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Abstract

In this paper, we present a deep learning based method for surface segmentation. This
technique consists of acquiring 2D views and extracting features from the surface such as
the normal vectors. The rendered images are analyzed with a 2D convolutional neural
network, such as UNETs. We test our method in a dental application for segmentation of
dental crowns. The neural network is trained for the multi-class segmentation, using image
labels as ground truth. The segmentation task achieved an average Dice of 0.97, sensitivity
of 0.97 and precision of 0.97.

Keywords: Deep Learning, segmentation, dental crown, Universal label id, intra-oral
surface

1. Introduction

Developments in dentistry have resulted in an improved application of 3D technologies such
as intra-oral surface (IOS) scanners which are used to design ceramic crowns, veneers, in-
lays, and occlusal guards, as well as assisting with implants. IOS are being used more often
for automated diagnosis such as caries detection (Lim et al., 2021), analysis of risk factors of
tooth movement(Commer et al., 2000), and treatment planning(Flügge et al., 2013). These
3D surface models require shape analysis techniques for analyzing and understanding the
geometry and achieve state of the art performance for tasks such as segmentation, classifi-
cation, and retrieval. In this paper we present a novel method for 3D surface segmentation
based on a multi-view approach. Fast and accurate segmentation of the IOS remains a
challenge due to various geometrical shapes of teeth, complex tooth arrangements, differ-
ent dental model qualities, and varying degrees of crowding problems(Li and Wang, 2016).
Our target application is the multi-class segmentation following the Universal Numbering
System proposed by the American Dental Asociation (ADA), the dental notation system
used in the United States.
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The multi-view approach consists of generating 2D images of the 3D surface from dif-
ferent view points. The generated images serve as a training set for a neural network. We
use Pytorch3D1 to generate images on the fly during training and a one-to-one mapping
that relates faces in the 3D model and pixels in the generated images. This is useful in
inference time when we have to put the resulting labels from the images back into the 3D
model. The remainder of the manuscript is organized as follow: the materials used in this
study, related work, details of our implementation, results and conclusions.

2. Materials

The dataset consists of 78 mandibular IOS (40 for the upper and 38 for the lower dental
arches). Digital dental model of the mandibular arch was acquired from intra oral scan-
ning with the TRIOS 3D intra oral scanner. The TRIOS intra oral scanner (IOS) utilizes
”ultrafast optical sectioning” and confocal microscopy to generate 3D images from multiple
2D images with an accuracy of 6.9 ± 0.9 µ m. All scans were obtained according to the
manufacturer’s instructions, by one trained operator. The training was done on an NVIDIA
TITAN V GPU with 12GB of memory.

3. Related work

3.1. 3D shape analysis

Learning-based methods for shape analysis use the 3D models to learn descriptors directly
from them, however, adapting state-of-the art 2D CNNs to work on 3D shapes is a challeng-
ing task. The main impediment is the arbitrary structures of 3D models which are usually
represented by point clouds or triangular meshes, whereas deep learning algorithms use
the regular grid-like structures found in 2D/3D images(Boubolo et al., 2021; Deleat-Besson
et al., 2021).

Multi-view approaches adapt 3D objects by rendering them from different view-points
and use the snapshots to extract 2D image features using 2D CNNs(Su et al., 2015; Kanezaki
et al., 2018; Ma et al., 2018). On the other hand, volumetric approaches use 3D voxel
grids to represent the shape and apply 3D convolutions to learn shape features(Wu et al.,
2015; Wang et al., 2017; Riegler et al., 2017). Finally, other approaches consume the point
clouds directly and implement multi-layer-perceptrons and/or transformer architectures, or
a generalization of typical CNNs (Qi et al., 2017a; Lian et al., 2020; Li et al., 2018; Wu
et al., 2019).

3.2. Intra oral surface segmentation

MeshSegNet(Lian et al., 2020) uses raw surface attributes as inputs and integrates graph-
constrained learning modules then, a dense fusion strategy is applied to combine local-to-
global geometric features for the learning of higher-level features for mesh cell annotation.
The predictions by MeshSegNet are further post-processed by a graph-cut refinement step
for final segmentation. ”Deep Learning Approach to Semantic Segmentation in 3D Point
Cloud Intra-oral Scans of Teeth“ (Zanjani et al., 2019) proposes an end-to-end deep learning

1. https://pytorch3d.org/
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framework for segmentation of teeth from point clouds representing IOS. TSegNet (Cui
et al., 2021) developed a fully automatic algorithm to segment tooth on 3D dental models
guided by the tooth centroid information. Mask-MCNet(Zanjani et al., 2021) localizes each
individual tooth instance by predicting its 3D bounding box and segments the points that
belong to each individual tooth instance. FlyByCNN(Boubolo et al., 2021; Deleat-Besson
et al., 2021) is a multi-view based approach that uses UNETs(Ronneberger et al., 2015)
to segment each individual image. The merging and annotating teeth and root canals
approach (Deleat-Besson et al., 2021) uses a classification model to identify upper or lower
jaws. Then, it proceeds to align the 3D objects to a template and then label each crown
with the universal id.

4. Method

4.1. Rendering the 2D views

The Pytorch3D framework allows rendering the 3D object from different view points and
extract views that can be fed to a CNN in a end-to-end training procedure. The rendering
engine provides a map that relates pixels in the images to faces in the mesh and allows rapid
extraction of point data (normals, curvatures, labels, etc.) as well as setting information
back into the mesh after inference. In order to get different viewpoints, we apply random
rotations to the camera, so that it moves on the surface of a unit sphere. For each snapshot,
we generate two images. The first one contains the surfaces normals encoded in the RGB
components. The second one are the label maps that are used as ground truth in the
segmentation task. We set the resolution of the rendered images to 320px. We use ambient
lights so that the rendered images don’t have any specular components.
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Figure 1: Example of a rendered 2D view. Left: surface normals encoded in RGB com-
ponents, (additional surface properties may be rendered or extracted from the
surface using the face-id maps). Right: ground truth labels for the dental crowns
rendered with a color map. These image pairs are used in training of a segmen-
tation task.

4.2. Training the network

We have in total 78 different IOS. We use 55 for the training, 7 for validation, and 16
for testing. To create the neural networks we use MONAI2, an open-source Pytorch-based
framework for deep learning in healthcare imaging. MONAI provides a complete frame-
work to easily create Datasets and integrate neural networks such as a UNET. We use
the DiceCELoss, which computes the Dice Loss as well as Cross-Entropy Loss and returns
the weighted sum of these two. This loss is frequently used for segmentation tasks. The
learning rate is set to 1e−4 using the Adam optimizer. One important thing to note is that
there is no previous pre-processing to the mesh, sub-sampling of points/faces or any clas-
sification task to identify upper or lower jaws. The training learns to identify 34 different
labels corresponding to the upper and lower crowns. We use one-hot encoding for the 34
different classes: 32 different crowns, in addition to the gum and the background. To make
the validation more accurate, we implemented a 5-fold cross-validation. The results for this
cross-validation can be found in the appendix.

4.3. Prediction

The prediction is composed of three major steps: 1. Render 2D views from the 3D object; 2.
Run inference on the 2D views. 3. map the information back into the 3D mesh. We render

2. monai.io
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70 views with a resolution of 320px. The position of the cameras are distributed on the
surface of sphere and follow a Fibonacci lattice. This method ensures an even distribution
of the viewpoints on the surface of a sphere, and thus an efficient prediction as we capture
the object regularly. After we run inference on the 2D views, we use a weighted majority
voting scheme to put information back into the 3D mesh. The Pytorch3d rasterizer returns
a mapping that keeps track of the nearest face at each pixel, for each 2D image that is
created (pixels that are hit by zero face are padded with −1). We can use this variable to
give at each iteration a label to every face that has been assigned to a pixel. As there are
34 different classes, the outputs of the network are of shape [1, img size, img size, 34]. After
a few iterations, almost every face has been assigned to one or more outputs. When all the
snapshots have been generated we can proceed to the weighted majority voting; the weights
being the output of the network to which we apply the softmax function.

4.4. Post-Process

In the event that some faces of the surface are not assigned to any output at the end of
the prediction, we apply an ’island removal‘ approach, that assigns the closest-connected
label. Figure 4.4 shows an example of the island removal approach. Unlabeled points in
the crowns get assigned the closest label.

(a) (b)

Figure 2: Island remove approach. Unlabeled points are assigned the closest-connected
label.

4.5. Distance metric

One way to tell if our model is accurate is to compute the average distance between the
borders of the ground truth and the predicted labels for every crown. We do this by isolating
each crown with a threshold and then extracting the points on the border. We then compute
the distance between each border point on the predicted label and the closest border point
on the ground truth. Finally, we divide the sum of the distances for every point by the
number of points to get the average distance for one specific crown.
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Figure 3: Predicted label (orange) on top of ground truth (blue)

5. Results

5.1. Distance metric

(a) (b)

Figure 4: Violin plots showing the distance metric. (a) is upper jaw and (b) is lower jaw.

The better results for the upper jaw can be explained by the fact that the test set for
the lower jaw contains more models with wisdom teeth (4 out of the 9 models in total).
The model was trained with a majority of surfaces with only 14 crowns and no wisdom
teeth. The poor results for the labels that are just next to the wisdom teeth come from the
fact that most wisdom teeth got the label from the next crown. An incorrect labeling of
some crowns tends to decrease the accuracy of the prediction for the other crowns. Further
results show this phenomenon quite well.

5.2. Dice coefficients

5 out of the 7 IOS for the upper jaw have Dice coefficients > 0.9. On these 5 scans all
crowns are correctly labeled and the result is almost identical to the ground truth. The
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(a) (b)

Figure 5: Dice coefficients. (a) is upper jaw and (b) is lower. In each plot, each ”violin”
represents a separate 3D surface from the test set. Samples with wisdom teeth
get worse Dice coefficients because the model was trained with a great majority
of models with only 14 teeth.

worse result for the 3rd scan may come from the fact that the IOS looks different from the
training data (see Appendix). The 4th scan for the upper jaw and the 3rd, 5th, 8th and
9th for the lower jaw show worse Dice coefficients because they contain 16 teeth (wisdom
teeth). As mentioned before, the training set contains a very few number of samples with
wisdom teeth. With a wider range of training data we can expect much better results for
these types of scans as well.

Figure 6 shows that when the network makes predictions on data types for which it has
trained on, it produces excellent results. The Dice coefficients are always above 0.9 and
even above 0.95 for 25 out of the 28 different crowns.

5.3. Resulting labeled IOS

Figure 7 shows the output segmentation for one of our test cases.

5.4. Comparison with competing methods

Metric PointNet PointNet++ PointConv MeshSegNet Our method

DSC 0.840± 0.117 0.907± 0.067 0.939± 0.060 0.981 ± 0.028 0.968

SEN 0.910± 0.129 0.988± 0.037 0.983± 0.047 0.989 ± 0.035 0.97

PPV 0.795± 0.132 0.846± 0.107 0.904± 0.086 0.975 ± 0.034 0.97

This table shows results for 3 state-of-the-art deep learning methods ( (Qi et al., 2017a),
(Qi et al., 2017b) and (Wu et al., 2019)) as well as (Lian et al., 2020). The results for our
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(a) (b)

Figure 6: Dice coefficients for jaws with no wisdom teeth. (a) is upper jaw and (b) is lower.
We picked from the test set 5 upper jaws and 5 lower jaws with just the 14
”regular” teeth (i.e. no wisdom teeth). For each plot, each ”violin” represents a
separate crown.

segmentation method were obtained using the data set samples that do not have wisdom
teeth.

6. Conclusion

This new method for automatic multi-class segmentation of 3D surfaces has proven to be
accurate and effective, as well as easy to integrate into existing pipelines. The surfaces
models can be directly processed by the approach and no intermediate pre-processing or
down-sampling steps for the surface model are needed. A great advantage of this method
is the ability to predict the universal ids of the crowns in the upper and lower jaws. The
competing approaches focused on upper models only or use a classification model to identify
upper/lower jaws. Our approach is fully automated and labels both upper and lower crowns
with a single model. The model learns to identify features specific to each jaw. We are aware
that this model can still be improved with larger and more diverse data sets. However, the
results obtained are competitive with existing methods such as MeshSegNet and PointConv.
Prediction for jaws with no wisdom teeth is excellent, and we can safely expect better results
for wisdom teeth segmentation as our sample size increases.
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P Commer, C Bourauel, K Maier, and A Jäger. Construction and testing of a computer-
based intraoral laser scanner for determining tooth positions. Medical engineering &
physics, 22(9):625–635, 2000.

Zhiming Cui, Changjian Li, Nenglun Chen, Guodong Wei, Runnan Chen, Yuanfeng Zhou,
Dinggang Shen, and Wenping Wang. Tsegnet: an efficient and accurate tooth segmenta-
tion network on 3d dental model. Medical Image Analysis, 69:101949, 2021.

Romain Deleat-Besson, Celia Le, Winston Zhang, Najla Al Turkestani, Lucia Cevidanes,
Jonas Bianchi, Antonio Ruellas, Marcela Gurgel, Camila Massaro, Aron Aliaga Del
Castillo, et al. Merging and annotating teeth and roots from automated segmentation

9



Leclercq Ruellas Gurgel Yatabe Bianchi Cevidanes Styner Paniagua Prieto

of multimodal images. In International Workshop on Multimodal Learning for Clinical
Decision Support, pages 81–92. Springer, 2021.
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Figure 8: Confusion matrix for the upper jaw
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Figure 9: Confusion matrix for the lower jaw
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These confusion matrices show that the neural network gives better results for upper
wisdom teeth than for the lower ones. This difference comes from the nature of the training
set: more lower jaws models with wisdom teeth were put into the test set, so there were
fewer ones remaining for the training set. This result is rather positive and shows that the
model can be improved with a better training set.

Appendix B. Detailed results for test samples with no wisdom teeth

Label PPV SEN f1-score support

2 0.97 0.98 0.97 17885

3 0.97 0.98 0.98 23869

4 0.98 0.96 0.97 14613

5 0.98 0.95 0.97 16047

6 0.95 0.95 0.95 12707

7 0.94 0.96 0.95 10626

8 0.97 0.98 0.97 15119

9 0.97 0.98 0.97 15596

10 0.95 0.97 0.96 11149

11 0.98 0.96 0.97 13454

12 0.98 0.98 0.98 15783

13 0.97 0.97 0.97 14924

14 0.98 0.98 0.98 23135

15 0.98 0.96 0.97 17584

16 0.99 0.99 0.99 2126

18 0.97 0.98 0.97 21550

19 0.99 0.98 0.98 24258

20 0.97 0.98 0.97 14493

21 0.98 0.97 0.97 13409

22 0.98 0.96 0.97 12153

23 0.95 0.95 0.95 9343

24 0.91 0.94 0.92 9024

25 0.93 0.91 0.92 8708

26 0.96 0.93 0.94 9593

27 0.96 0.97 0.96 12704

28 0.97 0.98 0.97 13177

29 0.98 0.98 0.98 15131

30 0.99 0.99 0.99 25318

31 0.99 1.00 0.99 21575

33 1.00 1.00 1.00 540485

avg 0.97 0.97 0.97
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(a) (b)

Figure 10: 3rd upper jaw in the test set. It is the only IOS with this kind of base. This
may explain why the neural network struggles to produce very accurate results
for this particular model.

Appendix C. Third upper jaw in the test set

Appendix D. Prediction with random teeth removal

(a) (b)

Figure 11: This figure shows two examples of predictions in which a crown was randomly
removed from the surface. The prediction is accurate. This example does not
exactly reproduce the case in which a crown is naturally missing from the jaw,
because of the gap that it creates. We did not have such cases in our data set.
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Appendix E. 5-fold cross-validation results on samples with 14 teeth (no
wisdom teeth)

Metric Cross-Validation

Precision 0.98± 0.03

Sensitivity 0.98± 0.11

f1-score 0.98± 0.08

Dice 0.96± 0.03

This table shows the results for the 5-fold cross-validation. Dice is at 0.96, which is slightly
lower than the 0.97 value obtained with the first training. We had to stop the trainings
manually without relying on the early stopping criteria in order to have them all done on
time. This could explain the slight difference. These results show that our method provides
accurate results in the case of jaws with 14 teeth, even on a wider test set.
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