
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AN EFFECTIVE EMBEDDING APPROACH TO SHORTEST
PATH DISTANCE PREDICTION OVER LARGE-SCALE
GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

In graph data management, computing the shortest path distance between any pair
of nodes is a crucial and foundational graph operation with numerous practical
applications (e.g., travel/route planning, community search). Traditional algo-
rithms for solving this problem face significant challenges in terms of time and
space complexity, especially when dealing with large-scale graphs. Worse still,
existing learning-based approaches often struggle with low accuracy in predicting
intricate graph structures. To address these issues, this paper introduces a novel
Graph Convolutional Networks (GCN)- and Multi-View Deep Neural Networks
(MVDNN)-based Distance Embedding (GM-DE) framework, which enables the
fast and accurate prediction of shortest path distances. Specifically, based on our
proposed pivot and anchor set selection strategies, GM-DE enables the calculation
of embeddings for each node in the graph. Then, by feeding such embeddings into
our designed GCN and MVDNN models, GM-DE can be well-trained to support
the mining of accurate global and local positional information for graph nodes,
with the help of our constructed predictors. In this way, our GM-DE framework
can achieve high accuracy in various complex scenarios, relying solely on basic
node attributes as input without the need for scenario-specific data. Comprehen-
sive experiments confirm the effectiveness and efficiency of the GM-DE approach
in predicting the shortest path distances on a wide range of real-world graphs.

1 INTRODUCTION

Calculating the shortest path distance between two nodes is an essential task in graph data man-
agement, playing a vital role in various practical applications, including travel and route plan-
ning (Ouyang et al., 2023) and community search (Fang et al., 2016). For example, in the academic
community, calculating the shortest path distance between two authors helps researchers identify
communities of collaborators with close connections by analyzing connection paths, such as collab-
orations, conference participation, or follow-ups between researchers, which speeds up the discovery
of community and user connections.

When computing the shortest path distance between two nodes within a graph, traditional algo-
rithms have evolved into a set of classic methods over time. A prominent example is the Dijkstra
algorithm (Dijkstra, 1959), a single-source shortest path algorithm. Improved algorithms, such as
the label-based algorithms (Chang et al., 2012; Jin et al., 2012), determine the shortest route by
marking distance information on nodes and updating the marks according to specific rules, which
are more efficient in certain scenarios. However, when tackling large-scale graphs, such as those on
YouTube, the shortcomings of classic algorithms become apparent. YouTube’s graphs, which have
billions of nodes (such as users and videos) and edges (e.g., following, watching, and commenting),
pose challenges to traditional algorithms, including: i) significant time complexity, as calculating
millions of paths could demand hours or even days; and ii) extensive memory use, surpassing the
capacities of standard computers. Even with distributed storage, the efficiency of classic algorithms
remains compromised due to the extra overhead involved in data transmission and access.

Along with the popularity of artificial intelligence techniques, various learning-based methods have
been investigated to solve the shortest path problem. Specifically, learning-based methods estimate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the shortest path distance by learning potential patterns in graph data or employing distance encoding
strategies (Li et al., 2020; Kolouri et al., 2021), followed by prediction models, instead of executing
accurate traversal and computation. Although the results learned by these methods can significantly
improve the efficiency of distance queries in the online computing stage, existing learning-based
methods still suffer greatly from various limitations. Specifically, some solutions (Rizi et al., 2018;
Schlötterer et al., 2019) either focus on local details or emphasize global positional information,
resulting in a notable decline in prediction accuracy. Alternatively, some other methods are built on
decision tree models, e.g., CatBoost (Wang et al., 2024; Jiang et al., 2021), which perform well when
there are a few shortest path distance results in the graph. However, their accuracy drops significantly
when faced with complex scenarios that yield numerous results. Additional, numerous existing
methods (Chen et al., 2022; Huang et al., 2021; Qi et al., 2020) heavily rely on scenario-specific
features. For example, numerous studies focus on road networks and incorporate geographic features
such as latitude and longitude, which are heavily dependent on location, making their application to
other graph structures (e.g., social networks) extremely difficult. Clearly, there is a lack of learning-
based methods that account for both accuracy and generalization ability.

In this paper, we introduce a novel learning-based framework, named GCN-MVDNN-based Dis-
tance Embedding (GM-DE), to facilitate the estimation of shortest path distances. Based on our
proposed pivot and anchor set selection methods, GM-DE enables the calculation of both local
and global embeddings for each node in the graph. Meanwhile, GM-DE employs Graph Convolu-
tional Networks (GCN) (Kipf & Welling, 2017) and our designed Multi-View Deep Neural Networks
(MVDNN) to comprehensively mine the local and global positional information of all graph nodes
based on our constructed predictors. Note that our GM-DE framework employs neural networks
rather than decision tree models for its learning processes, thereby enhancing its ability to handle
complex scenarios and maintain accuracy, even with a multitude of distance outputs. Furthermore,
GM-DE significantly enhances its adaptability by using only key node attributes as input, eliminating
the need for scenario-specific information. This paper makes the following four major contributions:

• We propose effective pivot and anchor set selection strategies that enable the calculation of
local and global embeddings for graph nodes.

• We design MVDNN to capture full views from selected anchor sets, enhancing the capa-
bility to accurately mine the global positional information of graph nodes.

• We develop three predictors to help fuse local and global embeddings, improving GM-DE’s
ability to handle complex graphs without compromising accuracy.

• We conduct comprehensive experiments on five real-world graphs, showing that GM-DE
outperforms state-of-the-art (SOTA) methods in both effectiveness and efficiency.

2 RELATED WORK

Traditional Algorithms. Numerous traditional algorithms and optimization approaches have been
developed to solve shortest path distance problems in graphs. The Dijkstra algorithm (Dijkstra,
1959) is a classic single-source shortest path algorithm. Its core is to gradually expand from the
source node through a greedy strategy, continuously determining the shortest path from each node
to the source node. The time complexity can be optimized to O(n log n+m) when using a Fibonacci
heap, where n is the number of nodes and m is the number of edges, and the space complexity is
O(n). The Floyd–Warshall algorithm (Floyd, 1962) is a shortest path algorithm for all pairs of
vertices. Based on the dynamic programming idea, it gradually updates the distance matrix between
nodes by introducing intermediate nodes to solve the shortest path distance between two nodes. Its
time complexity is O(n3) and space complexity is O(n2). Label-based algorithms (Chang et al.,
2012; Akiba et al., 2013) are a type of optimization algorithm whose key lies in attaching labels to
each node. These labels store distance information from the node to other nodes, allowing online
queries to directly obtain an approximate result with a time complexity of O(1). The node set
selected for labeling directly determines the algorithm’s performance, while finding the optimal
node set for a graph has been proven to be an NP-hard problem. For example, in the work (Jin et al.,
2012), a smaller distance error ratio will result in a denser bipartite graph, leading to a longer time
required to find the optimal coverage. Meanwhile, if more distance information between nodes is
stored to cover more query scenarios, the space complexity will still reach O(n²) (Jiang et al., 2014).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Learning-based Methods. Learning-based methods often estimate the shortest path distance by
learning node embeddings. The core idea is to map the nodes into a low-dimensional vector space
such that the distance or similarity between the vectors is related to the shortest path distance be-
tween the nodes. One category is based on random walk, such as Deepwalk (Perozzi et al., 2014) and
node2vec (Grover & Leskovec, 2016), which generate sequences by simulating random walks and
then learn node embeddings. These methods mainly capture the local positional features of nodes,
but have a limited ability to estimate the shortest path distance for node pairs with long distances.
One category compresses the entire distance matrix into a few elements and then reconstructs the
missing elements to obtain the distance of the query node pair (Thorup & Zwick, 2005), which can
be recognized as a global method. However, lossless compression of such a distance matrix is ex-
tremely challenging. A third category aims to integrate local and global information to overcome the
limitations of single-perspective approaches. The method (Wang et al., 2024) resamples the prob-
ability of node occurrence in random walks and combines these embeddings with existing global
embeddings to estimate the shortest path distance. However, due to the use of decision trees, it only
performs well on special graphs (with a small distance range). In addition to the above three meth-
ods, many researchers have focused on specific scenarios, such as road networks. Relevant studies
often leverage the characteristics of road networks to optimize algorithms, such as designing hier-
archical strategies based on their hierarchical structure (Huang et al., 2021) or utilizing geographic
coordinates to aid in estimation (Chen et al., 2022; Qi et al., 2020), thereby sacrificing generality in
other types of graph structures.

3 PROBLEM DEFINITION

According to Definition 1, in our graph, the shortest path between two nodes is the path with the
minimum sum of edge weights. We use the symbol di,j to denote the distance of the shortest path
from node vi to vj in graph G.

Definition 1 (Graph, G) An undirected graph G = (V,E) consists of V denoting a set of nodes
{v1, v2, . . . , vn} and E denoting a set of edges {e1, e2, . . . , em}, and each edge (vi, vj) is assigned
a weight wi,j .

In the following, we formally define the Shortest-Path Distance Estimation (SPDE) problem.

Definition 2 (The Shortest-Path Distance Estimation (SPDE) Problem, SPDE) Given a graph G
and two distinct nodes vi ∈ V (G) and vj ∈ V (G) in G, the shortest-path distance estimation
(SPDE) problem returns an estimated shortest-path distance, d̂i,j , where d̂i,j is a prediction of the
shortest path distance di,j , such that:

d̂i,j ≈ di,j . (1)

4 OUR GM-DE APPROACH

In this section, we detail our GM-DE framework, a novel approach that mines and mixes local and
global positional information to address the SPDE problem over graphs. Figure 1 illustrates its core
structure, which consists of three key modules: Local Embedding Generation, Global Embedding
Generation, and Predictor Zoo. The local embedding module initializes the embeddings using the
selected pivots and extracts the local neighborhood features of the nodes via GCN. The global em-
bedding module captures global positional information of the nodes using MVDNN based on anchor
sets. Finally, the predictor integrates the local and global embedding results through different fusion
strategies to produce the final distance prediction.

4.1 LOCAL EMBEDDING GENERATION

Pivot-based Embedding Initialization. For local embedding, the initial step involves choos-
ing a subset of nodes to serve as pivots that will initialize the embeddings for each individ-
ual node. These selected pivots help in capturing the positional embedding of each node.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝑿𝒍 ∈ 𝑹𝑵×𝝉 𝑿𝑳 ∈ 𝑹𝑵×𝒅

Local Embedding Generation

D

N

N

Predictors Zoo

D

N

N

D

N

N

F

U

S

I

O

N

(b) Distance-Fusion

෡𝒅𝒊,𝒋

෡𝒅𝒊,𝒋

Encoder

D

N

N

D

N

N

(c) Local-Tuning

෡𝒅𝒊,𝒋

GCN

𝑿𝑮 ∈ 𝑹𝑵×𝒅…

𝑿𝒈 ∈ 𝑹𝑵×𝒒×𝒑

…
Node Embedding

PivotNode

Anchor Set

Global Embedding Generation

(a) Embedding-Fusion

Node

Pair

Loss = MSE(𝒅𝒊,𝒋 , ෡𝒅𝒊,𝒋)

D
N

N
1

D
N

N
2

D
N

N
m

D
N

N
3

…

MVDNN

𝑺𝟏,𝟑

View 𝑺𝟏

𝑺𝟏,𝟐

View 𝑺𝟐

View 𝑺𝟑

View 𝑺𝒑

…

𝑺𝟏,𝟏
𝒗𝒊, 𝒗𝒋

𝑿𝒊,𝒋
𝑳

𝑿𝒊,𝒋
𝑮

𝑿𝒊,𝒋
𝑳

𝑿𝒊,𝒋
𝑮

𝑿𝒊,𝒋
𝑳

𝑿𝒊,𝒋
𝑮

𝑿𝒊,𝒋
𝑳

𝑿𝒊,𝒋
𝑮

𝒊

𝒊

𝒋

𝒋

avg

Figure 1: The framework and workflow of our GM-DE approach.

Algorithm 1 Pivot Selection
Input: a graph G and the number, τ , of pivots
Output: the set, P , of pivots

1: global cost = +∞, P = ∅
2: for a = 1 to global iter do
3: randomly select τ pivots, and form Pt

4: uniform sampled node pairs T on G
5: cost = Compute Cost(G,Pt)
6: for b = 1 to swap iter do
7: select a random pivot piv ∈ Pt

8: randomly choose a non-pivot new piv
9: P ′

t = Pt − {piv}+ {new piv}
10: cost new = Compute Cost(G,P ′

t)
11: if cost new < cost then
12: cost = cost new
13: Pt = P ′

t
14: end if
15: end for
16: if cost new < global cost then
17: global cost = cost new
18: P = Pt

19: end if
20: end for
21: return P

Algorithm 1 details the process of obtaining this
set of pivots. First, we randomly select τ nodes
as candidate pivots to form the set Pt (Line 3).
Then, we use Algorithm 2 to evaluate the qual-
ity of the current pivot set via Compute Cost
(Line 5). Specifically, we leverage the trian-
gle inequality di,j ≥ |di,k − dk,j | to compute
the lower bounds of distances between sampled
node pairs (Line 5 in Algorithm 2), and calculate
the relative error between these lower bounds
and the actual distances of these node pairs as
the cost. Lower cost indicates a better pivot
set. Next, we conduct multiple iterations of opti-
mization (Lines 6-15). In each iteration, we ran-
domly select a pivot from the set Pt and then
randomly choose a non-pivot node as a new can-
didate pivot (Lines 7-8). We replace the chosen
pivot with this new candidate to form a new pivot
set P ′

t and recompute the cost (Lines 8-9), and
keep the new set if the cost is lower (Lines 11-
14). This iterative process continues until the op-
timized pivot set P is finally obtained (Lines 16-
19). After obtaining the set of pivots P , we com-
pute the distance from each node to each pivot to
form the local embedding X l ∈ RN×d.

Encoding with GCN. The local embedding X l is then passed through a GCN, denoted as fencl.
The GCN processes the local structure, using information propagation to encode the relationships
between nodes and their neighbors. This results in a local encoded embedding XL ∈ RN×d, which
effectively captures local topological and positional information. Next, we will introduce the reasons
why we chose GCN as the local encoder. Formally, given the adjacency matrix A and the node
feature matrix X , a single layer of GCN can be expressed as:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
, (2)

where Ã = A+ I, D̃ denotes the diagonal degree matrix of Ã, H(l) represents the node represen-
tations in layer l (with H(0) = X), and W(l) is the learnable weight matrix and σ is a non-linear
activation function. This formula introduces the essence of information propagation in GCN. That
is, the updated embedding H

(l+1)
i of each node is calculated by aggregating the features of its im-

mediate neighbors and itself through normalized operations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2 Compute Cost
Input: a graph G, the set, P , of pivots, node

pairs T
Output: the cost of P on G

1: compute the distance from each node to
the piv ∈ P as the embedding matrix X l

2: cost = 0
3: foreach (vi, vj , di,j) ∈ T do
4: d′i,j = max(abs(X l

i −X l
j))

5: cost+ = (di,j − d′i,j)/di,j
6: return cost

In the context of our framework, this neighbor-
hood aggregation mechanism aligns directly with
the concept of local embedding. The GCN’s abil-
ity to integrate adjacent node features naturally cap-
tures such localized structural contexts. Moreover,
considering the static attribute of the graph in our
task (i.e., the node connections remain fixed rather
than changing dynamically), GCN has more ad-
vantages than graph neural networks designed for
inductive tasks, such as Graph Attention Network
(GAT) (Velickovic et al., 2018). Although the atten-
tion mechanism is beneficial, it introduces unneces-
sary computational complexity to our static graphs.
In contrast, GCN, which uses a fixed graph structure through a normalized adjacency matrix, per-
forms deterministic aggregation and reduces computational overhead, making it more effective in
encoding stable local embeddings.

4.2 GLOBAL EMBEDDING GENERATION

A natural approach is to employ a graph neural network capable of aggregating global positional
information as an encoder, analogous to the graph neural network used for local aggregation. How-
ever, such graph neural networks mostly generate a large amount of computational overhead and
significant space costs during training. This makes it unsuitable for addressing the problem of large-
scale graphs that we aim to solve. Therefore, we propose a method that employs a unique input
feature selection strategy and uses MVDNN.

Anchor-Set-based Embedding Initialization. For global embedding, similar to the local compo-
nent, we need to initialize the global embedding. To distinguish from pivots in the local component,
we denote the pivot sets in the global component as anchor sets. The key difference lies in their
selection methods and the information they contain. Local embedding merely serves as a coarse
positional embedding of nodes, whereas global embedding, based on anchor sets, contains global
positional information. Formally, let S = {S1,1, S1,2, . . . , Sp,q} represent a collection of anchor
sets, where each Si = {Si,1, Si,2, . . . , Si,q} corresponds to a view. If every node were included in
the anchor sets, the embeddings would contain complete global information, but this comes with
enormous computational overhead. Therefore, we rely on Bourgain’s Theorem (Bourgain, 1985)
below to guide the selection of anchor sets, aiming to retain as much global information as possible
while controlling the overhead.

Theorem 1 (Bourgain’s Theorem) Any finite metric space (V, d) with |V | = n can be embedded
into a Euclidean space Rk (under any ℓp metric) with low distortion, where k = O(log2 n) and the
distortion is O(logn).

Here, distortion is defined as the ratio of the embedding distances to the original distances, ensuring
that the embedded space maintains the essential relationships of the original graph. Therefore, our
anchor set selection strategy is designed as follows. We sample k = p × q anchor sets, where
p = log n and q = c log n, with c being a hyperparameter. For each anchor set Si,j (where the view
index i ∈ {1, 2, ..., logn} and the within-view set index j ∈ {1, 2, ..., c log n}), each node in V is
included independently with probability 1

2i . This results in smaller sets (for larger i) providing high-
certainty positional information when they contain the target node, while larger sets (for smaller i)
have higher probabilities of containing the target node but weaker positional specificity.

For example, consider a graph with n = 1000 nodes. Following the strategy, we sample p =
log2 1000 ≈ 10 views. Since c = 1, the number of anchor sets per view is q = c log2 1000 ≈
10. Anchor sets S1,j (where i = 1) include each node with probability 1

21 , resulting in large sets
with about 500 nodes on average. These sets contain most nodes, but provide vague positional
information. In contrast, S10,j (where i = 10) include nodes with probability 1

210 , forming small
sets with about 1 node on average. This selection strikes a balance between computational efficiency
and information preservation, making MVDNN feasible for large-scale graphs.

For a node v ∈ V , its embedding in the i-th view is calculated based on the distances to all nodes in
Si. Permutation-invariant functions, such as MEAN, MIN, MAX, and SUM, can be utilized, with

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

non-linear transformations frequently applied before or after for enhanced expressiveness (Zaheer
et al., 2017). Taking into account computational complexity, the distance from vertex v to the anchor
set Si,j is defined as the maximum distance from v to any node contained within the set Si,j :

d(v, Si,j) = max
s∈Si,j

dv,s. (3)

Encoding with MVDNN. The global embedding Xg is then passed through an MVDNN (i.e.,
fencg), consisting of m deep neural networks. We train a deep neural network fi for i-th view,
which maps the embedding {d(v, Si,1), d(v, Si,2), . . . , d(v, Si,p)} to a embedding zv,i. To compute
the ultimate embedding for node v, we take an average of all embeddings obtained from each view:

XG
v =

1

q

q∑
i=1

zv,i. (4)

4.3 PREDICTOR DESIGN

The predictor fpre operates by receiving local embeddings XL and global embeddings XG, achiev-
ing predictions through embedding fusion and processing by a DNN or a linear layer. The DNN
comprises several fully connected layers with activation functions and finally outputs d̂i,j through
the output layer. In the training phase, the Mean Squared Error (MSE) between the predicted dis-
tance d̂i,j and the real distance di,j is used as the loss function. In this paper, we construct three
predictors as follows, striving to integrate local and global embeddings using different strategies.

Embedding-Fusion (EF) This variant concatenates local embeddings XL
i , X

L
j with global embed-

dings XG
i , XG

j into a joint embedding fed into a single DNN. The DNN outputs the predicted short-
est path distance d̂i,j . It enables the model to autonomously learn the association between local and
global information through early embedding fusion.

Distance-Fusion (DF) In this variant, local embeddings XL
i , X

L
j and global embeddings XG

i , XG
j

are first input into two independent DNNs, respectively, to predict two distances d̂Li,j and d̂Gi,j . Then,
a fusion module with a linear layer is introduced to integrate these two predicted distances. The
final predicted distance is calculated as d̂i,j = w1 · d̂Li,j + w2 · d̂Gi,j , which explicitly balances the
contributions of local and global information.

Local-Tuning (LT) This variant first uses local embeddings XL
i , X

L
j to output a predicted local dis-

tance d̂Li,j through a DNN. Then, the global embeddings XG
i , XG

j are input into another DNN with
d̂Li,j to generate a final prediction d̂i,j , to tune the global predictions using local results.

4.4 IMPLEMENTATION OF GM-DE

Algorithm 3 GM-DE
Input: a graph G, and the number, θ, of epochs
Output: embedding matrices XL, XG, and predictor fpre

1: initialize encoder fencl, fencg , and predictor fpre
2: select pivots, anchor sets, and training node pair set T
3: compute the distance of training node pairs d
4: compute the distance to pivots and anchor sets of each node as embedding matrices X l, Xg

5: for epoch = 1 to θ do
6: encode X l via fencl for embedding matrix XL

7: encode Xg via fencg for embedding matrix XG

8: feed XL and XG into fpre to predict the distances of training node pairs d̂
9: compute L with predicted distances d̂ and actual distances d

10: update fencl,fencg , and predictor fpre minimizing L
11: end for
12: return embedding matrices XL,XG and predictor fpre

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 3 details the implementation of our GM-DE method. In Line 1, the encoder fencl, fencg ,
and predictor fpre are initialized. Lines 2-5 represent the computation of the distance to acquire
embedding matrices X l and Xg after selecting the pivots, anchor sets, and training node pairs.
During the θ epochs (Lines 5-11), embedding matrices X l and Xg are fed into fencl, fencg (Lines
6-7), respectively, to obtain the new XL and XG. Line 8 represents feeding XL and XG into fpre to
predict the distances of the training node pairs d̂. Finally, fencl, fencg , and fpre update to minimize
the computed loss value (Lines 8-9), and return embedding matrices XL, XG, and predictor fpre.

5 EXPERIMENTS

To evaluate our GM-DE approach, we conducted experiments using Python 3.12 on a server
equipped with an Intel Core i9-10900K processor, 128 GB of memory, and an NVIDIA GeForce
RTX 3080 GPU. Our experiments aim to answer the following three Research Questions (RQs):
RQ1 (Effectiveness): In what ways does GM-DE demonstrate improved performance in addressing
the SPDE problem relative to other SOTA methods?
RQ2 (Efficiency): How efficient is GM-DE when it comes to generating predictions in terms of
time overhead and storage costs?
RQ3 (Benefits): What enables GM-DE to improve the accuracy of distance predictions?

5.1 EXPERIMENTAL SETTINGS

Table 1: Statistics of datasets.
Graph |V | |E| degreeavg

Cora 2.70K 10.7K 3.98
Facebook 4.04K 176K 21.8

DBLP 317K 1.05M 3.31
YouTube 1.13M 5.98M 5.27

Dongguan 7.66K 10.5K 1.38

Graph Datasets. We conducted experiments on
five real-world graphs, which cover various network
types, including Cora and DBLP as citation net-
works, Facebook and YouTube as social networks,
and Dongguan as a road network. The first four
datasets are all undirected and unweighted graphs,
which can be regarded as graphs with edge weights
set to 1. The shortest path distance between two
nodes in such graphs can be calculated using the
Breadth-First Search (BFS) algorithm. Dongguan is an undirected and weighted graph, where edge
weights correspond to actual distances (in kilometers). For this graph, the shortest path distance
between two nodes is computed using the Dijkstra algorithm. These graph datasets were collected
from the Stanford Large Network Dataset Collection (Leskovec & Krevl, 2014) and Figshare (Kar-
duni et al., 2016). The statistics of the graphs and the distance distributions are shown in Table 1
and Figure 2, respectively.

(a) Cora

0 4 8 12 16 18

P
ro

p
o

rt
io

n

0.06

0.18

0.12

Distance

0.00

(b) Facebook

P
ro

p
o

rt
io

n

0.10

0.00

0.30

0.20

0 2 4 6 8

Distance

0 6 12 18 24

(c) DBLP

0.00

0.08

0.16

0.24

P
ro

p
o

rt
io

n

Distance

(d) YouTube

0.09

0.18

0.27

0.00

P
ro

p
o
rt

io
n

0 5 10 15 20

(e) Dongguan

0.00

0.06

0.12

0.18

P
ro

p
o

rt
io

n
 /
1

0
-4

0 32 64 96

Distance Distance

Figure 2: The shortest path distance distributions for all graph datasets.

Baselines. We compared our GM-DE approach with eight baseline methods, which can be classified
into three categories based on the information they use. Specifically, Orion (Zhao & Zheng, 2010),
Rigel (Zhao et al., 2011), and DADL (Rizi et al., 2018) belong to the first category, as they only use
local information. The second category includes LS (Thorup & Zwick, 2005), ADO (Potamias et al.,
2009), and P-GNN (You et al., 2019), which are designed to use global information. Path2Vec (Ku-
tuzov et al., 2019) and BAcc (Wang et al., 2024) belong to the third category, as they combine both
forms of information within their computational processes.

Training and Testing Settings. The parameters of each comparative method are set in accordance
with their original studies to ensure optimal performance. For ours, the number of pivots is 80 for
small graphs and 5 for large graphs, which corresponds to previous work, to save training cost.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison between different baselines and GM-DE, where the best performance is high-
lighted in bold, the runner-ups are shown in underlined, and N/A denotes “Not Applicable”.

Model MAE MRE

Cora Facebook DBLP Youtube Dongguan Cora Facebook DBLP Youtube Dongguan

Orion 3.0542 1.7770 3.5044 3.5044 4.926 0.5242 0.6864 0.5165 0.5473 0.4605
Rigel 3.0426 1.7832 3.5043 2.8646 5.123 0.5145 0.6635 0.5164 0.5468 0.5025

DADL 1.1255 0.2156 1.2753 0.1568 4.329 0.2269 0.098 0.2016 0.0351 0.3990

LS 1.0599 0.9566 2.5060 2.0159 2.780 0.2068 0.3924 0.3939 0.4091 0.2111
ADO 2.107 1.1842 3.0691 N/A 2.108 0.4266 0.5080 0.4985 N/A 0.1570

P-GNN 0.5301 0.7502 N/A N/A 2.212 0.1050 0.4065 N/A N/A 0.2098

Path2Vec 3.1505 1.4365 3.9474 N/A 2.465 0.6012 0.5506 0.6097 N/A 0.2181
BAcc 0.8253 0.0149 0.4946 0.3305 4.035 0.1569 0.0062 0.0801 0.0801 0.4756

GM-DE (EF) 0.3489 0.1435 0.4682 0.1756 1.998 0.0785 0.0591 0.0793 0.0382 0.0554
GM-DE (DF) 0.4595 0.1420 0.5012 0.2012 2.033 0.0920 0.5880 0.1851 0.0412 0.0562
GM-DE (LT) 0.3296 0.1564 0.4865 0.1784 1.406 0.0758 0.0601 0.1768 0.0384 0.0521

Every GCN and DNN in our approach has two layers employing ReLU as the activation function.
For training pairs, we compute the actual shortest path distances from each pivot to all node pairs
using the Breadth-First Search or the Dijkstra algorithm, which yields τ(n − τ) training pairs. In
addition, Figure 2 shows the scarcity of some long-distance pairs in the training data. Therefore, we
downsample the classes with few samples to balance the distribution across different distance ranges.
Following the previous work (Rizi et al., 2018), for the distance categories that are extremely rare
(e.g., distances 19, 20, and 21 in Cora), we directly exclude them from the training set to avoid
introducing bias. For test pairs, the selection process is conducted similarly, with pivots reselected
to maintain the independence of the test set. The number of node pairs is approximately 100,000.

Evaluation Metrics. Our evaluation metrics are divided into three main aspects: time, space, and
accuracy. Let Q denote a query sample set. For the time metric, since our GM-DE uses simple
neural networks and efficiently samples training data, the time of training phrase at the offline stage
remains within acceptable limits. Therefore, we take into account the response time of the query
node pairs in the test set at the online stage. For the space metric, we evaluate the storage cost on the
disk. For the accuracy metric, we assess two metrics, including Mean Absolute Error (MAE) and
Mean Relative Error (MRE):

MAE =
1

|Q|
∑

(vi,vj)∈Q

|d̂i,j − di,j |, MRE =
1

|Q|
∑

(vi,vj)∈Q

∣∣∣∣∣ d̂i,j − di,j
di,j

∣∣∣∣∣ . (5)

5.2 COMPARISON WITH STATE-OF-THE-ARTS (RQ1)

We investigated three variants of GM-DE, with predictors of EF, DF, and LT, denoted as “GM-DE
(EF)”, “GM-DE (DF)”, and “GM-DE (LT)”, respectively. Table 2 shows that the three variants sig-
nificantly outperform the baseline methods in overall performance. Compared to baseline methods
that rely solely on local or global information, their MAE and MRE are significantly reduced across
various datasets. For example, for the Cora dataset, the optimal variant reduces the error by more
than 70% compared to traditional local methods. Compared to the hybrid method, the error is gen-
erally reduced. For large-scale datasets of DBLP and YouTube, some baseline methods cannot run
effectively; however, GM-DE not only processes stably, but also achieves a significantly lower error
than most baseline methods. For weighted graphs, such as the Dongguan road network, GM-DE
still performs excellently, with a decrease in MAE from 2.108 to 1.406. It is worth noting that in the
Facebook dataset, BAcc performs far better than other methods. The reason, as mentioned earlier,
lies in the introduction of decision trees, which makes such methods effective in simple scenar-
ios. As shown in Figure 2, Facebook has only eight distinct distance results, ranging from 1 to 8.
However, in complex scenarios such as the Dongguan dataset, BAcc performs poorly.

5.3 INFERENCE TIME AND STORAGE COST VALIDATION (RQ2)

To evaluate the inference time of different methods, we present the time required for them to produce
a prediction for the test set. Due to space constraints, only the results for the Cora dataset are
presented here. Note that the results for other datasets are provided in the Appendix. As illustrated

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of the impact of local and global information on the GM-DE performance.

Model MAE MRE

Cora Facebook DBLP Youtube Dongguan Cora Facebook DBLP Youtube Dongguan

w/o global 1.0742 0.2885 1.4534 0.4534 3.407 0.2049 0.0944 0.2768 0.1583 0.2125
w/o local 0.6327 0.7474 0.6453 0.2547 2.411 0.1538 0.2845 0.1978 0.7156 0.1978

GM-DE (LT) 0.3296 0.1564 0.4865 0.1784 1.666 0.0758 0.0601 0.1768 0.0384 0.0521

in Figure 3, the inference time of the three GM-DE variants maintains a low level. Specifically,
GM-DE (DF) and GM-DE (LT) take approximately 100 microseconds to complete the inference
process for each query.

T
im

e
(μ

s)

0

100

200

300

400

500

600

700

Figure 3: Comparison of the inference time.

(a) Cora

st
o

ra
g

e
co

st
 (

K
B

)

100

101

102

103

104

105

st
o
ra

g
e

co
st

 (
K

B
)

105

106

107

108

109

1010

(b) YouTube

Figure 4: Comparison of the storage cost.

To evaluate the storage efficiency of different methods, we adopt Pickle serialization to quantify
the storage cost of the framework. Since the storage cost of the proposed GM-DE framework is
primarily determined by the embedding dimension, which is directly related to the number of pivots,
we select the Cora dataset with 80 pivots and the YouTube dataset with 5 pivots as representative
scenarios for comparison with other methods, and the results for other datasets are provided in the
Appendix. DADL represents these learning-based methods, which have fixed feature dimensions.
Traditional algorithms are typically characterized by storing the distance matrix (DS) of all node
pairs. Figure 4 shows that, for the Cora dataset, the values of GM-DE (EF), GM-DE (DF), and GM-
DE (LT) are relatively low, indicating that their storage requirements on this dataset are relatively
small. For the YouTube dataset, the storage capacity values of these three methods are at a low level,
indicating that their storage costs are relatively controllable when processing large-scale data.

5.4 ABLATION STUDY (RQ3)

The ablation study evaluates the impact of local and global positional information on model per-
formance by comparing the complete GM-DE (LT) model with variants lacking global embeddings
(w/o global) and local embeddings (w/o local) across multiple datasets, as shown in Table 3. In
terms of accuracy metrics, the MAE and MRE of the complete model are significantly lower than
those of the two ablation variants on all datasets. This suggests that the simultaneous integration of
local and global positional information can significantly enhance prediction accuracy and that the
combination of the two plays a complementary role. From the perspective of the individual role of
different information, comparing the two variants reveals that global positional information is more
helpful to the model when predicting in most cases, aligning with expectations. However, for the
Facebook dataset, w/o global performs better. The reason is that the diameter of the dataset (i.e., the
maximum distance) is small. The two-layer GCN we use captures features within a two-hop range,
thereby significantly improving prediction accuracy when two nodes are within four hops.

6 CONCLUSION

In this paper, we propose the GM-DE framework for the shortest-path distance estimation problem
on large-scale graphs, addressing the critical challenges of high time/space complexity in traditional
algorithms and the limited accuracy/generality of existing learning-based methods. By integrating
local (via GCN) and global (via MVDNN) positional information with specialized pivot and anchor
set selection, GM-DE enables fast and accurate prediction, ensuring robust generalization across
diverse graphs. Experimental validation confirms that GM-DE achieves more effective and efficient
predictions of the shortest path distances on various real-world graphs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-path distance queries on large
networks by pruned landmark labeling. In Proceedings of the International Conference on Man-
agement of Data (SIGMOD), pp. 349–360, 2013.

Jean Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal of
Mathematics, 52(1):46–52, 1985.

Lijun Chang, Jeffrey Xu Yu, Lu Qin, Hong Cheng, and Miao Qiao. The exact distance to destination
in undirected world. VLDB Journal, 21(6):869–888, 2012.

Xu Chen, Shaohua Wang, Huilai Li, Fangzheng Lyu, Haojian Liang, Xueyan Zhang, and Yang
Zhong. Ndist2vec: Node with landmark and new distance to vector method for predicting shortest
path distance along road networks. ISPRS International Journal of Geo-Information, 11(10):514,
2022.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:
269–271, 1959.

Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. Effective community search for large
attributed graphs. Proceedings of the VLDB Endowment, 9(12):1233–1244, 2016.

Robert W. Floyd. Algorithm 97: Shortest path. Communication of ACM, 5(6):345, 1962.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 855–864,
2016.

Shuai Huang, Yong Wang, Tianyu Zhao, and Guoliang Li. A learning-based method for computing
shortest path distances on road networks. In Proceedings of International Conference on Data
Engineering (ICDE), pp. 360–371, 2021.

Liying Jiang, Yongxuan Lai, Quan Chen, Wenhua Zeng, Fan Yang, and Yi Fan. Shortest path
distance prediction based on catboost. In Proceedings of International Conference on Web Infor-
mation Systems and Applications (WISA), pp. 133–143, 2021.

Minhao Jiang, Ada Wai-Chee Fu, Raymond Chi-Wing Wong, and Yanyan Xu. Hop doubling label
indexing for point-to-point distance querying on scale-free networks. Proceedings of the VLDB
Endowment, 7(12):1203–1214, 2014.

Ruoming Jin, Ning Ruan, Yang Xiang, and Victor E. Lee. A highway-centric labeling approach for
answering distance queries on large sparse graphs. In Proceedings of the International Conference
on Management of Data (SIGMOD), pp. 445–456, 2012.

Alireza Karduni, Amirhassan Kermanshah, and Sybil Derrible. A protocol to convert spatial polyline
data to network formats and applications to world urban road networks. Scientific Data, 3(1):1–7,
2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Proceedings of the International Conference on Learning Representations (ICLR),
Toulon, France, 2017.

Soheil Kolouri, Navid Naderializadeh, Gustavo K. Rohde, and Heiko Hoffmann. Wasserstein em-
bedding for graph learning. In Proceedings of the International Conference on Learning Repre-
sentations, ICLR, 2021.

Andrey Kutuzov, Mohammad Dorgham, Oleksiy Oliynyk, Chris Biemann, and Alexander
Panchenko. Making fast graph-based algorithms with graph metric embeddings. In Proceed-
ings of the Conference of the Association for Computational Linguistics (ACL), pp. 3349–3355,
2019.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, 2014.

10

http://snap.stanford.edu/data
http://snap.stanford.edu/data

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. In Proceedings of the Neural
Information Processing Systems (NeurIPS), 2020.

Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Xuemin Lin, and Ying Zhang. When hierarchy
meets 2-hop-labeling: efficient shortest distance and path queries on road networks. VLDB Jour-
nal, 32(6):1263–1287, 2023.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representa-
tions. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), pp. 701–710, 2014.

Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis. Fast shortest path
distance estimation in large networks. In Proceedings of the ACM Conference on Information
and Knowledge Management (CIKM), pp. 867–876, 2009.

Jianzhong Qi, Wei Wang, Rui Zhang, and Zhuowei Zhao. A learning based approach to predict
shortest-path distances. In Proceedings of the International Conference on Extending Database
Technology (EDBT), pp. 367–370, 2020.

Fatemeh Salehi Rizi, Jörg Schlötterer, and Michael Granitzer. Shortest path distance approximation
using deep learning techniques. In Proceedings of International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), pp. 1007–1014, 2018.

Jörg Schlötterer, Martin Wehking, Fatemeh Salehi Rizi, and Michael Granitzer. Investigating ex-
tensions to random walk based graph embedding. In Proceedigns of International Conference on
Cognitive Computing (ICCC), pp. 81–89, 2019.

Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,
2005.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

Haoyu Wang, Chun Yuan, and Yuan Pu. Integrating local & global features for estimating shortest-
path distance in large-scale graphs. In Proceedings of the International Joint Conference on
Neural Networks (IJCNN), pp. 1–8, 2024.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Proceedings
of the International Conference on Machine Learning (ICML), volume 97, pp. 7134–7143, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Xiaohan Zhao and Haitao Zheng. Orion: Shortest path estimation for large social graphs. In Pro-
ceedings of the Workshop on Online Social Networks (WOSN), 2010.

Xiaohan Zhao, Alessandra Sala, Haitao Zheng, and Ben Y. Zhao. Fast and scalable analysis of
massive social graphs. arxiv preprint arxiv:1107.5114, 2011.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 INFERENCE TIME ANALYSIS

In RQ2 of the experiment section, we compared the inference time between all baseline methods and
GM-DE methods on the dataset Cora. To further evaluate the time efficiency of GM-DE, Figure 5
supplements the results for the remaining four datasets (i.e., Facebook, DBLP, YouTube, and Dong-
guan) using 100,000 pairs of nodes in the query set, respectively. From this figure, we can observe
that for the four datasets with different scales, the three variants of GM-DE exhibit the second-lowest
inference time across all comparison methods. Note that although the baseline Orion can achieve
the lowest inference time, its prediction error is about ten times larger than that of our method (see
Table 2 for more details), which is not acceptable in practice. In other words, our GM-DE methods
outperform all of their counterparts on the four data sets while producing minimal prediction errors,
which aligns with the findings shown in Figure 3.

0

100

200

300

400

500

600

700

800

T
im

e
(μ

s)

(a) Facebook

(c) YouTube

0

100

200

300

400

500

600

700

800

T
im

e
(μ

s)

0

100

200

300

400

500

600

700

T
im

e
(μ

s)

(b) DBLP

0

100

200

300

400

500

600

700

800

T
im

e
(μ

s)

(d) Dongguan

Figure 5: Comparison of the inference time.

A.2 STORAGE COST ANALYSIS

In RQ2 of the experiment section, we compared the storage cost between all baseline methods and
GM-DE methods on the datasets Cora and YouTube. To further evaluate the space efficiency of
GM-DE, Figure 6 supplements the results for the remaining three datasets (i.e., Facebook, DBLP,
and Dongguan). From this figure, we can observe that for the three datasets with different scales,
the three variants of GM-DE require the lowest storage across all comparison methods. Please note
that, since the storage cost of DADL is the same as those of Orion, Rigel, PGNN, and Path2Vec,
here we only present the result of DADL. In conclusion, this experiment confirms that our strategies
for selecting pivot and anchor sets can manage storage costs efficiently while maintaining prediction
accuracy, thus making GM-DE methods applicable in a variety of resource-constrained settings.

st
o

ra
g

e
co

st
 (

K
B

)

100

101

102

103

104

105

st
o

ra
g

e
co

st
 (

K
B

)

103

104

105

106

107

108

st
o

ra
g

e
co

st
 (

K
B

)

100

101

102

103

104

105

(a) Facebook (b) DBLP (c) Dongguan

Figure 6: Comparison of the storage cost.

12

	Introduction
	Related Work
	Problem Definition
	Our GM-DE Approach
	Local Embedding Generation
	Global Embedding Generation
	Predictor Design
	Implementation of GM-DE

	Experiments
	Experimental Settings
	Comparison with State-of-the-Arts (RQ1)
	Inference Time and Storage Cost Validation (RQ2)
	Ablation Study (RQ3)

	Conclusion
	Appendix
	Inference Time Analysis
	Storage Cost Analysis

