
Under review as a conference paper at ICLR 2021

SIMPLE DEDUCTIVE REASONING TESTS AND NUMER-
ICAL DATA SETS FOR EXPOSING LIMITATION OF TO-
DAY’S DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning for Deductive Reasoning is an open problem in the machine learning
world today. Deductive reasoning involves storing facts in memory and gener-
ation of newer facts over time. The concept of memory, processor and code in
deduction systems is fundamentally different from the purpose and formulation
of weights in a deep neural network. A majority of the machine learning mod-
els are inductive reasoning models including state of the art deep neural networks
which are effectively tensor interpolation based models. A step towards realiza-
tion of memory is through recurrent neural networks and its variants, however the
formal representation is not sufficient enough to capture a complex mapping func-
tion between input and output patterns. Deep neural networks are positioned to do
away with feature engineering which is essentially deductive reasoning method-
ology. There are existing works in deductive reasoning in neural networks that
require learning of syntax, unification and deduction and operate on text data as
sequence of tokens. However the performance of deductive reasoning networks
is far from perfection which may be either due to syntax or deduction aspects. In
this context, we have proposed a suite of completely numeric data sets which do
not require parsing as with text data. The 10 data sets are for - (a) selection (3
data sets) - minimum, maximum and top 2nd element in an array of numbers; (b)
matching (3 data sets) - duplicate detection, counting and histogram learning; (c)
divisibility tests (2 data sets) - divisibility of two numbers and divisibility by 3; (d)
representation (2 data sets) - binary representation and parity. Though extremely
simple in terms of feature engineering, in all of these tests, simple deep neural
networks, random forest and recurrent neural networks have failed with very low
accuracies. We propose these as numerical test-bed for testing learning models for
deductive reasoning.

1 INTRODUCTION

Deductive reasoning is a branch of artificial intelligence where inferences are represented as asser-
tions or facts over data (Khemani, 2013). Starting with a set of given facts, the system combines
facts based on rules to generate newer facts and update the knowledge store. On the other hand
machine learning algorithms employ induction based approaches which are predominantly pattern
mapping methods (McClelland et al., 1986). Fundamentally, in a pipeline of operations, the vectors
are arithmetically combined, logically filtered, scaled up or scaled down and mapped to the target
vector of interest. A tensor is a more generalization of the vector representation mathematically.
However typically even a tensor is internally represented as an array of contiguous storage locations
with a data structure indicating dimensions. These tensors undergo a pipeline of transformations
minimizing an error function there by mapping a tensor on one side of the pipeline to the tensor on
the other side. Deep neural networks have demonstrated their performance almost at the level of
human or even better in computer vision and other domains (Bengio et al., 2017).

Although it is promising to see the success of deep neural networks (Dargan et al., 2019) (DNN)
there seems to be a popular belief and false opinion that they are suitable for all types of problems.
It is important to note here that problem statements solved by DNNs are of mainly of interpolation
in nature where tensors are combined along the pipeline to produce the output tensor. The vanilla

1



Under review as a conference paper at ICLR 2021

DNNs are not directly suitable for deductive reasoning type of problem statements. A knowledge
base in a deductive reasoning methodology is a storage for facts which are modified over time. For
instance, counting number of ones in a binary representation of the input, the current count is a
fact and as the algorithm iterates over input, the count value gets updated. Most of the iterations
over input, can be represented in a declarative style as first order logic statements such as pro-
log (Bratko, 2001). The weight space representation of a deep neural network is not a convenient
formulation to capture the facts, unification and inference mechanism as required by a deductive
reasoning methodology. However, earlier version of machine learning formulations required feature
engineering which itself accommodates for deductive reasoning in the form of outputs of human
crafted programs which are added as features.

There are on-going research efforts in this direction on modification of neural network architectures
to enable them for performing deduction reasoning. A small step in the direction of storage of past
information in data is a recurrent neural network formulation and its several variants (Mikolov et al.,
2011). Most of the existing works employ a recurrent neural network based formulation and its
variations due to the fundamental need of the notion of memory in a deductive reasoning setting.
We have tabulated the observations in the form of a Table 1.

Citation Data Processing
(Nangia &
Bowman,
2018)

Input is a string of list operations and
elements such as minimum and maxi-
mum. Output is the result of list opera-
tions. They have released a ListOps data
set.

TreeLSTM (Tai et al., 2015b)

(Saxton et al.,
2019)

Input is a stream of sequences of tokens.
A specific sequence is defined as a ques-
tion. The output is again a sequence of
tokens corresponding to answer.

They have used an RNN based formulation
for a question-answer system.

(Wu et al.,
2020; Irving
et al., 2016;
Gauthier
et al., 2020;
Bansal et al.,
2019; Polu
& Sutskever,
2020; Evans
et al., 2018;
Lample &
Charton,
2019)

Input is a string of tokens corresponding
to a truth statements of a theorem. Out-
put is a string of tokens corresponding
to proof for the theorem or identification
of top few premises.

They have used a variation of RNN formula-
tion.

(Yang &
Deng, 2019)

Input is a string of knowledgebase and
theorem. Output is a string of proof
statements. They also release CoqGym
data set of 71K proofs.

A TreeLSTM (Tai et al., 2015b) formulation
is used.

(Huang et al.,
2018)

Input is a string representation of a theo-
rem. Output is estimation of number of
steps required to finish and prediction of
the next expression.

RNN based formulation.

(Piotrowski
et al., 2019)

Input is a string of tokens corresponding
to polynomial coefficients in symbolic
form before normalization. Output is a
normalized equivalent expression.

They have used RNN based formulation.

(Paliwal et al.,
2020)

Input is a string of tokens correspond-
ing to theorem. Output is a string of to-
kens corresponding to the first step of
the proof.

The authors have used Graph Neural Net-
works (Zhou et al., 2018).

2



Under review as a conference paper at ICLR 2021

(Hahn et al.,
2020; Rabe
et al., 2020)

Input is a string of tokens correspond-
ing to a representation of arithmetic and
logical expression. Output is an equiv-
alent expression in another representa-
tion.

Sequence to sequence mapping using RNN
based formulation. In (Rabe et al., 2020) they
introduce Skip-tree architecture.

(Xu et al.,
2019)

Input: xi, yi as numeric, Process: The-
oretical study of what neural networks
can and cannot do, Output: A theoret-
ical study, Contribution: They suggest
max(), subset sum() problems.

(Wang et al.,
2019; Xu
et al., 2018;
Amizadeh
et al., 2018;
Selsam
et al., 2018;
Rocktäschel &
Riedel, 2016)

Input is a string of tokens corresponding
to logical expression. Output is boolean
for satisfiability or a string of tokens
corresponding to value assignments of
variables.

Some of the architectures proposed are (Xu
et al., 2018) CSP-CNN, (Amizadeh et al.,
2018) DG-DAGRNN, (Selsam et al., 2018)
NeuroSAT and RNN based formulations.

(Vinyals et al.,
2015)

Input is a set of tokens in tuple format
(position,token). Output is a sequence
of tokens.

RNN based formulation is used to carry out
sorting and copy operations. The idea is to
represent a sequence as a set.

(Devlin
et al., 2018;
Sukhbaatar
et al., 2015;
Tai et al.,
2015a; Weston
et al., 2014)

Input is a sequence of tokens corre-
sponding to a ’question’. Output is an-
other sequence of tokens conrrespond-
ing to ’answer’.

Variants of RNN based formulation such as
(Devlin et al., 2018) BERT, (Gers et al.,
1999) TreeLSTM

(Grefenstette
et al., 2015)

Input and output are vector sequences. An RNN based formulation with notion of
memory in the form of a stack or queue of
hidden vectors. The output is generated as
weighted combination of these memory vec-
tors (Neural stack and queue).

(Graves et al.,
2014)

Input and output are vector sequences. An RNN to include a controller network and
memory network for function selection and
operand selection towards building a Neural
Turing Machine.

Table 1: Literature review of the state of the art methods for deductive reasoning in deep learning.

The symbolic reasoning neural networks (Table 1) obtain the input is a variable length string of
tokens and the output is also a variable length string of tokens. Some tokens have special meaning
corresponding to syntactic and semantic interpretations such as opening and closing brackets, func-
tion call and data. While this problem formulation is more generic in nature, the onus of parsing the
input token list rests with the DNN in addition to interpretation and output generation.

In a deductive reasoning setting, the concept of memory becomes critical. Some of the deductive
reasoning tasks can be easily accomplished by a simple computer program to result in numeric
features or truth value statements. However the effect of a free form neural network do the same
and without tweaking is far from reach. Basic notion of memory in an RNN formulation is the
hidden vector formulation. In order to perform symbolic unification, logical operations and learn a
generic function from data, the hidden vector concept is reformulated for a stack or queue of vectors
(Grefenstette et al., 2015). The Neural Turing Machine (Graves et al., 2014) includes a controller
network and memory network to mimic a Turing machine and attempts to learn generic function
that maps input to output from data.

3



Under review as a conference paper at ICLR 2021

Figure 1: This picture depicts the three critical components of a general purpose mapping function
- processor, memory and code. A deep neural network attempts to model all three components in its
weight space representation.

In order to learn a generic mapping function from one pattern to another pattern, it is important to
see a basic computational model. In (Figure 1) we have indicated a conceptual processor, code and
data. A symbolic reasoning network tries to model the three entities simultaneously in the form of
weights of the network. A processor has a fixed set of instructions that operate on memory, P =
{(Ij ,M)}(∀j ∈ 1 . . . NP ) where NP denotes number of instructions, Ij denotes jth instruction, M
denotes a memory location. The data is indicated by, D = {Mk, Vk}(∀k ∈ 1 . . . NM ) where NM is
the number of locations, Mk is the kth memory location and Vk is the value present at the location.
A program or code is indicated by C = {(ai, bi)}(∀i ∈ 1 . . . NC) where ai is the instruction and bi
is the memory location. We do here some back of the envelope calculations on how many essential
vectors need to be captured for instructions, memory value pairs and code. If we assume one hot
encoding representation of all instructions, this would require an estimate of NP × NM pairs of
instructions. For each of the memory locations, the values are typically floating point numbers or
integers with large ranges, the possible numbers of memory-value pairs is an astronomical number
NM × |Vk| where |Vk| denotes value range. Each term in a program would correspond to one-hot-
encoding of NP × NM instruction and memory pairs. The number of programs of length NC that
can be generated would be NP ×NM

NC . Even for a simple processor having 10 instructions, 10
memory locations and a program of 10 steps, would require exploration of a space of 10010 vectors
corresponding to each program. It is not clear today, what is the best way to represent and model
the process as it is evident from low accuracies and high errors reported in state of the art symbolic
reasoning frameworks.

As symbolic processing requires a neural network to learn text parsing and also learn inference
from data. There are two moving parts in order to understand low accuracies observed in deductive
tasks. In order to specifically identify issue, we have provided numeric data sets that does not require
text parsing. It is also important at this stage of the state of the art, to clearly call out limitations
of the existing deep neural networks and machine learning formulations on what is and what is
not possible in a more specific way. As machine learning systems operate over data sets, the first
step in demonstrating what is not possible is via simple data sets for pattern mapping. We have
created some very simple data sets where a single engineered feature is sufficient enough to capture
the pattern, however deep networks fail to capture the deduction patterns. The data sets are for -
(a) selection (3 data sets) - minimum, maximum and top 2nd element in an array of numbers; (b)
matching (3 data sets) - duplicate detection, counting and histogram learning; (c) divisibility tests (2
data sets) - divisibility of two numbers and divisibility by 3; (d) representation (2 data sets) - binary

4



Under review as a conference paper at ICLR 2021

S.No Data set Algorithm invocation
(N=100000, K=50)

1 MIN SEL(”min”, N, K)
2 MAX SEL(”max”, N, K)
3 TOP2 SEL(”top 2”, N, K)
4 BINARY REP(”parity”,N,K)
5 SORT SORT(N,K)
6 COUNT MAT(”count”,N,K)
7 DIV DIV(”divisible”,N,K)
8 DIV3 DIV(”divisible by 3”,N,K)
9 PARITY REP(”parity”,N,K)
10 DUP MAT(”duplicate”,N,K)

Table 2: Data set name and algorithm that generated the data set are shown here.

representation and parity. We demonstrate that in all of these data sets, the deep neural networks fail
with very low accuracies.

The efforts in the state of the art for symbolic neural networks mainly include on parsing of the
textual input, unification and deduction. These works try to address based on tweaking the architec-
ture of the network for bringing in memory. The RNN based formulation addresses processing part.
However, we observe and propose for research there is additional component which is the type of
neuron used. In current networks, a single neuron performs only simple arithmetic operations and a
comparison against zero as in ReLU. We conjecture here there is scope for innovation in increasing
the computational capability of a neuron and ad-hoc connections as proposed in Webster (2012).

2 METHODS

In order to present how deductive reasoning is fundamentally different from interpolation based
reasoning, we have created ten data sets which are described in this section. Data sets are generated
by invoking the algorithm as shown in the (Table 2).

2.1 DATA SETS FOR SELECTION PROBLEMS

Identification of maximum or minimum element in an array of numbers, requires facts to be recorded
in a storage, infer on top of them in the current iteration and update the storage with newer facts.
The data set consists of D = (xi, yi) tuples i ∈ [1..N ] where N = 100000. Each xi ∈ RK is a K
dimensional vector where K = 50 in our case and yi contains the value of an element of interest in
the array, i.e. yi = max(xi,1, . . . , xi,K).

The data set is generated as shown in the schematic (Algorithm 1).

Algorithm 1 Selection Data Set Generation Algorithm - SEL(T,N,K)

Require: T,N,K
(∀i ∈ [1..N ]), (∀j ∈ [1..K])xi,j = RAND()
/* RAND() function generates a random number */
/* T : Type of selection, N : Number of elements in data set, K: Dimensionality of each point */
if T is ”max” then
(∀i ∈ [1..N ]) : yi = max(xi)

else if T is ”min” then
(∀i ∈ [1..N ]) : yi = min(xi)

else if T is ”top 2” then
(∀i ∈ [1..N ]) : yi = max(set(xi)− {max(xi)})

end if
return (x, y)

5



Under review as a conference paper at ICLR 2021

2.2 DATA SETS FOR MATCHING PROBLEMS

The data set is almost same as for the selection problem, however here, duplicate detection and
histogram learning are carried out. This requires the numbers to be remembered and compared
against other elements. The Duplicate data set contains of D = (xi, yi) tuples i ∈ [1..N ] where
N = 100000. Each xi ∈ RK is a K dimensional vector where K = 50 in our case and yi contains
either 1 or 0. 1 if a element j ∈ xi is present more than once.
The Histogram data set contains of of D = (xi, yi) tuples i ∈ [1..N ] where N = 100000. Each
xi ∈ RK is a K dimensional vector where K = 50 in our case and yi contains the count of elements
which lies between 1 and 10. The data set is generated as shown in the schematic (Algorithm 2).

Algorithm 2 Matching Data Set Generation Algorithm - MAT(T,N,K)

Require: T,N,K
(∀i ∈ [1..N ]), (∀j ∈ [1..K])xi,j = RAND()
/* RAND() function generates a random number*/
/* T :Type of Matching, N : Number of elements in data set, K: Dimensionality of each point */
if T is ”duplicate” then
(∀i ∈ [1..N ]), yi = 0, (∀j, k ∈ [1..K], j 6= k & & xi[j] == xi[k]) : yi = 1
for (∀i ∈ [1..N ]) do

/* check if a element is present more than one time */
yi = 0
for ∀j ∈ [1..K] do

for (∀k ∈ [1..K]) do
(j 6= k & & xi,j == xi,k)
→ yi = 1

end for
end for

end for
end if
if T is ”count” then

for (∀i ∈ [1..N ]) do
//count number of vector elements ¡= 10
for (j ∈ [1..K]) do
xi,j <= 10→ yi = yi + 1

end for
end for

end if
return (x, y)

2.3 DATA SETS FOR DIVISIBILITY PROBLEMS

For divisibility tests the facts are to be recorded in storage and new element is processed based on
this fact and after processing, update the storage with the new fact. For example if we want to
perform divisibility test if 1342 is divisible by 11. At first 13 will be evaluated against 11 it will
give a remainder 2 which is new fact that we need to store and move on to next element and that’s
4. Combining this element with our fact we should get 24 and that will be evaluated against 11 and
will give remainder or new fact as 2. And this keeps on going until no element is left.
The Divisibility data set contains of D = (xi, yi) tuples i ∈ [1..N ] where N = 100000. Each xi

contains a tuple of two elements xi = a, b and yi contains either 0 and 1. 1, if (a mod b == 0)
and 0, if (a mod b 6= 0).

The data set is generated as shown in the schematic (Algorithm 3).

2.4 DATA SETS FOR REPRESENTATION PROBLEMS

This contains two data sets i) parity data set and ii) binary representation data set. The parity data
set contains of D = (xi, yi) tuples where xi ∈ R and yi denotes the parity of the xi. Parity of a
number is based on the number of 1 present in it’s binary representation. If number of 1 is even then

6



Under review as a conference paper at ICLR 2021

Algorithm 3 Divisibility tests Data Set Generation Algorithm - DIV (T,N)

Require: T,N
if T is ”divisible” then

for (∀i ∈ [1..N]) do
(xi = [RAND(), RAND()])
yi = 0
(xi,0 mod xi,1 == 0)→ yi = 1

end for
end if
if T is ”divisibility by 3” then

for (∀i ∈ [1..N]), xi = RAND() do
yi = 0
(xi mod 3 == 0)→ yi = 1

end for
end if
return (x, y)

parity of that will be 0. And if the number of 1 is odd then parity of that will be 1. For example if
we take 17. It’s binary representation is 10001. It contains 2 one’s in its binary representation so
parity of 17 is 0. The binary representation data set contains of D = (xi, yi) tuples where xi ∈ R
and yi ∈ 0, 1K where K is 20 in our case denotes its binary representation. For example if xi is 20
and K is 7 then yi will be 0010100.

The data set is generated as shown in the schematic (Algorithm 4).

Algorithm 4 Representation Data set Generator- REP (T,N,K)

Require: T,N,K
if T is ”binary” then

for ∀i ∈ [1..N ] do
xi = RAND() //single number
yi is binary representation of xi in K bits.

end for
end if
if T is ”parity” then

for (∀i ∈ [1..N ]) do
xi = RAND()
s =binary representation of xi in K bits.
r =count number of 1 in s.
yi = 0
(r mod 2 6= 0)→ yi = 1

end for
end if
return (x, y)

2.5 DATA SET FOR SORTING PROBLEM

This data set consists of xi as a list of numbers, mapped to its sorted equivalent yi. The idea is
sorting is a very prominent pattern to humans, however basic neurons are not able to capture all of
the the element to element relationships. The algorithm for sorting is shown in (Algorithm 5). For
example, if xi = [1, 3, 2, 1,−9] then sorted yi = [−9, 1, 1, 2, 3].

7



Under review as a conference paper at ICLR 2021

Algorithm 5 Sorting Test Data Set Generation Algorithm - SORT (N,K)

for ∀i ∈ [1..N ] do
∀j ∈ [1..K] : xi,j = RAND()
yi = SORT (xi)
/*Sorted version of xi in ascending order*/
(∀j, k) : (j < k)→ (yi,j < yi,k)

end for
return (x, y)

2.6 MACHINE LEARNING MODELS USED IN THE STUDY

2.6.1 DEEP NEURAL NETWORK

The Deep Neural Networks model we used for testing the datasets was of 3 layers each consisting
of 100 neurons. This model was implemented in Google Tensorflow(Abadi et al., 2016)

2.6.2 RANDOM FOREST

The Random forest (Liaw et al., 2002) was implemented in Sci-kit Learn(Pedregosa et al., 2011)
a Python based library. The configuration in which we use Random forest is (max-depth=5,
criterion=gini, mini-samples-split=2, n-estimators=10).

2.6.3 RECURRENT NEURAL NETWORK

The RNN model we used for testing the datasets was of three layers. First layer is a LSTM (Gers
et al., 1999) cell followed by two layers of RNN cell. We used Relu as activation function. The
model was implemented in Google Tensorflow(Abadi et al., 2016).

2.7 TRAIN AND TEST DATA SET PARTITIONS

The machine learning model is tested based on a bit lenient train and test partitions of 90% and 10%
respectively. The training data size has been increased so as to allow the classifier to make use of
more number of patterns as the data sets are tough for any induction based classification formulation
today.

3 RESULTS

The performance of machine learning models on each of the data sets is computed in two forms -
regression and classification. For those problems where the final output is a numeric quantity, the
problem is posed as regression and Root Mean Squared Deviation (RMSD) values are reported. The
problems posed as regression are selection problems, binary representation of a number, sorting
and count of numbers between 0 and 10 and presented in (Table 3). For the problems where the
output is a decision, they are posed as classification problem in our setting. The problems posed as
classification are divisibility of two numbers, divisibility by 3, parity and detection of duplicate and
presented in the (Table 4).

Except for the parity problem where a random forest has performed with > 92% accuracy, in rest of
the places the three methods chosen for evaluation have all failed to give 100% accuracies although
the data sets are quite simple.

It is worth discussing, the parity problem in more detail on which random forest appeared to have
worked (the * marked observation), however we can readily observe that anything less than 100%
would not be of any practical use and not reliable. Consider a binary representation of input of
length K elements. The total number of variations of the input is 2K . In this case, the input
dimensionality is K = 50, which corresponds to a data set of 250 elements amounting to a total
storage cost of 50 × 4 × 250 = 200 peta bytes, considering floating point representation for each
input element of the vector. When the input dimensionality becomes 1000, which is not uncommon,
the storage requirement for data grows to 1000 × 4 × 21000 which is an astronomical number. A

8



Under review as a conference paper at ICLR 2021

S.No Dataset Name RMSD of RF RMSD of NN RMSD of RNN

1 MIN 7.2788 28.2572 20.378
2 MAX 7.2788 28.398 24.397
3 TOP2 3.912 28.455 62.81
4 BINARY ∞ ∞ ∞
5 SORT ∞ ∞ ∞
6 COUNT 10.90 28.50 4.4312

Table 3: Performance of data sets on RNN, NN and RF based on regression formulation. Root Mean
Squared Deviation (RMSD) values are computed on the output predictions.

S.No Dataset Name Accuracy of RF Accuracy of NN Accuracy of RNN

7 DIV 0.691 0.5133 0.5015
8 DIV3 0.6668 0.6566 0.6668
9 PARITY 0.926* 0.6836 0.5279
10 DUP 0.4962 0.67 0.5427

Table 4: Performance of data sets on RNN, NN and RF based on classification formulation. Accu-
racy values are reported on the output predictions.

decision tree to successfully learn with 100% certainty requires all input patterns to be available in
training. The size of the tree in terms of the number of nodes is 2K+1 − 1. Storing a tree having
251 − 1 nodes has practical limitations for the problem it is trying to address, as simple as parity
computation. However a simple for loop through the data requires only one pass through the input
and requires only a constant space storage of a couple of floating point variables and predicts with
100% certainty. Having an additional feature in the input, feature engineered to compute parity (i.e.
K+1 dimensional input), would reduce the amount of training data requirement to just K+1 points
to result in 100% accuracy of any standard classifier.

Each of these problems require at least one pass through the input elements and computing logical
inferences. Given multiple possible permutations of the elements of the input vector, any single
pass neural network would need to accommodate in some form for those many variations. However,
recurrent neural networks do attempt to remember the state

4 CONCLUSIONS

We have presented here an issue with limitations of the present day deep neural networks to address
deduction based inferences. Today deep neural networks are positioned to do away with feature
engineering however we have demonstrated that this is not true. It is an open area of research
to configure neural networks to carry out deductive reasoning, however the data sets are mainly
sequence of tokens in text where parsing, symbolic unification and deduction abilities come into
picture. We have created a simplistic data set that is purely numeric and can be directly consumed
by neural networks without a need to learn parsing as well. The notion of knowledge representation
as storage of facts and deductive reasoning is not thoroughly captured by the weight space formal
representation of neural networks. We have demonstrated failure of typical multi layer perceptron
deep neural networks, random forest and recurrent neural network formulations on data sets which
require deduction reasoning based features. The data sets are for - (a) selection (3 data sets) - mini-
mum, maximum and top 2nd element in an array of numbers; (b) matching (3 data sets) - duplicate
detection, counting and histogram learning; (c) divisibility tests (2 data sets) - divisibility of two
numbers and divisibility by 3; (d) representation (2 data sets) - binary representation and parity.
We also discussed the parity problem and impracticality of storage and computation to achieve full
accuracy by a strong classifier such as a decision tree unless a simple computation friendly feature
is engineered. We have presented a case for novel models for learning deductive reasoning from
examples. These novel models can be a combination of deduction and induction systems operating
together as a model on top of an evolutionary computational framework.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16), pp. 265–283, 2016.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An un-
supervised differentiable approach. In International Conference on Learning Representations,
2018.

Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and Stewart Wilcox. Holist: An envi-
ronment for machine learning of higher order logic theorem proving. In International Conference
on Machine Learning, pp. 454–463, 2019.

Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning, volume 1. MIT press Mas-
sachusetts, USA:, 2017.

Ivan Bratko. Prolog programming for artificial intelligence. Pearson education, 2001.

Shaveta Dargan, Munish Kumar, Maruthi Rohit Ayyagari, and Gulshan Kumar. A survey of deep
learning and its applications: A new paradigm to machine learning. Archives of Computational
Methods in Engineering, pp. 1–22, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can neural
networks understand logical entailment? arXiv preprint arXiv:1802.08535, 2018.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish. Tactictoe:
Learning to prove with tactics. Journal of Automated Reasoning, pp. 1–30, 2020.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction
with lstm. 1999.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to
transduce with unbounded memory. In Advances in neural information processing systems, pp.
1828–1836, 2015.

Christopher Hahn, Frederik Schmitt, Jens U Kreber, Markus N Rabe, and Bernd Finkbeiner. Trans-
formers generalize to the semantics of logics. arXiv e-prints, pp. arXiv–2003, 2020.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A learning environ-
ment for theorem proving. arXiv preprint arXiv:1806.00608, 2018.

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Eén, François Chollet, and Josef
Urban. Deepmath-deep sequence models for premise selection. Advances in neural information
processing systems, 29:2235–2243, 2016.

Deepak Khemani. A first course in artificial intelligence. McGraw-Hill Education, 2013.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412, 2019.

Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R news, 2(3):
18–22, 2002.

James L McClelland, David E Rumelhart, PDP Research Group, et al. Parallel distributed process-
ing. Explorations in the Microstructure of Cognition, 2:216–271, 1986.

10



Under review as a conference paper at ICLR 2021

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Exten-
sions of recurrent neural network language model. In 2011 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pp. 5528–5531. IEEE, 2011.

Nikita Nangia and Samuel R Bowman. Listops: A diagnostic dataset for latent tree learning. arXiv
preprint arXiv:1804.06028, 2018.

Aditya Paliwal, Sarah M Loos, Markus N Rabe, Kshitij Bansal, and Christian Szegedy. Graph
representations for higher-order logic and theorem proving. In AAAI, pp. 2967–2974, 2020.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Bartosz Piotrowski, Josef Urban, Chad E Brown, and Cezary Kaliszyk. Can neural networks learn
symbolic rewriting? arXiv preprint arXiv:1911.04873, 2019.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Markus N Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical reasoning via
self-supervised skip-tree training. arXiv preprint arXiv:2006.04757, 2020.

Tim Rocktäschel and Sebastian Riedel. Learning knowledge base inference with neural theorem
provers. In Proceedings of the 5th Workshop on Automated Knowledge Base Construction, pp.
45–50, 2016.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L
Dill. Learning a sat solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In Advances
in neural information processing systems, pp. 2440–2448, 2015.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015a.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015b.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391, 2015.

Po-Wei Wang, Priya L Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and
logical reasoning using a differentiable satisfiability solver. arXiv preprint arXiv:1905.12149,
2019.

Craig S Webster. Alan turing’s unorganized machines and artificial neural networks: his remarkable
early work and future possibilities. Evolutionary Intelligence, 5(1):35–43, 2012.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Grosse. Int: An inequality benchmark for evaluating
generalization in theorem proving. arXiv preprint arXiv:2007.02924, 2020.

Hong Xu, Sven Koenig, and TK Satish Kumar. Towards effective deep learning for constraint
satisfaction problems. In International Conference on Principles and Practice of Constraint Pro-
gramming, pp. 588–597. Springer, 2018.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? arXiv preprint arXiv:1905.13211, 2019.

11



Under review as a conference paper at ICLR 2021

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. arXiv
preprint arXiv:1905.09381, 2019.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. Graph neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

12


	Introduction
	Methods
	Data Sets for Selection Problems
	Data Sets for Matching Problems
	Data Sets for Divisibility Problems
	Data Sets for Representation Problems 
	Data Set for Sorting Problem
	Machine learning models used in the study
	Deep neural network
	Random Forest
	Recurrent Neural Network

	Train and Test Data Set Partitions

	Results
	Conclusions

