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ABSTRACT

Recent advancements in Machine Learning (ML) have demonstrated significant
potential in addressing Combinatorial Optimization (CO) problems through data-
driven approaches. Heatmap-based methods, which generate solution heatmaps
in a single step and employ an additional decoder to derive solutions for CO
tasks, have shown promise due to their scalability for large-scale problems. Tradi-
tionally, these complex models are trained using imitation learning with optimal
solutions, often leveraging diffusion models. However, our research has identi-
fied several limitations inherent in these imitation learning approaches within the
context of CO tasks. To overcome these challenges, we propose a 2-phase train-
ing framework for diffusion models in CO, incorporating Reinforcement Learn-
ing (RL) fine-tuning. Our methodology integrates cost information and the post-
process decoder into the training process, thereby enhancing the solver’s capac-
ity to generate effective solutions. We conducted extensive experiments on well-
studied combinatorial optimization problems, specifically the Traveling Salesman
Problem (TSP) and Maximal Independent Set (MIS), ranging from small-scale
instances to large-scale scenarios. The results demonstrate the significant efficacy
of our RL fine-tuning framework, surpassing previous state-of-the-art methods in
performance.

1 INTRODUCTION

Combinatorial optimization (CO) has long been studied in operations research and computer science,
but its inherent complexity, particularly the NP hardness, makes finding optimal solutions challeng-
ing (Karp, 1975). Typically, problem-specific heuristics (Papadimitriou & Steiglitz, 1998), such as
the 2OPT heuristic for the traveling salesman problem, achieve high performance but lack general-
ization. Exact solvers also exist, but suffer from exponential growth in complexity with larger tasks.
Recently, Machine Learning (ML) has shown significant potential to overcome these limitations, im-
proving scalability for real-world applications (Bello et al., 2016; Vinyals et al., 2015; Khalil et al.,
2017; Bengio et al., 2021). Constructive ML-based CO solvers, which generate solutions directly
through neural networks, are emerging as promising alternatives to traditional heuristics (Zheng
et al., 2024; Sun & Yang, 2023).

Research on these constructive solvers for CO is categorized as follows: autoregressive and heatmap-
based models (non-autoregressive models). Autoregressive models generate solutions sequentially
applying neural network feedforward operations, extending partial solutions step by step until an
entire solution is formed (da Costa et al., 2020; Wu et al., 2019; Kool et al., 2019b; Kwon et al.,
2020; Kim et al., 2022). However, these repeated feedforward operations lead to increased computa-
tional overhead and potential instability during both training and inference, limiting their efficiency
in large-scale problems. In contrast, heatmap-based models generate an entire solution in a single
feedforward pass by producing a heatmap that represents the probability that the edges or nodes are
part of the solution (Fu et al., 2021a; Geisler et al., 2022; Joshi et al., 2019a). The generated heatmaps
are then decoded into valid discrete CO solutions by using simple decoders such as greedy decoding
algorithm.

Heatmap-based models frequently necessitate high-dimensional outputs, which in turn require com-
plex models with numerous parameters. To ensure stable training of these intricate models, super-
vised learning (SL) is generally preferred. In this approach, the solver aims to generate heatmaps that
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imitate high-quality solutions (Fu et al., 2021a; Geisler et al., 2022; Joshi et al., 2019b). Recently,
powerful generative models—successful in image and language domains—have been applied as CO
solvers (Graikos et al., 2022a; Mirhoseini et al., 2021; Kool et al., 2019a; Niu et al., 2020; Sun &
Yang, 2023). However, we have identified several issues with existing SL-based heatmap solvers
that merely focus on imitating optimal solutions. First, simply imitating optimal solutions does not
always guarantee high-quality solution in CO. Second, the impact of decoding strategies on final so-
lution quality is ignored during training. Third, these solvers heavily depend on high-quality training
datasets, which are computationally intractable to obtain for large-scale CO problems due to their
NP-hardness.

To address these issues, we introduce a reinforcement learning (RL) fine-tuning framework that
directly incorporates cost information during training, specifically focusing on diffusion models.
Our proposed approach, CADO (Cost-Aware Diffusion solver for combinatorial Optimization), pre-
serves the advantages of existing supervised learning (SL)-based solvers while effectively minimiz-
ing the cost of decoded solutions, the fundamental objective of combinatorial optimization problems.
We selected diffusion models as our base architecture due to their recent successes across various
domains, including combinatorial optimization problems (Sun & Yang, 2023; Li et al., 2023), as
well as their inherent compatibility with RL. Through our effective RL fine-tuning process, our
method successfully addresses the three aforementioned limitations of SL-based heatmap solvers,
demonstrating substantial and consistent performance improvements across diverse combinatorial
optimization tasks.

Our contributions can be summarized as follows: 1) We identify three issues of existing SL-based
heatmap solvers that arise mainly from ignoring cost information during CO. 2) We introduce an
RL fine-tuning algorithm for diffusion models that incorporates cost information in CO, along with
practical techniques for stable RL fine-tuning. 3) Despite its simplicity, CADO demonstrates its
strong effectiveness to address all three identified issues. 4) Building on these advantages, CADO
outperforms existing algorithms across diverse CO benchmarks - including the Traveling Salesman
Problem (TSP) with node sizes ranging from 50 to 10,000, the Maximum Independent Set (MIS),
and the TSPLIB real dataset benchmark.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

We define the problem and introduce the key notations related to combinatorial optimization (CO)
problems. Let G be the set of all CO instances, and let g ∈ G denote an instance. Each instance g
has an associated discrete solution space Xg := {0, 1}Ng and an objective function cg : Xg → R for
each solution x ∈ Xg defined as:

cg(x) = cost(x, g) + valid(x, g). (1)

Here, cost(·) represents the cost value to be optimized, while valid(·) is a constraint indicator func-
tion, where valid(x, g) = 0 if the solution x belongs to the feasible solution space Fg ⊂ Xg , and
valid(x, g) = ∞ when x /∈ Fg . The optimization goal is to find the optimal solution x⋆ for a given
instance s:

xg
⋆ = argmin

x∈Xg

cg(x). (2)

We describe two specific CO problems as examples: the Traveling Salesman Problem (TSP) and the
Maximal Independent Set (MIS) problem. In the TSP, an instance g represents the coordinates of
n cities to be visited. The solution x is an n × n matrix, where x[i, j] = 1 if the traveler moves
from city i to city j. The total solution space is Xg = {0, 1}n×n, and the feasible solution space
Fg ⊂ Xg is the set of all feasible TSP tours that visit each city exactly once. The objective function
cost(·) represents the total length of the given tour and should be minimized. In the MIS problem,
an instance g represents a graph (V,E), where V is the vertex set and E is the edge set. The solution
space Xg = {0, 1}V indicates whether each vertex v ∈ V is included in the solution set. To satisfy
the independence property, x should not contain nodes connected by edges in E. The objective
function cost(·) represents the total number of selected nodes and should be maximized.
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2.2 NEURAL COMBINATORIAL OPTIMIZATION SOLVER

In this section, we briefly introduce the concepts of autoregressive solvers and heatmap-based
solvers. Autoregressive solvers extend a partial solution until a complete solution is formed:

pθ(x|g) =
Ng∏
t=1

pθ (xt|x1:t−1, g) (3)

where x1:t−1 is the partial solution. This approach works very well for small-scale combinatorial
optimization (CO) problems, but it becomes less practical for larger scales due to quadratic time and
space complexity.

The heatmap-based solvers, proposed to effectively solve large-scale CO problems, directly generate
a heatmap H ∈ RNg , representing the likelihood of each variable being part of the solution, and
utilizes it to form the final solution through an additional post-process decoder p (x|H) :

pθ(x|g) = pθ(H|g)p (x|H) (4)

Simply sampling a solution from H may result in solutions belonging to the total solution space Xg ,
which means that feasibility is not guaranteed. Therefore, heatmap-based solvers necessarily require
a post-process decoder to convert solutions in the infeasible space to the feasible space Xg . Various
post-process decoders have been proposed. For example, Qiu et al. (2022) employs a method that
stochastically samples valid variables while masking away infeasible variables, while Sun & Yang
(2023) deterministically adds variables to the partial solution in descending order of the heatmap
value as long as no conflicts occur.

Each solver can be trained using either a reinforcement learning (RL) or a supervised learning (SL)
objective. In SL, the availability of high-quality solutions x⋆

g for each training instance g are assumed
to be given. The objective of SL is to maximize the likelihood :

L(θ) = Eg∼P (g)[− log pθ(x
g
⋆|g)]. (5)

In RL, the solver does not assume the availability of the high-quality solutions xg
⋆ for a given instance

g. However, the solver exploits the information of the objective function cg(·) during exploration and
exploitation of the solutions x. The objective of RL is to find a distribution pθ(x|g) that maximize
the reward (minimize the cost) :

R(θ) = Eg∼P (g),x∼pθ(x|g)[−cg(x)]. (6)

2.3 DIFFUSION MODEL FOR CO

Sun & Yang (2023) propose a diffusion model-based CO solver called DIFUSCO, which is classified
as a heatmap-based solver. In DIFUSCO, the solver pθ(H|g) is modeled as a diffusion model and
trained in a supervised manner.

The diffusion process consists of a forward noising procedure and a reverse denoising procedure.
During the forward process, noise is gradually added to the initial solution until the solution is
completely transformed into random noise, creating a sequence of latent variables x0,x1, . . . ,xT

where x0 = xg
⋆ in CO and xT is completely random noise. The forward noising process is defined by

q(x1:T|x0) =
∏T

t=1 q(xt|xt−1). Then, during the reverse denoising procedure, a model is trained
to restore this random noise xT back to the high-quality solution x0. The reverse process is modeled
as pθ(x0:T|g) = p(xT)

∏T
t=1 pθ(xt−1|xt, g), with θ representing the model parameters, and this

reverse model is later used as a heatmap-based solver.

The training objective is to match pθ(x0|g) with the high quality data distribution q(x0|g), optimized
by minimizing the variational upper bound of the negative log-likelihood:

L(θ) = Eq

[
− log pθ(x0|x1, g) +

T∑
t=2

DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt, g))
]
. (7)

More details are described in Appendix A.
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3 MOTIVATION: ISSUES IN SL-BASED HEATMAP SOLVERS

Several supervised learning (SL)-based heatmap solvers have emerged in combinatorial optimiza-
tion (CO) (Nowak et al., 2018; Joshi et al., 2019a; Fu et al., 2021a; Geisler et al., 2022; Sun &
Yang, 2023). These approaches are trained on high-quality solution datasets, treating existing so-
lutions as ground-truth labels to generate corresponding heatmaps. Their underlying assumption is
that heatmaps closely approximating optimal solutions will be naturally decoded into high-quality,
low-cost solutions. However, our analysis reveals several non-trivial issues that impact their effec-
tiveness as CO solvers. In this section, we identify three fundamental challenges in training SL-based
heatmap solvers for CO problems.

3.1 IGNORANCE OF COST IN TRAINING PROCESS

(a) Wrong edges: 0, Drop:
0.0%.

(b) Wrong edges: 2, Drop:
0.08%.

(c) Wrong edges: 8, Drop:
0.02%.

Figure 1: Examples of solutions with higher prediction error but lower cost compared on TSP-50.

We observe that a solution that is very similar to the optimal solution does not always guarantee a
very low cost. To illustrate this point, consider the example shown in Figure 1. Suppose that we are
given an optimal tour (a) that we want to predict. During training, the model generates two solutions:
tour (b) and tour (c). Since tour (b) has fewer incorrectly connected edges, the SL training objective
is likely to prefer tour (b) over tour (c). However, in terms of actual cost, tour (c) performs better
than tour (b), revealing the inadequacy of the current training objective in properly distinguishing
them. Therefore, cost information must be considered during training to achieve our true goal in CO,
which is to minimize the cost.

3.2 IGNORANCE OF DECODERS IN TRAINING PROCESS

As we mentioned in Section 2.1, the feasible solution space Fg is a much smaller subset compared
to the total solution space Xg . Although heatmaps aim to mimic the optimal solution, the decod-
ing process may produce a solution significantly different from the original imperfect heatmap in
order to maintain feasibility. Since traditional SL-based heatmap solvers do not account for these
effects during the decoding process, even if the generated heatmap is similar the optimal solution,
the decoded solution may differ significantly, potentially leading to degraded performance.

3.3 DEPENDENCY ON TRAINING DATASET QUALITY

The final issue with existing SL-based heatmap solvers is their reliance on high-quality training
datasets. These methods require large amounts of optimal solutions, but generating such datasets
is computationally expensive due to the NP-hardness of most CO tasks. Current approaches rely
on exact or sophisticated heuristic solvers to create training data, with time complexity increasing
exponentially as the problem size grows, making this impractical, particularly for large-scale CO
tasks. To address these challenges, enhancing model robustness using suboptimal datasets is crucial.
These datasets are easier to generate, often requiring only brief heuristic runs.

4 METHOD

We propose an RL fine-tuning framework for diffusion models in CO. Our approach aims to address
the described issues of SL-based heatmap solvers discussed in Section 3.

4
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[Two-phase Training for Diffusion Model]
1. Train a diffusion model for CO with train dataset
2. RL-finetuning the pretrained diffusion model

𝜋! SL training 𝜋!!" RL finetuning 𝜋!#"

DIFUSCO1 CADO

Figure 2: The overall framework of CADO

4.1 MARKOV DECISION PROCESS FOR TRAINING DIFFUSION MODELS IN CO

An MDP is defined by a tuple (S,A, P, ρ0, R), where s ∈ S is a state in the state space S,
a ∈ A is an action belongs to the action space A, P (st+1| st,at) is the state transition distribu-
tion, ρ0(s0) is the initial state distribution, and R(st,at) is the reward function. The objective of
RL is to learn a policy πθ that maximizes the expected cumulative reward J(πθ), formalized as
Eτ∼p(τ |πθ)

[∑T
t=0 R (st,at)

]
where τ = (s0,a0...sT ,aT ) is a sequence of states and actions from

a policy in the MDP.

Motivated from Black et al. (2024), we formulate the denoising process in the diffusion process as
Markov Decision Process (MDP) for CO which is integrated the decoder fg algorithm during the
training.

st ≜ (g, t,xt) , at ≜ xt−1,

πθ (at | st) ≜ pθ (xt−1 | xt, g) , P (st+1 | st,at) ≜
(
δs, δt−1, δxt−1

)
,

ρ0(s0) ≜ (g, t,Bern(p = 0.5Ng )), R (st,at) ≜

{
−cg (fg(x0), g) if t = 0,

0 otherwise.

(8)

where Bern(p) is a Bernoulli distribution with vector probabilities p that samples the initial random
noise xT , and δy is the Dirac delta distribution with nonzero density only at y. We then apply a
policy gradient algorithm for optimizing the iterative denoising procedure with the cost function:

∇θJ(πθ) = E

[
T∑

t=0

∇θ log pθ (xt−1 | xt, g) (−cg (fg(x0), g))

]
. (9)

If the heatmap-based solver can appropriately solve the MDP defined above, we can effectively
address the existing issues in Section 3. Specifically, the generated heatmaps align with the true
optimization objective, where the cost is calculated based on the decoded solution fg(x0, g) (Section
3.2), rather than merely imitating the optimal solutions (Section 3.1). Furthermore, during the RL
fine-tuning process, the solver explores new solutions as actions, making the algorithm more robust
when dealing with suboptimal solution datasets (Section 3.3).

T2T (Li et al., 2023), is an another line of research that employs diffusion-based heatmap solver
with cost incorporation. The key distinction between T2T and our approach lies in their treatment
of cost information: while T2T considers costs during the inference phase by guiding the denoising
process with the cost gradient, our method incorporates cost information during training through RL
objective. A key advantage of T2T is that it avoids additional training overhead. However, T2T’s
performance is heavily dependent on the quality of the base diffusion model, and it deteriorates
significantly if the underlying model is not well-trained. A comprehensive comparative analysis
between these approaches is elaborated in Appendix F.

4.2 TRAINING PROCESS FOR COST-AWARE DIFFUSION MODELS

The whole process for training CADO is illustrated in Figure 2. CADO consists of two phases. In
the first phase, the diffusion model is trained using the given dataset with the supervised learning ob-
jective L(θ) in equation 7. In the second phase, we apply RL fine-tuning on the pretrained diffusion
model to optimize R(θ) in equation 9. To accurately measure the effectiveness of RL fine-tuning
compared to previous works (Sun & Yang, 2023; Li et al., 2023), we directly finetune the pretrained
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diffusion model called DIFUSCO (Sun & Yang, 2023). During this second phase, the training in-
stances g can be newly generated from the distribution P (g) or sampling from the instances in the
train dataset.

In our RL fine-tuning process, we optimize a 12-layer GNN-based diffusion model using a hybrid
approach. While the last one to two layers are completely unfrozen for full training, we apply Low-
Rank Adaptation (LoRA) (Hu et al., 2022) to the remaining layers. Our techniques significantly
improve both training stability and memory efficiency. Detailed explanations and comparative ex-
perimental results are elaborated in the Appendix C.2.

We use established simple greedy decoders to transform heatmaps into feasible solutions for Travel-
ing Salesman Problem (TSP) and Maximum Independent Set (MIS) tasks, following the approaches
of Sun & Yang (2023) and Li et al. (2023). For TSP, we include an optional post-processing step
using the 2OPT heuristic (Lin & Kernighan, 1973) to refine solutions after decoding. We occasion-
ally enhance our method with the local rewrite (LR) technique introduced by T2T (Li et al., 2023),
which iteratively adds noise to disrupt the solutions and reconstructs sampled solutions to improve
solution quality. However, unlike T2T, which leverages gradient-based cost guidance during local
rewrite, our method does not utilize this guidance.

5 EXPERIMENT

The experiments are conducted using eight NVIDIA Tesla A40 GPUs for training and one Tesla
A40 GPU for testing, along with two CPU cores of AMD EPYC 7413 24-Core Processor.

5.1 EXPERIMENT SETTINGS

Problems. We test our proposed CADO on the Traveling Salesman Problem (TSP) and the Max-
imal Independent Set (MIS), which are basically edge and node selecting problems, respectively.
TSP is the most commonly used benchmark combinatorial optimization problem, where the objec-
tive is to determine the shortest possible route that visits a set of nodes exactly once and returns to
the original node. MIS is another widely used benchmark problem where the objective is to find the
largest subset of vertices in a graph such that no two vertices in the subset are adjacent.

Datasets. For RL fine-tuning, we generate new TSP instances for each problem size (TSP-
50/100/500/1000/10000) by uniformly sampling the corresponding number of nodes from a unit
square. We use identical test instances as Joshi et al. (2022); Kool et al. (2019b) for TSP-50/100 and
Fu et al. (2021b) for TSP-500/1000/10000. Additionally, we evaluate our model on TSPLIB (Rein-
helt, 2014), a real-world TSP benchmark dataset. For MIS experiments, we follow the dataset con-
figurations used in previous studies (Li et al., 2018b; Ahn et al., 2020b; Böther et al., 2022; Qiu
et al., 2022; Sun & Yang, 2023; Li et al., 2023), employing two graph types: SATLIB (Hoos &
Stutzle, 2000) (MIS-SAT) and Erdős–Rényi (Erdos & Renyi, 1960) (MIS-ER). In contrast to TSP,
we perform offline RL fine-tuning for MIS by reusing DIFUSCO’s training instances rather than
generating new, unseen instances.

Evaluation Metrics. We assess our model and other baselines using three metrics. (1) Cost: For
TSP, we measure the average tour length (lower is better). For MIS, we measure the average size
of the independent set (higher is better). (2) Drop: We calculate the average performance difference
between the model-generated solutions and optimal solutions. (3) Time: We record the total runtime
during testing.

Baselines. We compare our method with the following methods: (1) Exact Solvers: Concorde
(Applegate et al., 2006) and Guruobi (Gurobi Optimization, 2020); (2) Heuristics : LKH3 (Applegate
et al., 2006) and Farthest Insertion; (3) SL : GCN (Joshi et al., 2019a), BQ (Drakulic et al., 2023),
LEHD (Luo et al., 2023), DIFUSCO (Sun & Yang, 2023), and T2T (Li et al., 2023); (4) RL : AM
(Kool et al., 2019b), POMO (Hottung et al., 2021), DIMES (Qiu et al., 2022), ICAM (Zhou et al.,
2024), GLOP (Ye et al., 2024) and UDC (Zheng et al., 2024).

We adapt T2T’s experimental settings for fair comparison with our key baselines DIFUSCO and
T2T. We focus on denoising steps in diffusion models, as increasing the number of diffusion steps
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Table 1: Results on TSP-50 and TSP-100. AS: Active Search, S: Sampling Decoding, BS: Beam
Search, RRC: Random Re-Construct (algorithm from Luo et al. (2023), which iteratively refines the
partial solution). * represents the baseline for computing the drop. The results of models† are taken
from each paper, and the rest of the results are taken from Li et al. (2023).

Algorithm Type TSP-50 TSP-100
Length ↓ Drop ↓ Length ↓ Drop ↓

Concorde (Applegate et al., 2006) Exact 5.69* 0.00% 7.76* 0.00%
2OPT (Lin & Kernighan, 1973) Heuristics 5.86 2.95% 8.03 3.54%

Farthest Insertion Heuristics 6.12 7.50% 8.72 12.36%

AM (Kool et al., 2019b) RL 5.80 1.76% 8.12 4.53%
GCN (Joshi et al., 2019a) SL 5.87 3.10% 8.41 8.38%

Transformer (Bresson & Laurent, 2021) RL 5.71 0.31% 7.88 1.42%
POMO (Kwon et al., 2020) RL 5.73 0.64% 7.84 1.07%

Sym-NCO (Kim et al., 2022) RL - - 7.84 0.94%
Image Diffusion (Graikos et al., 2022b) SL 5.76 1.23% 7.92 2.11%

BQ† (Drakulic et al., 2023) SL - - 7.79 0.35%
LEHD† (Luo et al., 2023) SL - - 7.81 0.58%

ICAM† (Zhou et al., 2024) RL - - 7.83 0.90%
DIFUSCO (Sun & Yang, 2023) SL 5.72 0.48% 7.84 1.01%

T2T (Li et al., 2023) SL 5.69 0.04% 7.77 0.18%
CADO (Ours) SL+RL 5.69 0.01% 7.77 0.08%

AM (Kool et al., 2019b) RL+2OPT 5.77 1.41% 8.02 3.32%
GCN (Joshi et al., 2019a) SL+2OPT 5.70 0.12% 7.81 0.62%

Transformer (Bresson & Laurent, 2021) RL+2OPT 5.70 0.16% 7.85 1.19%
POMO (Kwon et al., 2020) RL+2OPT 5.73 0.63% 7.82 0.82%

Sym-NCO (Kim et al., 2022) RL+2OPT - - 7.82 0.76%
BQ† (Drakulic et al., 2023) - - - - -

LEHD† (Luo et al., 2023) SL+RRC - - 7.76 0.01%
ICAM† (Zhou et al., 2024) RL+RRC - - 7.79 0.41%

DIFUSCO (Sun & Yang, 2023) SL+2OPT 5.69 0.09% 7.78 0.22%
T2T (Li et al., 2023) SL+2OPT 5.69 0.02% 7.76 0.06%

CADO (Ours) SL+RL+2OPT 5.69 0.01% 7.76 0.06%

tends to improve performance but also results in longer inference times (Sun & Yang, 2023). In our
experiments, DIFUSCO uses 120 steps for TSP-50/100 and 50 for other tasks. T2T and CADO use
50 steps for TSP-50/100 and 20 for others, plus Local Rewrite Search, matching DIFUSCO’s re-
sources. We also evaluated CADO-L, a lightweight version, which applies 20 diffusion steps across
all tasks while eliminating additional heuristics such as Local Rewrite Search and 2OPT. This sim-
plified version requires only 40% of the computational cost compared to the baselines. Note that
the computational complexity during inference remains comparable across DIFUSCO, T2T, and
CADO. However, the empirical differences observed in experiments stem from variations in GPU,
PyTorch implementations, and optimization strategies.

5.2 MAIN RESULT

We divided the table into two parts for learning-based approaches. In Table 1, results are divided
into two parts based on whether additional heuristics are used or not. In Table 2 and 3 the upper
part shows the performance of models that generate a solution with just a single inference, while the
lower part shows the performance of models that use multiple sampling and select the best solution
among them. The experimental results on TSPLIB are in Appendix D.

TSP-50/100. Table 1 shows our TSP-50/100 results. The cost signals in training boosted perfor-
mance to SOTA. On TSP-50 and TSP-100, our method demonstrates performance comparable to
the state-of-the-art, regardless of whether 2OPT is used. This strongly validates the effectiveness of
our approach.

TSP-500/1000/10000. For large-scale TSP-500/1000/10000 instances, CADO maintains stable
and effective performance. As other baselines’ performance degrades, our RL fine-tuning benefits
become clearer. CADO outperforms other diffusion solvers across all criteria. Especially, without
2OPT, CADO achieves 1.54%, 4.42%, 10.73% in 500, 1000, 10000 respectively, which is a signifi-
cant performance improvement over existing diffusion-based baselines DIFUSCO (9.41%, 11.24%,
36.75%) and T2T (6.92%, 9.83%, - %), indicating that our approach makes much better use of the
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Table 2: Results on TSP-500/1000/10000. AS: Active Search, S: Sampling Decoding, BS: Beam
Search, RRC: Random Re-Construct (Luo et al., 2023), which iteratively refines the partial solution.
* represents the baseline for computing the drop. The results of models† are taken from each paper,
and the rest of the results are taken from Li et al. (2023).

Algorithm Type TSP-500 TSP-1000 TSP-10000
Length ↓ Drop ↓ Time Length ↓ Drop ↓ Time Length ↓ Drop ↓ Time

Concorde (Applegate et al., 2006) Exact 16.55* - 37.66m 23.12* - 6.65h - - -
Gurobi (Gurobi Optimization, 2020) Exact 16.55 0.00% 45.63h - - - - - -

LKH-3 (default) (Helsgaun, 2017) Heuristics 16.55 0.00% 46.28m 23.12 0.00% 2.57h 71.77* - 8.8h
Farthest Insertion Heuristics 18.30 10.57% 0s 25.72 11.25% 0s 80.59 12.29% 6s

AM (Kool et al., 2019b) RL 20.02 20.99% 1.51m 31.15 34.75% 3.18m 141.68 97.39% 5.99m
GCN (Joshi et al., 2019a) SL 29.72 79.61% 6.67m 48.62 110.29% 28.52m - - -

POMO+EAS-Emb (Hottung et al., 2021) RL+AS 19.24 16.25% 12.80h - - - - - -
POMO+EAS-Tab (Hottung et al., 2021) RL+AS 24.54 48.22% 11.61h 49.56 114.36% 63.45h - - -

DIMES (Qiu et al., 2022) RL 18.93 14.38% 0.97m 26.58 14.97% 2.08m 86.44 20.44% 4.65m
DIMES (Qiu et al., 2022) RL+AS 17.81 7.61% 2.10h 24.91 7.74% 4.49h 80.45 12.09% 3.07h
DIMES (Qiu et al., 2022) RL+2OPT 17.65 6.62% 1.01m 24.83 7.38% 2.29m - - -
DIMES (Qiu et al., 2022) RL+AS+2OPT 17.31 4.57% 2.10h 24.33 5.22% 4.49h - - -

BQ† (Drakulic et al., 2023) SL 16.72 1.18% 0.77m 23.65 2.27% 1.90m - - -
LEHD† (Luo et al., 2023) SL 16.78 1.56% 0.27m 23.85 3.17% 1.60m - - -
LEHD† (Luo et al., 2023) SL+RRC 16.58 0.34% 8.7m 23.40 1.20% 48.6m - - -

ICAM† (Zhou et al., 2024) RL 16.78 1.56% 0.02m 23.80 2.93% 0.03m - - -
ICAM† (Zhou et al., 2024) RL+RRC 16.69 1.01% 2.40m 23.55 1.86% 16.8m - - -

GLOP† (Ye et al., 2024) RL 16.91 1.99% 1.50m 23.84 3.11% 3.0m 75.29 4.90% 1.80m
UDC† (Zheng et al., 2024) RL 16.94 2.53% 0.33m 23.79 2.92 0.53m 82.1 14.35% 7.00m

DIFUSCO (Sun & Yang, 2023) SL 18.11 9.41% 5.70m 25.72 11.24% 17.33m 98.15 36.75% 28.51m
DIFUSCO (Sun & Yang, 2023) SL+2OPT 16.81 1.55% 5.75m 23.55 1.86% 17.52m 73.99 3.10% 35.38m

T2T (Li et al., 2023) SL 17.69 6.92% 4.90m 25.39 9.83% 17.93m - - -
T2T (Li et al., 2023) SL+2OPT 16.68 0.83% 4.83m 23.41 1.26% 18.37m - - -

CADO (Ours) SL+RL 16.80 1.54% 3.74m 24.14 4.42 % 7.80m - - -
CADO (Ours) SL+RL+2OPT 16.66 0.70% 3.78m 23.32 0.88 % 8.34m 73.72 2.72% 18.22m

EAN (Deudon et al., 2018) RL+S+2OPT 23.75 43.57% 57.76m 47.73 106.46% 5.39h - - -
AM (Kool et al., 2019b) RL+BS 19.53 18.03% 21.99m 29.90 29.23% 1.64h 129.40 80.28% 1.81h

GCN (Joshi et al., 2019a) SL+BS 30.37 83.55% 38.02m 51.26 121.73% 51.67m - - -
DIMES (Qiu et al., 2022) RL+S 18.84 13.84% 1.06m 26.36 14.01% 2.38m 85.75 19.48% 4.80m
DIMES (Qiu et al., 2022) RL+AS+S 17.80 7.55% 2.11h 24.89 7.70% 4.53h 80.42 12.05% 3.12 h
DIMES (Qiu et al., 2022) RL+S+2OPT 17.64 6.56% 1.10m 24.81 7.29% 2.86m - - -
DIMES (Qiu et al., 2022) RL+AS+S+2OPT 17.29 4.48% 2.11h 24.32 5.17% 4.53h - - -

BQ† (Drakulic et al., 2023) SL+BS 16.62 0.58% 11.9m 23.43 1.36% 29.4m - - -
ICAM† (Zhou et al., 2024) RL+BS 16.69 1.01% 1.50m 23.54 1.83% 10.50m - - -
ICAM† (Zhou et al., 2024) RL+S 16.65 0.78% 0.63m 23.49 1.58% 3.80m - - -
UDC† (Zheng et al., 2024) RL + S 16.78 1.58% 4.00m 23.53 1.78 8.00m - - -

DIFUSCO (Sun & Yang, 2023) SL+S 17.48 5.65% 19.02m 25.11 8.61% 59.18m 95.52 33.09% 6.72h
DIFUSCO (Sun & Yang, 2023) SL+S +2OPT 16.69 0.83% 19.05m 23.42 1.30% 59.53m 73.89 2.95% 6.59h

T2T (Li et al., 2023) SL+S 17.14 3.60% 17.05m 24.85 7.51% 1.12h - - -
T2T (Li et al., 2023) SL+S +2OPT 16.62 0.46% 17.02m 23.31 0.85% 1.17h - - -

CADO (Ours) SL+RL+S 16.75 1.27% 11.13m 23.82 3.03 % 26.8m 78.8597 9.87% 21.62m
CADO (Ours) SL+RL+S+2OPT 16.62 0.43% 11.17m 23.26 0.63% 27.5m 73.63 2.59% 48.72m

Table 3: Results on SATLIB and ER-[700-800]

Algorithm Type SATLIB ER-[700-800]
Size ↑ Drop ↓ Time Size ↑ Drop ↓ Time

KaMIS (Lamm et al., 2016) Heuristics 425.96∗ - 37.58m 44.87∗ - 52.13m
Gurobi (Gurobi Optimization, 2020) Exact 425.95 0.00% 26.00m 41.28 7.78% 50.00m

Intel (Li et al., 2018a) SL 420.66 1.48% 23.05m 34.86 22.31% 6.06m
DIMES (Qiu et al., 2022) RL 421.24 1.11% 24.17m 38.24 14.78% 6.12m

UDC† (Zheng et al., 2024) RL - - - 41.00 8.62% 0.67m
DIFUSCO (Sun & Yang, 2023) SL 424.56 0.33% 8.25m 36.55 18.53% 8.82m

T2T (Li et al., 2023) SL 425.02 0.22% 8.12m 39.56 11.83% 8.53m
CADO (Ours) SL+RL 425.00 0.22% 6.87m 43.32 3.45% 4.28m

Intel (Li et al., 2018a) SL+TS - - - 38.80 13.43% 20.00m
DGL (Böther et al., 2022) SL+TS - - - 37.26 16.96% 22.71m

LwD (Ahn et al., 2020a) RL+S 422.22 0.88% 18.83m 41.17 8.25% 6.33m
GFlowNets (Zhang et al., 2023) UL+S 423.54 0.57% 23.22m 41.14 8.53% 2.92m

UDC† (Zheng et al., 2024) RL+S - - - 42.88 4.44% 21.05m
DIFUSCO (Sun & Yang, 2023) SL+S 425.13 0.19% 26.32m 40.35 10.07% 32.98m

T2T (Li et al., 2023) SL+S 425.22 0.17% 23.80m 41.37 7.81% 29.73m
CADO (Ours) SL+RL+S 425.22 0.17% 21.98m 43.82 2.35% 13.53m

diffusion model itself for CO. With 2OPT, CADO again achieves the best results among all NCO
solvers in the table.

MIS-SAT/ER. For MIS problems, our approach shows promising results even with offline RL
fine-tuning without generating new instances. In MIS-SAT, the performance improvement is mini-
mal due to DIFUSCO’s (0.33%) already saturated performance. In MIS-ER, despite the offline RL
fine-tuning without exposure to unseen instances, we observe substantial improvements. These re-
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Table 4: Analysis for effects of decoder.

Algorithm Test (Grdy) Test (NN)
Drop ↓ Drop ↓

DIFUSCO 1.62% 2.32%
CADO-L (Grdy) 0.27% 1.83%
CADO-L (NN) 0.28% 0.54%

Table 5: Results on the low quality dataset.

Algorithm w/o 2OPT w/ 2OPT
Drop ↓ Drop ↓

DIFUSCO 11.84% 1.99%
T2T 6.99% 0.98%
CADO 0.27% 0.08%

sults again strongly support our motivations discussed in Section 3, emphasizing the importance of
learning that considers the effect of the decoding strategy and cost information rather than simply
imitating optimal solutions, as done in traditional SL-based heatmap solvers.

5.3 EXPERIMENTAL VALIDATION: ADDRESSING ISSUES IN SL-BASED APPROACHES

We experimentally validate whether CADO really overcomes the issues of SL-based heatmap
solvers outlined in Section 3 through systematic analysis and additional comparisons to other base-
line heatmap solvers that utilize cost information. To clarify the performances of neural solvers,
most of the results are recorded without the help of an additional 2OPT heuristic in TSP.

5.3.1 LESS SIMILAR HEATMAP, BETTER SOLUTION COST

Figure 3: Learning curve of CADO-L.

To investigate whether heatmaps similar to optimal solu-
tions necessarily are decoded into better solutions (Sec-
tion 3.1), we examine CADO-L’s learning curve from
DIFUSCO (Epoch 0) during RL-finetuning to CADO-L
(Epoch 3000) in Figure 3. We measure the similarity be-
tween the generated heatmaps and optimal solutions us-
ing KL loss, while evaluating the quality of the solution
through drop. As training progressed, the drop (cost) im-
proves significantly from 1.6% to 0.2%. Interestingly, de-
spite our objective being solely cost minimization, the KL
loss indeed increases. These results demonstrate that sim-
ply mimicking optimal solutions can be counterproduc-
tive in combinatorial optimization (Section 3), simultane-
ously validating that our proposed method successfully overcomes the issue in Section 3.1.

5.3.2 THE EFFECT OF INCLUDING THE DECODER DURING TRAINING

To validate the decoder-related issues discussed (Section 3.2), we experiment with two simple de-
coders on TSP-100: Grdy, the standard decoder used in base CADO, and NN, which selects random
initial nodes and moves to neighbors with the highest heatmap scores. We train two CADO variants,
each with one of these decoders. All solvers are evaluated on both decoders using 20 inference steps
without additional search techniques (2OPT/LR). The results in Table 4 strongly support our hy-
pothesis (Section 3.2) that the choice of training decoder can significantly impact performance, even
with identical heatmaps. The results show that each variant performed best with its corresponding
training decoder: CADO-L (Grdy) achieving 0.27% with Test (Grdy) and CADO-L (NN) achiev-
ing 0.54% with Test (NN). Notably, for Test (NN), CADO-L (NN) significantly outperforms both
CADO-L (Grdy) and DIFUSCO. These results demonstrate CADO’s practical effectiveness in the
decoder-related alignments.

5.3.3 TRAINING UNDER THE LOW QUALITY TRAIN DATASET

To investigate the impact of suboptimal training data on performance (Section 3.3), we evaluate
models using a TSP-100 dataset containing 1.36% suboptimal solutions from LKH with a 1-second
time limit. DIFUSCO shows significant degradation (11.84% w/o 2OPT, 1.99% w/ 2OPT), and while
T2T’s cost-guided search shows some improvement (6.99% w/o 2OPT, 0.98% w 2OPT), it still fall
short. However, CADO maintains robust performance (0.27% w/o 2OPT, 0.08% w/ 2OPT) through
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Table 6: Comparisons of heatmap-based solvers with different cost information integration strate-
gies. GS: Gradient Search, LR: Local Rewrite. See Section 4.2 for more details.

Algorithm Type TSP-500 TSP-1000 SATLIB ER-[700-800]
Train Inference Drop ↓ Time Drop ↓ Time Drop ↓ Time Drop ↓ Time

DIMES (Qiu et al., 2022) RL - 18.93% 0.97m 14.97% 2.08m 1.11% 24.17m 14.78% 6.12m
DIFUSCO (Sun & Yang, 2023) SL - 9.41% 5.70m 11.24% 17.33m 0.33% 8.25m 18.53% 8.82m

T2T (Li et al., 2023) SL GS + LR 6.92% 4.90m 9.83% 17.93m 0.22% 8.12m 11.83% 8.53m
CADO-L SL + RL - 3.34% 1.43m 6.70% 2.75m 0.36% 2.63m 4.40% 1.60m

RL fine-tuning, demonstrating that CADO effectively mitigates the instability of heatmap solvers on
lower-quality datasets.

5.3.4 COMPARISONS TO OTHER COST INTEGRATED METHODS

In Table 6, we focus on how the utilization of solution datasets and cost information affects the
performance of various heatmap-based CO solvers. The experimental results reveal that DIMES and
DIFUSCO, which do not utilize either solution datasets or cost information, generally underper-
form compared to T2T and CADO-L, which leverage both components. When comparing T2T and
CADO-L, CADO-L outperforms T2T with fewer inference steps on TSP-500/1000 and MIS-ER
tasks, while T2T excels on MIS-SAT tasks where DIFUSCO also performs strongly. Our analysis
suggests that CADO-L’s fine-tuning approach can be more effective than T2T’s cost-guided search
without additional training, particularly when DIFUSCO’s base performance is insufficient.

6 RELATED WORK

ML-based CO solvers can be categorized into autoregressive and heatmap-based solvers. Autore-
gressive solvers iteratively extend a partial solution until completion (Kool et al., 2019b; Bello et al.,
2016; Kwon et al., 2020; Kim et al., 2022; Dernedde et al., 2024), but they struggle with scalability
due to their sequential nature. SL-based heatmap solvers (Fu et al., 2021a; Geisler et al., 2022; Joshi
et al., 2019a; Nowak et al., 2018) generate solutions in a single step, offering better scalability but
often producing suboptimal solutions due to ignoring the post-process decoder and cost information
during training. There is RL-based heatmap solvers (Qiu et al., 2022) in the literature but fails to
perform well on large-scale problems. Recently, the divide and conquer framework has been used
with both solver types to address large-scale problems by breaking them into smaller subproblems
(Ye et al., 2024; Zheng et al., 2024).

Generative models, known for their success in image and text generation, have been adapted to
CO for their expressive power (Graikos et al., 2022a; Mirhoseini et al., 2021; Kool et al., 2019a;
Niu et al., 2020; Sun & Yang, 2023; Li et al., 2023). DIFUSCO, a diffusion model-based solver,
shows promise in various CO problems (Sun & Yang, 2023). However, most generative models in
CO rely on imitation learning, inheriting the same issues as heatmap-based solvers. Sanokowski
et al. (2024) uses an unsupervised learning approach to directly optimize the cost function. Li et al.
(2023), which is closely related to our work, extends DIFUSCO by integrating a cost-guided local
search during the denoising process in inference, whereas our method incorporates cost information
during training instead. One of the main strengths of T2T is its ability to bypass additional training
overhead. However, its performance is highly reliant on the quality of the base diffusion model and
can decline substantially if the underlying model is poorly trained.

7 CONCLUSION

In this paper, we introduced an RL fine-tuning framework for heatmap-based solvers, especially
for diffusion model-based, that successfully addresses key issues from ignoring cost information in
existing SL-based heatmap solvers, such as the disconnect between prediction quality and solution
cost, as well as inefficiencies arising from excluding the post-process decoder during training. By
integrating cost-based feedback and aligning the learning process with the final solution genera-
tion, our approach not only enhances model performance across various CO benchmarks but also
improves scalability and efficiency, making it a promising advancement in neural CO.
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André Hottung, Yung-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial opti-
mization problems. arXiv preprint arXiv:2106.05126, 2021.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.

Benjamin Hudson, Qingbiao Li, Michael Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. arXiv preprint arXiv:2110.05291,
2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis R. Bach and David M. Blei (eds.), Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pp. 448–456. JMLR.org, 2015.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019a.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. CoRR, abs/1906.01227, 2019b. URL http:
//arxiv.org/abs/1906.01227.

Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
travelling salesperson problem requires rethinking generalization. Constraints An Int. J., 27(1-2):
70–98, 2022. doi: 10.1007/S10601-022-09327-Y.

Richard M Karp. On the computational complexity of combinatorial problems. Networks, 5(1):
45–68, 1975.

Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning com-
binatorial optimization algorithms over graphs. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
6348–6358, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. In Advances in Neural Information Processing Systems 35 (NeurIPS
2022), 2022.

Wouter Kool, Herke Hoof, and Max Welling. Learning a latent search space for routing problems us-
ing variational autoencoders. In Advances in Neural Information Processing Systems (NeurIPS),
2019a.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations (ICLR), 2019b.

Alex Krizhevsky, Geoff Hinton, et al. Convolutional deep belief networks on cifar-10. Unpublished
manuscript, 40(7):1–9, 2010.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Seungjai Min, and Youngjune Gwon.
Pomo: Policy optimization with multiple optima for reinforcement learning. In Advances in Neu-
ral Information Processing Systems 33 (NeurIPS 2020), 2020.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck. Finding
near-optimal independent sets at scale. In Michael T. Goodrich and Michael Mitzenmacher (eds.),
Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments, ALENEX
2016, Arlington, Virginia, USA, January 10, 2016, pp. 138–150. SIAM, 2016. doi: 10.1137/1.
9781611974317.12.

13

http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/1906.01227
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training to
gradient search in testing for combinatorial optimization. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Informa-
tion Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolu-
tional networks and guided tree search. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 537–546, 2018a.
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A TRAINING OBJECTIVE IN DIFFUSION MODEL

Sun & Yang (2023) propose a diffusion model-based CO solver called DIFUSCO. In CO, a diffusion
model is employed to estimate the distribution of high-quality solutions for combinatorial optimiza-
tion problems during the training phase (Sun & Yang, 2023; Li et al., 2023). Since the solution
x is belongs to the discrete solution space {0, 1}N , the noising process q(xt|xt−1) and denoising
process q(xt−1|xt,x0) are also done on the discrete space {0, 1}N . In this work, we followed the
discrete diffusion models introduced by Austin et al. (2021a); Hoogeboom et al. (2021); Sun & Yang
(2023).

The diffusion process consists of a forward noising procedure and a reverse denoising procedure.
The forward process incrementally adds noise to the initial solution x0 = xg

⋆, creating a sequence
of latent variables x0,x1, . . . ,xT. Note that in CO, x0 follows the high-quality solutions for a
given instance g, i.e., x0 ∼ P (xg

⋆|g). Furthermore, the fully noised solution xT in the last timestep
T becomes an Ng dimensional Bernoulli random variable with probability p = {0.5}Ng and each
variable is independent of each other, i.e., xT ∼ Bern(p = {0.5}Ng ). For brevity, we omit a problem
instance g and denote xg

⋆ as x0 in all formulas of the diffusion model as a convention.

The forward noising process is defined by q(x1:T|x0) =
∏T

t=1 q(xt|xt−1), where x0 ∼ q(x0|g),
and q(x1:T|x0) =

∏T
t=1 q(xt|xt−1) denotes the transition probability at each step. The reverse

process is modeled as pθ(x0:T|g) = p(xT)
∏T

t=1 pθ(xt−1|xt, g), with θ representing the model
parameters. The training objective is to match pθ(x0|g) with the data distribution q(x0|g), optimized
by minimizing the variational upper bound of the negative log-likelihood:

L(θ) = Eq

[
− log pθ(x0|x1, g) +

T∑
t=2

DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt, g))
]

(10)

In CO, considering that the entry of the optimization variable x are indicators of whether to select
a node or an edge, each entry can also be represented as an one-hot {0, 1}2 while modeling it
with Bernoulli distribution. Therefore, for diffusion process, x turns into N one-hot vectors x0 ∈
{0, 1}N×2. Then, discrete diffusion model Austin et al. (2021b) is utilized. Specifically, at each time
step t, the process transitions from xt−1 to xt defined as:

q(xt|xt−1) = Cat(xt;p = xt−1Qt) (11)

where the Cat(x;p) is a categorical distribution over x ∈ {0, 1}N×2 with vector probabilities p and
transition probability matrix Qt is:

Qt =

[
(1− βt) βt

βt (1− βt)

]
(12)

Here, βt represents the noise level at time t. The t-step marginal distribution can be expressed as:

q(xt|x0) = Cat(xt;p = x0Qt) (13)

where Qt = Q1Q2, . . . ,Qt. To obtain the distribution q(xt−1|xt,x0) for the reverse process,
Bayes’ theorem is applied, resulting in:

q(xt−1|xt,x0) = Cat

(
xt−1;p =

xtQt
⊤ ⊙ x0Qt−1

x0Qtxt
⊤

)
(14)

As in Austin et al. (2021b), the neural network responsible for denoising pθ(x̃0|xt, g) is trained to
predict the original data x0. During the reverse process, this predicted x̃0 is used as a substitute for
x0 to calculate the posterior distribution:

pθ(xt−1|xt) =
∑
x

q(xt−1|xt, x̃0)pθ(x̃0|xt, g) (15)
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B NEURAL NETWORK ARCHITECTURE

Following Sun & Yang (2023), we also utilize an anisotropic graph neural network with edge gating
Bresson & Laurent (2018a;b) for backbone network of the diffusion model.

Consider hℓ
i and eℓij as the features of node i and edge ij at layer ℓ, respectively. Additionally, let t

represent the sinusoidal features Vaswani et al. (2017) corresponding to the denoising timestep t. The
propagation of features to the subsequent layer is performed using an anisotropic message-passing
mechanism:

êℓ+1
ij = P ℓeℓij +Qℓhℓ

i +Rℓhℓ
j , (16)

eℓ+1
ij = eℓij + MLPe(BN(êℓ+1

ij )) + MLPt(t), (17)

hℓ+1
i = hℓ

i + α(BN(U ℓhℓ
i +

∑
j∈Ni

σ(êℓ+1
ij )⊙ V ℓhj)), (18)

where U ℓ, V ℓ, P ℓ, Qℓ, Rℓ ∈ Rd×d are learnable parameters for layer ℓ, α denotes the ReLU activa-
tion function Krizhevsky et al. (2010), BN stands for Batch Normalization Ioffe & Szegedy (2015),
A signifies the aggregation function implemented as SUM pooling Xu et al. (2019), σ is the sigmoid
activation function, ⊙ represents the Hadamard product, Ni indicates the neighbors of node i, and
MLP(·) refers to a two-layer multi-layer perceptron.

For the Traveling Salesman Problem (TSP), the initial edge features e0ij are derived from the cor-
responding values in xt, and the initial node features h0

i are initialized using the nodes’ sinusoidal
features. In contrast, for the Maximum Independent Set (MIS) problem, e0ij are initialized to zero,
and h0

i are assigned values corresponding to xt. We then apply a classification or regression head,
with two neurons for classification and one neuron for regression, to the final embeddings of xt (i.e.,
{eij} for edges and {hi} for nodes) for discrete and continuous diffusion models, respectively.

C EXPERIMENT DETAILS

C.1 TRAINING DETAILS FOR SL LEARNING

Since we leverage the trained checkpoints introduced by DIFUSCO (Sun & Yang, 2023) and T2T (Li
et al., 2023), we adopt the datasets and training procedures mentioned in DIFUSCO. This approach
ensures consistency with previous work and provides a solid foundation for our RL fine-tuning
experiments.

Training Details TSP-50 TSP-100 TSP-500 TSP-1000 TSP-10000 SATLIB ER-[700-800]
Number of epochs 50 50 50 50 50 50 50
Number of instances 1502000 1502000 128000 64000 6400 49500 163840
Batch size 512 256 64 64 8 128 32
Learning rate schedule Cosine schedule starting from 2e-4 and ending at 0
Curriculum learning No No Yes Yes Yes No No
Initialization - - TSP-100 TSP-100 TSP-500 - -

Table 7: DIFUSCO Training Details for different tasks

C.2 EFFICIENT RL FINE-TUNING VIA LORA AND SELECTIVE LAYER TRAINING

RL fine-tuning of large models, such as diffusion models, typically suffers from training instability
(Fan et al., 2023). To address this challenge and prevent reward hacking, we evaluate four parameter
unfreezing strategies on our pre-trained 12-layer GNN model, using TSP-100 as our benchmark. All
other hyperparameters remain constant in all experiments. Our baseline approach (FULL) unfreezes
all parameters across the network. Although this offers maximum flexibility, it leads to significant
training instability and memory inefficiency. We then explore more constrained approaches (Last1
and Last2) by unfreezing only the final one or two layers of our GNN. These methods improve
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Figure 4: Learning curves for different training methods for RL-finetuning in TSP-100.

stability and memory efficiency, but show limited performance gains due to the high proportion
of frozen parameters. To balance these trade-offs, we develop a hybrid approach (Last1+LoRA)
that combines Last1 with Low-Rank Adaptation (LoRA). This method unfreezes the final layer
while applying LoRA to the remaining layers. As shown in Figure 4, while FULL exhibits unstable
training and suboptimal performance, and Last1/Last2 show minimal improvement despite their
stability, our Last1+LoRA approach achieves both robust training and superior performance. Based
on these experimental results, we adopt Last1+LoRA for training CADO across most benchmarks,
with the exception of TSP-10000 only, where we employ Last2 for training efficiency.

C.3 TRAINING DETAILS FOR RL-FINETUNING

Most hyperparameters remain consistent in all experiments, with the primary variation in the number
of training epochs. For TSP-10000, we make two adjustments for training efficiency: we do not
apply LoRA (Low-Rank Adaptation), and we increase the number of unfrozen layers in DIFUSCO
(Last2). These modifications allow for more efficient training on this larger-scale problem while
maintaining model performance.

RL finetuning Details TSP MIS
50 100 500 1000 10000 SAT ER

Number of epochs 3000 3000 5000 5000 1250 3000 1400
Number of samples in each epoch 512
Batch size 64
Learning rate 1e-5
Denoising step 20 20 20 20 10 20 20
LoRA Rank 2 2 2 2 0 2 2
Number of unfreezed Layers 1 1 1 1 2 1 1

Table 8: RL finetuning Details for different tasks

D TSPLIB EXPERIMENT

TSPLIB. To assess CADO’s generalization ability, we tested the TSP100-trained model on
TSPLIB instances with 50-200 nodes. CADO uses 2OPT and 4x sampling to solve these instances.
Table 10 shows CADO outperforming other baselines again. It achieves a 0.117% performance,
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Table 9: Comparison of Algorithm Performance on TSPLIB Instances. Results of other baselines are
from Li et al. (2023); Hudson et al. (2021). 2OPT and sampling decoding are used in all diffusion-
based models(DIFUSCO, T2T,CADO).

Instances AM GCN Learn2OPT GNNGLS DIFUSCO T2T CADO
eil151 16.767% 40.025% 1.725% 1.529% 0.314% 0.314% 0.000%
berlin52 4.169% 33.225% 0.449% 0.142% 0.000% 0.000% 0.000%
st70 1.737% 24.785% 0.040% 0.764% 0.172% 0.000% 0.000%
eil76 1.992% 27.411% 0.096% 0.163% 0.217% 0.163% 0.000%
pr76 0.816% 27.793% 1.228% 0.039% 0.043% 0.039% 0.000%
rat99 2.645% 17.633% 0.123% 0.550% 0.016% 0.000% 0.000%
kroA100 4.017% 28.828% 18.313% 0.728% 0.050% 0.000% 0.000%
kroB100 5.142% 34.686% 1.119% 0.147% 0.000% 0.000% 0.000%
kroC100 0.972% 35.506% 0.349% 1.571% 0.000% 0.000% 0.019%
kroD100 2.717% 38.018% 0.866% 0.572% 0.000% 0.000% 0.000%
kroE100 1.470% 26.859% 1.832% 1.216% 0.000% 0.000% 0.003%
rd100 3.407% 50.432% 1.725% 0.003% 0.000% 0.000% 0.000%
eil101 2.994% 26.701% 0.387% 1.529% 0.124% 0.000% 0.105%
lin105 1.739% 34.902% 1.867% 0.606% 0.441% 0.393% 0.450%
pr107 3.933% 80.564% 0.898% 0.439% 0.714% 0.155% 0.195%
pr124 3.677% 70.146% 10.322% 0.755% 0.997% 0.584% 0.340%
bier127 5.908% 45.561% 3.044% 1.948% 1.064% 0.718% 0.310%
ch130 3.182% 39.090% 0.709% 3.519% 0.077% 0.077% 0.019%
pr136 5.064% 58.673% 0.000% 3.387% 0.182% 0.000% 0.000%
pr144 7.641% 55.837% 1.526% 3.581% 1.816% 0.000% 0.222%
ch150 4.584% 49.743% 0.312% 2.113% 0.473% 0.324% 0.390%
kroA150 3.784% 45.411% 0.724% 2.984% 0.193% 0.193% 0.015%
kroB150 2.437% 56.745% 0.886% 3.258% 0.366% 0.021% 0.314%
pr152 7.494% 33.925% 0.029% 3.119% 0.687% 0.687% 0.806%
u159 7.551% 38.338% 0.054% 1.020% 0.000% 0.000% 0.001%
rat195 6.893% 24.968% 0.743% 1.666% 0.887% 0.018% 0.180%
d198 373.020% 62.351% 0.522% 4.772% 0.000% 0.000% 0.000%
kroA200 7.106% 40.885% 1.441% 2.029% 0.259% 0.000% 0.074%
kroB200 8.541% 43.643% 2.064% 2.589% 0.171% 0.171% 0.060%

Mean 16.767% 40.025% 1.725% 1.529% 0.319% 0.133% 0.117%

Table 10: Results on TSPLIB. Results of other baselines are from Li et al. (2023); Hudson et al.
(2021)

Algorithm TSPLIB-[50-200]
Drop ↓

AM (Kool et al., 2019b) 16.767%
GCN (Joshi et al., 2019a) 40.025%
Learn2OPT (de O. da Costa et al., 2020) 1.725%
GNNGLS (Hudson et al., 2021) 1.529%
DIFUSCO (Sun & Yang, 2023) 0.319%
T2T (Li et al., 2023) 0.133%
CADO (Ours) 0.117%
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Action: 𝑥!"#

Reward: 𝑟!

Heatmap
Decoding

Initial State: 𝑥! State: 𝑥"
Reward: 0

State: 𝑥#
Reward: −𝑐(𝑓(𝑥#))

Decoded sol: 𝑓(𝑥#)
Cost: 𝑐(𝑓(𝑥#))

State: 𝑥"$%
Reward: 0

… …

Figure 5: The overall denoise process in terms of MDP. The initial random noise xT is sampled from
the Bern(p = 0.5N ).

renewing approximately 13.6% over the previous best score. Detailed results of Table 10 are in
Appendix D.

E TRANSFER LEARNING EXPERIMENT

Table 11: Results on various TSP size.

Fine-tuning 100→500 500→1000
Drop ↓ Drop ↓

SL →× 3.2% 2.12%
SL → SL (DIFUSCO) 1.55% 1.86%
SL → RL (CADO) 1.59% 1.04%

In this section, we investigate transfer learning scenarios for scaled-up task sizes for TSP. We com-
pare our primary RL fine-tuning approach with SL fine-tuning, which is feasible when a dataset for
the target task is available, as in DIFUSCO. We examined two scenarios: (1) TSP100→TSP500 and
(2) TSP500→TSP1000. Table 11 demonstrates that directly applying the model without fine-tuning
results in poor performance. CADO (1.59%) achieves comparable performance to SL fine-tuning
(1.55%) in the TSP100→TSP500 scenario and outperforms it in the TSP500→TSP1000 scenario
(1.86% → 1.04%). Notably, CADO accomplishes this without requiring an additional dataset of
optimal solutions for the target task sizes. These results highlight the effectiveness and efficiency of
our RL fine-tuning approach in transfer learning settings, particularly for larger-scale problems.

F COMPARISON WITH COST-AWARE HEATMAP CO SOLVERS

Among heatmap-based CO solvers, several approaches also incorporate cost information with moti-
vations similar to CADO. In this section, we highlight two important baselines: T2T (Li et al., 2023)
and Dimes (Qiu et al., 2022), and compare them with CADO.

F.1 COMPARISON WITH T2T

T2T (Li et al., 2023) is an important related work to our approach, as both employ diffusion-based
heatmap CO solving with cost incorporation. The key distinction between T2T and our approach
lies in their treatment of cost information: while T2T considers costs during inference through solu-
tion sampling without additional fine-tuning, CADO explicitly enable the model to sample low-cost
solutions through supplementary training. Specifically, T2T’s cost-guided sampling relies on two
main concepts:

• Cost-guided denoising process: Similar to classifier guidance, this technique steers a well-
trained diffusion model toward generating solutions with lower costs.

• Local rewrite: This diffusion-specific technique iteratively adds noise to disrupt the solu-
tions and denoises the sampled solutions to obtain improved results.

By combining these approaches, T2T can generate low-cost solutions without additional fine-tuning.
While this offers the advantage of avoiding CADO’s extra training costs when the base heatmap
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solver is well-trained, T2T’s performance deteriorates if the underlying base diffusion model is
inadequately trained. Our experimental results demonstrate these characteristics. As shown in Ta-
ble 6, for MIS-SAT problems where the pretrained baseline DIFUSCO effectively learns optimal
solution distributions, T2T outperforms CADO-L with its cost-guided sampling. Conversely, for
TSP-500/1000 and MIS-ER problems where DIFUSCO may benefit from additional training refine-
ments, CADO-L outperforms T2T with lower inference costs. Furthermore, our approach and T2T’s
method can be complementary. By incorporating T2T’s Local rewrite technique (while excluding the
cost-guided denoising process), CADO-L’s performance improves substantially. In our main results,
we refer to this hybrid approach simply as CADO.

F.2 COMPARISON WITH DIMES

DIMES (Qiu et al., 2022) employs reinforcement learning to train the heatmap solver directly for
high-quality solutions and naturally remains unaffected by the issues of SL-based heatmap solvers
discussed in Section 3. Furthermore, DIMES offers an advantage over CADO by eliminating the
need for additional solution datasets. However, this comes at the cost of being unable to lever-
age existing solution dataset information and the robust capabilities of diffusion models, resulting
in somewhat inferior performance. To compensate, DIMES proposes instance-specific fine-tuning
through local search or meta-learning frameworks during testing. While this approach significantly
increases inference time, it still falls short of CADO in terms of solution quality generated from
heatmaps.
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