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Abstract

In Conversational AI, an Automatic Speech Recognition (ASR) system is used to
transcribe the user’s speech, and the output of the ASR is passed as an input to a
Spoken Language Understanding (SLU) system, which outputs semantic objects
(such as intent, slot-act pairs, etc.). Recent work, including the state-of-the-art
methods in SLU utilize either Word lattices or N-Best Hypotheses from the ASR.
The intuition given for using N-Best instead of 1-Best is that the hypotheses provide
extra information due to errors in the transcriptions of the ASR system, i.e., the
performance gain is attributed to the word-error-rate (WER) of the ASR. We
empirically show that the gain in using N-Best hypotheses is related to not WER
but to the diversity of hypotheses. Code and datasets are available at this URL.

1 Introduction

In Conversational AI [1], an Automatic Speech Recognition (ASR) system first transcribes a user’s
speech. A Spoken Language Understanding (SLU) system parses the speech into semantic objects
such as intents and slots. These intents or slots are used by dialog policy to produce the bot’s response.

As the ASR is not perfect, the transcripts are noisy and contain errors, so the SLU system needs to be
aware of and robust to the errors caused by ASR. Prior work enables this "awareness of ASR errors"
by providing extra information such as Word Lattices or Word Confusion Networks [2] or N-Best
lists [3] in case WCNs are not available. Prior work [4, 5] argues that using WCNs is better when
compared to using 1-Best hypothesis as the oracle path has the lowest word error with respect to the
ground truth transcript; similar arguments are made in the case of N-Best hypotheses [3, 6]. In this
work, we argue that this assumption that the benefit of using WCNs or N-Best hypotheses is only due
to the errors made by the ASR system might not be the entire truth. We empirically show that the
diversity of the hypotheses plays a crucial role in determining the gain in performance when using
1-Best v/s. N-Best.

This work investigates the conditions under which N-Best ASR Hypotheses-based methods are more
beneficial and show that the diversity in ASR Hypotheses is an important factor. The contributions of
this work are summarized below:

• Propose novel metrics to measure the diversity of ASR hypotheses.

• Show that WER of the 1-Best ASR hypothesis is not indicative of how useful the non-1-Best
hypotheses are.

• Show that the ASR hypotheses’ diversity might indicate the gain in performance.
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(a) Visual representation of word lattices and
word confusion networks. Each transition adds
a word to the hypothesis sub-sequence. This
figure is taken from [2].

(b) In N-Best lists, the hypotheses are ranked ac-
cording to a score, which is usually a function of
the log probability and the length of the hypothesis.
The 1-Best hypothesis is the hypothesis with the
best score, whereas the N-best hypothesis refers to
the set of top-N hypotheses.

Figure 1: Illustrations of various data structures relating to ASR hypotheses.

2 Related Work

2.1 Notation

Let D and |D| denote the dataset, and the number of examples in the dataset, respectively. N is the
number of ASR hypotheses considered, xj

i is the j-th-best hypothesis in the i-th instance in D. yi is
the corresponding intent/slot label. x∗

i is the "gold" or ground-truth transcript obtained from the ASR
dataset. |xi| denotes the number of tokens in xi. We denote Lce as the Cross-Entropy loss function.
f(., θ) is a neural network parameterized by θ, a set of parameters.

Throughout the work we discuss the word-error-rate (WER), which is defined as below:

WERi =
S +D + I

N
(1)

Here, S,D, and I are the numbers of substitution, deletion, and insertion errors. N is the total number
of tokens in x∗

i . WER is computed between x1
i and x∗

i . WER is averaged across the dataset D, and
we denote the averaged WER as simply WER.

2.2 Word Confusion Networks and Word Lattices

Word lattices [7] and Word Confusion Networks (WCNs) [2, 8] as shown in Figure 1a provides a
graphical representation of hypotheses, where each path from the start to the end node represents 1
hypothesis. Lattices are a normalised and a more compact topology of WCNs; while WCNs retain
the topology of the original search space.

Liu et al. [8] show that using WCN as input yields better results for intent performance ( 2% to 4%)
compared to the N-Best hypotheses and Word Lattices. There are similar improvements over 1-Best
and N-Best on using word lattices as discussed in [7].

2.3 N-Best ASR Transformer

Ganesan et al. [3] propose a method that concatenates N-Best ASR hypotheses, illustrated in Fig. 1b,
that feeds to a pretrained language model (LM). This simple method outperformed state-of-the-art
methods by leveraging information contained in non-1-Best alternatives while having several benefits
over prior baselines, such as leveraging pretrained LMs, and plug-and-play support for third-party
ASR services.
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Figure 2: Examples of Hypotheses from each of the datasets used in this paper. In the first row,
the first line is the 1-Best hypothesis, second and third lines are 2nd-best and 3rd-best hypotheses,
respectively. # new tokens denoted the number of tokens present in non-1-Best hypothesis not present
in the 1-Best hypothesis (denoted by boldface). We note that DSTC-2 and SNIPS-TTS have highly
similar hypotheses on qualitative observation, followed by the In-house dataset.

The input is constructed as follows:

x̂i =

{
[CLS]⊕

⊕N
j=1{x

j
i ⊕ [SEP ]} if N > 1

[CLS]x1
i [SEP ] if N = 1

(2)

where
⊕

is the string concatenation operation, and [CLS] and [SEP ] are special tokens denoting
classifier and separator tokens.

The loss used is Lce(x̂, y, θ).

3 Experiments

Following [3], the proposed methods in this section utilize a pretrained XLM-RoBERTa (base). The
set of parameters is denoted by θ.

We train models in cases when a) top-N ASR hypotheses are available, b) only 1-Best ASR hypothesis
is available and for completeness, c) when only ground-truth transcripts are available. We report
Macro F1 scores on ASR hypotheses as inputs. The code to reproduce results on the public datasets
will be provided as supplementary material.

3.1 Datasets

N depends on the ASR used to generate the hypotheses. For example, suppose the beam-width is 2.
In that case, the number of hypotheses available is N = 2, i.e., N is the property of the dataset and is
not treated as a hyperparameter for the sake of this study.

Table 1: Results for SLU. Macro F1 scores are computed after 5 independent trials. We note that
the difference in F1 scores between 1-best and N-best is high in our In-house dataset, followed by
DSTC-2 and SNIPS-TTS.

Dataset Method ASR F1

DSTC-2
Gold 0.595± 0.022
1Best 0.579± 0.023

NBest [3] 0.602± 0.024

In-house
Gold 0.439± 0.018
1Best 0.451± 0.013

NBest [3] 0.523± 0.023

SNIPS-TTS
Gold 0.817± 0.011
1Best 0.923± 0.004

NBest [3] 0.949± 0.004

3



Table 2: Various statistics related to ASR Hypotheses of datasets used in the paper. ∆a
b is the

percentage difference in ASR F1 when using methods a and b. We note that ∆ seems related to
Jaccard-Index and Gestalt-PM, i.e., hypotheses diversity, and that using N-best alternatives is more
beneficial when hypotheses are diverse.

Dataset WER Jaccard
Index

Gestalt
PM ∆1Best

NBest

SNIPS-TTS 0.443 0.639 0.882 2.82
DSTC-2 0.29 0.6 0.799 3.97
In-house 0.439 0.523 0.757 15.96

DSTC-2: We build an act-slot-pair multi-label classification dataset using the original act-slot-value
DSTC-2 dataset [9]. The resulting dataset consists of 10.8K and 9.1K training and testing examples
with 21 labels (act-slot pairs). We discard the "value" labels as this requires a change in the model
architecture. We use N = 5.

SNIPS-TTS: We use the 7-class classification dataset introduced by [10]. However, few train and
test set examples do not have N-Best alternatives available. We filter such examples. The train and
test sets have 11K and 0.6K examples, respectively. We use N = 9.

In-house: This multi-class classification dataset consists of utterances collected using a deployed
voice assistant (VA) in the banking domain. The VA handles queries about blocking debit/credit
cards, checking bank balances, reporting fraud, etc. Human annotators label the speech audio with
transcriptions, and ASR hypotheses are tagged with one of 42 intents. We perform an inner-join of
these datasets, resulting in a dataset of 3.4K utterances, which we split into training and testing sets
of 2.7K and 0.68K examples. We use N = 5.

In Figure 2, we illustrate some examples of each of the datasets used. We observe that DSTC-2 and
SNIPS-TTS have highly similar ASR alternatives. In the next section, we define metrics that quantify
this observation.

4 Diversity of ASR Hypotheses

In Table 1, we note that the gain in F1 scores due to using N -best hypotheses is much lower when
compared with the gains in our In-house dataset. We believe this is because the hypotheses generated
are less diverse in DSTC-2 and SNIPS-TTS, and {2, 3, . . . , N}-best hypotheses do not provide much
extra information to the SLU model.

We compute various statistics based on token-level and sequence-level string-similarity functions to
support the above claim. For a string-similarity function s(u, v) computes a scalar value that denotes
the similarity between two strings u and v.

S =

|D|∑
i=1

N∑
j=2

s(x1
i , x

j
i )

|D|(N − 1)
(3)

S is the averaged statistic across D. S denotes how much, on average, the non-1-Best hypotheses
differ from the 1-Best hypothesis. It is considered a measure of diversity in ASR hypotheses.

The string-similarity functions s considered are listed below:

• Gestalt-PM: Gestalt Pattern Matching [11], also known as the Ratcliff-Obershelp algorithm
for sequence matching. A higher score means higher similarity and vice-versa.

• Jaccard-Index: A token-level set-similarity measure [12]. A higher score means higher
similarity and vice-versa.

Table 2 contains pair-wise string-similarity statistics between 1-Best ASR Hypothesis and others,
averaged across all examples in the train and test sets. SNIPS-TTS has a higher similarity of
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hypotheses, followed by DSTC-2 and In-house, across both string-similarity functions. SNIPS-
TTS has the highest WER of 0.443 while having the least diversity in alternatives. The In-house
dataset on the other hand, has a similar WER; however, the hypotheses are much more diverse. We
emphasize that the WER of ASR seems unrelated to ∆1Best

NBest and the diversity of hypotheses. ∆a
b is

the percentage difference in ASR F1 when using methods a and b.

In hindsight, it would seem obvious that if the hypotheses contained very similar tokens, it would not
be useful in helping the SLU "guess" the correct transcription and classify the utterance correctly.
However, to our knowledge, this intuition was never empirically proven to be valid.

5 Limitations

The number of datasets on which the experiments were carried out may be too few (3) to make a
concrete claim on the importance of diversity. However, we argue that this is enough evidence to
show that the intuition used by prior work, which relies on the WER of the 1-best hypothesis, is false.

6 Conclusion

In this work, we first benchmark N-best ASR Transformer on three different datasets with varying
word-error-rates. We show that for the datasets we tried, the gain in performance when using N-best
hypotheses is unrelated to WER. Instead, we show that the diversity of alternatives is an important
factor. To support this, we introduce novel metrics to quantify the ASR hypotheses’ diversity and
show a positive correlation between the gain in performance when using N-best hypotheses and the
diversity of alternatives.
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