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Fig. 1: In this work, we introduce an environment-shaping framework to improve the generalization of RL drone racing
agents to diverse and unseen tracks without retraining. We use a Soft Actor-Critic (SAC) policy to adaptively shape the
track layouts by generating difficult but achievable race tracks based on the racing agent’s actual performance. The resulting
single racing policy can fly in various unseen and challenging race tracks in the real world with competitive lap times.

Abstract— Reinforcement learning (RL) has achieved out-
standing success in complex robot control tasks, such as
drone racing, where the RL agents have outperformed human
champions in a known racing track. However, these agents
fail in unseen track configurations, always requiring complete
retraining when presented with new track layouts. This work
aims to develop RL agents that generalize effectively to novel
track configurations without retraining. The naı̈ve solution
of training directly on a diverse set of track layouts can
overburden the agent, resulting in suboptimal policy learning as
the increased complexity of the environment impairs the agent’s
ability to learn to fly. To enhance the generalizability of the RL
agent, we propose an adaptive environment-shaping framework
that dynamically adjusts the training environment based on the
agent’s performance. We achieve this by leveraging a secondary
RL policy to design environments that strike a balance between
being challenging and achievable, allowing the agent to adapt
and improve progressively. Using our adaptive environment
shaping, one single racing policy efficiently learns to race in
diverse and challenging tracks. Experimental results validated
in both simulation and the real world show that our method en-
ables drones to successfully fly complex and unseen race tracks,
outperforming existing environment-shaping techniques. Web-
site:https://environment-as-policy.github.io/

I. INTRODUCTION

Reinforcement learning (RL) involves agents learning
through trial and error by interacting with a pre-defined

∗ equal contribution. The authors are with the Robotics and Perception
Group, Department of Informatics, University of Zurich, and Department
of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
(http://rpg.ifi.uzh.ch). This work was supported by the European
Union’s Horizon Europe Research and Innovation Programme under grant
agreement No. 101120732 (AUTOASSESS) and the European Research
Council (ERC) under grant agreement No. 864042 (AGILEFLIGHT).

environment and maximizing the rewards based on these
interactions. It has proven highly effective in various robotic
control applications, demonstrating remarkable task perfor-
mance across scenarios like dexterous manipulation [1], [2],
[3], quadrupedal locomotion [4], [5], and agile quadrotor
flight [6], [7], [8]. Previous research has shown that RL
can even outperform human champions in the task of drone
racing [9], [10], where an RL agent flies a quadcopter drone
through a complex track at high speed, requiring quick
decision-making and precise control.

However, while RL agents excel within the specific dis-
tributions they are trained on, they struggle with out-of-
distribution configurations and may require retraining from
scratch for even minor configuration changes [11]. To im-
prove adaptability and generalization, extending the RL
framework to train and perform across a broader range of
distributions is essential, enabling agents to handle more
diverse and dynamic environments effectively. However,
training directly on a wide distribution of scenarios can
significantly degrade the efficiency and effectiveness of the
learning process [12]. As the distribution broadens, the
complexity of policy exploration increases, making it harder
for the agent to identify and implement effective solutions.

Domain randomization is a commonly used technique to
improve the learning capability of RL agents across a broader
range of tasks [11], [13], [14], [15]. This approach varies the
parameters of the training environment to expose the agent to
a wide variety of potential deployment scenarios. By learning
in diverse conditions, the agent develops robust policies
less likely to overfit the specific characteristics of a single
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environment. Domain randomization is often combined with
curriculum learning, where the complexity and variability
of training scenarios are incrementally increased [15]. By
starting with less challenging environments and gradually in-
troducing greater variability, the agent learns to perform well
in a wide set of scenarios without becoming overwhelmed
during the early stages of training. However, curriculum
learning often depends on manual design, introducing human
biases. This reliance on fixed, non-adaptive progressions can
limit training diversity and restrict the agent’s ability to
generalize to new, real-world situations [16]. These effects
are especially prominent in the challenging task of drone
racing, where the platform’s high agility and the need for
rapid decision-making amplify the difficulties. Therefore, the
challenge of agile drone racing on an unseen race track in
real-world conditions remains largely unexplored.

To address this problem, we propose an automatic adap-
tive environment-shaping framework to enhance the agent’s
generalization ability to fly in unseen race tracks. This
framework dynamically adjusts the environment curriculum
based on the agent’s learning progress (Fig. 1). The key
idea is to create consistently challenging yet attainable
environments, avoiding tracks that are too easy or overly
difficult, which could hinder learning. We achieve this by
leveraging a secondary RL agent to design environments that
maintain a balanced difficulty level, allowing the agent to
adapt and improve progressively. By automating the envi-
ronment shaping, the system can more precisely tailor the
learning environment to the agent’s performance, reducing
human bias and significantly enhancing the agent’s ability
to generalize across various unseen track configurations.
In experiments validated both in simulation and the real
world, we demonstrate for the first time a drone racing
policy that can race in different unseen tracks. We show that
our approach outperforms the existing environment-shaping
approaches using the same number of actions and enables
the racing policy to generalize to a diverse set of unseen and
complicated tracks.

II. RELATED WORKS

Reinforcement Learning for Robotics Reinforcement
Learning (RL) has been extensively applied in robotics
to facilitate continuous control in complex and dynamic
environments. Recent studies have achieved remarkable suc-
cess in various robotic domains. These include quadrotor
control [9], [10], [17], [8], [18], legged locomotion [19],
[5], and manipulation [20], [21], showcasing significant
advancements in the field.

Autonomous Drone Racing Autonomous drone racing is
an emerging field in which drones must navigate through
predefined waypoints in the shortest possible time. Success
in this field requires integrating advanced hardware and
sophisticated algorithms capable of perceiving the envi-
ronment, planning optimal paths, and executing actions in
real-time [22]. [10] demonstrated that RL controllers can
outperform traditional optimization-based approaches, such
as those proposed in [23], [24], for autonomous drone racing.

This advantage arises because RL can effectively handle
highly non-linear dynamical systems and complex objectives,
which pose significant challenges for conventional optimiza-
tion methods like Model Predictive Control (MPC) [25], [26].
Recent studies have shown that policies trained with deep
reinforcement learning (DRL) can surpass even human world
champions, employing vision-based state estimation for the
RL controller. Furthermore, [27], [18] have demonstrated
using RL to learn drone racing from image inputs directly.

Environment Shaping for Reinforcement Learning En-
vironment shaping has been widely applied in reinforcement
learning by designing a distribution of environments that
progressively improves the agent’s performance. Previous
works like [28], [29], [30], [31] on environment shaping
have been successful in simulation tasks like Bipedal Walker
and maze games, where environments are easily parameter-
ized for manual curriculum design. However, this process
becomes more challenging for more complex real-world
robotic tasks. Domain randomization is a common solution,
where environments are sampled from a predefined range to
enable robust task execution. For instance, [15], [14] used
domain randomization to achieve dexterous manipulation in
the real world. Additionally, [4] proposed an adaptive terrain
curriculum using a particle filter to sample environment
parameters, enabling quadrupedal locomotion across various
terrains in real-world scenarios.

III. METHODOLOGY

To enable agile flight through unseen tracks, our approach
introduces an Environment Policy that acts as a separate
agent, guiding the racing policy’s training across varied
tracks. Both policies are employed in an alternating fashion
during training: the environment policy creates tracks tailored
to the drone agent’s learning progress, enhancing the racing
policy’s robustness and speed. An overview of the method is
visualized in Fig. 2. In the following, we introduce the racing
policy in Sec. III-A and describe the proposed environment
policy in Sec. III-B.

A. Racing Policy Training

The autonomous racing task can be framed as an opti-
mization problem, where the objective is to minimize the
time it takes for an agile quadrotor to pass through a
predefined sequence of gates [22], as illustrated in Fig. 3.
In this task, we define the observations as oracing =[
p, R̃,v,ω, aprev, δp1, δp2

]
, where p ∈ R3 denotes the

drone’s position, R̃ ∈ R6 is a vector comprising the first
two columns of RWB [32], v ∈ R3 and ω ∈ R3 denote the
linear and angular velocity of the drone, aprev represents the
previous action from the actor policy, and δp1, δp2 ∈ R12

represent the relative difference in position of the four next
gate corners (4×3) in the world frame. Here, δp1 represents
the difference of the four corners of the next gate to pass
between the current quadrotor position, and δp2 represents
the positional difference of the corners between the next gate
to pass and the gate after the next gate to pass on the race
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Fig. 2: Overview of the proposed method. In every N iteration, the environment policy (left) takes as input the information
of the racing policy evaluations and the current environments. It generates actions to adjust the gate layouts independently
for each parallel environment. The racing policy (right) utilizes the information about drone and gate states from these
simulation environments to learn time-optimal drone racing strategies through an MLP.

track. The total reward at time t, denoted as rt, consists of
several components:

rracingt = rprogt + ractt + rbrt + rpasst + rcrasht , (1)

where rprogt represents progress toward passing the next
gate [33], ractt penalizes changes in actions from the previous
time step, rbrt discourages high body rates to ensure a stable
flying behavior, rpasst is a binary reward for successfully
passing the next gate, and rcrasht is a binary penalty applied
when a collision occurs, which also terminates the episode.
The reward components are formulated as follows

rprogt = α1(dGate(t− 1)− dGate(t)),

ractt = α2∥ut − ut−1∥,
rbrt = α3∥ωB,t∥,

rpasst = α4 if robot passes the next gate,

rcrasht = α5 if robot crashes (gates, ground).

(2)

B. Environment Policy Training

The track layout used for training the racing policy plays
a critical role in shaping its flying capabilities while also
impacting the overall training stability. If the tracks are
too difficult, the agent will struggle to extract meaningful
learning signals. Conversely, simple tracks fail to challenge
the agent, limiting its ability to generalize to more complex
environments. Thus, to ensure effective learning, the track
difficulty must be continuously adapted to the current capa-
bilities of the agent. To achieve this, we introduce a learned
environment policy πenv that dynamically adjusts the race
tracks. This adaptive approach allows the agent to consis-
tently gather relevant and progressive learning experiences,
optimizing its training stability and performance in diverse
race tracks.

1) MDP Formulation: In our racing scenario, the states
of the environment are represented by the position p and
orientation R of each individual gate, such that the full
gate state vector is given by sgates = [p1,R1, . . . ,pN ,RN ],
where N is the total number of gates in the environment.

The environment policy leverages the observation oenv =
[sgates, eracing], where sgates represents the current states of
all gates, and eracing indicates the performance of the drone
agent achieved in the track corresponding to the environment
state sgates. The evaluation performance vector eracing =
[e1, . . . , eN ] contains the gate-passing error for each of the
N gates, where the error ei is computed as the distance
between the drone’s position and the center of gate i at the
moment the drone passes through the gate. The environment
policy outputs actions a = [∆pgates,∆yawgates], where
∆pgates specifies changes in gate positions, and ∆yawgates
indicates changes in the yaw angles of the gates, both in the
world frame coordinates. Hence, the transition dynamics P
is naturally stgates = st−1

gates + at−1. As training progresses,
the training track layout reflects accumulated changes from
the initial track, naturally producing various tracks.

Another key component of our framework is the develop-
ment of a metric that precisely measures the effectiveness
of the environment policy’s actions on the performance of
the racing agent. In our work, we propose a reward for the
environment policy grounded in the relative ranking of the
performance of the racing policy in different environments.
Specifically, after each training phase, we rank all the parallel
training environments according to the number of gates the
agent successfully passed. The higher the ranking number,
the worse the policy performs. The environment policy is
then penalized for generating track layouts at the extremes
of the ranking—those that are either too easy or too difficult.
Additionally, we reward race tracks that fall within an
intermediate range, where the agent demonstrates a degree
of success but has not fully mastered the track. The reward
is defined as follows:

renvt =


R Nenv−rank

Nenv−rupper
if rank > rupper

R if rank ∈ [rlower, rupper]

R rank
rlower

if rank < rlower

(3)

where R represents a positive constant, rlower and rupper are
the fixed thresholds determining the mid-range representing
the tracks that are not too easy and not too hard, Nenv



−5
0

5

−2
0

2

0
1
2

x [m]y [m]

z
[m

]

−5
0

5

−5
0

5
1
2

−2
0

2

−5

0

5
1
2

(a) Figure 8 Track (b) 2D Big S Track (c) Kidney Track

−5
0

5

−5

0

5
0
2
4

−5
0

5

−2
0

2

0

2

4

−5
0

5
10

−5
0

0
2
4

(d) 3D Big S Track (e) 3D Figure 8 Track (f) Twist Track

Fig. 3: Visualization of the drone racing tracks used for the experiments, each characterized by varying levels of complexity.
All the tracks maintain a consistent size scale, spanning widths from 8 meters to 16 meters.

represents the total number of parallel training environments.
This formulation represents a smooth reward function that
provides fine-grained feedback on the environment policy
for each generated training track.

2) Environment Shaping: To accelerate data collection,
we train our environment agent and the racing agent using
multiple parallel simulation environments. To handle varying
numbers of environments, the environment policy indepen-
dently updates the track layout for each environment. Since
all environments initially share the same track layout, the
racing policy experiences a gradual increase in layout com-
plexity, which facilitates smoother learning during the early
stages of training. We use the notation Envi ← Envi−1 ⊕
ai−1 to represent changes in the individual environment. For
each new environment, the environment policy is trained for
every Nfreq racing policy update, where Nfreq determines
how much more frequent should πracing than πenv. Since
Nfreq is typically much greater than 1 (i.e., Nfreq ≫ 1), the
environment policy is updated less frequently than the racing
policy. To handle this, we choose the off-policy RL algorithm
Soft Actor-Critic (SAC) [34] to update the parameters of the
environment policy. The complete framework containing the
environment policy and the racing policy during the training
is presented in Algorithm 1.

IV. EXPERIMENTS

In this section, we first introduce the detailed experimental
setups in Sec. IV-A, followed by a discussion of the baseline
approaches used for comparison in Sec. IV-B. Our experi-
ments aim to address the following key research questions:
(i) How does our approach generalize to unseen race tracks?
(ii) How does our environment policy perform on different
training configurations? (iii) Can our generalist racing policy

Algorithm 1 Adaptive Environment Shaping
Initialize: πagent, πenv, and gate layout Env0
for i← 1, 2, ..., Nepoch do

Step 1: Generate New Environments
if i == 1 then

a0 ← random sample from the action space of πenv
Env1 ← Env0 ⊕ a0

else
Envi ← Envi−1 ⊕ πenv(sgates, eracing)

end if
Step 2: Train racing policy
for j ← 1, 2, ..., Nfreq do

Train πagent on updated Envi
end for
Step 3: Evaluate and update environment policy
Evaluate agent performance across tracks Envi
Compute relative ranking reward
Update environment policy πenv

end for

even fly in dynamic race tracks with moving gates? (iv) Does
our policy transfer to the real world?

A. Experimental Setup

Our training framework is built on the Flightmare simu-
lator [36], with reward functions and PPO hyperparameters
aligned with methods from previous research [9]. For our
environment policy, we implemented a vectorized Gym [37]
environment with the same number of environments as the
agent, using a total of 100 environments. The environment
policy uses the SAC implementation from Stable Baselines
3 [38], with fine-tuned parameters for our task setting.
Specifically, we set the gradient steps of SAC to 100 to



Track Type Track Name
Methods

Single-track RL RL w/o curriculum Particle Filter Domain Randomization Ours

SR [%] LT [s] SR [%] LT [s] SR [%] LT [s] SR [%] LT [s] SR [%] LT [s]

2D
Figure 8 100.00 4.263 0.00 - 100.00 5.128 100.00 6.205 100.00 4.746
Kidney 100.00 4.260 0.00 - 0.00 - 100.00 4.984 100.00 4.943
Big S 100.00 9.245 0.00 - 0.00 - 0.00 - 100.00 7.513

3D
3D Figure 8 100.00 5.010 0.00 - 100.00 5.654 0.00 - 100.00 5.856

3D Big S 100.00 10.187 0.00 - 0.00 - 0.00 - 100.00 9.761
Twist 100.00 7.444 0.00 - 0.00 - 0.00 - 100.00 10.199

TABLE I: We compare the success rate (SR) and lap time (LT) of our method against four baselines. Six different unseen
racetracks are evaluated in a realistic BEM simulation [35], including three 2D tracks and three 3D tracks. Here apart from
the our and baseline approaches, we also include the Single-track RL as a reference, which is a vanilla PPO agent trained
and tested on individual track.

accelerate the training of the environment policy and the
entropy coefficient to 1.0 for better exploration.

During the training process, the racing policy is updated
at every iteration, while the environment policy is updated
every 100 iterations. We sometimes encounter environments
getting stuck on infeasible tracks during training. To address
this, if the evaluation SR stays at zero for three consecutive
runs, we reset the environment to the initial race track. We
selected an 8-gate oval track for the initial layout due to its
simplicity, making it easier for the racing policy to learn and
adapt quickly. For the environment policy’s action space, we
constrained the gate movements as follows: along the x and y
axes, the range is [−1.0, 1.0]m; along the z-axis, the range is
[−0.2, 0.2]m, and for the yaw, the range is [− π

30 ,
π
30 ] rad. For

the relative ranking range, we set rlower to the 50th percentile
of all environments and rupper to the 90th percentile. These
hyperparameters are empirically found to lead to the best
performance during the ablation experiments. Our method is
trained for 800M data samples, which is equivalent to 12
hours of training using an NVIDIA TITAN Xp GPU.

To evaluate the performance of our approach, we tested
the racing policy on several fixed racetracks with varying
difficulties and complexities. We selected three 2D tracks,
where all gates are positioned at the same height along the z-
axis, including Figure 8, Kidney, and 2D Big S. Additionally,
we chose three 3D tracks, where the gates have varying
heights along the z-axis, including 3D Figure 8, 3D Big
S, and Twist, as shown in Fig. 3. All of these tracks are
significantly different than the initial training track, with most
having a different number of gates than during training. For
the evaluation, we primarily used two metrics: success rate
(SR %) and lap time (LT [s]). The success rate is calculated
as the ratio of successful runs, where the drone passes all the
gates without crashing, over the total number of trials. Lap
time refers to the drone’s total time to successfully complete
a race track. These metrics are commonly used in drone
racing and are essential in evaluating whether the policy
enables fast and stable flight performance [27], [18].

B. Baselines.
To evaluate the generalization ability of our proposed

methods, we compared them with three baseline methods:

(i) RL policy without curriculum: This method shares the
same initial environment setup as ours but does not use a
curriculum for training. (ii) Domain randomization from [6]:
In this approach, the initial environment is the same as in our
method. However, environment policy actions are sampled
randomly within the action space; we use the identical con-
figurations from [6]. (iii) Particle Filter Curriculum from [4]:
This method also uses the same initial environment as ours
but relies on a particle filter to sample environments.

How does our approach generalize to unseen race
tracks? We first evaluated our method on six unseen tracks
to assess its generalization ability across tracks with varying
numbers of gates and different layouts compared to those
used during training. Table I presents the performance re-
sults. As can be observed, the reference single-track RL
policies on the left side demonstrate the best performance
in most experiments. This is because these policies overfit
the specific track, allowing them to optimize and perform
well in that particular environment. Consequently, the results
from the RL method without a curriculum show that directly
training on one track without a curriculum and testing on
different tracks is not successful.

Additionally, we found that a simple curriculum has a
limited effect on improving the racing policy’s generaliza-
tion ability. Methods such as domain randomization and
particle filters can enhance the agent’s generalization ability,
allowing it to fly on some simple unseen tracks, such as
Figure 8 or Kidney tracks. However, since these methods
do not take into account the continuous improvement of
the agent’s policy during training or the evolution of the
environment, they fail to perform well in rather complicated
unseen tracks, e.g., in 2D Big S or Twist tracks. Only our
proposed method demonstrated stable and successful flight
across all six unseen tracks. Additionally, we observed that
for most 2D and 3D tracks (excluding the Twist track), the
policy’s performance (lap time) remains close to that of the
single-track RL policy, within a 1-second difference. This
difference can be explained by the increased generalization
of our policy, which did not memorize a single specific track.
This confirms that our training approach maintains strong
task performance while enhancing generalization.
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Fig. 4: Ablation study on the progress reward. Due to the
fluctuations in evaluation results across different iterations,
to fairly compare the performance of different coefficients,
we take the average and variance of the success rate and lap
time after the model has stabilized for comparison.

How does our environment policy perform on different
training configurations? To assess the impact of different
configurations on the performance of our environment policy
in racing policy training, we performed an ablation study.
Within the same parameter setting for the environment
policy, we vary the progress reward coefficients α1 from
Equation 2 of the racing policy. To the variance in the results,
we tested the different configurations on 100 randomly
generated tracks, which were manually filtered for feasibility.
As shown in Fig. 4, within a large range of parameters,
increasing the progress reward coefficient helps the agent
learn to fly faster, as evidenced by the decreasing lap times on
specific tracks. At the same time, we observe no significant
decrease in generalization, as the success rate remains fairly
stable. This indicates the robustness of our framework, where
a dedicated human-defined curriculum usually needs to be
re-designed for different speed ranges.

Can our generalist racing policy fly in dynamic race
tracks with moving gates? To evaluate the generalization of
our method, we further test the racing policy by deploying
it on a dynamic track. In this scenario, several gates move
at a constant speed in predefined directions. Notably, this
dynamic setting was never included in the training configura-
tions of the racing policy. As the track continuously changes,
the racing policy’s observations evolve over time. In this
setting, only a highly robust control ability can finish the
lap and prevent crashes. In this experiment, we chose the
Figure 8 track, where the third and fourth gates move dy-
namically along their y-axis at a constant speed of 0.6ms−1

within the ranges of [-0.5, 0.5] m, [-1.0, 1.0] m, and [-2.0,
2.0] m. As can be observed in ??, we can see that the
Domain Randomization [6] and Particle Filter [4] methods
still achieve partial success when the gates move within the
range of [-0.5, 0.5] m. However, both methods fail when
the range increases to [-1.0, 1.0] m. In contrast, our method
can handle perturbations up to [-2.0, 2.0] m. This further
demonstrates our method’s superior generalization ability,
enabling it to adapt its actions as observations change and
maintain stable performance even in the face of significant

Range [m] Methods SR [%] LT [s]

Static
Single-track RL 100.00 4.263
Particle Filter 100.00 5.128

Domain Randomization 100.00 6.205
Ours 100.00 4.746

[−0.5, 0.5]

Particle Filter 54.69 5.512
Domain Randomization 93.75 6.152

Ours 100.00 5.388

Particle Filter 0.00 -
[−1, 1] Domain Randomization 0.00 -

Ours 100.00 5.276

Particle Filter 0.00 -
Domain Randomization 0.00 -

[−2, 2] Ours (0.6m/s) 100.00 5.329
Ours (0.75m/s) 31.25 5.067

TABLE II: Results of flying on a dynamic Figure 8 racetrack.
We compare the success rate (SR) and lap time (LT) of
different methods.

dynamic variations. Also, we test the current limit of our
approach, where we further increase the gate moving speed
to 0.75m s−1. In this setting, our policy can still achieve
more than 30% success rate.

Does our policy transfer in the real world? To validate
the effectiveness of our proposed method, we conducted tests
in real-world conditions. We used the Agilicious quadrotor
platform [39] with precise state estimation provided by a
VICON motion capture system, ensuring accurate inputs for
the policy. The BetaFlight2 firmware was employed for low-
level control to execute the collective thrusts and body rate
commands. We performed nine laps on each of the six tracks
(Fig. 3), demonstrating that our single racing policy can
successfully navigate these previously unseen tracks in the
real world with a success rate of 100%, as shown on the
right side of Fig. 1. For further details, we invite readers to
view the supplementary video.

V. CONCLUSION

In this work, we proposed an adaptive environment-
shaping framework enabling, for the first time, a learned
policy to race on unseen and dynamic tracks. Our method
works by leveraging a secondary environment policy that
shapes the training environments for a drone racing policy.
Using our novel relative ranking reward, our environment
policy can generate track layouts that are challenging but
feasible based on the racing agents’ performance. One single
drone racing policy trained with our framework can race
in various race tracks with different complexity with 100%
success rate, whereas the state-of-art curriculum learning
approach mostly cannot fly. Furthermore, we validated the
policy’s generalization ability by racing on a track with mov-
ing gates, where existing methods performed significantly
worse at adapting to the fast-changing gate positions. We
believe our work represents a significant advancement in
enabling agile robots to achieve greater generalization and
robustness in complex, dynamic, and open environments.
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