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Abstract

Existing risk-aware multi-armed bandit models typically focus on risk measures of
individual options such as variance. As a result, they cannot be directly applied
to important real-world online decision making problems with correlated options.
In this paper, we propose a novel Continuous Mean-Covariance Bandit (CMCB)
model to explicitly take into account option correlation. Specifically, in CMCB,
there is a learner who sequentially chooses weight vectors on given options and
observes random feedback according to the decisions. The agent’s objective
is to achieve the best trade-off between reward and risk, measured with option
covariance. To capture different reward observation scenarios in practice, we
consider three feedback settings, i.e., full-information, semi-bandit and full-bandit
feedback. We propose novel algorithms with optimal regrets (within logarithmic
factors), and provide matching lower bounds to validate their optimalities. The
experimental results also demonstrate the superiority of our algorithms. To the
best of our knowledge, this is the first work that considers option correlation in
risk-aware bandits and explicitly quantifies how arbitrary covariance structures
impact the learning performance. The novel analytical techniques we developed for
exploiting the estimated covariance to build concentration and bounding the risk of
selected actions based on sampling strategy properties can likely find applications
in other bandit analysis and be of independent interests.

1 Introduction

The stochastic Multi-Armed Bandit (MAB) [3, 28, 2] problem is a classic online learning model,
which characterizes the exploration-exploitation trade-off in decision making. Recently, due to the
increasing requirements of risk guarantees in practical applications, the Mean-Variance Bandits
(MVB) [26, 30, 34] which aim at balancing the rewards and performance variances have received
extensive attention. While MVB provides a successful risk-aware model, it only considers discrete
decision space and focuses on the variances of individual arms (assuming independence among arms).

However, in many real-world scenarios, a decision often involves multiple options with certain
correlation structure, which can heavily influence risk management and cannot be ignored. For
instance, in finance, investors can select portfolios on multiple correlated assets, and the investment
risk is closely related to the correlation among the chosen assets. The well-known “risk diversification”
strategy [4] embodies the importance of correlation to investment decisions. In clinical trials, a
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treatment often consists of different drugs with certain ratios, and the correlation among drugs plays
an important role in the treatment risk. Failing to handle the correlation among multiple options,
existing MVB results cannot be directly applied to these important real-world tasks.

Witnessing the above limitation of existing risk-aware results, in this paper, we propose a novel
Continuous Mean-Covariance Bandit (CMCB) model, which considers a set of options (base arms)
with continuous decision space and measures the risk of decisions with the option correlation.
Specifically, in this model, a learner is given d base arms, which are associated with an unknown joint
reward distribution with a mean vector and covariance. At each timestep, the environment generates
an underlying random reward for each base arm according to the joint distribution. Then, the learner
selects a weight vector of base arms and observes the rewards. The goal of the learner is to minimize
the expected cumulative regret, i.e., the total difference of the reward-risk (mean-covariance) utilities
between the chosen actions and the optimal action, where the optimal action is defined as the weight
vector that achieves the best trade-off between the expected reward and covariance-based risk. To
capture important observation scenarios in practice, we consider three feedback settings in this model,
i.e., full-information (CMCB-FI), semi-bandit (CMCB-SB) and full-bandit (CMCB-FB) feedback,
which vary from seeing rewards of all options to receiving rewards of the selected options to only
observing a weighted sum of rewards.

The CMCB framework finds a wide range of real-world applications, including finance [23], company
operation [24] and online advertising [27]. For example, in stock markets, investors choose portfolios
based on the observed prices of all stocks (full-information feedback), with the goal of earning high
returns and meanwhile minimizing risk. In company operation, managers allocate investment budgets
to several correlated business and only observe the returns of the invested business (semi-bandit
feedback), with the objective of achieving high returns and low risk. In clinical trials, clinicians select
a treatment comprised of different drugs and only observe an overall therapeutic effect (full-bandit
feedback), where good therapeutic effects and high stability are both desirable.

For both CMCB-FI and CMCB-SB, we propose optimal algorithms (within logarithmic factors) and
establish matching lower bounds for the problems, and contribute novel techniques in analyzing
the risk of chosen actions and exploiting the covariance information. For CMCB-FB, we develop a
novel algorithm which adopts a carefully designed action set to estimate the expected rewards and
covariance, with non-trivial regret guarantees. Our theoretical results offer an explicit quantification
of the influences of arbitrary covariance structures on learning performance, and our empirical
evaluations also demonstrate the superior performance of our algorithms.

Our work differs from previous works on bandits with covariance [32, 33, 11, 25] in the following
aspects. (i) We consider the reward-risk objective under continuous decision space and stochastic
environment, while existing works study either combinatorial bandits, where the decision space
is discrete and risk is not considered in the objective, or adversarial online optimization. (ii) We
do not assume a prior knowledge or direct feedback on the covariance matrix as in [32, 33, 11].
(iii) Our results for full-information and full-bandit feedback explicitly characterize the impacts of
arbitrary covariance structures, whereas prior results, e.g., [11, 25], only focus on independent or
positively-correlated cases. These differences pose new challenges in algorithm design and analysis,
and demand new analytical techniques.

We summarize the main contributions as follows.

• We propose a novel risk-aware bandit model called continuous mean-covariance bandit
(CMCB), which considers correlated options with continuous decision space, and char-
acterizes the trade-off between reward and covariance-based risk. Motivated by practical
reward observation scenarios, three feedback settings are considered under CMCB, i.e.,
full-information (CMCB-FI), semi-bandit (CMCB-SB) and full-bandit (CMCB-FB).

• We design an algorithm MC-Empirical for CMCB-FI with an optimalO(
p
T ) regret (within

logarithmic factors), and develop a novel analytical technique to build a relationship on risk
between chosen actions and the optimal one using properties of the sampling strategy. We
also derive a matching lower bound, by analyzing the gap between hindsight knowledge and
available empirical information under a Bayesian environment.

• For CMCB-SB, we develop MC-UCB, an algorithm that exploits the estimated covariance
information to construct confidence intervals and achieves the optimal O(

p
T ) regret (up to
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logarithmic factors). A matching regret lower bound is also established, by investigating the
necessary regret paid to differentiate two well-chosen distinct instances.

• We propose a novel algorithm MC-ETE for CMCB-FB, which employs a well-designed action
set to carefully estimate the reward means and covariance, and achieves an O(T

2
3 ) regret

guarantee under the severely limited feedback.

To our best knowledge, our work is the first to explicitly characterize the influences of arbitrary
covariance structures on learning performance in risk-aware bandits. Our results shed light into
optimal risk management in online decision making with correlated options. Due to space limitation,
we defer all detailed proofs to the supplementary material.

2 Related Work

(Risk-aware Bandits) Sani et al. [26] initiate the classic mean-variance paradigm [23, 14] in bandits,
and formulate the mean-variance bandit problem, where the learner plays a single arm each time
and the risk is measured by the variances of individual arms. Vakili & Zhao [29, 30] further study
this problem under a different metric and complete the regret analysis. Zhu & Tan [34] provide a
Thompson Sampling-based algorithm for mean-variance bandits. In addition to variance, several
works consider other risk criteria. The VaR measure is studied in [10], and CVaR is also investigated
to quantify the risk in [13, 16]. Cassel et al. [5] propose a general risk measure named empirical
distributions performance measure (EDPM) and present an algorithmic framework for EDPM. All
existing studies on risk-aware bandits only consider discrete decision space and assume independence
among arms, and thus they cannot be applied to our CMCB problem.

(Bandits with Covariance) In the stochastic MAB setting, while there have been several works [11,
25] on covariance, they focus on the combinatorial bandit problem without considering risk. Degenne
& Perchet [11] study the combinatorial semi-bandits with correlation, which assume a known upper
bound on the covariance, and design an algorithm with this prior knowledge of covariance. Perrault
et al. [25] further investigate this problem without the assumption on covariance under the sub-
exponential distribution framework, and propose an algorithm with a tight asymptotic regret analysis.
In the adversarial setting, Warmuth & Kuzmin [32, 33] consider an online variance minimization
problem, where at each timestep the learner chooses a weight vector and receives a covariance matrix,
and propose the exponentiated gradient based algorithms. Our work differs from the above works
in the following aspects: compared to [11, 25], we consider a continuous decision space instead
of combinatorial space, study the reward-risk objective instead of only maximizing the expected
reward, and investigate two more feedback settings other than the semi-bandit feedback. Compared
to [32, 33], we consider the stochastic environment and in our case, the covariance cannot be directly
observed and needs to be estimated.

3 Continuous Mean-Covariance Bandits (CMCB)

Here we present the formulation for the Continuous Mean-Covariance Bandits (CMCB) problem.
Specifically, a learner is given d base arms labeled 1; : : : ; d and a decision (action) space D � 4d,
where4d = fw 2 Rd : 0 � wi � 1;8i 2 [d];

P
i wi = 1g denotes the probability simplex in Rd.

The base arms are associated with an unknown d-dimensional joint reward distribution with mean
vector �∗ and positive semi-definite covariance matrix �∗, where �∗ii � 1 for any i 2 [d] without
loss of generality. For any action w 2 D, which can be regarded as a weight vector placed on the
base arms, the instantaneous reward-risk utility is given by the following mean-covariance function

f(w) = w>�∗ � �w>�∗w; (1)

where w>�∗ denotes the expected reward, w>�∗w represents the risk, i.e., reward variance, and
� > 0 is a risk-aversion parameter that controls the weight placed on the risk. We define the optimal
action as w∗ = argmaxw∈D f(w). Compared to linear bandits [1, 17], the additional quadratic
term in f(w) raises significant challenges in estimating the covariance, bounding the risk of chosen
actions and deriving covariance-dependent regret bounds.

At each timestep t, the environment generates an underlying (unknown to the learner) random reward
vector �t = �∗ + �t according to the joint distribution, where �t is a zero-mean noise vector and it is
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Algorithm 1 MC-Empirical

1: Input: Risk-aversion parameter� > 0.
2: Initialization: Pull actionw1 = ( 1

d ; : : : ; 1
d ),

and observe� 1 = ( � 1;1; : : : ; � d;1)> . �̂ �
1;i  

� 1;i ; 8i 2 [d]. �̂ 1;ij = ( � 1;i � �̂ �
1;i )( � 1;j �

�̂ �
1;j ); 8i; j 2 [d].

3: for t = 2 ; 3; : : : do

4: w t = argmax
w 24 d

(w > �̂ �
t � 1 � � w > �̂ t � 1w)

5: Pull w t , observe� t = ( � t; 1; : : : ; � t;d )>

6: �̂ �
t;i  1

t

P t
s=1 � s;i ; 8i 2 [d]

7: �̂ t;ij = 1
t

tP

s=1
(� s;i � �̂ �

t;i )( � s;j � �̂ �
t;j );8i;j 2 [d]

8: end for

independent among different timestept. Note that here we consider an additive vector noise to the
parameter� � , instead of the simpler scalar noise added in the observation (i.e.,yt = w >

t � � + � t )
as in linear bandits [1, 17]. Our noise setting better models the real-world scenarios where distinct
actions incur different risk, and enables us to explicitly quantify the correlation effects. Following the
standard assumption in the bandit literature [22, 11, 34], we assume the noise is sub-Gaussian, i.e.,
8u 2 Rd, E[exp(u > � t )] � exp(1

2 u > � � u), where� � is unknown. The learner selects an action
w t 2 D and observes the feedback according to a certain structure (speci�ed later). For any time
horizonT > 0, de�ne the expected cumulative regret as

E [R(T)] =
TX

t =1

E [f (w � ) � f (w t )] :

The objective of the learner is to minimizeE[R(T)]. Note that our mean-covariance function Eq.(1)
extends the popular mean-variance measure [26, 30, 34] to the continuous decision space.

In the following, we consider three feedback settings motivated by reward observation scenarios in
practice, including (i) full-information (CMCB-FI), observing random rewards of all base arms after
a pull, (ii) semi-bandit (CMCB-SB), only observing random rewards of the selected base arms, and
(iii) full-bandit (CMCB-FB), only seeing a weighted sum of the random rewards from base arms. We
will present the formal de�nitions of these three feedback settings in the following sections.

Notations. For actionw 2 D , let I w be a diagonal matrix such thatI w ;ii = I f wi > 0g. For a matrix
A, let Aw = I w AI w and� A be a diagonal matrix with the same diagonal asA.

4 CMCB with Full-Information Feedback (CMCB-FI)

We start with CMCB with full-information feedback (CMCB-FI). In this setting, at each timestept,
the learner selectsw t 2 4 d and observes the random reward� t;i for all i 2 [d]. CMCB-FI provides
an online learning model for the celebrated Markowitz [23, 14] problem in �nance, where investors
select portfolios and can observe the prices of all stocks at the end of the trading days.

Below, we propose an optimal Mean-Covariance Empirical algorithm (MC-Empirical ) for CMCB-FI,
and provide a novel regret analysis that fully characterizes how an arbitrary covariance structure
affects the regret performance. We also present a matching lower bound for CMCB-FI to demonstrate
the optimality ofMC-Empirical .

4.1 Algorithm for CMCB-FI

Algorithm 1 shows the detailed steps ofMC-Empirical . Speci�cally, at each timestept, we use
the empirical mean̂� t and covariancê� t to estimate� � and � � , respectively. Then, we form
f̂ t (w ) = w > �̂ t � � w > �̂ t w, an empirical mean-covariance function ofw 2 4 d, and always choose
the action with the maximum empirical objective value.

AlthoughMC-Empirical appears to be intuitive, its analysis is highly non-trivial due to covariance-
based risk in the objective. In this case, a naive universal bound cannot characterize the impact
of covariance, and prior gap-dependent analysis (e.g., [11, 25]) cannot be applied to solve our
continuous space analysis with gap approximating to zero. Instead, we develop two novel techniques
to handle the covariance, including using the actual covariance to analyze the con�dence region of
the expected rewards, and exploiting the empirical information of the sampling strategy to bound the
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risk gap between selected actions and the optimal one. Different from prior works [11, 25], which
assume a prior knowledge on covariance or only focus on the independent and positively-related
cases, our analysis does not require extra knowledge of covariance and explicitly quanti�es the
effects of arbitrary covariance structures. The regret performance ofMC-Empirical is summarized
in Theorem 1.

Theorem 1(Upper Bound for CMCB-FI). Consider the continuous mean-covariance bandits with
full-information feedback (CMCB-FI). For anyT > 0, algorithm MC-Empirical (Algorithm 1)
achieves an expected cumulative regret bounded by

O

 �
min

np
w � > � � w � + � � 1

2
p

� �
max � � �

min ,
p

� �
max

o
+ �

�
ln T

p
T

!

; (2)

where� �
max = max i 2 [d] � �

i , � �
min = min i 2 [d] � �

i and� �
max = max i 2 [d] � �

ii .

Proof sketch.Let D t be the diagonal matrix which takes valuet at each diagonal entry. We �rst build
con�dence intervals for the expected rewards of actions and the covariance asjw > � � � w > �̂ t � 1j �

pt (w ) , c1
p

ln t
q

w > D � 1
t � 1(� � � � D t � 1 +

P t � 1
s=1 � � )D � 1

t � 1w andj� �
ij � �̂ ij;t � 1j � qt , c2

ln tp
t � 1

.

Here � = w �> � � w �

� �
max

andc1; c2 are positive constants. Then, we obtain the con�dence interval

of f (w ) as jf̂ t � 1(w ) � f (w )j � r t (w ) , pt (w ) + � w > Qt w, whereQt is a matrix with all
entries equal toqt . Since algorithmMC-Empirical always plays the empirical best action, we have
f (w � ) � f (w t ) � f̂ t � 1(w � )+ r t (w � ) � f (w t ) � f̂ t � 1(w t )+ r t (w � ) � f (w t ) � r t (w � )+ r t (w t ).
Plugging the de�nitions off (w ) andr t (w ), we have

� � � � +�
�

w >
t � � w t � w � > � � w �

�
� f (w � ) � f (w t )

(a)
�

c3ln t
� p

w � > � � w � +
p

w >
t � � w t+�

�

p
t � 1

; (3)

where� � � = � �
max � � �

min andc3 is a positive constant. Since our goal is to bound the regret
f (w � ) � f (w t ) and in inequality (a) only the

p
w >

t � � w t term is a variable, the challenge falls on
boundingw >

t � � w t . Note that the left-hand-side of Eq.(3) is linear with respect tow >
t � � w t and

the right-hand-side only contains
p

w >
t � � w t . Then, using the property of sampling strategy onw t ,

i.e., Eq.(3), again, after some algebraic analysis, we obtainw >
t � � w t � c4(w � > � � w � + 1

� � � � +
1
�

q
ln t
t � 1

p
w � > � � w � + ln tp

t � 1
+ ln t

� 2 ( t � 1) ) for some constantc4. Plugging it into inequality (a) and
doing a summation overt, we obtain the theorem.

Remark 1. As we will show in Section 4.2, thisO(
p

T) regret matches the lower bound up to a
logarithmic factor. Moreover, Theorem 1 fully characterizes how anarbitrary covariance structure
impacts the regret bound. To see this, note that in Eq. (2), under themin operation, the �rstp

w � > � � w � -related term dominates under reasonable� , and shrinks from positive to negative
correlation, which implies that the more the base arms are negatively (positively) correlate, the lower
(higher) regret the learner suffers. The intuition behind is that the negative (positive) correlation
diversi�es (intensi�es) the risk of estimation error and narrows (enlarges) the con�dence region for
the expected reward of an action, which leads to a reduction (an increase) of regret.

Also note that when� = 0 , the CMCB-FI problem reduces to ad-armed bandit problem with
full-information feedback, and Eq. (2) becomes~O(

p
� �

max T). For this degenerated case, the optimal

gap-dependent regret isO( � �
max
� ) for constant gap� > 0. By setting� =

p
� �

max =T at this
gap-dependent result, one obtains the optimal gap-independent regretO(

p
� �

max T). Hence, when
� = 0 , Eq. (2) still offers a tight gap-independent regret bound.

4.2 Lower Bound for CMCB-FI

Now we provide a regret lower bound for CMCB-FI, which demonstrates that theO(
p

T) regret of
MC-Empirical is in fact optimal (up to a logarithmic factor).

Since CMCB-FI considers full-information feedback and continuous decision space where the reward
gap� (between the optimal action and the nearest optimal action) approximates to zero, existing
lower bound analysis for linear [8, 9] or discrete [19, 11, 25] bandit problems cannot be applied to
this problem.
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Algorithm 2 MC-UCB

1: Input: � > 0, c 2 (0; 1
2 ] and regularization

parameter�> 0.
2: Initialize: 8i 2 [d], pull ei that has1 at

the i -th entry and0 elsewhere. 8i; j 2
[d]; i 6= j , pull eij that has1

2 at thei -th and
the j -th entries, and0 elsewhere. Update
N ij (d2); 8i; j 2 [d], �̂ d2 and�̂ d2 .

3: for t = d2 + 1 ; : : : do
4: � t;ij  �̂ t � 1;ij � gij (t)
5: �� t;ij  �̂ t � 1;ij + gij (t)

6: w t  argmax
w 24 c

d

(w> �̂ t � 1+ E t (w )� � w> � tw)

7: Pull w t and observe all� t;i s.t. wt;i > 0
8: Jt;ij  I f wt;i ; wt;j > 0g; 8i;j 2 [d]
9: N ij (t)  N ij (t � 1) + Jt;ij ; 8i;j 2 [d]

10: �̂ �
t;i  

P t
s =1 J t;ii � s;i

N ii ( t ) ; 8i 2 [d]

11: �̂ t;ij  

tP

s =1
J t;ij ( � s;i � �̂ �

t;i )( � s;j � �̂ �
t;j )

N ij ( t ) ;8i;j 2 [d]

12: end for

To tackle this challenge, we contribute a new analytical procedure to establish the lower bound for
continuous and full-information bandit problems from the Bayesian perspective. The main idea is to
construct an instance distribution, where� � is drawn from a well-chosen prior Gaussian distribution.
After t pulls the posterior of� � is still Gaussian with a mean vectoru t related to sample outcomes.
Since the hindsight strategy simply selects the action which maximizes the mean-covariance function
with respect to� � while a feasible strategy can only utilize the sample information (u t ), we show
that any algorithm must suffer
(

p
T) regret due to the gap between random� � and its meanu t .

Theorem 2 below formally states this lower bound.
Theorem 2 (Lower Bound for CMCB-FI). There exists an instance distribution of the continu-
ous mean-covariance bandits with full-information feedback problem (CMCB-FI), for which any
algorithm has an expected cumulative regret bounded by
(

p
T).

Remark 2. This parameter-free lower bound demonstrates that the regret upper bound (Theorem 1)
of MC-Empirical is optimal (within a logarithmic factor), since under the constructed instance
distribution, Theorem 1 also implies a matching~O(

p
T) parameter-free result, i.e., when� = 1=

p
T,

Eq.(2) becomes~O((
p

� �
max + 1=

p
T)

p
T) = ~O(

p
T). Unlike discrete bandit problems [19, 11, 25]

where the optimal regret is usuallylog T
� for constant gap� > 0, CMCB-FI has continuous decision

space with gap� ! 0 and a polylogarithmic regret is not achievable in general. In such continuous
bandit literature [18, 8, 9], the parameter (� � , � � and� ) dependent lower bound is an open problem.

5 CMCB with Semi-Bandit Feedback (CMCB-SB)

In many practical tasks, the learner may not be able to simultaneously select (place positive weights
on) all options and observe full information. Instead, the weight of each option is usually lower
bounded and cannot be arbitrarily small. As a result, the learner only selects a subset of options and
obtains their feedback, e.g., company investments [12] on multiple business.

Motivated by such tasks, in this section we consider the CMCB problem with semi-bandit feedback
(CMCB-SB), where the decision space is a restricted probability simplex4 c

d = f w 2 Rd : wi =
0 or c � wi � 1; 8i 2 [d] and

P
i wi = 1g for some constant0 < c � 1

2 .2 In this scenario, at
timestept, the learner selectsw t 2 4 c

d and only observes the rewardsf � t;i : wi � cg from the base
arms that are placed positive weights on. Below, we propose the Mean-Covariance Upper Con�dence
Bound algorithm (MC-UCB) for CMCB-SB, and provide a regret lower bound, which shows that
MC-UCBachieves the optimal performance with respect toT.

5.1 Algorithm for CMCB-SB

Algorithm MC-UCBfor CMCB-SB is described in Algorithm 2. The main idea is to use the optimistic
covariance to construct a con�dence region for the expected reward of an action and calculate an upper
con�dence bound of the mean-covariance function, and then select the action with the maximum
optimistic mean-covariance value.

2Whenc > 1
2 , the learner can only place all weight on one option, and the problem trivially reduces to the

mean-variance bandit setting [26, 34]. In this case, our Theorem 3 still provides a tight gap-independent bound.
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In Algorithm 2,N ij (t) denotes the number of timesws;i ; ws;j > 0 occurs among timesteps 2 [t].
Jt;ij is an indicator variable that takes value1 if wt;i ; wt;j > 0 and0 otherwise.D t is a diagonal
matrix such thatD t;ii = N ii (t). In Line 2, we update the number of observations byN ii (d2)  2d� 1
for all i 2 [d] andN ij (d2)  2 for all i; j 2 [d]; i 6= j (due to the initializedd2 pulls), and calculate
the empirical mean̂� �

d2 and empirical covariancê� �
d2 using the equations in Lines 10,11.

For anyt > 1 and i; j 2 [d], we de�ne the con�dence radius of covariance� �
ij as gij (t) ,

16
�

3 ln t
N ij ( t � 1) _

q
3 ln t

N ij ( t � 1)

�
+

q
48 ln 2 t

N ij ( t � 1)N ii ( t � 1) +
q

36 ln 2 t
N ij ( t � 1)N j ( t � 1) , and the con�dence region

for the expected rewardw > � � of actionw as

E t (w ) ,

vu
u
t 2� (� t )

�
w > D � 1

t � 1

�
� � �� t

D t � 1 +
t � 1X

s=1

�� s;w s

�
D � 1

t � 1w
�

;

where� > 0 is the regularization parameter,� (� t ) = ln( 1
� t

)+ d ln ln t + d
2 ln(1+ e

� ) is the con�dence
term and� t = 1

t ln 2 t is the con�dence parameter. At each timestept, algorithmMC-UCBcalculates the
upper con�dence bound off (w ) usinggij (t) andE t (w ), and selects the actionw t that maximizes
this upper con�dence bound. Then, the learner observes rewards� t;i with wt;i > 0 and update the
statistical information according to the feedback.

In regret analysis, unlike [11] which uses a universal upper bound to analyze con�dence intervals,
we incorporate the estimated covariance into the con�dence region for the expected reward of an
action, which enables us to derive tighter regret bound and explictly quantify the impact of the
covariance structure on algorithm performance. We also contribute a new technique for handling the
challenge raised by having different numbers of observations among base arms, in order to obtain an
optimalO(

p
T) regret (here prior gap-dependent analysis [11, 25] still cannot be applied to solve

this continuous problem). Theorem 3 gives the regret upper bound of algorithmMC-UCB.

Theorem 3(Upper Bound for CMCB-SB). Consider the continuous mean-covariance bandits with
semi-bandit feedback problem (CMCB-SB). Then, for anyT > 0, algorithmMC-UCB(Algorithm 2)
with regularization parameter� > 0 has an expected cumulative regret bounded by

O
� q

L(� )(k� � k+ + d2)d ln2 T � T + �d ln T
p

T
�

;

whereL(� ) = ( � + 1)(ln(1 + � � 1) + 1) andk� � k+ =
P

i;j 2 [d]

�
� �

ij _ 0
�

for anyi; j 2 [d].

Remark 3. Theorem 3 captures the effects of covariance structures in CMCB-SB, i.e., positive
correlation renders a largerk� � k+ factor than the negative correlation or independent case, since
the covariance in�uences the rate of estimate concentration for the expected rewards of actions. The
regret bound for CMCB-SB has a heavier dependence ond than that for CMCB-FI. This matches
the fact that semi-bandit feedback only reveals rewards of the queried dimensions, and provides less
information than full-information feedback in terms of observable dimensions.

5.2 Lower Bound for CMCB-SB

In this subsection, we establish a lower bound for CMCB-SB, and show that algorithmMC-UCB
achieves the optimal regret with respect toT up to logarithmic factors.

The insight of the lower bound analysis is to construct two instances with a gap in the expected
reward vector� � , where the optimal actions under these two instances place positive weights on

different base arms. Then, when the gap is set to
p

ln T=T, any algorithm must suffer

� p

T ln T
�

regret for differentiating these two instances. Theorem 4 summarizes the lower bound for CMCB-SB.

Theorem 4(Lower Bound for CMCB-SB). There exists an instance distribution of the continuous
mean-covariance bandits with semi-bandit feedback (CMCB-SB) problem, for which any algorithm

has an expected cumulative regret bounded by

� p

cdT
�

.

Remark 4. Theorem 4 demonstrates that the regret upper bound (Theorem 3) ofMC-UCBis optimal
with respect toT (up to logarithmic factors). Similar to CMCB-FI, CMCB-SB considers continuous
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Algorithm 3 MC-ETE

1: Input: � > 0, ~d = d(d+1)
2 and design action

set� = f v1; : : : ; v ~dg.
2: Initialize: N � (0)  0. t  1.
3: Repeatlines 4-22:
4: if N � (t � 1) > t

2
3 =d then

5: w t = argmax
w 24 d

(w > �̂ �
t � 1 � � w > �̂ t � 1w)

6: t  t + 1
7: else
8: N � (t)  N � (t � 1) + 1
9: for k = 1 ; : : : ; ~d do

10: Pull vk and observeyN � ( t ) ;k

11: if k = ~d then

12: yN � ( t )  (yN � ( t ) ;1; : : : ; yN � ( t ) ; ~d)>

13: ŷ t  
P N � ( t )

s =1 y s

N � ( t )

14: ẑt;k =
P N � ( t )

s =1 (ys;k � ŷ t;k )2

N � ( t ) ; 8k 2 [ ~d]

15: ẑt  (ẑt; 1; : : : ; ẑt; ~d)>

16: �̂ t  B +
� ŷ t

17: �̂ t  C+
� ẑt

18: Reshapê� t to d � d matrix �̂ t
19: end if
20: t  t + 1
21: end for
22: end if

decision space with� ! 0, and thus the lower bound differs from those gap-dependent resultslog T
�

in discrete bandit problems [19, 11, 25]. Our lower bound shows that for CMCB-SB, no improvement
uponO(

p
T) regret is possible in general.

6 CMCB with Full-Bandit Feedback (CMCB-FB)

In this section, we further study the CMCB problem with full-bandit feedback (CMCB-FB), where at
timestept, the learner selectsw t 2 4 d and only observes the weighted sum of random rewards, i.e.,
yt = w >

t � t . This setting models many real-world decision making tasks, where the learner can only
attain an aggregate feedback from the chosen options, such as clinical trials [31].

6.1 Algorithm for CMCB-FB

We propose the Mean-Covariance Exploration-Then-Exploitation algorithm (MC-ETE) for CMCB-
FB in Algorithm 3. Speci�cally, we �rst choose a design action set� = f v1; : : : ; v ~dg
which contains~d = d(d + 1) =2 actions and satis�es thatB � = ( v>

1 ; : : : ; v>
~d

) and C� =
(v2

1;1; : : : ; v2
1;d ; 2v1;1v1;2; : : : ; 2v1;d� 1v1;d ; : : : ; v2

~d;1
; : : : ; v2

~d;d
; 2v ~d;1v ~d;2; : : : ; 2v ~d;d � 1v ~d;d ) are of full

column rank. We also denote their Moore-Penrose inverses byB +
� and C+

� , and it holds that
B +

� B � = I d� d andC+
� C� = I ~d� ~d. There exist more than one feasible� , and for simplicity and

good performance we choosev1; : : : ; vd as standard basis vectors inRd andf vd+1 ; : : : ; v ~dg as the
set of all

� d
2

�
vectors where each vector has two entries equal to1

2 and others equal to0.

In an exploration round (Lines 8-21), we pull the designed actions in� and maintain their empirical
rewards and variances. Through linear transformation byB +

� andC+
� , we obtain the estimators of the

expected rewards and covariance of base arms (Lines 16-17). When the estimation con�dence is high
enough, we exploit the attained information to select the empirical best action (Lines 5). Theorem 5
presents the regret guarantee ofMC-ETE.
Theorem 5(Upper Bound for CMCB-FB). Consider the continuous mean-covariance bandits with
full-bandit feedback problem (CMCB-FB). Then, for anyT > 0, algorithmMC-ETE(Algorithm 3)
achieves an expected cumulative regret bounded by

O
�

Z (�; � )
p

d(ln T + d2) � T
2
3 + d� max � T

2
3

�
;

whereZ (�; � ) = max w 24 d (
q

w > B +
� � �

� (B +
� )> w + � kC+

� k), � �
� = diag(v>

1 � � v1; : : : ; v>
~d

� � v ~d),

kC+
� k = max i 2 [ ~d]

P
j 2 [ ~d] jC+

�;ij j and� max = f (w � ) � minw 24 d f (w ).

Remark 5. The choice of� will affect the regret factor� �
� contained inZ (�; � ). Under our

construction,� �
� can be regarded as a uniform representation of covariance� � , and thus our regret

bound demonstrates how the learning performance is in�uenced by the covariance structure, i.e.,
negative (positive) correlation shrinks (enlarges) the factor and leads to a lower (higher) regret.
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