
EdgePruner: Poisoned Edge Pruning in Graph
Contrastive Learning

1st Hiroya Kato
KDDI Research, Inc., Japan

3rd Seira Hidano
KDDI Research, Inc., Japan

2nd Kento Hasegawa
KDDI Research, Inc., Japan

4th Kazuhide Fukushima
KDDI Research, Inc., Japan

Abstract—Graph contrastive learning (GCL) is unsupervised
graph representation learning that can obtain useful representa-
tion of unknown nodes. The node representation can be utilized
as features of downstream tasks. However, GCL is vulnerable to
poisoning attacks as with existing learning models. A state-of-the-
art defense cannot sufficiently negate adverse effects by poisoned
graphs although such a defense introduces adversarial training in
the GCL. To achieve further improvement, pruning adversarial
edges, which can also be called poisoned edges is important. To
the best of our knowledge, the feasibility remains unexplored in
the GCL domain. In this paper, we propose a simple defense
in GCL, EdgePruner. We focus on the fact that the state-of-the-
art poisoning attack on GCL tends to mainly add adversarial
edges to create poisoned graphs, which means that pruning
edges is important to sanitize the graphs. Thus, EdgePruner
prunes edges that contribute to minimizing the contrastive loss
based on the node representation obtained after training on
poisoned graphs by GCL. Furthermore, we focus on the fact
that nodes with distinct features are connected by adversarial
edges in poisoned graphs. Thus, we introduce feature similarity
between neighboring nodes to help more appropriately determine
adversarial edges. This similarity is helpful in further eliminating
adverse effects from poisoned graphs on various datasets. Finally,
EdgePruner outputs a graph that yields the minimum contrastive
loss as the sanitized graph. Our results demonstrate that pruning
adversarial edges is feasible on six datasets. EdgePruner can
improve the accuracy of node classification under the attack by
up to 5.55% compared with that of the state-of-the-art defense.
Moreover, we show that EdgePruner is immune to an adaptive
attack.

Index Terms—graph representation learning, contrastive learn-
ing, poisoning attack, edge pruning, graph sanitization

I. INTRODUCTION

The graph representation learning plays an important role
in utilizing information from graph structured data such as
social networks [1], [2] and e-commercial networks [3], [4]
for the various purposes including community detection [5],
[6] and recommendation systems [7]–[10]. However, most
existing graph representation learning methods are executed
in a supervised or semi-supervised manner, which requires
plentiful labeled data for training. Unfortunately, the node
labels of graph structured data are insufficient in quantity
[11]. This is because manually labeling nodes in large graphs
is rarely realistic in practical situations. Thus, unsupervised
learning methods for graph structured data are needed. In
an early stage of research, traditional unsupervised methods

such as DeepWalk [12] and node2vec [13] yielded relatively
insufficient performance compared with that of supervised
methods. However, recently, the classical information max-
imization (InfoMax) principle [14] has attracted renewed
attention, and the contrastive learning has achieved great
success in many fields such as computer vision [15]–[21]
and natural language processing [22]–[27]. In particular, the
breakthroughs of the contrastive learning in computer vision
have motivated researchers to apply the similar techniques
from visual representation learning to graph representation
learning [28]. To learn node representation in a graph without
labels, several contrastive learning methods for graphs have
been proposed. In particular, such methods are called graph
contrastive learning (GCL) in this paper. Recent GCL achieves
comparable performance with supervised methods by intro-
ducing various techniques, including different view generation
via stochastic augmentations and a well-considered contrastive
loss. The main goal of GCL is to learn an encoder that maps
nodes in a graph into low-dimensional numerical vectors (the
vectors are called embeddings). Useful embeddings can be
acquired by training the encoder so that only similar nodes
in the input space are close in the embedding space. The
embeddings can be utilized as features for many downstream
tasks such as node classification. Thus, GCL is helpful in
obtaining useful representation of unseen nodes.

However, a recent study [29] shows that the GCL models
are vulnerable to poisoning attacks. To make matters worse,
the state-of-the-art attack called CLGA [29] can degrade the
performance of many downstream tasks by contaminating
embeddings output from an encoder trained by GCL. Thus,
CLGA may cause a severe obstacle that prevents GCL from
being widely utilized. As a state-of-the-art defensive method in
the GCL domain, an effective GCL method called ARIEL [28]
has been proposed recently. In ARIEL, another view called
the adversarial view is introduced so as to make the GCL
model robust to poisoning attacks. As a result, ARIEL can
improve the quality of the embeddings based on poisoned
graphs. However, ARIEL only tries to learn a robust model
when a poisoned graph is given. Accordingly, ARIEL achieves
suboptimal performance on poisoned graphs, which means
that there is still room for improvement to the quality of
the embeddings. To achieve further improvement, we argue



that sanitizing the poisoned graph is needed. Sanitizing means
pruning adversarial edges, which can also be called poisoned
edges in a graph in this paper. To the best of our knowledge,
there has been no study that explores the feasibility of sani-
tizing poisoned graphs in the GCL domain.

In this paper, we propose a simple defense called
EdgePruner. We focus on the fact that the state-of-the-art
attack on GCL, namely CLGA tends to mainly add adversarial
edges to create poisoned graphs. On this basis, we consider
that the pruning edges is important to sanitize poisoned graphs.
EdgePruner prunes edges that contribute to minimizing the
contrastive loss on the basis of gradients of the loss. By doing
this, sanitizing poisoned graphs can be expected. Furthermore,
to help determine more appropriate edges to prune, we focus
on the fact that adversarial edges tend to connect nodes for
which the features are dissimilar in poisoned graphs, which
is shown in other work [30], [31]. This is because connecting
such nodes is effective in confusing the relationship between
neighboring nodes in a graph from the perspective of attacks.
Thus, in light of this tendency, we introduce feature similar-
ity between neighboring nodes as additional information to
determine adversarial edges connecting nodes whose features
are distinct. This similarity is helpful in further eliminating
adverse effects from poisoned graphs on various datasets,
which further improves the quality of the embeddings. Fi-
nally, EdgePruner outputs a graph that yields the minimum
contrastive loss as the sanitized graph. The sanitized graphs
are fed into GCL methods for training the encoder.

Our contributions. The main contributions of this work are
as follows:

1) We propose a simple and effective pruning method
against poisoning attacks for the GCL. Our pruning
method sanitizes poisoned graphs by pruning edges that
contribute to minimizing the contrastive loss. We formu-
late our pruning method as the optimization problem.

2) We introduce feature similarity between neighboring
nodes to prune adversarial edges connecting nodes with
distinct features. We also formulate our pruning method
with the feature similarity as the optimization problem.
We show that the similarity is helpful in further elimi-
nating adverse effects from poisoned graphs on various
datasets.

3) We conduct extensive experiments to demonstrate the
effects of EdgePruner for clean graphs and poisoned
graphs created by the CLGA and an adaptive attack.

4) Our experimental results demonstrate that EdgePruner
can eliminate the detrimental effects from the poisoned
graphs on six datasets while maintaining acceptable
accuracies on clean graphs. In particulr, EdgePruner can
improve accuracy by up to 9.60% compared with that of
a GCL method without defense. Moreover, we show that
EdgePruner is immune to an adaptive attack. To the best
of our knowledge, this work first shows the feasibility
of pruning adversarial edges in poisoned graphs in the
GCL domain.

II. RELATED WORK

Most existing graph representation learning methods are
supervised or semi-supervised ones [32]–[36]. However, the
node labels of large graphs in the real world are difficult to
obtain [11]. This is because manually labeling nodes in such
graphs is rarely realistic in practical situations. Therefore, in
the graph domain, several GCL methods, which can learn
graph representation without labels have been proposed. The
main goal of GCL is to learn an encoder that converts nodes
in a graph into low-dimensional embeddings without labels.
For example, as an encoder, a two-layer graph convolutional
network (GCN) [35] is utilized. An encoder is trained so
that only similar nodes in the input space are close in the
embedding space. The embeddings produced by the trained
encoder can be utilized as features for downstream tasks such
as node classification and link prediction.

A. Graph Contrastive Learning

To learn node representation in a graph without labels,
several GCL models have been proposed [37]–[42]. Ve-
livckovic et al. [37] propose deep graph InfoMax (DGI),
which is a general approach for unsupervised graph learning
based on mutual information, rather than random walks. DGI
maximizes mutual information between patch representations
and corresponding high-level summaries of graphs derived by
using graph convolutional network architectures. The patch
representations are vectors that express local information about
the graph centered around a node rather than just the node.
According to the results in [37], DGI yields higher perfor-
mance on downstream tasks compared with that of a traditional
unsupervised method, DeepWalk [12].

To supplement the input graph with more global informa-
tion, Hassani and Khasahmadi propose contrastive multi-view
graph representation learning (called MVGRL in this paper)
[38]. In MVGRL, graph diffusion is introduced into the GCL
approach, and graph views are obtained by uniformly sampling
subgraphs. Then, MVGRL contrasts node representations to
global embeddings across the two views. As a result, MVGRL
outperforms DGI. You et al. propose GraphCL [39] and design
four types of graph augmentations, namely, node dropping,
edge perturbation, attribute masking, and sampling subgraphs.
The impact of various combinations of these graph augmen-
tations on multiple datasets is systematically studied. Qiu et
al. propose the graph contrastive coding (GCC) framework to
learn structural representations across graphs [40]. GCC aims
to distinguish between subgraphs sampled from a certain node
and subgraphs sampled from other nodes. Since GCC does not
assume that nodes and subgraphs come from the same graph,
the graph encoder is designed to capture universal patterns
across different input graphs. In other words, the pretrained
GCC model can be applied to unseen graphs for downstream
tasks such as node classification. Zhu et al. propose GRACE
[41], which generates two correlated graph views by ran-
domly performing corruption. The model is trained by using
a contrastive loss to maximize the agreement between node
embeddings in these two views. They also consider random



augmentation at both topological and node attribute levels
so as to accelerate optimization of the contrastive loss. The
augmentation includes removing edges and masking features
to provide diverse contexts for nodes in different views. Zhu
et al. propose graph contrastive learning with adaptive aug-
mentation (GCA) [42]. GCA introduces adaptive augmentation
that perturbs both node features and edges in accordance with
their importance. They argue that augmentation schemes used
in the existing methods suffer from suboptimal performance
because most existing methods adopt uniform data augmenta-
tion schemes, such as uniformly dropping edges and uniformly
shuffling features. On the topological level, new augmentation
schemes based on node centrality measures are designed to
identify important edges. Furthermore, noise is added to node
attributes by randomly masking some node features with zeros.
As a result, GCA further improves GRACE.

B. Poisoning Attack on GCL

Although GCL is promising for learning useful represen-
tation of unseen nodes, a recent study [29] shows that the
GCL models are also vulnerable to poisoning attacks as with
existing learning methods. Almost all of the existing attacks
are mainly intended for supervised learning methods such
as GCN. In other words, they are supervised attacks and
require labels to create poisoned graphs. PGD and MinMax
[43] optimize the negative cross-entropy loss on the basis of
gradients. Nettack [44] iteratively selects edges to alter by
calculating the score of each possible alteration. Mettack [45]
uses the gradient of the classification loss with respect to the
adjacency matrix to select the edges to change.

However, in real-world scenarios, it is difficult to attack
GCL with the abovementioned supervised attacks because
the labels of large graphs are difficult to acquire. This
motivated researchers to demonstrate whether unsupervised
attacks1 targeting at GCL are feasible without labels or not.
Bojchevisk and Stephan propose a graph poisoning attack
based on random walks [46]. They devise efficient adversarial
perturbations that poison the network structure of graphs. Their
poisoning attack has a negative effect on both the quality of
the node embeddings and the downstream tasks. However,
their attack cannot work well for GCA that is the latest
GCL model because that attack relies only on random walks.
Zhang et al. [29] propose an unsupervised attack based on
gradient ascent on the GCL for node embeddings, which is
called CLGA. CLGA is intended for GCL and computes the
gradient of the contrastive loss w.r.t. the adjacency matrix.
After that, the edges with the largest gradients are flipped
(deletion or addition). According to the experiments in [29],
CLGA outperforms the existing unsupervised attack [46]. In
addition to that, CLGA has comparable performance with
some of the existing supervised attacks. These results mean
that the emergent poisoning attack can prevent GCL from
being widely utilized from now on. Therefore, developing

1Unsupervised attacks mean that attackers succeed in creating poisoned
graphs without labels of nodes.

defense and robust GCL models that resist poisoning attacks
is of significant importance.

C. Defenses against Poisoning Attack on GCL

Recently, Feng et al. have proposed a GCL method called
ARIEL [28] that is robust to poisoning attacks. In ARIEL,
an adversarial view created by an existing attack [47] is
introduced so as to make the GCL model robust to poisoning
attacks. In other words, the technique that is equivalent to
adversarial training is utilized in ARIEL. The adversarial
view is treated as another view to assimilate adversarial
training to the GCL. The adversarial contrastive loss is newly
defined as the contrastive loss between one of the two views
and the adversarial view. Although adversarial training in
ARIEL may effectively improve the robustness of the model
to poisoned graphs, the progress in such hard training may be
stagnant in bad parameter area at an early stage. To realize
stable training, ARIEL introduces one additional constraint
called information regularization. Furthermore, ARIEL adopts
two additional techniques, namely subgraph sampling and
curriculum learning. The subgraph sampling can reduce the
computational cost because the gradient derivation on the
entire graph is avoided. On the other hand, the curriculum
learning contributes to making GCL become harder gradually
by increasing the portion of the adversarial contrastive loss
as the training progresses. Accordingly, ARIEL outperforms
the existing GCL methods in the node classification task
on poisoned graphs, which is further improvement in the
robustness of the GCL. Strictly speaking, ARIEL is not against
a GCL poisoning attack. However, compared with GCA,
ARIEL can counter the GCL poisoning attack, namely CLGA
to some extent according to our experiments. Furthermore,
ARIEL can mitigate bad effects of poisoned graphs without
utilizing labels. This corresponds to our assumed situation that
is defending GCL from poisoning attacks without depending
on labels, which is described in Section IV. Thus, we regard
ARIEL as a state-of-the-art defense in the GCL domain.

ARIEL is a promising defense against CLGA. However,
ARIEL only tries to learn a robust model by introducing the
adversarial view when a poisoned graph is given. Thus, as
shown in Section VI, ARIEL cannot sufficiently eliminate
adverse effects from poisoned graphs, which means that there
is still room for improvement to the quality of the embeddings.

On the other hand, EdgePruner can further eliminate adverse
effects from poisoned graphs. Our method focuses on elimi-
nating adverse effects by pruning adversarial edges rather than
learning robust parameters of the encoder by the GCL, which
is the different point from ARIEL.

III. PRELIMINARIES

A. GCL for Node Embeddings

In this work, we focus on node-level GCL. Let G = (A,X)
denote a graph, where A ∈ RN×N is the adjacency matrix,
and X ∈ RN×d is the node feature matrix. N is the number of
nodes, and d is the number of features. The objective of GCL
is to learn an encoder f(A,X) that outputs node embeddings.



Poisoned Graph

Attacker

Adversarial Edges

Encoder

Node Classification

Embeddings

Clean Graph

Poisoning Attack GCL

Downstream Task

Graph
Trained Encoder

Node 
Features

Fig. 1. Threat model.

In many cases [28], [29], [42], GCN [35] is utilized as
the encoder f in GCL due to its simplicity and the stable
performance. In this work, we also employ a two-layer GCN
as with the other work. The overview of GCN is explained
in Appendix A1. As for GCL method, we utilize GCA [42],
which is the state-of-the-art GCL in our experiments. The
details of GCA are described in Appendix A2.

B. Unsupervised poisoning attack on GCL

We focus on the state-of-the-art attack in the GCL domain,
namely CLGA in this work. CLGA is the untargeted poisoning
attack that deteriorates the overall classification performance
for samples in every class. The purpose of CLGA is to poison
graphs so that the quality of the embeddings learned by GCL
is degraded. As a result, the poisoned embeddings cause worse
performance in downstream tasks. In what follows, we explain
the overview of CLGA.

Overview of CLGA. CLGA only modifies edges and does
not change node features. In other words, CLGA creates only
the poisoned adjacency matrix A

′
. CLGA creates A

′
in the

iterative manner so as to locate more informative edges. Once
an edge is modified at each iteration, the modified adjacency
matrix is used to retrain the encoder to obtain gradients in the
next iteration. In an attempt to create A

′
, CLGA tries to solve

the following optimization problem

max
A′
L(fθ′(A1,X1), fθ′(A2,X2)),

s.t. θ′ = argmin
θ

L(fθ(A1,X1), fθ(A2,X2)),

(A1,X1) = t1(A
′
,X), (A2,X2) = t2(A

′
,X), ∥A− A

′
∥2F = σ.

(1)
The Frobenius norm of A is defined by ∥A∥F =

√∑
i,j A[i, j].

In addition to that, t1 and t2 are two stochastic augmentation
procedures. When it is assumed that GCA is attacked, L is
equivalent to the contrastive loss in Eq. (13) in Appendix A2.
θ is parameters of f . The number of pruned edges is bounded
by a given threshold σ.

C. Threat Model

Fig. 1 shows the threat model in this work. The encoder
is trained by GCL on unlabeled graphs in order to facilitate

utilizing them in downstream tasks such as node classifica-
tion. The encoder may be trained on graphs published by a
third party. Downstream tasks utilize the embeddings obtained
through inputting nodes in a graph into the trained encoder as
features.

Attacker’s goal. Attacker’s goal is to extensively launch attack
on many downstream tasks. Considering the efficiency of
attacks, it is desirable for the attacker to directly contaminate
the encoder trained GCL rather than downstream tasks. This
is why the attacker conducts the poisoning attack on GCL.

Attacker’s capability. The attacker has no access to both
the classification models and graph datasets utilized in the
downstream tasks. Meanwhile, the attacker knows the model
parameters of target GCL for some reasons such as informa-
tion leakage, which means the worst case for defenders. Thus,
the attacker can reproduce the target GCL model. To create the
poisoned graph, the attacker modifies only edges in a graph so
that the loss of the reproduced model is maximized by CLGA.
The poisoned graphs are published by the attacker so as to
contaminate encoders. If the attacker successfully poisons the
target encoder, the resulting embeddings are degraded. Accord-
ingly, the attacker can indirectly have detrimental effects on
myriads of downstream tasks, which means the attack success.

IV. PROBLEM STATEMENT AND MOTIVATION

As mentioned in Section II-B, we consider that the poi-
soning attack on GCL becomes a severe obstacle. However,
the studies regarding defensive methods for GCL are not
adequately explored. To defend GCL, it is preferable that
defenders counter the attack without depending on labels as
much as possible. Thus, in this work, we assume the situation
where defenders cannot utilize abundant labels of graphs.
Although ARIEL can mitigate the bad effect of poisoned
graphs, there is still room for improvement. To achieve further
improvement, we argue that sanitizing the poisoned graph
is needed. Sanitizing means pruning adversarial edges from
graphs in this work. Furthermore, we assume that edge prun-
ing is conducted just before training an encoder rather than
training classification models in downstream tasks. This is
because defending training encoders is more efficient in light
of myriads of downstream tasks. To the best of our knowledge,
there has been no study that focuses on adversarial edge
pruning in the GCL domain. Therefore, since the feasibility
still remains largely unexplored, we decided to work on that.

V. PROPOSED METHOD

A. Overview

In this paper, we propose EdgePruner, which is poisoned
edge pruning in GCL. We focus on the fact that the poisoning
attack on GCL tends to mainly add adversarial edges to create
poisoned graphs. On the basis of this fact, we consider that
the deletion of edges is important to sanitize poisoned graphs.
One promising way for determining which edges should be
deleted is to utilize gradients of the contrastive loss based
on embeddings from the encoder that trains on a poisoned



Poisoned Graph

Trained Encoder

Sanitized Graph

Gradients Edge 
Pruning

Feature 
Similarity

EdgePruner

Updated Graph

Node Features

Embeddings

Iteration

GCL

Fig. 2. Overview of EdgePruner.

graph. By pruning edges that contribute to minimizing the
contrastive loss, sanitizing poisoned graphs can be expected.
However, there are cases where it is difficult to decide edges to
prune because the trained encoder is influenced by adversarial
edges in the poisoned graph. As a result, the contrastive loss
based on the embeddings from the encoder may not be totally
reliable. Furthermore, since the node labels are not available in
GCL, counting only on the encoder trained on poisoned graphs
is not necessarily desirable. Thus, additional information that
is not influenced by adversarial edges is needed. In order to
help determine the appropriate edges, we focus on the fact
that adversarial edges tend to connect nodes for which the
features are dissimilar. This is because connecting such nodes
is effective in confusing the relationship between neighboring
nodes in a graph. As a result, embeddings are poisoned, which
results in degrading the performance of the downstream tasks.
In fact, recently, it has been demonstrated that adversarial
attacks on graphs tend to connect nodes with distinct features
[30], [31]. Thus, in light of this tendency, we utilize feature
similarity between neighboring nodes connected to each other
in order to prune adversarial edges connecting nodes with
distinct features. This similarity is helpful in further eliminat-
ing adverse effects from poisoned graphs. Finally, EdgePruner
outputs a graph that yields the minimum contrastive loss as
the sanitized graph. Fig. 2 shows the overview of EdgePruner.

In what follows, we first validate how edges are changed
when poisoned graphs are created and formulate an optimiza-
tion problem that EdgePruner solves. After that, we elaborate
on the usefulness of feature similarity between neighboring
nodes. Finally, the algorithm of EdgePruner is explained.

B. Edge Modification on Poisoned Graphs

To validate the tendency that adversarial edges are prin-
cipally added for creating poisoned graphs, we inspect the
number of edges that are modified when poisoned graphs are
created. TABLE I shows the number of modified edges when
poisoned graphs are created by CLGA. In this inspection,
we utilize six datasets, namely Cora, CiteSeer [48], Amazon-
Computers, Amazon-Photo [3], Coauthor-CS, and Coauthor-
Physics [3]. Note that we utilize poisoned graphs created from
subgraphs of 5,000 nodes on Amazon-Computers, Amazon-
Photo, Coauthor-CS, and Coauthor-Physics as with the exper-
imental setup in [28] because we could not create the poisoned
graphs based on their entire graphs due to memory limitations.

Detailed information about these datasets is described in
Section VI. The poisoned graphs in TABLE I are the ones
created by maximizing the loss of GCA. As for ARIEL, we
observe a similar result, which is shown in Appendix B.
As shown in TABLE I, it is obvious that poisoned graphs
are created by adding edges to clean graphs in most cases.
In particular, as for Cora and CiteSeer, poisoned graphs are
created only by adding edges. Therefore, we consider that the
deletion of edges is more important than the addition so as to
sanitize poisoned graphs by unsupervised attacks on GCL.

EdgePruner deletes edges on the basis of gradient descent
on the adjacency matrix. In other words, EdgePruner converts
A

′
to the sanitized adjacency matrix S through edge pruning

so that a contrastive loss Ls of an encoder f that we defend is
minimized. Thus, EdgePruner solves the following optimiza-
tion problem formulated as

min
S
Ls(θ

′,S,X),

s.t. θ′ = argmin
θ

Ls(θ,S,X), ∥A
′
− S∥2F ≤ σ

′
.

(2)

When GCA and ARIEL are assumed, Ls is defined as

Ls(θ
′,S,X) = LGCL(H1

θ′ ,H2
θ′ )

+ ϵ1 · LGCL(H1
θ′ ,H3

θ′ ) + ϵ2 · LIR.
(3)

Note that Hm
θ′ is defined in Appendix A2. LIR is information

regularization introduced in ARIEL. Also, ϵ1 and ϵ2 are
predefined parameters to control adversarial contrastive loss
and information regularization used in ARIEL. When ϵ1 = 0
and ϵ2 = 0, Ls is equivalent to the contrastive loss of GCA.
The number of modified edges is bounded by a threshold σ

′
.

In order to select informative edges, we execute K times
calculations of Ls. On the basis of S and X, multiple views
Gk

m = (Sk
m,Xk

m) are obtained via the stochastic augmenta-
tions, which are repeated K times. The value of m is an
index for identifying M views generated in GCL methods.
For example, since GCA generates two views, M = 2. On
the other hand, since ARIEL requires the adversarial view in
addition to the two views, M = 3. At the k-th augmentation,
the contrastive loss Lk

s based on Gk
m is computed. With respect

to Sk
m, gradient matrices of Lk

s , namely ∇k
m ∈ RN×N are



TABLE I
THE NUMBER OF EDGES THAT ARE ADDED AND DELETED WHEN POISONED GRAPHS ARE CREATED BY CLGA.

Cora CiteSeer Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Added edges 52 263 528 45 227 445 355 1698 3235 496 2477 4927 61 309 618 52 260 523
Deleted edges 0 0 0 0 0 0 1 85 333 0 3 33 0 0 1 0 2 2

calculated. When f(S,X) is a differentiable encoder such as
GCN, we can calculate ∇k

m as

∇k
m =

∂Lk
s

∂Sk
m

=
∂Lk

s

∂f(Sk
m,Xk

m)
· ∂f(S

k
m,Xk

m)

∂Sk
m

. (4)

To alleviate the bias caused by the stochastic augmentation,
we adopt two techniques that are introduced in CLGA [29].
The first one is adding up ∇k

m. The gradient matrix at the k-th
augmentation is regarded as

∇k =
M∑
m

∇k
m, (5)

where M is the number of augmented views used in an
assumed GCL. The other is adding up ∇k over K times
iteration, which means ∇total =

∑K
k=1∇k. This total gradient

matrix ∇total is utilized to select pruned edges.
EdgePruner prunes edges that meet a condition regarding

the presence of edges and the correct direction of gradients.
Pruning an edge means changing a value from 1 to 0 in the
adjacency matrix. Thus, the condition is represented as

S[i, j] = 1 ∧∇total[i, j] > 0. (6)

If an existent edge (which means the corresponding value is
1 in the adjacency matrix) has a positive gradient, changing
the value from 1 to 0 would decrease the loss, which means
deleting an edge. Our edge pruning is mainly conducted by
deleting an edge out of edges that meet Eq. (6) one by one.
After an edge is deleted, S is checked to see whether the loss
Ls is minimum at that time. Let Lmin denote the minimum
loss during our pruning procedures. If Ls is less than Lmin, S
is saved as the optimal adjacency matrix Sopt, which should
be returned as output. The updated graph Gu = (S,X) is fed
into f to retrain. Once the encoder is retrained, ∇total based
on node embeddings from the trained encoder is recalculated.
Then, another edge is pruned in the next iteration. By iterating
the above procedures, the poisoned graph is gradually sani-
tized. Finally, the sanitized graph Gs = (Sopt,X) is outputted.

C. Features Similarity of Neighboring nodes

Pruning adversarial edges is not always an easy task if we
rely only on gradients calculated on poisoned graphs. This
is because training the encoder is influenced by adversarial
edges in poisoned graphs at each iteration, which interrupts
selecting edges to prune appropriately. To help determine the
appropriate edges, we focus on the feature similarity between
neighboring nodes connected to each other. As mentioned in
Section V-A, nodes that have distinct features are connected

when the poisoned graph is created. We inspect the feature
similarity of neighboring nodes connected by clean edges or
adversarial ones. TABLE II shows the average cosine similar-
ity of neighboring nodes in poisoned graphs based on the loss
of GCA. It is observed that the poisoned graphs based on the
loss of ARIEL also have similar tendency in our preliminary
experiment. In TABLE II, we also utilize the poisoned graphs
created from subgraphs of Amazon-Computers, Amazon-
Photo, Coauthor-CS, and Coauthor-Physics. As shown in
TABLE II, the average cosine similarities of nodes connected
by adversarial edges are small compared with those of nodes
connected by clean edges. Furthermore, distribution of the
cosine similarity on the six datasets are shown in Appendix J.
These inspection results demonstrate that poisoned graphs tend
to be created by connecting nodes whose features are distinct.
Hence, we introduce the cosine similarity of features of
neighboring nodes as additional information for appropriately
determining edges to prune. If node features are available,
EdgePruner deletes an edge that meets Eq. (6) and connects
two nodes whose features are distinct to some extent at
each iteration. In other words, the condition regarding feature
similarity is represented as

s(X[i, :],X[j, :]) < T, (7)

where i and j are indices of nodes. Also, s(·, ·) and T are
the cosine similarity and a threshold, respectively. In practical
situations, T should be tuned depending on parameters of
GCL methods and datasets. Thus, when node features are
available, instead of Eq. (2), EdgePruner solves the following
optimization problem

min
S
Ls(θ

′,S,X), s.t. θ′ = argmin
θ

Ls(θ,S,X),

∥A
′
− S∥2F ≤ σ

′
, s(S) > s(A

′
),

(8)

where s is defined as

s(A) =
∑

i,j s(X[i, :],X[j, :]) · A[i, j]
∥A∥2F

. (9)

D. Algorithm

In this subsection, we concisely describe the algorithm of
EdgePruner. Algorithm 1 shows the algorithm of EdgePruner.
The notation table for Algorithm 1 is shown as TABLE IX in
Appendix C. EdgePruner takes a poisoned graph G′ = (A

′
,X)

as input. First of all, S is initialized as the poisoned one A
′

(Line 2). Similarly, the optimal adjacency matrix Soptis initial-
ized as S (Line 3). Note that Sopt is the output of Algorithm 1.
Furthermore, the minimum loss Lmin is initialized (Line 4).



TABLE II
THE AVERAGE COSINE SIMILARITY OF NODES CONNECTED BY CLEAN EDGES OR ADVERSARIAL ONES IN THE POISONED GRAPHS WITH STANDARD

DEVIATION.

Cora CiteSeer Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics

Clean edges 0.167 ± 0.127 0.191 ± 0.140 0.495 ± 0.209 0.489 ± 0.202 0.297 ± 0.133 0.352 ± 0.154
Adversarial edges 0.029 ± 0.048 0.021 ± 0.029 0.297 ± 0.087 0.297 ± 0.098 0.011 ± 0.018 0.025 ± 0.032

Algorithm 1 EdgePruner

Input: Poisoned Graph G′ = (A
′
,X)

1: n← 0
2: Initialize the sanitized adjacency matrix S← A

′

3: Initialize the optimal matrix Sopt ← S
4: Initialize the minimum loss Lmin ←∞
5: while n < N do
6: Train f with S and X from scratch
7: Initialize gradients ∇total ← 0
8: for k = 1 to K do
9: Obtain m views Gk

m = (Sk
m,Xk

m)
10: Compute Lk

s based on the trained f via Eq. (3)
11: ∇k

m ←
∂Lk

s

∂Sk
m

▷ Compute the gradient.

12: ∇k ←
∑M

m ∇k
m

13: ∇total ← ∇total +∇k

14: end for
15: Create a set of candidates C based on Eq. (6) and Eq. (7)
16: if C ̸= ∅ then
17: Delete C[i, j] that has the largest gradient
18: if Ls < Lmin then
19: Lmin ← Ls

20: Sopt ← S ▷ Save the optimal adjacency matrix.
21: end if
22: else
23: break ▷ There is no edge to prune.
24: end if
25: n← n+ 1
26: end while
27: return Sanitized Graph Gs = (Sopt,X)

The encoder f is trained with S and X (Line 6). After that,
depending on an assumed GCL method, Gk

m = (Sk
m,Xk

m)
are obtained via the k-th stochastic augmentation, which is
repeated K times (Line 8). By inputting Gk

m = (Sk
m,Xk

m) into
the trained fθ′ , ∇total is calculated (Line 13). The candidates
of pruned edges are selected from S depending on whether
they meet the two conditions in Eq. (6) and Eq. (7) (Line 15).
Let C the candidate edges to prune. Then, out of edges in
C, EdgePruner prunes one edge that has the largest gradient
(Line 17). Note that EdgePruner executes only deleting edges
although it is desirable that sanitizing poisoned graphs be
conducted by edge modification including both deletion and
addition of edges. This is because EdgePruner simply tries to

solve optimization problems in Eq. (2) or Eq. (8) in a greedy
manner at this stage. If there is no edge in C, our edge pruning
is stopped at that point. Once an edge is deleted, Ls is less
than Lmin, S is saved as Sopt (Line 20). After that, EdgePruner
tries to prune another edge in the next iteration by repeating
the above mentioned procedures (Lines 5-26). Finally, after up
to N edges are pruned, the sanitized graph Gs = (Sopt,X) is
returned (Line 27).

VI. EXPERIMENTS

In this section, we evaluate the effectiveness of EdgePruner.
In particular, we mainly evaluate the performance of the node
classification on both the graphs sanitized by the EdgePruner
and the poisoned ones to reveal the following questions:

1) Can EdgePruner eliminate the adverse effects from the
poisoned graphs by pruning edges?

2) Is the feature similarity effective in selecting adversarial
edges to prune on various datasets?

3) How does EdgePruner affect the quality of the embed-
dings on clean graphs?

4) How does the number of pruned edges affect the quality
of the embeddings on poisoned and clean graphs?

5) Is EdgePruner effective against an adaptive attack?
Evaluation metric is the accuracy that is defined as the percent-
age of correctly predicted nodes to all the testing nodes. The
higher the accuracy is, the better the quality of embeddings is.
All our experiments are conducted on the NVIDIA GeForce
RTX 3090 GPU with a 24GB memory.

A. Experimental Setups

Dataset. We utilize the six datasets including Cora, CiteSeer
[48], Amazon-Computers, Amazon-Photo, Coauthor-CS, and
Coauthor-Physics [3] following [28], [29]. The details about
these datasets are shown in Appendix.D
GCL. As for GCL methods, GCA [42] and ARIEL [28] are
utilized for training the encoder that outputs embeddings. The
details about GCL methods are in Appendix E.
Poisoning attack. We utilize CLGA [29] as the attack method
in our experiments. The details about the setup of CLGA are
in Appendix F.
Downstream task. The downstream task in our experiments
is node classification. We follow the evaluation scheme con-
ducted in the other studies [28], [29], [42], where a single
graph of each dataset is firstly trained by the GCL method,
then the resulting embeddings are utilized to train and test
a classifier for the node classification. The details about the
setup of the downstream task are in Appendix G.



Baseline. We compare EdgePruner with baselines to clarify
the effectiveness of EdgePruner. We compare EdgePruner to
two baselines for supervised GNN, namely GNNGuard [49]
and GNNJaccard [30]. Although these baselines are not for
GCL methods, this comparison clarifies to what extent our
method can eliminate adverse effects from poisoned graphs
compared to them. Detailed hyperparameters are described in
Appendix H. Furthermore, we consider a method that prunes
multiple edges once at all as the baseline in this experiment.
As with EdgePruner, the baseline selects edges to prune
on the basis of the gradients of the contrastive losses. The
difference from EdgePruner is that the baseline always prunes
a designated number of edges once at all. In this experiment,
we set the number of pruned edges at 10% of all the edges in
a graph. There are the four baselines depending on the combi-
nations of baseline and GCL methods, namely BaselineNF(G),
BaselineNF(A), Baseline(A), and Baseline(G). Note that G and
A are the abbreviation of GCA and ARIEL, respectively. As
with EdgePruner, BaselineNF(G), BaselineNF(A) do not utilize
the feature similarity of neighboring nodes. On the other hand,
Baseline(A) and Baseline(G) select the edge to prune with the
feature similarity.
EdgePruner. In EdgePruner, the encoder is retrained on
updated graphs by a supposed GCL method during the pruning
procedure for one epoch. This is because it is possible that
training poisoned graphs for a large number of epochs makes
the encoder poisoned, which causes inappropriate selection
of pruned edges. The number of stochastic augmentations K
shown in Line 8 in Algorithm 1 is set at 10 for calculating
∇total in all experiments. Since EdgePruner is designed for
eliminating adverse effects from poisoned graphs, EdgePruner
can be with any GCL methods including GCA and ARIEL.
We define the proposed methods as the GCL methods that
take sanitized graphs instead of poisoned ones. There are
the four proposed methods, specifically EdgePrunerNF (G),
EdgePrunerNF (A), EdgePruner (G), and EdgePruner (A). All
the four proposals are allowed to prune up to 10% of edges in a
graph so that the contrastive losses of supposed GCL methods
are minimized. The details about EdgePruner are shown in
Appendix I.

B. Effectiveness of Edge Pruning on Poisoned Graphs

We evaluate the effectiveness of the proposed variants under
CLGA by comparing the node classification accuracy on
sanitized graphs with that on poisoned ones. TABLE III shows
the node classification accuracy under CLGA. As shown in
TABLE III, the variants of EdgePruner achieve both the best
and the second best accuracies on Cora, Amazon-Computers,
Coauthor-CS, and Coauthor-Physics. In the following discus-
sions, we compare EdgePruner with the other methods while
referring to the results in TABLE III.
Comparison with baselines. Compared with the our Baseline
methods, the variants of EdgePruner attains the best accuracies
on the five datasets except for Amazon-Photo. EdgePruner (A)
and EdgePrunerNF (A) achieve the best accuracies, namely
71.83% and 84.92% on CiteSeer and Amazon-Computers,

respectively. EdgePruner (G) also yields the best accuracies
on Cora, Coauthor-CS, and Coauthor-Physics. On the other
hand, Baseline (A) attains the best accuracy, 88.60% only
on Amazon-Photo. As for other cases, the baselines are
outperformed by EdgePruner. In particular, the accuracy of
Baseline (G) on Coauthor-CS is 82.32%, which is 8.58% lower
than that of EdgePruner (G).

Additionally, we consider that EdgePruner is more com-
petent than the Baseline variants from the point of view of
robustness against an adaptive attack. Since Baseline variants
always prune a designated number of edges, they are vulner-
able to an adaptive attack. In other words, it is possible for
the adaptive attack to perturb edges so that the number of
perturbed edges is larger than the number of pruned edges if
the number of edges pruned by the Baseline method is leaked
to the attacker. On the other hand, EdgePruner is immune to
the adaptive attack. We will show the details of the results on
the adaptive attack in Section VI-E. As for existing baselines
for GNN, GNNGuard only achieves the second best accuracy
on Coauthor-Physics. Overall, GNNGuard and GNNJaccard
are inferior to EdgePruner although they counter poisoned
graphs by using labels. For these reasons, EdgePruner is
superior to the baselines on poisoned graphs.

Comparison with existing GCL methods. Compared with
GCA, EdgePruner (G) outperforms GCA on all the datasets.
In particular, EdgePruner (G) achieves 90.90% accuracy on
Coauthor-CS, which is 9.60% higher than that of GCA.
Additionally, EdgePruner (G) achieves 93.04% accuracy on
Coauthor-Physics, which is 4.38% higher than that of GCA.
On the other hand, EdgePruner (A) and EdgePrunerNF (A)
also improve the accuracies in most cases compared with
ARIEL. In particular, EdgePruner (A) yields 71.83% accuracy
on CiteSeer, which is the best accuracy. In addition to that,
EdgePruner (A) achieves the second best accuracies, namely
83.30% and 89.13% accuracies on Amazon-Computers and
Coauthor-CS, respectively. Similarly, EdgePrunerNF also
yields the best accuracy on Amazon-Computers. The overall
results demonstrate that EdgePruner is effective in improving
the quality of the embeddings. Additionally, we consider
that EdgePruner may also be effective in sanitizing poisoned
graphs created by other attacks on GCL as long as poisoned
graphs are created by mainly adding adversarial edges. Thus,
we conclude that EdgePruner can eliminate adverse effects
from the poisoned graphs, which answers the research ques-
tion (1).

Impact of similarity of node features. We compare
EdgePruner with EdgePrunerNF to evaluate the impact of
feature similarity of neighboring nodes. As shown in TA-
BLE III, EdgePruner (G) and EdgePruner (A) do not always
outperform EdgePrunerNF (G) and EdgePrunerNF (A). In
particular, EdgePrunerNF (G) achieves higher accuracies on
Amazon-Computers and Amazon-Photo datasets compared
with EdgePruner (G). Similarly, EdgePrunerNF (A) also out-
performs EdgePruner (A) on the two datasets. Furthermore,
EdgePrunerNF (A) yields 84.92% accuracy on Amazon-



TABLE III
ACCURACY ± STANDARD DEVIATION (%) OF NODE CLASSIFICATION UNDER CLGA. THE BOLD AND UNDERLINED ACCURACIES ARE THE BEST AND

THE SECOND BEST ONES, RESPECTIVELY.

Method Cora CiteSeer Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics

EdgePruner (A) 80.91 ± 1.29 71.83 ± 0.69 83.30 ± 0.74 88.37 ± 0.32 89.13 ± 0.69 92.34 ± 0.51
EdgePruner (G) 81.70 ± 0.99 69.82 ± 1.83 81.17 ± 0.60 83.63 ± 0.42 90.90 ± 0.67 93.04 ± 0.38

EdgePrunerNF (A) 81.44 ± 1.10 69.80 ± 0.95 84.92 ± 0.63 88.58 ± 0.33 88.14 ± 0.61 91.76 ± 0.56
EdgePrunerNF (G) 79.83 ± 0.96 63.26 ± 1.27 82.63 ± 0.69 83.88 ± 0.55 85.35 ± 0.81 90.51 ± 0.31

Baseline (A) 81.08 ± 0.67 71.18 ± 0.75 83.19 ± 0.41 88.60 ± 0.39 86.73 ± 0.59 90.20 ± 0.44
Baseline (G) 80.89 ± 1.01 63.17 ± 1.48 80.53 ± 0.58 82.53 ± 0.67 82.32 ± 0.50 89.48 ± 0.41

BaselineNF (A) 80.23 ± 0.99 70.24 ± 0.93 82.49 ± 1.01 88.36 ± 0.38 86.24 ± 0.52 89.50 ± 0.50
BaselineNF (G) 79.16 ± 1.09 61.56 ± 1.35 80.64 ± 0.69 85.71 ± 0.54 81.40 ± 0.44 88.90 ± 0.38

GNNGuard 79.53 ± 1.49 69.93 ± 1.42 81.18 ± 0.75 87.57 ± 0.66 88.16 ± 0.69 92.81 ± 0.32
GNNJaccard 79.95 ± 0.73 67.46 ± 1.85 81.13 ± 0.97 87.99 ± 0.65 83.67 ± 0.86 89.93 ± 0.57

ARIEL 80.77 ± 1.18 69.96 ± 0.94 82.51 ± 0.70 87.26 ± 0.37 85.35 ± 0.79 87.70 ± 0.38
GCA 80.37 ± 0.79 61.73 ± 1.47 79.42 ± 0.77 81.10 ± 0.47 81.30 ± 0.68 88.66 ± 0.35

Computers and 88.58% accuracy on Amazon-Photo, which are
the best and the second best ones, respectively. These results
mean that utilizing the feature similarity is not always required
for sanitizing poisoned graphs. The reason for this could be
that the distributions of the cosine similarity of nodes con-
nected by adversarial edges on Amazon-Photo and Amazon-
Computers are different from those on the other datasets. As
shown in Fig. 5 in Appendix J, the cosine similarity scores
on the Amazon datasets are widely distributed. This is why
it may be difficult to identify adversarial edges on the two
datasets compared with adversarial edges on other datasets.
However, compared with ARIEL, EdgePrunerNF (A) cannot
improve the accuracies on CiteSeer. EdgePrunerNF (G) also
degrades the accuracy on Cora compared with GCA. On the
other hand, EdgePruner (G) and EdgePruner (A) can improve
the accuracies of node classification compared with those of
GCA and ARIEL, respectively, on all the datasets. According
to these results, we conclude that feature similarity is basically
effective in selecting pruned edges on various datasets, which
is the answer to the research question (2).

C. Effect of Edge Pruning on Clean Graphs

In this subsection, we evaluate the effect of our edge pruning
on clean graphs. It is difficult for defenders to judge whether
an input graph is clean or poisoned every time. Thus, it
is desirable that edge pruning is applicable to input graphs
regardless of whether they are poisoned. TABLE IV shows the
accuracy of node classification on clean graphs. In TABLE IV,
we report the results of node classification evaluated on clean
subgraphs of 5,000 nodes on Amazon-Computers, Amazon-
Photo, Coauthor-CS, and Coauthor-Physics. As shown in
TABLE IV, ARIEL basically outperforms GCA on all datasets
except for Coauthor-Physics.

Comparison with baselines. As we can see from TABLE IV,
the best and the second best accuracies appear in differ-
ent methods depending on the datasets. Baseline (A) and
BaselineNF (A) achieve the best accuracies on Amazon-
Computers and Amazon-Photo, respectively. On the other

hand, EdgePruner (A) and EdgePruner (G) yield the best ac-
curacies on Coauthor-CS and Coauthor-Physics, respectively.
Considering the best accuracies, the proposed methods are
comparable to the our Baseline variants. However, EdgePruner
(G) EdgePrunerNF (A) and EdgePrunerNF (G) yield the sec-
ond best accuracies on Coauthor-CS, CiteSeer, and Coauthor-
Physics, respectively. On the other hand, there is no the
second best accuracy in Baseline variants. As for existing
baselines for GNN, GNNJaccard only achieves the second
best accuracy on Amazon-Photo. Although GNNGuard and
GNNJaccard achieve relatively better accuracies on Amazon
datasets compared with EdgePruner variants. However, they
are inferior to EdgePruner on the other datasets. From these
results, the variants of EdgePruner slightly outperforms the
baselines on clean graphs.

Comparison with existing GCL methods. In the case
of Coauthor-CS and Coauthor-Physics, it is observed that
EdgePruner (A) and EdgePruner (G) can yield better accura-
cies than ARIEL and GCA, respectively. These results mean
that our pruning is also capable of eliminating adverse edges in
clean graphs. To be precise, EdgePruner (A), and EdgePruner
(G) achieve the best accuracies, namely 90.13%, and 93.52%
accuracies on Coauthor-CS and Coauthor-Physics, respec-
tively. The detailed interpretation is shown in Appendix K.
In addition to that, EdgePruner (G), EdgePrunerNF (A), and
EdgePrunerNF (G) also yield the second best accuracies on
Coauthor-CS, CiteSeer, and Coautor-Physics, respectively.

On the other hand, both EdgePruner (G) and EdgePrunerNF

(G) are inferior to GCA on Cora, CiteSeer, Amazon-
Computers, and Amazon-Photo. Similarly, both EdgePruner
(A) and EdgePrunerNF (A) are inferior to ARIEL on these
four datasets. In the worst case, compared with GCA,
EdgePrunerNF (G) degrades the accuracies on clean graphs by
2.54%, 0.76%, 3.47%, and 0.97% on Cora, CiteSeer, Amazon-
Computers, and Amazon-Photo, respectively. In other words,
the accuracy drops are within approximately 3.5%. According
to these results, it seems that our pruning may degrade the
quality of embeddings on clean graphs depending on datasets,



TABLE IV
ACCURACY ± STANDARD DEVIATION (%) OF NODE CLASSIFICATION ON CLEAN GRAPHS. THE BOLD AND UNDERLINED ACCURACIES ARE THE BEST

AND THE SECOND BEST ONES, RESPECTIVELY.

Method Cora CiteSeer Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics

EdgePruner (A) 83.09 ± 0.95 72.16 ± 0.87 85.92 ± 0.73 91.02 ± 0.28 90.13 ± 0.55 93.10 ± 0.39
EdgePruner (G) 81.96 ± 1.18 70.29 ± 1.62 83.92 ± 0.63 90.39 ± 0.44 90.12 ± 0.60 93.52 ± 0.33

EdgePrunerNF (A) 83.40 ± 0.57 72.55 ± 0.72 85.77 ± 0.64 91.03 ± 0.47 89.87 ± 0.55 92.74 ± 0.59
EdgePrunerNF (G) 81.58 ± 0.98 69.64 ± 1.74 82.80 ± 0.74 89.81 ± 0.52 89.39 ± 0.43 93.37 ± 0.27

Baseline (A) 82.65 ± 0.75 72.25 ± 0.91 87.95 ± 0.58 91.93 ± 0.41 89.80 ± 0.63 92.83 ± 0.41
Baseline (G) 82.73 ± 1.21 70.46 ± 1.32 85.61 ± 0.72 88.79 ± 0.43 89.15 ± 0.71 93.11 ± 0.30

BaselineNF (A) 82.73 ± 1.02 71.99 ± 0.67 87.20 ± 0.78 92.34 ± 0.36 89.39 ± 0.75 92.64 ± 0.30
BaselineNF (G) 82.99 ± 1.03 70.28 ± 1.64 86.20 ± 0.65 88.96 ± 0.38 88.85 ± 0.58 92.92 ± 0.32

GNNGuard 79.69 ± 1.56 69.85 ± 1.36 85.96 ± 0.56 91.88 ± 0.54 88.69 ± 0.71 92.81 ± 0.44
GNNJaccard 82.18 ± 0.62 70.41 ± 1.01 86.15 ± 0.43 92.22 ± 0.31 87.47 ± 0.98 92.68 ± 0.46

ARIEL 83.97 ± 0.83 72.69 ± 0.74 87.38 ± 0.70 92.08 ± 0.41 89.50 ± 0.57 92.52 ± 0.35
GCA 84.12 ± 1.24 70.40 ± 1.38 86.27 ± 0.51 90.78 ± 0.45 88.87 ± 0.49 93.07 ± 0.39

which is a limitation of EdgePruner at this stage. However,
most importantly, when the same GCL method is utilized, the
accuracies of the proposed methods on clean graphs are always
high compared with the accuracies of GCA and ARIEL on
poisoned graphs as shown in TABLE III, which means that
applying EdgePruner to clean graphs yields better situations
than being attacked. For example, EdgePruner (G) achieves
90.39% accuracy on clean graphs of Amazon-Photos, which is
9.29% higher than the accuracy of GCA on the poisoned graph
of Amazon-Photo. For the other five datasets, EdgePruner (G)
on clean graphs outperforms GCA on poisoned graphs. These
results also apply to EdgePruner (A). The reason for this could
be that deleting edges is less detrimental to the graph structure
unlike attacks.

These results mean that EdgePruner can raise lower bounds
of accuracies on poisoned graphs while maintaining acceptable
accuracies on clean graphs, which answers the research ques-
tion (3). Hence, EdgePruner is worth utilizing regardless of
whether input graphs are clean or poisoned because it prevents
GCL methods from getting trapped into the worst case.

D. Effect of Pruning Rates

In this subsection, we evaluate the relationship between the
number of pruned edges and the node classification accuracy.
Fig. 3 shows the accuracy of node classification on poisoned
graphs as a function of the pruning rate. The pruning rate
means the rate of deleted edges to all the edges in a graph. In
this experiment, we report the accuracies when pruning rates
are 1%, 3%, 5%, 7%, and 10%. As shown in Fig. 3, as the
pruning rate is increased, the accuracies are also increased in
most cases. EdgePruner (A) tends to be always more compe-
tent than EdgePrunerNF (A) at most pruning rates except for
Amazon-Photo and Amazon-Computers (comparing red lines
with purple dotted ones). EdgePruner (G) also has a similar
tendency compared with EdgePrunerNF (G) (comparing blue
lines with green dotted ones) as with EdgePruner (A). For
example, as we can see from red and blue lines in Fig. 3(f),
the accuracies of EdgePruner (A) and EdgePruner (G) on
Coauthor-Physics are considerably improved as the pruning

1 3 5 7 10
Pruning rate (%)

79.5

80.0

80.5

81.0

81.5

82.0

82.5

A
cc

ur
ac

y 
(%

)

EdgePruner (A)
EdgePruner (G)
EdgePrunerNF(A)

EdgePrunerNF(G)

(a) Cora

1 3 5 7 10
Pruning rate (%)

62

64

66

68

70

72

A
cc

ur
ac

y 
(%

)

EdgePruner (A)
EdgePruner (G)
EdgePrunerNF(A)

EdgePrunerNF(G)

(b) CiteSeer

1 3 5 7 10
Pruning rate (%)

80

81

82

83

84

85

A
cc

ur
ac

y 
(%

)

EdgePruner (A)
EdgePruner (G)
EdgePrunerNF(A)

EdgePrunerNF(G)

(c) Amazon-Computers

1 3 5 7 10
Pruning rate (%)

84

85

86

87

88

89

A
cc

ur
ac

y 
(%

)

EdgePruner (A)
EdgePruner (G)
EdgePrunerNF(A)

EdgePrunerNF(G)

(d) Amazon-Photo

1 3 5 7 10
Pruning rate (%)

82

84

86

88

90

A
cc

ur
ac

y 
(%

)

EdgePruner (A)
EdgePruner (G)
EdgePrunerNF(A)

EdgePrunerNF(G)

(e) Coauthor-CS

1 3 5 7 10
Pruning rate (%)

88

90

92

A
cc

ur
ac

y 
(%

)

EdgePruner (A)
EdgePruner (G)
EdgePrunerNF(A)

EdgePrunerNF(G)

(f) Coauthor-Physics

Fig. 3. Accuracies on poisoned graphs as a function of the pruning rate.

rates are increased. In particular, the accuracy of EdgePruner
(A) on Coauthor-Physics is increased by approximately 5%
when the pruning rates change from 1% to 10%. Further-
more, EdgePruner (A) achieves the similar performance on
Coauthor-CS as shown in Fig. 3(e). On the other hand, as
we can see from the green dotted line and the purple dotted
one in Fig. 3(a), the accuracies of EdgePrunerNF (A) and
EdgePrunerNF (G) on Cora decrease gradually as the pruning
rate increases whereas EdgePruner (A) and EdgePruner (G)
finally improve accuracies when the pruning rate is 10%.

In the following, we discuss the meaning of our loss based
graph selection utilized in EdgePruner on the basis of the



TABLE V
PRUNING RATES (%) WHEN THE FINAL Sopt IS OBTAINED. (EDGEPRUNER IS APPLIED TO POISONED GRAPHS)

Method Cora CiteSeer Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics

EdgePruner (A) 1.89 7.26 9.87 3.23 9.69 9.85
EdgePruner (G) 10.00 7.03 9.78 0.53 8.68 9.53

EdgePrunerNF (A) 7.77 0.73 9.26 3.23 8.31 9.85
EdgePrunerNF (G) 7.35 0.05 8.05 0.02 0.10 3.35

pruning rate. TABLE V shows the pruning rates when the final
Sopt is obtained in EdgePruner on poisoned graphs. As we
can see from TABLE V, pruning rates are different depending
on the variants and datasets. In comparison with the pruning
rates in Fig. 3 and those in TABLE V, it is observed that the
best variant on each dataset obtains the final Sopt around the
pruning rates when better accuracies are achieved in Fig. 3. For
example, EdgePruner (A) obtains the final Sopt on CiteSeer
when the pruning rate is 7.26% as shown in TABLE V,
which is almost consistent with the result that EdgePruner
(A) attains approximately 72% accuracy at 7% pruning rate as
shown in Fig. 3(b). Similarly, in the case of Coauthor-Physics,
EdgePruner (G) gets the final Sopt when the pruning rate is
9.53%, and the accuracy is the highest at 10% pruning rate as
shown in Fig. 3(f). On the other hand, there are cases where the
pruning rates are inconsistent. For example, EdgePruner (A)
obtains the final Sopt on Cora when the pruning rate is 1.89%
although the highest accuracy is yielded when the pruning rate
is 10% as shown in Fig. 3(a). This means that adopting graphs
when the pruning rate is 10% is better.

However, we consider that utilizing the minimum losses to
select the final graphs is more effective. This is because this
loss based graph selection is helpful in alleviating the bad
influence on clean graphs. We also evaluate the relationship
between the number of pruned edges and the accuracies of
node classification on clean graph. Fig. 4 shows the accuracy
of node classification on clean graphs as a function of the
pruning rate. As shown in Fig. 4, the accuracies tend to be
decreased as the pruning rate is increased. In particular, the
tendency is clearly observed on Cora, Amazon-Computers,
and Amzoon-Photo as shown in Fig. 4(a), Fig. 4(c), and
Fig. 4(d), respectively. TABLE VI shows the pruning rates
when the final Sopt is obtained in EdgePruner on clean graphs.
As shown in TABLE VI, on Amazon-Photo, EdgePruner (A)
gets the final Sopt when the pruning rate is 3.54%. Similarly,
EdgePruner (A) obtains the final Sopt when the pruning rate
is 6.56% on Cora. The accuracies around them are higher
compared with those when the pruning rate is 10% as shown
in Fig. 4(d). Meanwhile, as shown in Fig. 4(e), the accuracies
of EdgePruner (A) and EdgePruner (G) on the clean graph
of Coauthor-CS are increased as the pruning rate is increased.
These accuracies are the highest when the pruning rate is 10%.
In such a dataset, EdgePruner (A) and EdgePruner (G) adopt
the final Sopt at the pruning rates that are close to 10% as
shown in TABLE VI. These results mean that EdgePruner can
select better graphs as much as possible on the basis of the

1 3 5 7 10
Pruning rate (%)

81.5

82.0

82.5

83.0

83.5

84.0

A
cc

ur
ac

y 
(%

)

EdgePruner (A)
EdgePruner (G)
EdgePrunerNF(A)

EdgePrunerNF(G)

(a) Cora

1 3 5 7 10
Pruning rate (%)

70.0

70.5

71.0

71.5

72.0

72.5

A
cc

ur
ac

y 
(%

)

EdgePruner (A)
EdgePruner (G)
EdgePrunerNF(A)

EdgePrunerNF(G)

(b) CiteSeer

1 3 5 7 10
Pruning rate (%)

83

84

85

86

87

A
cc

ur
ac

y 
(%

)

EdgePruner (A)
EdgePruner (G)
EdgePrunerNF(A)

EdgePrunerNF(G)

(c) Amazon-Computers

1 3 5 7 10
Pruning rate (%)

86

87

88

89

90

91

A
cc

ur
ac

y 
(%

)

EdgePruner (A)
EdgePruner (G)
EdgePrunerNF(A)

EdgePrunerNF(G)

(d) Amazon-Photo

1 3 5 7 10
Pruning rate (%)

89.00

89.25

89.50

89.75

90.00

90.25

A
cc

ur
ac

y 
(%

)

EdgePruner (A)
EdgePruner (G)
EdgePrunerNF(A)

EdgePrunerNF(G)

(e) Coauthor-CS

1 3 5 7 10
Pruning rate (%)

92.25

92.50

92.75

93.00

93.25

93.50

A
cc

ur
ac

y 
(%

)

EdgePruner (A)
EdgePruner (G)
EdgePrunerNF(A)

EdgePrunerNF(G)

(f) Coauthor-Physics

Fig. 4. Accuracies on clean graphs as a function of the pruning rate.

losses on clean graphs. Thus, our loss based graph selection
in EdgePruner is more effective than adopting graphs after a
designated number of edges are always pruned.

From these results, we conclude that pruning more edges in
poisoned graphs basically contributes to improvement to the
quality of the embeddings although pruning too many edges in
clean graphs may degrade the quality on clean graphs, which
answers the research question (4).

E. Adaptive Attack

In this subsection, we evaluate the node classification ac-
curacies under an adaptive attack against EdgePruner. We
assume that an attacker knows that the pruning rate utilized
in EdgePruner is 10%. In the adaptive attack, poisoned graphs
are created by modifying 15% of edges in clean graphs in
order to make it difficult to eliminate adverse effect by the
poisoning attack. We evaluate the node classification accura-
cies in the case where EdgePruner(G) is in place. As with other
experiments, the proposed methods are allowed to prune up to
10% of edges in the poisoned graphs. TABLE VII shows the



TABLE VI
PRUNING RATES (%) WHEN THE FINAL Sopt IS OBTAINED. (EDGEPRUNER IS APPLIED TO CLEAN GRAPHS)

Method Cora CiteSeer Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics

EdgePruner (A) 6.56 3.71 8.99 3.54 8.53 4.21
EdgePruner (G) 8.09 5.91 8.71 0.07 8.16 3.68

EdgePrunerNF (A) 6.56 0.09 7.39 3.54 8.14 9.89
EdgePrunerNF (G) 9.45 2.77 7.94 0.07 8.16 3.68

TABLE VII
ACCURACY ± STANDARD DEVIATION (%) OF NODE CLASSIFICATION UNDER ADAPTIVE CLGA. THE BOLD IS THE BEST ACCURACY.

Method Cora CiteSeer Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics

EdgePruner (G) 78.89 ± 0.78 63.92 ± 2.08 79.41 ± 0.62 83.45 ± 0.40 85.15 ± 0.60 88.54 ± 0.24
GCA 77.22 ± 1.19 59.61 ± 1.85 75.68 ± 0.89 82.02 ± 0.68 78.58 ± 0.75 86.60 ± 0.47

node classification accuracy under adaptive CLGA. As shown
in TABLE VII, EdgePruner (G) improves node classification
accuracy on all the datasets. However, the accuracies are less
improved compared with the situation of normal CLGA. This
is because pruning edges are not sufficient to eliminate the
adverse effects of adaptive CLGA. This result demonstrates
that EdgePruner is effective in sanitizing poisoned graphs
created by the adaptive attack to some extent.

However, we believe that the adaptive attack against our
defense is infeasible in the case where EdgePruner is allowed
to prune all the edges in a graph. In other words, this case
means that the pruning rate is set at 100%. This case is
possible because EdgePruner does not necessarily prune all
the edges even in such a case. EdgePruner can flexibly select a
sanitized graph on the basis of the minimum loss. Furthermore,
defenders who utilize EdgePruner can also adopt another graph
on the basis of the validation accuracy if they have a small
amount of validation data consisting of labeled graphs. Thus,
in this case, an attacker cannot set a poisoning rate so that it is
larger than the pruning rate utilized in EdgePruner. For these
reasons, we conclude that EdgePruner is effective against the
adaptive attack from the perspectives of both our empirical
results and the logic, which answers the research question (5).

F. Discussion

Analysis of Pruned Edges in Poisoned Graph Our method
can improve the the node classification accuracies on poisoned
graphs. However, the accuracies are not completely improved
to the level comparable to the ones on clean graphs. We
analyze the reason, and the results are in Appendix L.

Performance of Link Prediction We evaluate the perfor-
mance of link prediction of proposed variants and the existing
GCL methods on poisoned graphs. The detailed results are in
Appendix M.

The Effect of Edge Addition for Sanitizing Poisoned Graph
In our experiments, it is observed that poisoned graphs against
GCL are mainly created by adding poisoned edges in a
graph. This is why our experimental results show that our
concept of pruning edges is effective. However, edge deletion

is also conducted when poisoned graphs on Amazon datasets
are created. Thus, we conduct some experiments in order to
confirm the effects of edge addition in the defense. We evaluate
the effect of edge addition for sanitizing poisoned graphs in the
case where our method conducts both addition and deletion.
The detailed results are in Appendix N.

VII. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this paper, we have proposed EdgePruner, poisoned edge
pruning in GCL. EdgePruner prunes edges that contribute
to minimizing the contrastive loss. EdgePruner can achieve
more improvement to the quality of the embeddings under the
poisoning attack. Our experimental results demonstrate that
pruning adversarial edges in poisoned graphs is feasible on
the six datasets. We demonstrate that the feature similarity of
neighboring nodes is basically effective in determining pruned
edges on various datasets. Furthermore, EdgePruner can also
improve the quality of embedding even on the adaptive attack.

However, our method have a main limitation, that is the fact
that EdgePruner cannot completely deal with the addition of
edges, which may contribute to further improvement. At this
stage, EdgePruner cannot sufficiently restore edges deleted by
attacks. Simply executing both the addition and the deletion
of edges depending on situations is not so effective in our
additional experiment. However, we found that controlling
edge addition is relatively promising way for defense. We
leave devising solutions for that to our future work.

Given the circumstances that there is no study that focuses
on edge pruning in the GCL domain, we have shown its
feasibility. As a first step of the sanitization strategy against
poisoning attacks on GCL, our work and experimental results
can motivate researchers to design more effective defense
methods for GCL. To devise more practical countermeasures
in the GCL domain, we plan to study how to more effectively
restore clean graphs in the future.

REFERENCES

[1] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in The world wide web
conference, 2019, pp. 417–426.



[2] S. Zhang, H. Chen, X. Ming, L. Cui, H. Yin, and G. Xu, “Where
are we in embedding spaces? a comprehensive analysis on net-
work embedding approaches for recommender systems,” arXiv preprint
arXiv:2105.08908, 2021.

[3] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls
of graph neural network evaluation,” arXiv preprint arXiv:1811.05868,
2018.

[4] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method,” arXiv preprint
arXiv:1907.04931, 2019.

[5] C. Tu, X. Zeng, H. Wang, Z. Zhang, Z. Liu, M. Sun, B. Zhang, and
L. Lin, “A unified framework for community detection and network
representation learning,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 6, pp. 1051–1065, 2018.

[6] Z. Chen, L. Li, and J. Bruna, “Supervised community detection with
line graph neural networks,” in International Conference on Learning
Representations, 2018.

[7] Q. Wu, H. Zhang, X. Gao, P. He, P. Weng, H. Gao, and G. Chen, “Dual
graph attention networks for deep latent representation of multifaceted
social effects in recommender systems,” in The world wide web confer-
ence, 2019, pp. 2091–2102.

[8] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
collaborative filtering,” in Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Re-
trieval, 2019, pp. 165–174.

[9] X. Wang, H. Jin, A. Zhang, X. He, T. Xu, and T.-S. Chua, “Disentangled
graph collaborative filtering,” in Proceedings of the 43rd international
ACM SIGIR conference on research and development in information
retrieval, 2020, pp. 1001–1010.

[10] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks
in recommender systems: a survey,” ACM Computing Surveys, vol. 55,
no. 5, pp. 1–37, 2022.

[11] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax.” ICLR (Poster), vol. 2, no. 3, p. 4, 2019.

[12] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 701–710.

[13] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[14] R. Linsker, “Self-organization in a perceptual network,” Computer,
vol. 21, no. 3, pp. 105–117, 1988.

[15] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised repre-
sentation learning by predicting image rotations,” arXiv preprint
arXiv:1803.07728, 2018.

[16] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning representations
by maximizing mutual information across views,” Advances in neural
information processing systems, vol. 32, 2019.

[17] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 9729–9738.

[18] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,” in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XI 16. Springer, 2020,
pp. 776–794.

[19] J. Li, P. Zhou, C. Xiong, and S. C. Hoi, “Prototypical contrastive learn-
ing of unsupervised representations,” arXiv preprint arXiv:2005.04966,
2020.

[20] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster assign-
ments,” Advances in neural information processing systems, vol. 33, pp.
9912–9924, 2020.

[21] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[22] A. Mnih and K. Kavukcuoglu, “Learning word embeddings efficiently
with noise-contrastive estimation,” Advances in neural information pro-
cessing systems, vol. 26, 2013.

[23] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[24] L. Kong, C. d. M. d’Autume, W. Ling, L. Yu, Z. Dai, and D. Yogatama,
“A mutual information maximization perspective of language represen-
tation learning,” arXiv preprint arXiv:1910.08350, 2019.

[25] H. Fang, S. Wang, M. Zhou, J. Ding, and P. Xie, “Cert: Contrastive
self-supervised learning for language understanding,” arXiv preprint
arXiv:2005.12766, 2020.

[26] J. Giorgi, O. Nitski, B. Wang, and G. Bader, “Declutr: Deep con-
trastive learning for unsupervised textual representations,” arXiv preprint
arXiv:2006.03659, 2020.

[27] Z. Chi, L. Dong, F. Wei, N. Yang, S. Singhal, W. Wang, X. Song, X.-
L. Mao, H. Huang, and M. Zhou, “Infoxlm: An information-theoretic
framework for cross-lingual language model pre-training,” 2021.

[28] S. Feng, B. Jing, Y. Zhu, and H. Tong, “Adversarial graph contrastive
learning with information regularization,” in Proceedings of the ACM
Web Conference 2022, 2022, pp. 1362–1371.

[29] S. Zhang, H. Chen, X. Sun, Y. Li, and G. Xu, “Unsupervised graph
poisoning attack via contrastive loss back-propagation,” in Proceedings
of the ACM Web Conference 2022, 2022, pp. 1322–1330.

[30] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu,
“Adversarial examples on graph data: Deep insights into attack and
defense,” arXiv preprint arXiv:1903.01610, 2019.

[31] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph structure
learning for robust graph neural networks,” in Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data
mining, 2020, pp. 66–74.

[32] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[33] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[34] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[35] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[36] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[37] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” arXiv preprint arXiv:1809.10341, 2018.

[38] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view represen-
tation learning on graphs,” in International conference on machine
learning. PMLR, 2020, pp. 4116–4126.

[39] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in neural information
processing systems, vol. 33, pp. 5812–5823, 2020.

[40] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang,
and J. Tang, “Gcc: Graph contrastive coding for graph neural network
pre-training,” in Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, 2020, pp. 1150–
1160.

[41] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Deep graph
contrastive representation learning,” arXiv preprint arXiv:2006.04131,
2020.

[42] ——, “Graph contrastive learning with adaptive augmentation,” in
Proceedings of the Web Conference 2021, 2021, pp. 2069–2080.

[43] K. Xu, H. Chen, S. Liu, P.-Y. Chen, T.-W. Weng, M. Hong, and
X. Lin, “Topology attack and defense for graph neural networks: An
optimization perspective,” arXiv preprint arXiv:1906.04214, 2019.

[44] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks
on neural networks for graph data,” in Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data
mining, 2018, pp. 2847–2856.

[45] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural
networks via meta learning,” in International Conference on Learning
Representations (ICLR), 2019.

[46] A. Bojchevski and S. Günnemann, “Adversarial attacks on node em-
beddings via graph poisoning,” in International Conference on Machine
Learning. PMLR, 2019, pp. 695–704.

[47] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[48] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised
learning with graph embeddings,” in International conference on ma-
chine learning. PMLR, 2016, pp. 40–48.



[49] X. Zhang and M. Zitnik, “Gnnguard: Defending graph neural networks
against adversarial attacks,” Advances in neural information processing
systems, vol. 33, pp. 9263–9275, 2020.

[50] “sklearn.linear model.LogisticRegression,” https://scikit-learn.org/
stable/modules/generated/sklearn.linear model.LogisticRegression.html.

APPENDIX

A. Overview of Graph Representation Learning

1) Overview of GCN: In the GCN, to alleviate problems
such as numerical instabilities and exploding or vanishing gra-
dients during training, A is transformed into the symmetrically
normalized adjacency matrix

Â = D̃
− 1

2 ÃD̃
− 1

2 , (10)

where Â = A + In is the adjacency matrix where self-
connections are added to by the identity matrix In. D̃ is the di-
agonal degree matrix of Ã, which means D[i, j] =

∑
j Â[i, j].

The encoder of the two-layer GCN is represented as

f(A,X) = σ(Âσ(ÂXW(1))W(2)), (11)

where W(1) and W(2) are the trainable weights of the first
and second layers, respectively. Additionally, σ is an activation
function.

2) Overview of GCA: We introduce how to learn node
embeddings following GCA model [42]. In a typical GCL,
there are three steps to learn f(A,X), namely (1) obtaining two
views, (2) obtaining node embeddings, and (3) optimizing the
parameters of f(A,X) on the basis of contrastive loss. First of
all, two augmented views G1 = (A1,X1) and G2 = (A2,X2)
are generated from G through two stochastic augmentations t1
and t2, respectively. Typical augmentation strategies include
feature masking, edge dropping, and subgraph extraction, to
name a few. After obtaining the two views, they are fed
into a shared encoder f(A,X) to obtain node embeddings.
Let Hm

θ = fθ(Am,Xm) denote the node embedding matrix
transformed from Gm by f with parameters θ. A contrastive
loss is calculated for each node by using node embeddings
in Hm

θ . The contrastive loss is designed to gather similar
nodes and to push dissimilar nodes away from each other.
In particular, the contrastive loss for the i-th node in the first
view is calculated as

l(h1i , h2i ) = − log
eβ(h1i ,h

2
i )/τ

eβ(h1i ,h
2
i )/τ +

∑
j ̸=i eβ(h1i ,h

1
j )/τ + eβ(h1i ,h

2
j )/τ

,

(12)
where h1i = H1

θ[i, :] and h2i = H2
θ[i, :] denote the embeddings

of the i-th node in G1 = (A1,X1) and G2 = (A2,X2),
respectively. β(·) is a similarity function such as cosine
similarity. τ is a hyperparameter called temperature parameter.
Note that l(h2

i , h1i ) must also be calculated because the above
loss is nonsymmetric for h1

i and h2i . Therefore, the final loss
LGCL is calculated as

LGCL(H1
θ,H2

θ) =
1

2N

N∑
i=1

[l(h1i , h2
i ) + l(h2i , h1

i )]. (13)

Finally, θ are updated so that LGCL(·, ·) is minimized, which
makes fθ(A,X) output similar node embeddings for similar
nodes.

B. Modified Edges in Poisoned Graphs for ARIEL

TABLE VIII shows the number of edges that modified when
poisoned graphs are created on the basis of the loss of ARIEL.
The results are similar to the ones in the case where poisoned
graphs are created on the basis of the loss of GCA. The
different tendency is observed on CiteSeer. As we can see from
TABLE VIII, the number of deleted edges are increased and
larger than the number of added edges on CiteSeer although
there is no deleted edge on CiteSeer in TABLE I. We consider
deleting edges is less effective than adding edges according to
our experience. This is why the attack performance for ARIEL
on CiteSeer is not high in our experiment compared with the
attack for GCA.

C. Notation and Terminology for Our Algorithm

TABLE IX shows notations and their descriptions in Algo-
rithm 1 for helping readers understand our method.

D. Dataset

TABLE X shows the dataset summary. These datasets are
from PyTorch Geometric2. Cora and CiteSeer [48] are citation
networks where nodes and edges correspond to documents and
their citations, respectively.

Amazon-Computers and Amazon-Photo [3] are extracted
from the copurchase graph in Amazon. In these graphs, nodes
represent goods, and edges mean that two goods are frequently
bought together.

Coauthor-CS and Coauthor-Physics [3] are the coauthorship
graphs. Nodes mean authors, and they are connected by an
edge if there are the coauthorship between them on a paper.

TABLE X
SUMMARY OF DATASET USED IN OUR EXPERIMENTS. THE NUMBER OF

NODES, EDGE, FEATURES, AND CLASSES ARE LISTED.

Dataset name Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15
Coauthor-Physics 34,493 247,962 8,415 5

E. Setup of GCL

In both GCA and ARIEL, two-layer GCN is employed as
the encoder as with the settings in GCA and ARIEL. The
implementation of GCA is based on the public implementation
shared by the authors of CLGA because codes of GCA is also
provided for evaluating the quality of the embeddings. We also
utilize the public implementations of ARIEL. We adopt the hy-
perparameters used in the implementation of ARIEL, including

2All the datasets are from PyTorch Geometric 1.13.1 (https://pytorch-
geometric.readthedocs.io/en/latest/modules/datasets.html)



TABLE VIII
THE NUMBER OF EDGES THAT ARE ADDED AND DELETED WHEN POISONED GRAPHS ARE CREATED ON THE BASIS OF THE LOSS OF ARIEL.

Cora CiteSeer Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Added edges 52 263 528 29 106 216 338 1530 2869 496 2471 4898 61 309 619 52 258 519
Deleted edges 0 0 0 16 121 239 18 253 699 0 9 62 0 0 0 0 4 6

TABLE IX
NOTATIONS AND DESCRIPTION IN ALGORITHM 1.

Notation Description
A

′
A poisoned adjacency matrix

X A node feature matrix
G′ = (A

′
,X) A poisoned graph inputted into a GCL method

S A sanitized adjacency updated by pruning procedures
f An encoder trained by a GCL method

Sk
m A m-th augmented sanitized adjacency matrix at the k-th augmentation out of M views created by a GCL method

Xk
m A m-th augmented node feature matrix at the k-th augmentation out of M views created by a GCL method

Gk
m = (Sk

m,Xk
m) A m-th graph view obtained through k-th augmentation out of M views created by a GCL method

θ
′

Parameters of f trained in a GCL method

∇k
m =

∂Lk
s

∂Skm
A gradient matrix with regard to Sk

m at the k-th augmentation

∇k =
∑M

m ∇k
m A total gradient matrix obtained by adding up ∇k

m at the k-th augmentation
∇total A total gradient matrix obtained by adding up ∇k over K times augmentations

C Candidate edges to prune in each iteration
Ls A contrastive loss of f that trains S

Lmin The minimum contrastive loss during our pruning procedures
Sopt A optimal adjacency matrix that produces the minimum contrastive loss

Gs = (Sopt,X) A sanitized graph consisting of Sopt and X after pruning up to N edges in a graph

the number of training epochs, the temperature parameter,
edge dropping rates, and feature dropping rates in both GCA
and ARIEL. This is because utilizing the hyperparameters
of ARIEL yields better node classification accuracy on clean
graphs in our preliminary experiments.

F. Setup of CLGA

In terms of four large datasets, namely Amazon-Computers,
Amazon-Photo, Coauthor-CS, and Coauthor-Physics, we could
not create poisoned graphs from their entire graphs by CLGA
due to the memory limitations. This is why we randomly
sample a subgraph of 5,000 nodes for each of the above
large graphs in accordance with the experimental setup in
ARIEL. The poisoned graphs are created on the basis of
the subgraph. We utilize the public implementation shared
by the authors of CLGA in order to create poisoned graphs.
Poisoned graphs are created by modifying edges so that
the contrastive loss of GCL methods is maximized. In our
experiments, it is assumed that GCA and ARIEL are attacked.
As for hyperparameters of GCA, except for the number of
training epochs, we utilize the same hyperparameters as the
ones used in the implementation of ARIEL when poisoned
graphs are created. We set the number of epochs for retraining
at each iteration at one in our experiments because we can
considerably reduce the computational cost while obtaining
comparable attack performance to the results reported in [29]
in our preliminary experiments. To create the poisoned graphs,
10% percent of edges in clean graphs are modified.

G. Setup of Downstream Task

We evaluate the quality of node embeddings produced by
GCL methods. Embeddings produced by GCA and ARIEL
are utilized as features of the node classification. The node
classification is conducted by a logistic regression classifier
that is implemented in scikit-learn [50]. When the node clas-
sification is evaluated, we split the nodes into 10%, 10%, and
80% for training, validating, and testing, respectively. As with
the evaluation in [28], the node classification is evaluated on
20 random dataset splits, which means that node classification
is conducted 20 times on different sets. Thus, we report the
mean testing accuracy of the node classification.

H. Hyperparameters of Existing Defense Methods for GNN

We utilize the codes shared by [49] to implement GNN-
Guard and GNNJaccard. We use two-layers GCN in GNN-
Guard and GNNJaccard as with other GCL methods in our
experiments. Basically, we utilize the same hyperparameters
used in the shared codes except for the dimension of the hidden
layer. We set the dimension of the hidden layer to 256 because
the node classification accuracy is relatively low with a default
value on some datasets. As for other hyperparameters, dropout
rate, learning rate, and the number of epochs are 0.5, 0.01,
and 200, respectively. In all experiments, we conduct training
models with Adam optimizer. We repeat every experiment 10
times and report average results.



I. Setup of EdgePruner

EdgePruner (G) and EdgePruner (A) conduct edge pruning
with the feature similarity of neighboring nodes. We tentatively
utilize values of T that yield the best accuracy on the validation
datasets in our preliminary experiments. As a result, we set
T on Cora, CiteSeer, Amazon-Computers, Amazon-Photo,
Coauthor-CS, and Coauthor-Physics at 0.10, 0.10, 0.30, 0.40,
0.25, and 0.25, respectively. On the other hand, EdgePrunerNF

(G) and EdgePrunerNF (A) do not utilize the feature similarity.
In the following experiments, we evaluate the effectiveness of
the proposed methods by comparing them with the baselines
and existing GCL methods, namely ARIEL and GCA.

J. Distribution of Feature Similarity

Fig. 5 shows the distribution of the cosine similarity of
neighboring nodes connected by clean edges or adversarial
ones. This distribution is based on the poisoned graphs cre-
ated by maxmizing the loss of GCA. We confirm that the
poisoned graphs for ARIEL also have similar distribution in
our preliminary experiment. As shown in Fig. 5, adversarial
edges on Cora, CiteSeer, Coauthor-CS, and Coauthor-Physics
concentrate in the areas of lower values. On the other hand,
it is observed that adversarial edges on Amazon-Computers
and Amazon-Photo are relatively widely distributed compared
to other datasets. According to these results, we consider
that adversarial edges on the two Amazon datasets are more
difficult to distinguish from clean edges even if the feature
similarity is utilized.

K. Interpretation of Performance Improved by Pruning Edges
on Clean Graph

There are cases where the accuracies are improved when
edges in clean graphs are pruned by EdgePruner. In particu-
lar, EdgePruner (A) and EdgePruner (G) improve accuracies
on both Coauthor-CS and Coauthor-Physics compared with
ARIEL and GCA, respectively. The reason for this could
be that some noise edges included in clean graphs are re-
moved. Since our method prunes edges so that contrastive
losses are minimized, such noise edges can be removed,
which results in improving the performance of the node
classification. However, on the other datasets, accuracies are
degraded compared to existing GCL methods in almost all of
the cases. This is because importance of edge information is
different depending on the datasets. According to experimental
results in [37], when an unsupervised linear model is trained
only with node features, node classification accuracies on
Cora and CiteSeer are 47.9% and 49.3%, respectively. When
both edge information and node features are leveraged, the
accuracy on Cora and CiteSeer are improved by approximately
35%, and 20%, respectively. On the other hand, according
to [42], node classification accuracies on Coauthor-CS and
Coauthor-Physics are 90.3% and 93.5%, respectively even
when only node features are utilized. These results mean that
edge information is less important on Coauthor datasets. Thus,
noise edges are relatively easily pruned on Coauthor datasets
because useful node representation can be learned with node

features, which results in improving the performance. To the
contrary, the more edge information is lost, the more difficult it
is for an encoder to obtain useful node representation on other
datasets. This is because the encoder has to learn complex
information of nodes with node features and less edges. As a
result, since the quality of node embedding is easy to degrade,
accuracy of node classification in downstream tasks may be
degraded.

L. Analysis of Pruned Edges in Poisoned Graph

We analyze the reasons why the node classification accu-
racies on poisoned graphs are not completely improved to
the level comparable to the ones on clean graphs even when
our methods are applied to them. We evaluate the ratio of
adversarial edges that are successfully pruned to all the edges
pruned by our methods. TABLE XI shows the ratio of the
adversarial edges to all the pruned edges. It is observed that
the ratios are different depending on datasets. According to
TABLE III and TABLE XI, the higher the ratio is, the more the
performance tends to be improved. For example, EdgePruner
(A) can prune 81.48% of adversarial edges on CiteSeer and
achieves the best accuracy in TABLE III. These results mean
that pruning more adversarial edges is important to restore the
accuracy comparable to the accuracy on clean graphs. In order
to further ameliorate the performance, other techniques may
be needed, which is interesting and important future work.

M. Performance of Link Prediction

We evaluate link prediction performance of proposed vari-
ants on poisoned graphs. We use a two-layer MLP as the
projection head so as to project the embeddings into a new
latent space following the setup in [29]. For all the datasets, we
split the edges into 70%, 20%, and 10% for training, testing,
and validating set, respectively. We report the area under curve
(AUC) score. We repeat each experiment 5 times and report
the average AUC and standard deviation. TABLE XII shows
the results of link prediction. EdgePruner (A) and EdgePruner
(G) achieve the best accuracies on Amazon-Computers and
Cora, respectively. On the other hand, baseline variants yield
the best accuracies on CiteSeer, Amazon-Photo, Coauthor-
CS, and Couthor-Physics. From these results, baseline variants
outperform EdgePruner variants in terms of the link prediction
task. However, the difference is relatively marginal. Further-
more, as mentioned in Section VI-B, baselines are vulnerable
to the adaptive attack described in Section VI-E. Therefore,
we consider that EdgePruner is more competent overall.

N. Effects of Edge Addition on Poisoned Graph

Although our method is dedicated to edge pruning, we
evaluate the effects of adding edges on poisoned graphs of
Amazon datasets. We call the method that conducts both edge
addition and deletion “EdgeModifier”. EdgeModifier mainly
conducts edge addition in accordance with the conditions
opposite to the ones for edge deletion. The condition regarding
gradients for selecting edges to add is represented as

S[i, j] = 0 ∧∇total[i, j] < 0. (14)



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cosine Similarity

0

250

500

750

1000

1250

1500

1750
Fr

eq
ue

nc
y

Clean edges
Adversarial edges

(a) Cora

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cosine Similarity

0

200

400

600

800

1000

1200

1400

1600

Fr
eq

ue
nc

y

Clean edges
Adversarial edges

(b) CiteSeer

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cosine Similarity

0

1000

2000

3000

4000

5000

6000

7000

Fr
eq

ue
nc

y

Clean edges
Adversarial edges

(c) Amazon-Computers

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cosine Similarity

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

Clean edges
Adversarial edges

(d) Amazon-Photo

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cosine Similarity

0

250

500

750

1000

1250

1500

1750

2000

Fr
eq

ue
nc

y

Clean edges
Adversarial edges

(e) Coauthor-CS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cosine Similarity

0

200

400

600

800

1000

1200

1400

1600

Fr
eq

ue
nc

y

Clean edges
Adversarial edges

(f) Coauthor-Physics

Fig. 5. Distribution of the cosine similarity of nodes connected by clean edges or adversarial ones.

TABLE XI
THE RATIO OF ADVERSARIAL EDGES TO ALL THE PRUNED EDGES (%). THE BOLD RATIO IS THE HIGHEST ONE.

Method Cora CiteSeer Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics

EdgePruner (A) 11.93 81.48 67.06 24.11 78.35 91.52
EdgePruner (G) 50.00 63.08 63.89 0.87 80.10 31.93

EdgePrunerNF (A) 29.17 3.24 82.99 25.79 57.84 85.74
EdgePrunerNF (G) 26.33 18.46 67.36 0.22 53.56 28.87

TABLE XII
AVERAGE AUC ± STANDARD DEVIATION (%) OF LINK PREDICTION UNDER CLGA. THE BOLD AND UNDERLINED ACCURACIES ARE THE BEST AND THE

SECOND BEST ONES, RESPECTIVELY.

Method Cora CiteSeer Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics

EdgePruner (A) 98.02 ± 0.13 99.13 ± 0.09 94.93 ± 0.15 95.12 ± 0.13 99.08 ± 0.08 98.88 ± 0.13
EdgePruner (G) 98.49 ± 0.11 99.72 ± 0.05 94.25 ± 0.09 93.74 ± 0.13 99.53 ± 0.05 98.97 ± 0.06

EdgePrunerNF (A) 98.04 ± 0.12 99.06 ± 0.08 94.85 ± 0.11 95.18 ± 0.05 99.14 ± 0.05 98.78 ± 0.06
EdgePrunerNF (G) 97.94 ± 0.10 99.70 ± 0.02 94.50 ± 0.08 93.53 ± 0.10 99.38 ± 0.08 98.95 ± 0.11

Baseline (A) 98.36 ± 0.10 99.34 ± 0.09 94.86 ± 0.08 95.56 ± 0.05 99.22 ± 0.03 99.15 ± 0.07
Baseline (G) 98.41 ± 0.13 99.77 ± 0.03 94.37 ± 0.10 94.85 ± 0.09 99.55 ± 0.05 99.24 ± 0.07

BaselineNF (A) 98.36 ± 0.10 99.34 ± 0.09 94.77 ± 0.08 95.68 ± 0.04 99.22 ± 0.03 99.15 ± 0.07
BaselineNF (G) 98.41 ± 0.13 99.78 ± 0.03 94.45 ± 0.11 94.78 ± 0.11 99.55 ± 0.05 99.23 ± 0.07

ARIEL 97.85 ± 0.06 98.95 ± 0.08 94.46 ± 0.18 94.16 ± 0.03 98.97 ± 0.06 98.75 ± 0.16
GCA 97.88 ± 0.10 99.65 ± 0.03 93.56 ± 0.09 92.23 ± 0.12 99.43 ± 0.04 98.90 ± 0.15

The condition regarding feature similarity for selecting edges
to add is represented as

s(X[i, :],X[j, :]) > T. (15)

On the other hand, the conditions for selecting edges to
delete are Eq (6) and Eq (7) as with EdgePruner. We mainly
compare two types of EdgeModifier in this experiment. The
first method simply modifies an edge that has the largest
gradient out of edges satisfying the conditions. We simply call

this method EdgeModifier. The other method is EdgeModifierb

that conducts edge modification on the basis of bernoulli
sampling in order to avoid adding too many edges. This is
because deleting edges is more important from the perspective
of defense. To the contrary, deleting edges is less important
from the perspective of the poisoning attack. An adjacency
matrix is basically sparse, which means that there are many
zero values. In other words, modifying values from 1 to 0



TABLE XIII
ACCURACY OF NODE CLASSIFICATION ON CLGA WHEN BOTH EDGE

ADDITION AND DELETION ARE ALLOWED IN EDGEMODIFIER. THE BOLD
AND UNDERLINED ACCURACIES ARE THE BEST AND THE SECOND BEST

ONES, RESPECTIVELY.

Method Amazon-Computers Amazon-Photo

EdgeModifier (A) 82.39 ± 0.91 87.60 ± 0.37
EdgeModifier (G) 81.02 ± 0.58 82.16 ± 0.71

EdgeModifierNF (A) 82.53 ± 0.71 87.87 ± 0.43
EdgeModifierNF (G) 78.39 ± 0.79 83.90 ± 0.47

EdgeModifierb (A) 83.16 ± 0.75 88.77 ± 0.51
EdgeModifierb (G) 81.16 ± 0.59 84.44 ± 0.44

EdgeModifierb,NF (A) 85.20 ± 0.50 88.78 ± 0.30
EdgeModifierb,NF (G) 82.82 ± 0.79 82.78 ± 0.52

cannot effectively affect gradients of encoders because it is a
trivial change in a clean graph. As a result, edge addition tends
to be conducted more frequently when poisoned graphs are
created. We tentatively leverage the ratio of existing edges (the
value is 1 in a adjacency matrix) to all edges as the probability
of selecting addition. This is because the number of existing
edges is less compared with non-existing edges in a sparse
adjacency matrix, which is useful in controlling addition. To
be specific, the probability that edge addition is conducted
is set to 0.0015 on Amazon-Computers. On Amazon-Photo,
we set the probability to 0.0022. As with EdgePruner, we
evaluate four variants for each method depending on as-
sumed GCL methods and using the feature similarity. In other
words, we run experiments on eight methods. TABLE XIII
shows the results of average accuracy of node classification.
EdgeModifierb,NF (A) achieves the best accuracies on both
the datasets. The second best accuracies are produced by
EdgeModifierb (A). The results demonstrate that controlling
edge addition is more effective on Amazon datasets. In
particular, EdgeModifierb,NF outperforms EdgePrunerNF (A),
which attains the highest accuracies, 84.92% and 88.58% on
Amazon-Computers and Amazon-Photo among EdgePruner
variants. Thus, we consider that our method has potential for
dealing with edges deleted by attacks although there is room
for improvement.


