphere). The authors
also show that as the number of dimensions increases, the
shell increases its distance from the origin. More precisely,
the data samples lie near the outer surface of a growing
hypersphere in high-dimensional spaces (therefore setting the
hypersphere radius to 1 as in [21] is not suitable for high-
dimensional spaces). A more recent study [29] explicitly
shows that the data samples lie at the vertices of a regular
simplex in high-dimensional spaces. These two studies are
not contradictory and they support each other since we can
always inscribe a regular simplex in a hypersphere as seen
in Fig. 1. In addition to these studies, Kumar et al. [30]
and Weber [31] show that the eigenvectors of the Laplacian
matrices (the matrices computed by operating on similar-
ity matrices in spectral clustering analysis) form a simplex
structure, and they use the vertices of resulting simplex for
clustering of data samples. In other words, they prove that

when the data samples are mapped to Laplacian eigenspace,
they concentrate on the vertices of a simplex structure. These
studies are also complementary to the studies showing that the
high-dimensional data samples lie on the boundary of a grow-
ing hypersphere. It is because, as proved in [32], normalized
cuts (NCuts) [33] clustering algorithm, which is presented as
a spectral relaxation of a graph cut problem, maps the data
samples onto an infinite-dimensional feature space. Therefore,
these data samples naturally concentrate on the vertices of a
regular simplex due to the high-dimensionality of the feature
space.

There are strong arguments that verify that high-dimensional
data samples concentrate on the vertices of regular simplex
as discussed above. Do the same arguments hold for the
high-dimensional features produced by the deep neural net-
work classifiers? A recent study [22] answers this question
and reveals that the samples of different classes cluster around
the class centers forming the vertices of a regular simplex (as
we proposed in this study) at the last stages of the learning
process when the feature dimension is higher than the number
of classes. They show that the lengths of the vectors of the
class means (after centering by their global mean) converge
to the same length and the angles between pair-wise center
vectors become equal during the last training stages (it is
called terminal phase of the training in the study) of the deep
neural networks using linear classifiers. They also demonstrate
that the within-class scatter converges to zero indicating that
the class-specific samples gather around their corresponding
class center. A geometrical analysis of this study is given
in [34]. However, both studies are not complete in the sense
that they do not consider the cases when the dimension of the
feature space is smaller than the number of classes so that it
is impossible to fit the class centers to the vertices of a regular
simplex. Also, the authors do not propose an efficient method
as in our proposed method, instead they use the classical
softmax loss function with the linear classifiers, and learn class
weights for classification. In contrast, we propose an efficient
method that enforces the samples to lie closer to the vertices
of a regular simplex directly in this article. We do not learn
class weights, instead we use fixed class centers chosen from
the vertices of a regular simplex. In addition, we consider the
dimension restriction (when the number of classes is larger
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than the feature dimension) and introduce solutions to handle
this problem as explained below.

B. Maximizing Margin in Euclidean and Angular Spaces

Here, we propose a novel and simple method that enforces
the samples of classes to cluster around the centers chosen
from the vertices of a regular simplex. As shown in [22],
all class samples cluster around the class centers forming the
vertices of a regular simplex when the dimension of the feature
space is larger than the number of classes. Therefore, there is
no need to use complicated classifier layers, and the same
effect can be accomplished by using much simpler classi-
fication layers as in our proposed method. In the proposed
method, instead of using more complicated linear classifiers
and learning class weights for each class, we directly enforce
the class samples to compactly cluster around the fixed class
centers chosen from the vertices of a regular simplex. All
the pair-wise distances between the selected class centers are
equivalent.

Let us assume that there are C classes in our dataset. In this
case, we first need to create a C-simplex (some researchers call
it C−1 simplex considering the feature dimension, but we will
prefer C-simplex definition). The vertices of a regular simplex
inscribed in a hypersphere with radius 1 can be defined as
follows:

v j =

{
(C − 1)−1/21, j = 1
κ1 + ηe j−1, 2 ≤ j ≤ C

(1)

where

κ = −
1 +

√
C

(C − 1)3/2 , η =

√
C

C − 1
. (2)

Here, 1 is an appropriately sized vector whose elements are
all 1, e j is the natural basis vector in which the j−th entry is
1 and all other entries are 0. Such a C−simplex is in fact a
C−dimensional polyhedron where the distances between the
vertices are equivalent. It must be noted that the distances
between the vertices do not change even if the simplex
is rotated or translated. But, the dimension of the feature
space must be at least C − 1 in order to define such a
regular C−simplex. Next, we must define the radius, u, of the
hypersphere. This term is similar to the scaling parameter
used in methods such as ArcFace [16] and CosFace [15],
that maximize the margin in angular spaces. As the dimension
increases, it must be also increased since the studies [28] show
that the hypersphere whose outer shells include the data also
grows as the dimension is increased. Wang et al. [15] provided
a lower bound for the determination of this parameter. Then,
we set the class centers that will represent the classes as

s j = uv j , j = 1, . . . , C. (3)

The order of selection of centers does not matter since the
distances among all centers are equivalent. These distances
are the best optimal values that we can get when the cosine
distances are used as theoretically proved in [19] and [26].
In a similar manner, when the class centers are restricted to
lie on the boundary of a hypersphere, the Euclidean distances

between the classes are again the maximum optimal value one
can get. Therefore, there is no need of using a loss term for the
interclass separation. Now, let us assume that the deep neural
network features of training samples are given in the form
(fi , yi ), i = 1, . . . , n, fi ∈ IRd , yi ∈ { j} where j = 1, . . . , C .
Here, C is the total number of known classes, and we assume
that the feature dimension d is larger than or equal to C − 1,
i.e., d ≥ C − 1. Under these assumptions, the loss function of
the proposed method can be written as

L =
1
n

n∑
i=1

∥∥fi − syi

∥∥2
. (4)

The loss function includes a single term that targets to mini-
mize the within-class variations by minimizing the distances
between the samples and their corresponding class centers,
which are set to the vertices of a regular simplex. There is
no need for another loss term for the between-class separa-
tion since the selected centers have the maximum possible
Euclidean and angular distances among them. As a result, there
is no hyperparameter that must be fixed, and the proposed
method is extremely easy for the users. Moreover, the data
samples compactly cluster around their class centers, therefore
the proposed method results in compact acceptance regions
for classes, which is crucial for the success in the context
of the open set recognition. It should be noted that our
proposed method is quite different than the methods using
vertices of a regular simplex as in our proposed method. It is
because, all these methods use variants of the softmax loss
function that typically require setting margin parameters for
the interclass separation. Furthermore, these methods return
noncompact radial distributions (see [24, Figs. 2, 4, 5, and
8] and [26, Fig. 2]). Therefore, their performance will not be
satisfactory for open-set recognition problems. We call our
proposed method as deep simplex classifier (DSC).

The running time of the proposed method will be more
efficient compared to the methods using the softmax loss func-
tion and its variants, Arcface [16], Cosface [15], and regular
polytope networks [24]. Because, these methods require to
apply exponential function to each logit,(w⊤

c fi + bc), followed
by a normalization by dividing with the sum of all these
exponentials as seen in the softmax loss function given below

L = −
1
n

n∑
i=1

log
ew⊤

yi
fi +byi∑C

j=1 ew⊤

j fi +b j
. (5)

On the other hand, we just need to extract the CNN features of
the test samples during training and testing stages. Then, these
features are compared to precomputed centers by using the
Euclidean distances. Therefore, the proposed method is more
efficient in terms of computational complexity. However, this
does not affect testing times much since the most of the time
is spent on convolutional layers of the deep neural network
classifier during the testing stage.

C. Including Background Class for Open Set Recognition

In open-set recognition scenarios, the training of classifiers
commences by exclusively utilizing samples of known classes.
Subsequently, both known and unknown class samples are
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Fig. 2. If the cosine distances are used for measuring dissimilarities between
the samples and centers as in SOTA methods, all the samples closer to the
dashed lines will be very close to the known class centers, therefore they
will not be rejected. As a result, the samples coming from the unknown
classes denoted by the black circles (the ones closer to the origin and the
ones closer to the end of the dashed lines outside the hypersphere), will be
assigned to the known classes even though they lie very far from the known
class regions. Therefore, using cosine distances and radially distributed CNN
feature embeddings are not suitable for open-set recognition settings.

employed in testing the resulting classifiers. The primary
objective in this task is to ensure accurate classification of
known class samples, while also detecting and rejecting sam-
ples from unknown classes [35]. Prior methods for open-set
recognition relied solely on the use of the known class samples
during training. However, recent investigations [36], [37], [38],
[39] have shown that augmenting the training dataset with
the background dataset with samples from classes that differ
from the known classes can greatly enhances accuracy. Let us
represent the deep neural network features of the background
samples by fk ∈ IRd , k = 1, . . . , K . In order to incorporate
the background samples, we add an additional loss term that
pushes the background samples away from the fixed known
class centers as follows:

L =
1
n

n∑
i=1

∥∥fi − syi

∥∥2

+ λ

n∑
i=1

K∑
k=1

max
(

0, m +
∥∥fi − syi

∥∥2
−

∥∥fk − syi

∥∥2
)

(6)

where m is the selected threshold, and λ is the weighting
term. The second loss term imposes a constraint on the
distances between known class samples and their respective
class centers, mandating that they be smaller than the distances
between background class samples and the known class centers
by a minimum margin of m. In contrast to our first proposed
loss function, this loss function includes two terms that must
be set by the users. But, this is necessary only if we use the
background class samples.

Our proposed method returns compact acceptance regions as
illustrated in Fig. 2. The background samples are pushed away
from the known class centers. Therefore, the unknown class
samples can be easily rejected based on the Euclidean dis-
tances from the test samples to the known class centers. Here,
using Euclidean distances is important since it is impossible
to reject background samples far from the centers if these
samples have the similar orientations as in selected centers.
This is the main reason why the state-of-the-art classifiers such
as ArcFace [16] and CosFace [15], fail for open-set recog-
nition problems. Compared to other related methods using
simplex vertices and variants of the softmax loss function,
our proposed method is more suitable for open-set recognition
tasks since the proposed methodology returns compact class
acceptance regions. Please note that almost all methods using
the fixed simplex vertices and the variants of softmax loss
function return noncompact radial distributions. Since the class
acceptance regions are not compact as in our proposed method,
their performances are not satisfactory for open-set recognition
problems (e.g., our proposed method achieve much better
open-set accuracies compared to [25] on open-set recognition).

D. Dimensionality Restriction and Solution Techniques

The major limitation of the proposed method is the restric-
tion that the dimension of the feature space must be larger
than or equal to C − 1, i.e., d ≥ C − 1. A similar restriction
exists in [21], and their proposed method requires d ≥ C since
they choose the class centers as the standard basis vectors of
C-dimensional space as opposed to our proposed method that
selects the centers from the vertices of a regular simplex. The
typical feature dimension size returned by the classical deep
neural network classifiers is 2048 or 4096. In this case, the
number of classes in our training set cannot exceed 2049 or
4097. However, the number of classes can be larger than these
values for some classification tasks, and we cannot use the
proposed method in such cases.

There are several procedures to solve this problem: As a first
solution, we can use a method similar to [40] that returns more
centers where the distances between centers are approximately
equivalent. In this case, the number of centers is increased
to 2d + 4 for d−dimensional feature spaces. However, this
procedure may not solve the problem if the number of classes
is still larger than 2d + 4. For more complete solutions,
we can revise the existing CNN architectures so that they yield
the desired feature size or integrate a module that increases
the feature dimension. This is illustrated in Fig. 3. These two
procedures are explained below.

1) Dimension Augmentation Module: To solve the dimen-
sion restriction, we first introduce a plug and play module
called the DAM that increases the feature dimension size
to any desired value. The module is visualized in Fig. 4,
and it includes several fully connected layers supported with
nonlinear activation functions. The first fully connected layer
maps the d−dimensional feature space onto a higher (C−1)/2
(half of the desired feature dimension size) dimensional space.
Then, we apply parametric rectified linear unit (PReLU) acti-
vation functions [41] followed by the second fully connected

Authorized licensed use limited to: ULAKBIM UASL - Osmangazi Universitesi. Downloaded on May 15,2025 at 07:12:10 UTC from IEEE Xplore.  Restrictions apply. 



8184 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 5, MAY 2025

Fig. 3. Illustration of the proposed method: we use well-known architectures
(such as ResNet-19 and ResNet-101) as backbones and we only change the
classification loss layer. If the dimension of the CNN feature space is smaller
than C−1, we increase the dimension to desired size by using DAM module or
revising the network architecture, and then apply the proposed loss function.

layer. The second fully connected layer increases the dimen-
sion to desired feature space size, (C − 1). Then, we apply
another PReLU function followed by the last fully connected
layer. It should be noted that, following the ReLU (or PReLU)
operation, the majority of values may become positive, despite
their corresponding centers having negative values. Therefore,
the last layer in the module includes a fully connected layer
that maps (C − 1) dimensional feature space back to (C − 1)

dimensional feature space so that the sample features may have
negative values. The proposed module increases the dimension
in two steps as explained above. The dimension can be directly
increased from d to C−1 in the first fully connected layer. In a
similar manner, we can increase the dimension in more than
two steps if desired.1 The main idea of the proposed DAM is
similar to kernel mapping idea used in kernel methods [42],
[43] in the spirit with the exception that we explicitly map the
data to higher dimensional feature space as in [44] and [45].
It should be noted that Do et al. [21] proposed to use a fully
connected layer alone for increasing the dimensionality of the
feature space. However, a fully connected layer just uses the
linear combination of existing features and the resulting space
has the dimensionality which is lower than or equal to the
original feature space dimension. Therefore, one has to use
activation functions to introduce nonlinearity and increase the
dimension as in our proposed module.

2) Revising Network Architecture: We can also solve the
dimension problem by slightly changing the existing CNN
architectures instead of using our proposed plug and play
DAM. To this end, we can avoid the fully connected layers
that are used for dimension reduction in the last layers of
deep CNNs. For example, in the ResNet architectures we
used for face recognition in our experiments, the dimension
of the feature space is 25 088 just before the fully connected
layers, and it is reduced to 512 after fully connected layers.
Instead of reducing the dimension to 512, we can reduce it
to values that solve the current problem. If the number of
classes is much larger than 25088, we can use more filters
at the last layers to increase this number. In this study,
we used 25 088 dimensional feature space and reduced the
feature size to 12 500 by using a fully connected linear layer
(without PReLU) for training the large-scale dataset sampled
from MS1MV3 dataset [46] without any need for dimension

1Our shared software allows to select any desired number of steps for
increasing dimensionality.

increase for face verification experiments conducted in this
study.

III. EXPERIMENTS

A. Illustrations and Ablation Studies

Here, we first conducted some experiments to visualize the
embedding spaces returned by the various loss functions using
the vertices of the regular simplex. To this end, we utilized
a small deep neural network that yields 2D CNN features.
As training data, we selected three classes from the Cifar-10
dataset since the maximum number of classes is bounded by
3 in 2-D spaces in the proposed method. We would like to
point out that we can use different loss functions in addition
to our default loss function given in (4) once we determine
the vertices of the simplex that will represent the classes. For
this experiment, we used two other loss functions: The first
one is the hinge loss that minimizes the distances between the
samples and their corresponding class center if the distance is
larger than a selected threshold

Lhinge =
1
n

n∑
i=1

max
(

0,
∥∥fi − syi

∥∥2
− m

)
. (7)

This loss function does not minimize the distances between
the samples and their corresponding centers if the distances
are already smaller than the selected threshold, m. This way
class-specific samples are compactly clustered in a hyper-
sphere with radius, m. For the second loss function, we used
the variant of the softmax loss function where the weights are
fixed to the simplex vertices as in

Lsoftmax = −
1
n

n∑
i=1

log
es⊤

yi
fi +byi∑C

j=1 es⊤

j fi +b j
. (8)

For the softmax loss, we fix the classifier weights to the
predefined class centers and we only update features of the
samples by using backpropagation. We set the hypersphere
radius to, u = 5, since this is a simple dataset.

The embeddings returned by the deep neural networks
using different loss functions are plotted in Fig. 5. The first
figure on the left is obtained by our default loss function that
does not need any parameter selection. All data samples are
compactly clustered around their class means as expected. The
second loss function using the hinge loss returns spherical
distributions based on the selected margin, m, and the classes
are still separable by a margin. In contrast, when the softmax
is used with the simplex vertices, the data samples are very
close and they overlap since there is no margin among the
classes. Therefore, our default loss function seems to be the
best choice among all tested variants since it does not need
fixing any parameter and returns compact class regions.

We also conducted tests on imbalanced datasets. In our
proposed method, the distances between the samples and their
corresponding class centers are minimized independently of
each other. Therefore, we expect that the proposed method
will be more robust against to imbalanced datasets. To verify
this, we conducted experiments on the same three classes
used before. We used the same deep neural network classifier
yielding 2-D feature spaces for this experiment. The number
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Fig. 4. Plug and play module that will be used for increasing feature dimension. It maps d−dimensional feature vectors onto a much higher
(C − 1)− dimensional space. The DAM module was specifically designed to allow users to choose any desired number of steps for increasing dimensionality.
It is possible to increase the dimension in a single step or gradually increase it using multiple steps. This figure depicts the case when two steps are used for
increasing the dimension.

Fig. 5. Outputs of the deep neural network classifiers trained by using
different simplex loss functions: (a) 2D CNN features returned by the proposed
method trained with the default loss function given in (4), (b) 2D CNN features
returned by the proposed method trained with the hinge loss, and (c) 2D
CNN features returned by the proposed method trained with the softmax loss
function.

of training samples per class is 5000 for the selected classes
and we first trained the proposed method by using the same
amount of samples for each class. Then, we extracted the
CNN features of test samples. After that, we decreased the
number of samples of the blue colored classes to 500 (which
is 10% of the original size) to create an imbalanced training
set. We trained another network by using this imbalanced
dataset and extracted the CNN features of the testing samples.
The visualization of the extracted features is shown in Fig. 6,
where the first row shows the CNN features of the training
and test samples extracted by using the network trained with
the balanced dataset and the second row shows the extracted
features by using the network trained with imbalanced dataset.
As seen in the figure, the extracted features of the test samples
obtained by using the imbalanced dataset are similar to the
ones obtained by using the balanced dataset. This verifies that
the proposed method is more robust against to imbalanced
datasets as expected.

B. Open-Set Recognition Experiments

The datasets are split into known and unknown classes
in open-set recognition settings. By following the standard
settings, we split the datasets into known and unknown classes
five times, trained our classifiers and computed the accuracies.
The final accuracies are obtained by averaging the accuracies
obtained in each trial. The details of the each dataset are given
below:

Fig. 6. Learned feature representations of image samples. (a) Embeddings
of the training samples returned by the proposed method trained with the
balanced dataset. (b) Embeddings of the test samples returned by the proposed
method trained with the balanced dataset. (c) Embeddings of the training
samples returned by the proposed method trained with the imbalanced dataset.
(d) Embeddings of the test samples returned by the proposed method trained
with the imbalanced dataset.

1) Datasets: Mnist, Cifar-10, SVHN: These datasets are
split randomly into six known and four unknown classes by
using the common testing setting. The 80 Million Tiny Images
dataset [47] is used as the background class.

Cifar + 10, Cifar + 50: For Cifar + N experiments,
four randomly chosen classes from Cifar-10 dataset are used
for training, and N nonoverlapping classes chosen from the
Cifar-100 dataset are used as unknown classes as in [37], [48],
[49], and [50]. The 80 Million Tiny Images dataset [47] is used
as the background class.

TinyImageNet: For TinyImageNet [51] experiments,
20 classes are randomly chosen as known classes and
180 classes as unknown classes by following the standard
setting. The 80 Million Tiny Images dataset [47] is used as
the background class.
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TABLE I
AUC SCORES (%) OF OPEN SET RECOGNITION METHODS ON TESTED DATASETS (n.r. STANDS FOR NOT REPORTED). THE BEST ACCURACIES

ARE SHOWN WITH RED FONTS WHEREAS STATISTICALLY SIMILAR PERFORMANCES ARE SHOWN WITH BLUE FONTS. THE METHODS THAT
STATISTICALLY PERFORM POORLY ARE SHOWN WITH STANDARD BLACK FONT. THE STANDARD DEVIATION OF

OBJECTTOSPHERE METHOD IS ASSUMED AS 1 FOR THE CIFAR-10 DATASET

TABLE II
CLOSED-SET ACCURACIES (%) OF OPEN-SET RECOGNITION METHODS ON TESTED DATASETS

2) Results: The main goal of open set recognition is to
detect and reject the samples that come from the novel classes.
The performance of open set recognition is often measured
using area under the ROC curve (AUC) scores. Additionally,
the closed set accuracy is also reported to evaluate classifi-
cation performance on known data by disregarding unknown
samples, as demonstrated in previous works such as [48]
and [52]. We trained our proposed method by using the loss
function given at (6), which is especially designed for the
open-set recognition settings. Our proposed method, DSC, is
compared against to other state-of-the-art open set recogni-
tion methods including maximally separating matrix method
of [25] using simplex vertices, C2AE [53], Softmax, Open-
Max [35], OSRCI [52], CAC [37], RPL [50], CROSR [49],
ROSR [49], generative-discriminative feature representations
(GDFRs) [54], and Objecttosphere [55] methods. Except
for the TinyImageNet dataset, we employed the identical
network backbone as in [52] for all datasets. To achieve
higher accuracies for the TinyImageNet dataset, we utilized
a deeper Resnet-50 architecture. The hypersphere radius is
set to u = 64 as in ArcFace method. The proposed methods
demonstrated accuracies that are directly comparable to those
reported in [52] for most of the tested datasets, as the network
weights were randomly initialized during the training stage.
AUC scores were summarized in Table I, which showed that
the proposed method achieved the best accuracies across all
datasets except for the Cifar-10 and SVHN. We also conducted
statistical significance tests to assess the variances in accuracy
between the proposed method and its competitors listed in
Table I. This examination employs a null hypothesis statistical

test utilizing the t-distribution. If the obtained significance
falls below the predefined significance threshold (set at 0.05),
we reject the null hypothesis, indicating that there is a sta-
tistically significant difference in performance between the
two methods. The highest accuracy scores are highlighted in
bold red text, while methods exhibiting statistically similar
performance are indicated in bold blue. Results for methods
that perform poorly from a statistical perspective are pre-
sented in standard black font. Notably, there were significant
performance differences observed for the Mnist, Cifar + 10,
Cifar + 50, and TinyImageNet datasets. Our proposed method
achieves significantly better accuracies compared to other
tested methods. For the Cifar-10 dataset, our proposed method
performs statistically similar to the best performing method
whereas all tested methods perform worse compared to the
best performing method for the SVHN dataset. Closed-set
accuracies for open-set recognition methods were reported
in Table II, where the proposed method achieved the best
accuracies among the tested methods, with the exception of the
SVHN dataset. Obtaining the best accuracies in terms of AUC
scores and closed-set accuracies indicates that our proposed
method can easily identify and reject the novel class samples
and correctly classify the known class samples as expected.

C. Closed-Set Recognition Experiments

1) Experiments on Moderate Sized Datasets: Here, we con-
ducted closed-set recognition experiments on moderate sized
datasets. Our proposed method did not need DAM since the
feature dimension is much larger than the number of classes
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TABLE III
CLASSIFICATION ACCURACIES (%) ON MODERATE SIZED DATASETS

TABLE IV
CLASSIFICATION ACCURACIES (%) ON IMAGENET DATASET

in the training set for these experiments. We compared our
results to the methods that maximize the margin in Euclidean
or angular spaces. We implemented the compared methods
by using provided source codes by their authors, and we
used the ResNet-18 architecture [56] as backbone for all
tested methods. Therefore, our results are directly comparable.
We set the hypersphere radius to u = 64 as before.

Classification accuracies are given in Table III. For the
Mnist dataset, majority of the tested methods yield the same
accuracy, but our proposed DSC method outperforms all
tested methods on the Cifar-10 and Cifar-100 datasets. The
performance difference is significant, especially on the Cifar-
100 dataset. These results verify the superiority of the margin
maximization in both Euclidean and angular spaces. Achieving
the best accuracies is encouraging, because our proposed
method is very simple and does not need any parameter tuning,
yet it outperforms more complex methods.

We also conducted tests on ImageNet dataset [57]. We used
a deeper architecture ResNet-101 since this dataset is a
large-scale dataset including 1000 classes. The results are
given in Table IV. We compared our results to the method
using the softmax loss function, large-margin softmax loss
function [13], and a very related method, maximally separating
matrix method of [25], using simplex vertices as fixed class
centers as in our proposed method. As seen in the table, our
proposed method outperforms all methods and achieve the best
accuracies for both top-1 and top-5 accuracies.

2) Experiments on Large-Scale Datasets: We also tested the
proposed method in the classification setting where the number
of classes is much larger than the feature dimensionality.
As stated earlier, the dimension restriction occurs in such
settings. To overcome this, we utilized DAM and revised
network architecture as explained in Section II-D. DSCDAM
represents the classifier using DAM, and DSCRNA represents
the classifier using the revised network architecture. We tested
the proposed methods on face verification and recognition
problems.

To conduct every face verification test, the standard pro-
cedure is followed by employing the same network that has
been trained on a large-scale face dataset. The network that

TABLE V
VERIFICATION RATES (%) ON DIFFERENT DATASETS

is utilized for this purpose has been trained on the MS1MV3
dataset [46], which is a refined variant of the MS-Celeb-1M
dataset [58], and incorporates the proposed loss function. The
MS1MV3 dataset includes approximately 91K individuals.
We have used the first 12K individuals having the most sam-
ples per class in our experiments (using more classes yielded
memory problems with the GPUs we have used for the exper-
iments). The ResNet-101 architecture is used as backbone,
and this backbone yields CNN features whose dimension is
d = 512. Therefore, the number of classes is much larger than
the feature dimension, d = 512. For both proposed classifiers,
we mapped the feature dimension to 12 500 rather than C−1 =

11999. For DSCDAM, we used only one layer with PReLU
activation functions, which required to estimate additional
512 × 12500 + (12500)2

−512 × 12000 weight parameters
for the utilized network. We also applied batch normalization
after PReLU layer. For DSCRNA, we first removed the original
fully connected layer that maps the 25 088 dimensional CNN
features to 512 dimensional space. Then, we added a fully
connected layer (without PReLU) that maps 25 088 dimen-
sional CNN features to 12 500 dimensional feature space.
Therefore, this revision is required to estimation of additional
25088 × 12500 − [25088 × 512 + 512 × 12000] weights.
The hypersphere radius is set to 2000. Training the network,
DSCRNA, using the revised network architecture took 11 444 s
(3.178 h) to finish one epoch whereas the network using
DAM, DSCDAM, completed an epoch in 11 137 s (3.093 h).
In contrast, a network that uses the 512-D CNN feature space
with the classical softmax loss function finishes an epoch
in 8962 s (2.489 h). Therefore, DSCRNA is approximately
1.28 times slower and DSCDAM is 1.24 times slower compared
to a classical network that uses the softmax loss function. Once
the networks are trained, we used the resulting architectures
to extract deep CNN features of the face images coming from
the test datasets.

As test datasets, we used labeled faces in the wild (LFW)
[59], celebrities in frontal-profile dataset (CFP-FP) [60], cross-
age LFW (CALFW) [61], AgeDB [60], and cross-pose LFW
(CPLFW) [62]. For evaluation, the standard protocol of
unrestricted with labeled outside data [59] is used and the
accuracies are obtained by using 6000 pair testing images on
LFW, CALFW, AgeDB, and CPLFW. For CFP-FP dataset, the
accuracies are obtained by using 7000 pairs of testing images
by following the standard testing setting. Table V reports the
accuracies. As seen in the results, the proposed method using
DAM achieves the best accuracies for four datasets among all
tested five datasets. DSCRNA method also obtains competitive
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TABLE VI
IDENTIFICATION ACCURACIES (%) ON THE IJB-B AND IJB-C BENCHMARKS

accuracies, but its accuracies are lower than DSCDAM. These
results verify that the proposed techniques for solving dimen-
sion problem successfully resolve this problem. However, the
weight parameters of the networks are greatly increased.

We also conducted identification (recognition) tests on the
challenging IJB-B and IJB-C datasets [63]. These datasets
present considerable difficulties due to their inclusion of full
pose variations and wide-ranging imaging conditions. The
IJB-B dataset is characterized by its template-based approach,
encompassing 1845 subjects with 11 754 images and 55 025
frames from 7011 videos. Images and videos were sourced
from the web, showcasing significant variations in pose, illu-
mination, and image quality, among other factors. The IJB-C
dataset serves as an extension of the IJB-B dataset, featuring
3531 unique subjects in unconstrained environments. This
mixed media set-based dataset comprises 31 334 still images,
averaging approximately six images per subject, and 117 542
video frames, averaging about 33 frames per video. Each
subject is represented by a template consisting of multiple
images, rendering the set-based face recognition approach
ideal for subject identification. These datasets are widely
recognized as benchmark datasets for evaluating state-of-the-
art face recognition methodologies.

For reporting accuracies, we follow the standard benchmark
procedure for IJB-B and IJB-C to evaluate the proposed
methods on “search” protocol for 1:N face identification. Here,
the Rank-N classification accuracies are reported for identifi-
cation, and the classification rate is the percentage of probe
searches, which correctly finds the probe’s gallery mate in
the gallery set within top N rank-ordered results. In addition,
we also report the true positive identification rate (TPIR)
accuracies obtained for different false positive identification
rate (FPIR) values. The results are given in Table VI, where
the red and blue fonts successively denote the best and the
second best accuracies. As seen in the table, the proposed
method using DAM module achieves the best accuracies in
all metrics on the IJB-C dataset, whereas it obtains the second

best accuracies in terms of TPIR accuracies on the IJB-B
dataset.

IV. SUMMARY AND CONCLUSION

This article proposed a neural network classifier that aims
to maximize the margin in both the Euclidean and angular
spaces. Specifically, the method generates embeddings such
that class-specific samples cluster around the class centers
chosen from the vertices of a regular simplex. The technique
is particularly straightforward as it requires to fix a simple
parameter for classical closed set recognition settings. Despite
its simplicity, the proposed method achieves state-of-the-art
accuracies on open-set recognition problems by rejecting
samples of unknown classes based on their distances from
the class-specific centers. Additionally, the proposed method
outperforms other current classification methods on closed set
recognition settings, particularly with moderate-sized datasets.
Nonetheless, the method exhibits a limitation in learning
large-scale datasets, which can be addressed by introducing a
DAM and revising existing deep neural network architectures.
The proposed classifier using the DAM achieves state-of-the-
art accuracies on face verification problems, but the weight
parameters of the deep neural network classifier greatly
increase. In summary, the proposed method is an ideal choice
for open set recognition and classical classification problems,
particularly when the feature dimension is larger than the num-
ber of classes, and the proposed classifier is straightforward
to use with a simple hyperparameter that requires setting. For
large-scale datasets with many classes, the proposed method
using DAM still yields good accuracies, but it increases the
complexity of the deep neural network architectures.

APPENDIX

IMPLEMENTATION DETAILS

The learning rate is set to 0.1 for the proposed
DSC in open-set recognition experiments. We set
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TABLE VII
CLASSIFICATION ACCURACIES (%) FOR DIFFERENT u

VALUES ON CIFAR-100 DATASET

λ = (1/2 × batch_size2), and m = u/2, where u is
the hypersphere radius.

We do not need λ and m parameters for closed-
set recognition. For closed-set recognition experiments, we
used the ResNet-18 architecture as backbone for moderate
sized datasets, and the ResNet-101 architecture is used for
large-scale face recognition dataset. For updating network
weights, we used Adam optimization strategy for large-scale
face recognition whereas stochastic gradient descent (SGD) is
used for moderate size datasets. The learning rate is set to 10−3

for face recognition and to 0.5 for moderate-sized datasets.
Regarding the scale parameter u, we have conducted exper-

iments by selecting different values. Experiments verify that
the selection of u is not very important as long as it is not
fixed to small values such as 1. Theoretically, the data samples
lie on the surface of a growing hypersphere as the dimension
increases. For smaller dimensions, we can choose smaller
values of u as we did for illustrations experiments (we fixed u
to 5 for 2-D inputs). But, for larger dimensions, we need higher
values. Also, after some value, increasing u value does not
change the results much. The accuracies that are obtained for
Cifar-100 dataset for various u values are given in Table VII.

The threshold, m, parameter is only used for open set
recognition problems. Moreover, we did not have any trouble
for fixing it since our centers are fixed to certain positions.
We already know the distances between the class centers
chosen as simplex vertices. All distances are equal, we simply
checked the largest intraclass distances within classes and
determined a margin based on this. Setting margin term to
half of the hypersphere radius worked well for all cases. For
all experiments except for face verifications ones, we did not
fine-tune our classification network from a pretrained network
and started the network weights from scratch by initializing
with random weights which is the common practice used for
initializing network weights. To train on the large-scale face
recognition dataset, we fine-tuned our backbone network from
a pretrained ArcFace network. To this end, we first froze the
backbone network weights and updated only DAM parameters
for DSCDAM method and fully connected layer weights for
DSCRNA method. Once these weights are learned, we stopped
the freezing the backbone network weights and trained the full
architectures end-to-end manner.

SEMANTICALLY RELATED FEATURE EMBEDDINGS

Experiments were also conducted to evaluate if the proposed
method yields feature embeddings that effectively cluster
semantically and visually similar classes in open-set recogni-
tion settings. It should be noted that the semantic relationships

Fig. 7. Distance matrix is computed by using the centers of the testing classes.
The four classes that are not used in training are closer to their semantically
related classes in the learned embedding space.

are not preserved for the training classes since the Euclidean
and angular distances between the class centers are equivalent.
However, if the proposed method returns good CNN features,
we expect the samples belonging to classes not used in training
to lie closer to their semantically related training classes.
To verify this, we trained our proposed method by using six
classes from the Cifar-10 dataset: airplane, automobile, bird,
cat, deer, and frog. Then, we extracted the CNN features of
all testing data coming from ten classes by using the trained
network. Then, we computed the average CNN feature vector
of each class, and computed the distances between them. Fig. 7
illustrates the computed distances between the centers. The
distances between the classes used for training are similar and
they change between 5.8 and 6.7. The four classes, the dog,
horse, ship, and truck classes, that are not used for training are
represented with red color in the figure. As seen in the figure,
the dog class is closest to its semantically similar cat class,
the truck class is closer to its semantically similar automobile
class, the horse class is closest to the deer class, and the ship
class is closer to the visually similar airplane class (since the
backgrounds—blue sky and sea—are mostly similar for these
two classes). This clearly shows that the proposed method
returns semantically meaningful embeddings.
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