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A B S T R A C T

Building 3D geometric maps of man-made spaces is a well-established and active field that is fundamental to
numerous computer vision and robotics applications. However, considering the continuously evolving nature of
built environments, it is essential to question the capabilities of current mapping efforts in handling temporal
changes. In addition to the above, the ability to create spatiotemporal maps holds significant potential for
achieving sustainability and circularity goals. Existing mapping approaches focus on small changes, such as
object relocation within common living spaces or self-driving car operation in outdoor spaces; all cases where
the main structure of the scene remains fixed. Consequently, these approaches fail to address more radical
change in the structure of the built environment, such as on the geometry and topology of it. To promote
advancements on this front, we introduce the Nothing Stands Still (NSS) benchmark, which focuses on the
spatiotemporal registration of 3D scenes undergoing large spatial and temporal change, ultimately creating
one coherent spatiotemporal map. Specifically, the benchmark involves registering within the same coordinate
system two or more partial 3D point clouds (fragments) originating from the same scene but captured from
different spatiotemporal views. In addition to the standard task of pairwise registration, we assess multi-way
registration of multiple fragments that belong to the same indoor environment and any temporal stage. As
part of NSS, we introduce a dataset of 3D point clouds recurrently captured in large-scale building indoor
environments that are under construction or renovation. The NSS benchmark presents three scenarios of
increasing difficulty, with the goal to quantify the generalization ability of point cloud registration methods
over space (within one building and across buildings) and time. We conduct extensive evaluations of state-
of-the-art methods on NSS over all tasks and scenarios. The results demonstrate the necessity for novel
methods specifically designed to handle large spatiotemporal changes. The homepage of our benchmark is
at http://nothing-stands-still.com.
1. Introduction

‘‘Everything flows, nothing stands still’’ – as Heraclitus1 advocated,
a critical property of the world around us is that it changes over time.
The temporal dimension and its impact on the built environment have
not been ignored by the field of computer vision, photogrammetry, and
robotics. Its study appears in different tasks, such as those related to
video understanding (Simonyan and Zisserman, 2014; Purushwalkam
et al., 2020; Haresh et al., 2021; Kwon et al., 2022; Deng et al., 2024),
self-driving cars (Qi et al., 2021; Huang et al., 2022b; Zhang et al.,
2023), change detection in 2D images acquired at scene-level (Sakurada

∗ Corresponding author.
E-mail address: iarmeni@stanford.edu (I. Armeni).

1 An ancient Greek philosopher, 501 B.C.

et al., 2020; Lei et al., 2020; Ru et al., 2020; Prabhakar et al., 2020;
Wang et al., 2021b; Li et al., 2022) or in satellite imagery (Bourdis
et al., 2011; Peng et al., 2019; Chen et al., 2020; Zheng et al., 2021;
Cheng et al., 2024), change detection in 3D scans (Xiao et al., 2015;
Qin et al., 2016; Kharroubi et al., 2022; Gehrung et al., 2022; Huang
et al., 2022c; de Gélis et al., 2023; Stilla and Xu, 2023; López-Armenta
and Nespeca, 2024), object relocalization in recaptured 3D indoor
scenes (Wald et al., 2019, 2020; Halber et al., 2019; Zhu et al., 2024),
and robot navigation in dynamic environments (Droeschel et al., 2017;
Wang et al., 2020a, 2021a). However, the examined change, especially
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in the 3D indoor domain, often focuses on small spatial (e.g., that of
 room Straub et al., 2019; Halber et al., 2019; Wald et al., 2019,

2020) and temporal (e.g., that of a few minutes Droeschel et al., 2017;
Prabhakar et al., 2020; Wang et al., 2021b; Huang et al., 2022b; Kwon
et al., 2022; Deng et al., 2024) scales, and mainly limited to object
relocation (movement of objects) (Straub et al., 2019; Halber et al.,
2019; Wald et al., 2019, 2020; Li et al., 2022).

The built environment undergoes various changes throughout its
lifecycle, starting from construction, through operation, and finally
reaching the end-of-life phase. These changes go beyond simple relo-
cation and involve differences in geometry, appearance, and topology
of the building elements. Examples of such changes include the in-
stallation of pipes on ceilings, the transformation of floors before and
after carpeting, and the gradual development of walls from a group
of studs to their final structure visible to users. Among the different
lifecycle phases, the most significant differences can be observed during
construction and before/after renovation.

Understanding and addressing these dynamic changes opens up
new research directions, shifting the predominant static perspective
of scene understanding. An instance of these directions is evident in
robotics. Robots are frequently required to localize themselves within
pre-mapped 3D structures that may have experienced alterations over
ime. Proficiently identifying and adapting to these changes improves

not only the robot’s navigation but also its interaction with the environ-
ment (Tsamis et al., 2021; Stefanini et al., 2023). Moreover, acquiring
a spatiotemporal understanding of how buildings evolve over time
is crucial for achieving sustainability and circular economy goals in
the built environment (Munaro et al., 2020). For instance, it enables
quantitative monitoring and quality control of construction progress,
eading to a reduction in out-of-estimate construction costs associated

with rework. Currently, progress monitoring is often assessed in a
ough manner by project managers, with rework accounting for 52%
f the total out-of-estimate costs (Love et al., 2002). Furthermore, a
patiotemporal understanding of building changes can play a significant
ole in establishing workflows for material reuse. It is estimated that
5% of non-hazardous construction and demolition waste is reusable or
ecyclable (Ma et al., 2020). However, a large amount of this material

ends up in landfills due to a lack of information about materials within
buildings. This is due to raw materials getting hidden behind surfaces
or paint as construction progresses without proper documentation.

To this end, we propose Nothing Stands Still (NSS), a novel
patiotemporal benchmark utilizing 3D point cloud captures of indoor
nvironments in the aforementioned lifecycle phases. These captures

encompass a large spatial and temporal scale and contain changes
that extend beyond object relocation. As part of the benchmark, we
introduce a spatiotemporal point cloud dataset comprising 6 large-
scale building areas (i.e., , distinct buildings or large sections of them
referred to as areas) in multiple temporal stages (referred to as stages)
spanning several months (Section 4). We focus on the problem of spa-
tiotemporal point cloud registration and design a series of experiments
to demonstrate the inherent challenges of this setup and highlight the
limitations of existing methods in addressing them. Notably, spaces
under construction are commonly of low-texture and highly repeti-
tive geometry, posing challenges for local feature-based algorithms
n computer vision. These algorithms struggle in the spatiotemporal
egistration task, where similar local features may not correspond to
he same location over time.

To evaluate the generalization ability of methods across space and
time, we define three scenarios that involve different spatial and tempo-
ral data splits (Section 5). Unlike typical spatial registration setups, our
training and testing process includes not only point cloud pairs from the
same stage and area, but also pairs from different stages and areas. When
referring to ‘pairs from different areas’ in a data split, it means point
cloud pairs originating from distinct buildings. For instance, one point
cloud pair may come from area A, while another may come from area

B. Within a pair, the two point clouds can represent either the same
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or different stages of their respective area of origin. Given the large-
scale nature of each area, the input pairs represent partial observations,
namely fragments, of the complete area. Consequently, the pairwise
registration task is constrained to achieving local alignment between
the input pair. To achieve global alignment in the context of entire
areas, we incorporate the task of multi-way registration that considers
all input fragments belonging to the same area at any stage.

We evaluate several state-of-the-art algorithms (Rusu et al., 2009;
Bai et al., 2020; Choy et al., 2019b; Huang et al., 2021; Qin et al., 2022)
on the NSS benchmark. We also evaluate these algorithms on a state-
of-the-art spatiotemporal 3D point cloud dataset (Wald et al., 2020),

hich captures changes in inhabited indoor scenes related to furniture
ddition, removal, or relocation within rooms. This comparative anal-
sis showcases the need for more challenging setups when addressing
he problem of understanding and operating in dynamic environments.

The contributions of this paper can be summarized as:

• We introduce a new spatiotemporal dataset that captures large
spatial and temporal changes in the geometry, appearance, and
topology of building elements. The dataset comprises 6 indoor
areas undergoing construction and renovation with recurrent cap-
tures spaced months apart (2–6 per area).

• We propose a novel benchmark, NSS, for spatiotemporal 3D point
cloud registration, which includes both pairwise and multi-way
registration. The evaluation employs diverse data splits, where
training and testing pairs originate from across areas and stages.

• We provide extensive experimental analysis and insights into the
performance of state-of-the-art registration algorithms on the NSS
benchmark. We also provide evaluation results on a state-of-the-
art spatiotemporal 3D point cloud dataset (Wald et al., 2020),
following the same evaluation protocol.

We also provide the community with a server for evaluating their
lgorithms on the test sets, which we keep hidden. A leaderboard
howcases the latest results and progress on the benchmark. For more
etails, please visit nothing-stands-still.com.

2. Related work

We first review works on spatiotemporal reasoning from visual data
and the employed datasets before proceeding to pairwise and multi-way
registration methods. Finally, we briefly discuss synthetic point cloud
generation since our point cloud registration benchmark was created
from 3D mesh data of real-world captures.

2.1. Spatiotemporal reasoning

Spatiotemporal reasoning from visual data is a fundamental prob-
em in computer vision, photogrammetry, and robotics, and can be ex-

amined at various levels of detail. Change detection methods categorize
scenes into stationary and changed regions, through 2D pixel (Hussain
et al., 2013), 3D point (Yew and Lee, 2021a; de Gélis et al., 2023),
r 3D voxel (Pollard and Mundy, 2007; Xiao et al., 2015) classification

tasks. Motion segmentation approaches (Chen et al., 2021; Huang et al.,
2022b) segment scenes into static and dynamic parts. Optical flow
stimation techniques (Horn and Schunck, 1981; Black and Anandan,

1993; Brox et al., 2009) model fine-grained motion information by
associating pixels across frames, typically formulated as optimization
tasks (Black and Anandan, 1993). Modern learning-based methods (Ilg
et al., 2017; Hui et al., 2018; Fischer et al., 2015; Teed and Deng, 2020)
directly learn flow prediction with enhanced accuracy and efficiency
from large datasets. Scene flow estimation (Vedula et al., 1999; Sun
et al., 2010) additionally provides depth information of objects in
a 3D scene. Traditional methods (Vogel et al., 2011, 2013, 2015)
leverage motion smoothness priors within optimization frameworks,
while learning-based methods (Liu et al., 2019a; Puy et al., 2020) learn
directly from large-scale datasets.

http://nothing-stands-still.com/
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Fig. 1. Qualitative examples of existing indoor spatiotemporal datasets and Nothing Stands Still (NSS). As shown, existing datasets focus on small and daily changes in living
environments, whereas NSS exhibits drastic changes over time. Examples of such changes over different stages are highlighted with a cyan box.
Spatiotemporal reasoning encompasses various downstream tasks,
including 3D change detection (Kharroubi et al., 2022; Stilla and
Xu, 2023), action recognition from videos (Simonyan and Zisserman,
2014; Wang et al., 2019), multi-object visual tracking (Milan et al.,
2016; Xiang et al., 2015), dynamic reconstruction (Rempe et al., 2020;
Huang et al., 2022a), and novel view synthesis (Pumarola et al., 2021;
Martin-Brualla et al., 2021). Most tasks address spatiotemporal changes
at video frame rate. Going beyond the temporal change induced in
milliseconds, D4R (Golparvar-Fard et al., 2009) focuses on aligning
images captured in construction sites on a daily basis for the purpose
of construction progress monitoring. In a non-built setting, Dong et al.
(2017) perform 4D reconstruction of agricultural crops for monitoring
growth. Furthermore, works like Griffith et al. (2020) and Schindler
and Dellaert (2010), Schindler et al. (2007) aim to sequence online
image collections spanning a year or decades based on visibility and
temporal occupancy. Scene chronology (Matzen and Snavely, 2014)
scales this sequencing operation to millions of photos and reasons
about finer appearance changes due to denser sampling. While Matzen
and Snavely (2014) is limited to rendering planar regions, it was
improved upon by Martin-Brualla et al. (2015), which represents scene
geometry using time-varying depth maps, enabling the generation of
high-quality time-lapse videos. Recently, Matzen and Snavely (2014)
has been extended by employing neural fields (Lin et al., 2023) to
achieve photo-realistic renderings with higher fidelity.

Few works specifically handle point cloud sequences as inputs. Spa-
tiotemporal reasoning from point cloud data is predominantly achieved
by propagating temporal information via flow estimations (Liu et al.,
2019b; Choy et al., 2019a; Fan et al., 2020). ‘‘Objects can move’’ (Adam
et al., 2022) has similarities to our benchmark and addresses indoor 3D
change detection via geometric transformation consistency. However,
it is limited to object relocation and cannot handle changes in the
structure of the scene.

2.2. Spatiotemporal 3D datasets

In recent years, several 3D datasets (Armeni et al., 2016, 2017;
Chang et al., 2017; Hua et al., 2016; Dai et al., 2017; Straub et al., 2019;
Wald et al., 2019; Halber et al., 2019; Wald et al., 2020) have emerged
for indoor scene understanding, with some of them also considering
the temporal aspect (Straub et al., 2019; Wald et al., 2019; Halber
et al., 2019; Wald et al., 2020). However, not all of these datasets
contain real-world scenes (Park et al., 2021). In Qiu et al. (2020),
the authors generate a change dataset by leveraging an existing real-
world static 3D dataset (Chang et al., 2017). In order to generate
801 
change, they add synthetic models of small objects in the scenes (e.g., a
cup or a car toy). There are three main datasets capturing real-world
change in inhabited indoor spaces, namely Replica (Straub et al., 2019),
ReScan (Halber et al., 2019), and 3RScan (Wald et al., 2019), that focus
on the relocation, addition, or removal of furniture. RIO10 (Wald et al.,
2020) is a smaller version of 3RScan. These datasets capture aspects of
daily human interaction with the built environment and are limited in
spatial scale compared to NSS (one room versus one building floor with
multiple rooms). For more details see Table 1 and for visual samples
Fig. 1.

LAMAR (Sarlin et al., 2022) is similar to our benchmark. It is a
large-scale dataset captured in diverse environments over an extended
temporal horizon. However, it focuses on the task of visual localization
from images and radios, while NSS concentrates on registration using
point clouds. Additionally, the scenes captured in LAMAR do not ex-
hibit significant changes in the environment’s geometry and are more
related to relocation scenarios. Other datasets focus on outdoor scenes
and capture seasonal changes in real-world data (Wenzel et al., 2020)
or are tailored to self-driving cars (Ros et al., 2016; Hernandez-Juarez
et al., 2017; Zolfaghari Bengar et al., 2019; Geiger et al., 2013; Cordts
et al., 2016). However, their review is outside the scope of this paper.

2.3. 3D point cloud registration

The field of 3D point cloud registration is well-established and
active. Here, we discuss both pairwise registration and multi-way reg-
istration methods.

Pairwise registration. Approaches here can be mainly grouped as
feature-based and end-to-end registration.

(a) Feature-based methods typically involve two steps: local feature
extraction and pose estimation. The pose estimation step uses either
a robust estimator such as RANSAC (Fischler and Bolles, 1981) or
globally optimal estimators (Li and Hartley, 2007; Hartley and Kahl,
2009; Cai et al., 2019). For local feature extraction, traditional methods
use hand-crafted features (Johnson and Hebert, 1999; Rusu et al., 2008,
2009; Tombari et al., 2010b,a; Theiler et al., 2014) to capture local
geometry and, while having good generalization abilities across scenes,
they often lack robustness against occlusions. In contrast, learned local
features have taken over in the past few years, and, instead of using
heuristics, they rely on deep models and metric learning (Hermans
et al., 2017; Sun et al., 2020) to extract dataset-specific discrimi-
native local descriptors. Depending on the input to models, these
learned descriptors can be divided into patch-based and fully convo-
lutional methods. Patch-based methods (Gojcic et al., 2019; Ao et al.,
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Table 1
Comparison of existing indoor spatiotemporal 3D point cloud datasets. NSS focuses on scenes that demonstrate large changes.
Since the scale is on the building level, the number of areas (and temporal stages) is less than that of the other datasets but
a single area contains numerous scenes on the scale of them.
Dataset Area Temporal stage Change scale

Num Scale (Type) Total Per scene

Replica (Straub et al., 2019) 1 Room 6 6 Small(typical living)
ReScan (Halber et al., 2019) 13 Room 45 3–5 Small(typical living)
3RScan (Wald et al., 2019) 478 Room 1482 2–12 Small(typical living)
RIO10 (Wald et al., 2020) 10 Room 74 5–12 Small(typical living)
NSS (ours) 6 Building 27 2–6 Large(construction)
a
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2021) treat each point independently, while fully convolutional meth-
ods (Choy et al., 2019b; Bai et al., 2020) can extract all local descriptors
or the whole scene in a single forward pass. Predator (Huang et al.,

2021) is the first work that pays special attention to low-overlap pairs
nd proposes an overlap-attention module to robustify registration by
earning to sample interest points in the overlap region only. Qin et al.

(2022) and Yu et al. (2021) improved Predator by operating in a coarse-
to-fine manner. DPFM (Attaiki et al., 2021) adopts this idea to non-rigid
registration via an overlap attention mechanism in function space.

(b) End-to-end methods integrate differentiable pose estimators into
he feature extraction pipeline (Wang and Solomon, 2019a,b; Yew and
ee, 2020; Aoki et al., 2019; Wei et al., 2023), providing an alternative
o the feature-based methods. With the weighted Kabsch solver (Arun
t al., 1987) or the generalized differentiable RANSAC (Wei et al.,

2023), training can be directly supervised by ground truth poses.
owever, they mostly work on synthetic datasets (Wu et al., 2015) due

o weak feature extractors.
In our experiments, we evaluate the performance on NSS of tradi-

ional (Rusu et al., 2008), fully convolutional (Bai et al., 2020; Choy
et al., 2019b), attention-based (Huang et al., 2021), and coarse-to-
ine (Qin et al., 2022) methods.
Multi-way registration This task aims to resolve the ambiguities in

pairwise registration by leveraging multi-view constraints. Traditional
ethods (Huber and Hebert, 2003; Fantoni et al., 2012) simply re-

fine the initial pose estimations by extending ICP to the multi-way
setting. However, this approach becomes computationally intractable
due to the quadratically increased number of pairwise registrations
as the views increase. Modern methods (Torsello et al., 2011; Choi
et al., 2015; Theiler et al., 2015; Bernard et al., 2015; Zhou et al.,
2016; Bhattacharya and Govindu, 2019) optimize the initial relative
poses by incorporating global cycle consistency. This optimization is
typically achieved by applying synchronization techniques within the
pose graphs using methods such as Iterative Reweighted Least Square
(IRLS), Triggs’ correction (Triggs et al., 2000), and other lifting-based
approaches (Zach and Bourmaud, 2018). Recent studies have intro-
duced learning-based methods to improve synchronization. For in-
stance, Huang et al. (2019) and Gojcic et al. (2020) propose to learn
he edge weights for the transformation synchronization, with Gojcic
t al. (2020) additionally learning the pairwise registration (Choy et al.,

2019b) and outlier rejection (Zhang et al., 2019). Wang et al. (2023)
ropose constructing a sparse but reliable pose graph by first estimating

the pairwise overlap ratios. They further improve the robustness of
outlier edges by incorporating a history reweighting function in the
IRLS scheme.

In our experiments, we explore a widely-used pose graph syn-
chronization method by Choi et al. (2015), which is known for its
fficiency in avoiding local minima by leveraging noisy-free odometry
oses for initializing the nodes in the pose graph. Additionally, we
nvestigate a recent synchronization method by Yew and Lee (2021b),

PoseGraphNet, that does not assume prior knowledge of pairwise reg-
istration. Instead, it utilizes a recurrent Graph Neural Network (GNN)
802 
to progressively refine poses, beginning with node initializations as
identity matrices. Note that for both methods, the edges in the graph
are initialized using the results from pairwise registration, a common
ground for constructing the pose graph.

2.4. Synthetic generation of point clouds

Generating synthetic visual data is a largely explored field. Here,
we limit the scope to generating 3D point cloud data and depth im-
ages from two perspectives: sensor pose definition and sensor noise
simulation.

Sensor pose definition. Three main approaches are identified: (i) Man-
ual definition: The user manually specifies the location of the sensor
either by playing a video game (Richter et al., 2016; Shafaei et al.,
2016; Hu et al., 2021) or via a graphical interface (Handa et al., 2015;
Noichl et al., 2021); (ii) Real-world trajectory inserted in simula-
tion: A trajectory captured in the real world is inserted and transformed
to simulate a trajectory in a synthetic scene (Handa et al., 2012, 2014);
nd (iii) Random sampling in the synthetic scene: Here, sensor loca-

tions and poses are randomly sampled in the simulation environment to
address certain criteria. Methods use physics-based simulation of sensor
trajectories (McCormac et al., 2017; Roberto de Souza et al., 2017),
eact to dynamic movement of other objects in the scene (Ros et al.,

2016; Hernandez-Juarez et al., 2017; Zolfaghari Bengar et al., 2019), or
ensely sample in the free 3D space (Kundu et al., 2020; Qiu and Yuille,

2016). Closer to the latter and to our approach is a group of methods
that define sensor positions with the use of a 2D occupancy map of
the scene (Song et al., 2017; Zhang et al., 2017; Wang et al., 2020b;
Biswasa et al., 2015; Díaz-Vilariño et al., 2018; Frías et al., 2019). These

ethods commonly employ a set of constraints, criteria, and heuristics
o exclude non-informative views from the final selection. Similar to
hem, we sample locations on a 2D occupancy grid of the scene and
onstrain the sensor location sampling based on the properties and
ay of use of a real-world sensor (i.e., height position and distance
etween locations). However, instead of setting heuristics to exclude
on-informative views, we define a probability map that favors more
ealistic locations (e.g., further away from obstacles). In our final set
f generated data, we include all possible scenarios from more to less
nformative.

Sensor noise simulation. A well-known property of simulation envi-
ronments is the possible mismatch in the distribution of the noise
characteristics in the data. In practice, multiple scans of the same
fragment may exhibit different noises. When simulating point clouds
from any underlying geometry (e.g., , reconstructed mesh, geometric
primitives), to replicate this and prevent models from exploiting the
consistent scanning artifacts during registration, works have been cre-
ating statistical noise models of sensors to utilize in simulation (Noichl
et al., 2021; Handa et al., 2015, 2014; Barron and Malik, 2013). We
follow the implementation in Handa et al. (2015) and Gschwandtner
et al. (2011) to simulate the sensor noise during our synthetic data
generation.
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Fig. 2. Overview of the Nothing Stands Still (NSS) benchmark: fragments (𝑋𝐴
𝑡, 𝑋𝐵

𝑡, 𝑋𝐶
𝑡′ , 𝑋𝐷

𝑡′ ) captured in a construction site are spatiotemporally registered. First, a pairwise
registration step registers individually the pairs of fragments belonging to the same ((𝑋𝐴

𝑡, 𝑋𝐵
𝑡) and (𝑋𝐶

𝑡′ , 𝑋𝐷
𝑡′ )) or different stages ((𝑋𝐴

𝑡, 𝑋𝐶
𝑡′ ) and (𝑋𝐵

𝑡, 𝑋𝐷
𝑡′ )). Then, a multi-way

registration step creates a single and coherent spatiotemporal map of all fragments. Given current methods, this step is initialized by the results of the pairwise one. In this example,
we assume overlap occurs for pairs (𝑋𝐴

𝑡, 𝑋𝐵
𝑡), (𝑋𝐵

𝑡, 𝑋𝐷
𝑡′ ), (𝑋𝐶

𝑡′ , 𝑋𝐷
𝑡′ ), and (𝑋𝐶

𝑡′ , 𝑋𝐴
𝑡). We define the overlapping pairs for entire areas using spatiotemporal graphs, as detailed

in Section 6.2.
3. Spatiotemporal point cloud registration

Before introducing the dataset and benchmark, we clarify all used
terminology here: area refers to a building’s (large) indoor space that
was recurrently captured over time; individual 3D point clouds or else
fragments refer to partial 3D observations of the area in the form of
point clouds; entire area point clouds or else scans refer to the entire
captured area reconstructed in the form of a 3D point cloud at one
point in time; and stages denote discrete points in time when an area
was captured.

Given multiple fragments of an area that are captured at different
stages and 3D locations, the goal is to spatiotemporally align them
and achieve a 3D scan of the area over time (i.e., a 4D scan). This
includes two tasks2 (Fig. 2): pairwise registration of fragments that can
belong to the same or different stages (Fig. 2(I)), followed by multi-
way registration of all fragments to result in the final spatiotemporal
alignment of them (Fig. 2(II)).

Pairwise registration. Consider source fragment 𝐗(𝑆 ,𝑡) = {𝐱(𝑆 ,𝑡)𝑖 ∈ R3}𝑛𝑖=1
and target fragment 𝐗(𝑇 ,𝑡′) = {𝐱(𝑇 ,𝑡′)𝑗 ∈ R3}𝑚𝑗=1 captured at 𝑡 and 𝑡′,
respectively. The spatiotemporal pairwise registration task is to recover
a rigid transformation 𝐌∗ = [𝐑∗, 𝐯∗] where rotation matrix 𝐑∗ ∈ SO(3)
and translation vector 𝐯∗ ∈ R3, such that:

𝐌∗ = arg min
𝐌

𝑛
∑

𝑖=1

‖

‖

‖

𝐌(𝐱(𝑆 ,𝑡)𝑖 ) − 𝖭𝖭(𝐌(𝐱(𝑆 ,𝑡)𝑖 ),𝐗(𝑇 ,𝑡′))‖‖
‖2

(1)

where 𝐌(𝐱) ∶= 𝐑𝐱 + 𝐯 is the rigid transformation applied on point 𝐱
and 𝖭𝖭(𝐱,𝐗) represents the nearest neighbor of point 𝐱 in point cloud
𝐗 in Euclidean space.

Multi-way registration. Consider a set of fragments {𝑋𝑡
𝑖} where each

fragment could be captured at any stage 𝑡. The spatiotemporal multi-
way registration task is to recover a set of rigid transformations {𝐌𝑡

𝑖}
between each fragment in {𝑋𝑡

𝑖}∖{𝑋
𝑡=1
𝑖=1} and 𝑋𝑡=1

𝑖=1 , such that all frag-
ments achieve a globally optimal alignment in the same reference
system. Different from existing settings (Choi et al., 2015; Huang et al.,
2019; Gojcic et al., 2020) that consider fragments from the same stage
only, the proposed spatiotemporal multi-way registration contains frag-
ments from different stages and is thus a more challenging optimization

2 State-of-the-art multi-way registration algorithms depend on initialization
of the alignment between fragments, which can be acquired from the pairwise
registration task. In the future, methods can solve the two spatiotemporal tasks
independently without jeopardizing the structure of the benchmark.
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task. This step results in the spatiotemporal 3D reconstruction of the
area.

4. Nothing stands still dataset

The Nothing Stands Still (NSS) dataset consists of 3D fragments
captured over time in 6 large-scale indoor areas, along with their
corresponding scans. The dataset focuses on the construction of interior
layouts, where the exterior shell of the areas has been erected, and
the interior space is empty. The captures chronicle the progression of
various construction activities, including the creation of walls, instal-
lation of mechanical, electrical, and plumbing elements, movement of
materials, temporary structures, machinery, and more. Fig. 3 provides a
snapshot of all 6 areas at a single stage. Five of the areas in the dataset
depict stages under construction, while one area (Area D) includes only
before-and-after renovation stages with no visible construction. Still,
the renovation stages involve significant structural changes like wall
removal, functional changes like transforming a conference room into
an office, and furniture replacement like desks and carpeting.

It is important to note that fragments belonging to different areas
but annotated as being in the same stage (e.g., stage 𝑡′) do not depict
identical changes, as construction progresses differently across areas.
Similarly, construction progress may vary even across fragments within
the same area and stage. Fig. 4 illustrates examples of areas and
their stages. For all fragments in an area, the NSS dataset provides
ground truth pose annotations that describe their spatial and temporal
information.

4.1. Dataset acquisition

Each area in the NSS dataset covers on average 2500 𝑚2 and consists
of 2–6 stages. The time intervals between stages can range from weeks
to months, since the data collection is not based on a fixed schedule
but rather follows the completion of significant construction tasks. The
timing of data collection is determined in consultation with the project
manager to ensure access to the construction site at appropriate and
safe times. The objective is to capture the data just before crucial
building information, such as pipes and structural elements, becomes
inaccessible once covered by surfaces. Table 2 provides details on the
floorplan coverage for each area in 𝑚2.

The dataset was collected using the Matterport Camera v1
(Matterport, 2025). The Matterport Camera is a tripod-based reality
capture system that acquires 360◦ fragments from static locations.
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Fig. 3. Areas in the Nothing Stands Still dataset at first temporal stage. The building layout and size ranges across areas.
Fig. 4. Sample close-up snapshots of areas in the Nothing Stands Still dataset. Significant changes are occurring per area, starting from an empty scene and reaching the
construction of rooms.
Fig. 5. Global registration ground truth, for example, scans in four areas in the Nothing Stands Still dataset. Details about the alignment method for the global ground truth are
provided in Section 4.2.1.
These fragments are subsequently registered together to create the
final 3D scan of the captured area using proprietary software. The
proprietary software is not accessible by or disclosed to users. Matter-
port3D automatically performs the registration upon uploading the data
and provides to the user the final result. According to specifications,
Matterport3D has a geometry error of around 1 inch from reality.
Hence, while users have access to the 3D scans, they do not have access
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to the individual fragments. Furthermore, the 3D scans from different
stages depicting the same area are not spatiotemporally aligned in the
same coordinate system because there is no geolocalization information
available. Therefore, two important steps are undertaken in creating
the dataset: (a) alignment of 3D scans: different-stage scans of the same
area are aligned in the same coordinate system to acquire all ground
truth poses; and (b) fragment generation: as the original fragments are
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Fig. 6. Settings of sensor utilized for generating fragments. (a) Given the used sensor settings, (b) we simulate 3 depth sensors with different pitch angles and statistical noise to
capture the individual fragments per location.
not accessible, novel ones are generated based on the provided scans.

4.2. Dataset generation

In this section, we describe the process of generating spatiotemporal
ground truth pose information for all fragments that will serve the
pairwise and multi-way registration tasks. Additionally, we explain how
to generate fragments and create pairs, as well as the formulation of the
final dataset.

4.2.1. Alignment of 3D scans
To establish a single, global spatiotemporal coordinate system for all

scans that correspond to the same area, a manual rough alignment of
them is initially performed. This involves using the ‘‘Align (point pairs
picking)’’ tool in CloudCompare (Cloud Compare, 2025), a point cloud
processing software. By manually selecting 10–15 correspondences be-
tween scans, we obtain an initial alignment. In cases where an area
consists of more than two stages, an anchor stage is selected based on
the highest area coverage across all stages. The remaining stages are
then aligned with respect to this anchor stage. To refine the above
alignment results, we programmatically employ the iterative closest
point (ICP) (Besl and McKay, 1992) algorithm. ICP aims to minimize
the root mean square error (RMSE) between the input stages, ensuring
a more accurate result. Examples of the global registration results are
shown in Fig. 5.

Why ICP. The use of ICP for this change-depicting data is not ideal,
since one of ICP’s main assumptions is that the scene is static. A better
circumstance would be to identify changed points and exclude them
from the optimization process. However, this is non-trivial because
determining the changed parts requires aligning the data first, leading
to a circular dependency problem. As a compromise, we choose ICP to
refine the rough initial alignment and assume that non-changing points
dominate the optimization process. The median cross-stage displace-
ments (i.e., the distance between a point in a non-anchor stage and its
corresponding point in the anchor stage) after applying ICP for each
area are as follows: 0.127, 0.135, 0.141, 0.130, 0.127, and 0.117 m,
respectively. The effect of ICP can also be qualitatively evaluated in
Fig. 5.

4.2.2. Fragment generation
We utilize the available 3D scans to generate synthetic fragments

that mimic real-world conditions, such as sensor settings and the cap-
turing process.
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Sensor settings. The Matterport Camera consists of three RGBD sen-
sors (Primesense, 2025). The configuration of the sensors is optimized
to achieve maximum vertical coverage of the scene from a single
viewpoint, with a pitch range of ±30◦. As the sensors rotate around
the gravity axis, the system captures data at intervals of 60◦ (Fig. 6(a)).
This process generates 18 RGBD images, which are then stitched to-
gether to form an equirectangular RGBD image. Further projecting the
equirectangular image in the 3D space results in the fragment captured
at that location (Fig. 6(b)).

To simulate this sensor setup, we use the Blender (2025) software
and model it according to the described configuration. We incorporate
statistical noise models (Handa et al., 2015; Gschwandtner et al.,
2011) for the Primesense sensor to mimic the real-world characteristics
of the captured data. The depth images are sampled based on the
reconstructed mesh of the scene, allowing us to closely simulate the
raw output of the actual sensor at a specific location. In our simulation
setup, we focus on simulating the depth sensor only, as accurately simu-
lating realistic textures from the reconstructed 3D mesh is a challenging
task. This does not affect the benchmark, since pairwise and multi-way
registration tasks rely on geometric information rather than color.

Finding fragment locations. The next step is to sample possible 3D loca-
tions of the sensor in each area and stage, so as to achieve maximum
coverage. We compute these locations on a 2D occupancy probabilistic
map of each stage (Fig. 7), by taking into account constraints imposed
by the sensor system. First, we calculate a 2D occupancy map for each
stage by taking into account the obstacle information in the vertical
space. We exclude any data outside the height range of [0.5, 2] m to
remove occupancy resulting from floor or ceiling points. The maximum
sensor height is set at 1.75 m, so any location below 2 m should be
unobstructed for it to be considered valid. To create the occupancy
map, we densely sample 3D points from the underlying mesh in a
uniform manner. The map is defined by a grid with a cell size of
0.10 m × 0.10 m, and if a point falls within a cell, the cell is marked
as occupied.

Next, we enrich the occupancy map with probabilistic information
that prioritizes free cells that are further away from occupied ones. This
ensures that the sensor locations are preferentially placed further away
from obstacles, as would occur in a real-world setting. The probabilistic
occupancy map is then used to densely sample sensor locations. The
sampling process starts by randomly selecting the first point, and
subsequent sensor locations are placed within a 2D Euclidean distance
uniformly distributed in the range of [1, 4] m. The sensor height is
varied in the range of [1.5, 1.75] m, also uniformly distributed. The
objective is to achieve maximum coverage of the 2D map, taking into
account that the maximum depth sensing range of the employed sensor
is 4.5 m.

4.2.3. Pairwise registration dataset generation
To select fragment pairs for the pairwise registration task, we aim to

create a diverse and balanced dataset that represents various scenarios
of overlap. We employ three metrics to guide the selection process:
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Fig. 7. Sampling fragment locations on scans. Locations are selected on the basis of a probabilistic 2D occupancy map, taking into account the employed sensor characteristics
and real-world settings.
Fig. 8. Significance of overlap (OR) and temporal change (TCR) ratios in NSS.
Although the OR is the same in both pairs, TCR is substantially higher in pair B with
almost half of the points in the overlapping area having changed.

Overlap Ratio (OR). This is an existing metric in the spatial registration
domain (Huang et al., 2021) and refers to the ratio of spatially overlap-
ping points between two fragments, regardless of whether they belong
to the same or different stage. Given a pair of registered fragments, it
measures the ratio of overlapping points over the whole point cloud
(Fig. 9(a)). Specifically, given source 𝐗(𝑆) and target 𝐗(𝑇 ) fragments,
the overlapping part between them 𝐎(𝐗(𝑆),𝐗(𝑇 )) is calculated as:

𝐎(𝐗(𝑆),𝐗(𝑇 ); 𝜏) ∶= {𝐱 ∈ 𝐗(𝑆) ∣ 𝖭𝖭(𝐱,𝐗(𝑇 )) ≤ 𝜏} (2)

Then, the overlap ratio is defined as:

Over lap Rat io ∶= |𝐎(𝐗(𝑆),𝐗(𝑇 ); 𝜏)|
|𝐗(𝑆)

|

(3)

Note that, in the case of different stage registration, the overlap ratio
reflects the ratio of no-change points under the threshold 𝜏. For all
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evaluations, we set 𝜏 = 0.2 m, a threshold commonly used in scanning-
based 3D datasets to determine a sufficiently close to the ground-truth
transformation (Zeng et al., 2017).

Temporal Change Ratio (TCR). OR falls short in providing information
about possible temporal changes that might have occurred in the
overlapping region between two fragments that originate from different
stages. To counter this limitation, we define and introduce the concept
of the temporal change ratio. This ratio denotes the proportion of points
that have undergone changes within the overlap region encapsulated
by a 3D convex hull (Fig. 9(b)). Following the same threshold used in
OR, we consider a point as changed if it lacks neighbors within the
𝜏 = 0.2 m Euclidean range in the other stage.

More specifically, given source fragment 𝐗(𝑆 ,𝑡) from stage 𝑡 and
target fragment 𝐗(𝑇 ,𝑡′) from stage 𝑡′, the temporal change ratio is
defined as:

TCR ∶= 1 − |𝐎(𝐗(𝑆 ,𝑡),𝐗(𝑇 ,𝑡′); 𝜏)|
|𝐇(𝐗(𝑆 ,𝑡),𝐗(𝑇 ,𝑡′))| (4)

Here, the convex envelope 𝐇 represents the boundary of the overlap
region between the two fragments, and is defined as:
𝐇(𝐗(𝑆 ,𝑡),𝐗(𝑇 ,𝑡′)) ∶= {𝐱 ∈ 𝐗(𝑆 ,𝑡) ∣ hull(𝐗(𝑇 ,𝑡′)) =

hull(𝐗(𝑇 ,𝑡′) ∪ 𝐱)}
(5)

where hull(⋅) is the convex hull of a given fragment.
Fig. 8 showcases two examples of fragment pairs, along with their

respective overlap and temporal change ratios. While the overlap ratio
remains consistent in both cases, a notable difference can be observed
in the temporal change ratio. This discrepancy indicates that registering
(b) is more difficult than (a) due to the scarcity of static points available
for deriving correspondences within the overlapping region. Adding to
the challenge is the fact that the majority of static points are associated
with flat surfaces, which further restricts finding correspondences.

Geometric complexity. The amount of geometric complexity of points in
the overlapping region between two fragments plays an important role
in defining easier versus more challenging registration pairs. To assess
it, we calculate the surface variation or else curvature (Weinmann
et al., 2013), which provides information about the local shape, using
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Fig. 9. Metrics for selecting fragment pairs. We employ three metrics that evaluate (a) spatial, (b) temporal, and (c) geometric characteristics of fragment pairs.
Fig. 10. NSS dataset statistics. The histograms showcase the distribution of fragment pairs with respect to spatial and temporal characteristics. These are the overlap ratio, temporal
change ratio, and average curvature.
Fig. 11. Refinement of fragment pair ground truth registration using cylinders of
different radius. The 12 m radius is the one that provides the smallest error correction
with respect to the initial global alignment. We plot the average error curves in red
and green. Error curves per area are colorized as: A: purple | B: blue | C: pink | D :
green | E : yellow | F :orange.

eigendecomposition (Fig. 9(c)):

𝐶𝜆(𝐱) =
𝜆3

𝜆1 + 𝜆2 + 𝜆3
(6)

where 𝜆𝑖 is the 𝑖th eigenvalue for the 3D Structure Tensor (Bigun, 1987)
over the points within a sphere of radius 𝑟 = 0.5 m centered at 𝐱.
This radius is empirically chosen to include enough points to reduce
noise while maintaining sensitivity to local features. For every pair
of fragments, we provide the averaged curvature value for all points
located in their overlapping part, i.e.,

𝐶 (𝐗(𝑆),𝐗(𝑇 )) = 1 ∑

𝐶 (𝐱), where 𝑂 ∶= 𝐎(𝐗(𝑆),𝐗(𝑇 )). (7)
𝜆
|𝑂| 𝐱∈𝑂

𝜆
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Table 2
Details on area coverage and the total number of fragment pairs in the NSS dataset. The
coverage of each area in the dataset may vary slightly at each stage due to construction
activities, since certain parts may be inaccessible or obstructed.

Area Stages Area [m2] Pairs

Min Max Non-temporal Temporal

A 3 3159.8 3342.0 9604 3825
B 6 1482.4 2191.9 6801 5876
C 5 652.9 812.9 2185 1682
D 2 1112.1 1129.1 1557 844
E 4 944.3 5019.5 5224 2226
F 5 1322.4 2661.1 12 060 14 359

Regions with higher curvature values indicate more intricate and com-
plex geometry and are generally easier to align. Regions with flatter
geometry, characterized by lower curvature values, make the registra-
tion task more challenging since they exhibit simpler geometric shapes
with less variability.

Final fragment pairs. To determine the final set of fragment pairs for
the Nothing Stands Still dataset, we compute the metrics described
above for all possible pairs within and across stages. After computing
them, we create the distribution curves which provide insights into
the data characteristics (Fig. 10(a)). To ensure a diverse and balanced
dataset, we sample data in a uniform manner from them (Fig. 10(b)),
i.e., we select fragment pairs so that they represent a range of overlap
ratios, temporal change ratios, and geometric complexities. Details on
the final number of fragment pairs for the Nothing Stands Still dataset
are shown in Table 2.

4.2.4. Fragment alignment
While the global alignment achieved in Section 4.2.1 provides a

globally minimum registration error among scans, it does not guarantee
a locally optimal registration between fragment pairs. This is illustrated
in Fig. 5. Using this initial and imperfect alignment as ground truth
to systems will result in a very noisy learning process and ultimately
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Fig. 12. Qualitative examples of the fine-tuned pairwise alignment using different context sizes. The 12 m radius provides on average the lowest translation (TE) and rotation
(RE) errors between the pseudo ground truth and the fine-tuned result. This is particularly noticeable in the alignment of floors and walls. Even in the last row, where the TE
is higher, the 12 m radius still achieves a correct alignment. Two viewpoints are shown for a better understanding of the results. The ceiling has been removed for visualization
purposes.
to gross errors in registration. To address this, individual refinement
of transformations is performed for each pair to achieve a locally
minimum solution.

However, directly refining the fragment pairs alone does not always
yield the optimal solution for that pair. Context, particularly overlap-
ping regions, plays a crucial role in registration. More context can
provide more static anchors, but excessive context can hinder the pro-
cess if there is significant temporal change. To determine the optimal
context size around a fragment location, cylindrical chunks are cropped
from the scans centered around the sensor locations of each fragment.
Cylinders of different radii in the range of [2, 18] m are used, with a
step size of 2 m. The range is selected empirically to allow for sufficient
hyper-parameter tuning, with the upper limit encompassing the entire
building in most cases. This results in 9 different-sized cylinders per
sensor location, with the height of each cylinder being the total height
of the scan at that location.

The alignment of the cylinder pairs is refined using the global align-
ment computed in Section 4.2.1 as the initialization (pseudo ground
truth). The relative reconstruction error (translation error (TE) and
rotation error (RE)) is computed with respect to the pseudo ground
truth. The assumption is that the optimal radius will have a minimal
deviation in terms of reconstruction error from it. Based on the results
(Fig. 11), it is determined that a radius of 12 m provides a balance of
context for refined fragment registration. This choice is confirmed by
visualizing various random samples of refined fragment pairs (Fig. 12).
Even when there is larger-than-average displacement from the pseudo
ground truth, the final registration results are improved. Finally, the
pairwise registration ground truth is created using the refined local
transformations on the 12 m cylinders for all fragment pairs.

4.2.5. Multi-way registration dataset generation
For the multi-way registration task, the ground truth transformation

across fragments is obtained from the global alignment achieved in
Section 4.2.1. It is worth noting that the train and test sets for the multi-
way registration are a subset of those used in the pairwise registration.
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This is due to certain fragment pairs in the pairwise registration task
not having sufficient overlap with other pairs (i.e., at least 10%). This
results in many disjoint components per area instead of a coherent
and connected global spatiotemporal map. While the goal is to have
high intra-fragment overlap, we keep disjoint components that contain
enough fragments (at least 50). As a result, in certain areas, there may
be more than one disjoint spatiotemporal map. During the simulation
process, it is possible to generate fragments that create a single map
per area, however, this scenario is not always realistic. We note that,
in the multi-way registration experiments in Section 6.2, we use the
subset test data but not the subset training data. State-of-the-art meth-
ods for this task aim to globally optimize the pairwise registration
results, which does not require new training. The multi-way training
annotations are provided as part of the NSS dataset for future work
that may address this task independently of a prior pairwise registration
step.

5. Nothing stands still benchmark

The Nothing Stands Still (NSS) benchmark consists of the tasks
of pairwise and multi-way registration.

Data splits. To evaluate the generalization ability of the methods, we
define three different data splits:

• Original: This is the standard data split in the spatial registration
domain. The training and testing are performed on fragment pairs
from all areas and stages. Although the train–test fragments are
not duplicates, they originate from the same area and stage,
allowing methods to learn about the composition of an area
during training.

• Cross-area: In this split, the training is done on fragments from
three areas (all stages), and the testing is performed on the
remaining areas. This evaluates a method’s generalization ability
to unseen areas.
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Table 3
Generalization type in NSS data splits. Each split receives during testing, with respect
to training, data from unseen areas, and unseen stages from the same area.

Data split Unseen stage Unseen area

Original
Cross-Area
Cross-Stage

Table 4
Area split per evaluation task on the NSS dataset.

Cross-Area Cross-Stage Original

Training

Area A B F A B C E F All
Stage All All All 1–2 1–3 1–3 1–2 1–3 All

Testing

Area C D E A B C E F All
Stage All All All 3 4–6 4–5 3–4 4–5 All

• Cross-stage: Here, the training is conducted on the first 50% of
stages of each area, and the testing is performed on the remaining
ones. This split aims to assess the domain gap across stages.

Table 3 provides an overview of the splits, and Table 4 offers more
detailed information about them. Both the pairwise registration and
multi-way registration tasks are evaluated on all three data splits.

Evaluation metrics. To evaluate both registration tasks, we follow the
same evaluation metrics as in the spatial registration domain (Huang
et al., 2021) and use: registration recall (Recall), relative translation
error (RTE), and relative rotation error (RRE). For the RTE and RRE
metrics, their formal definitions are,

RRE = ∠(𝐑−1
𝐺 𝑇 𝐑̂), RTE = ‖𝐯𝐺 𝑇 − 𝐯̂‖2, (8)

where {𝐑𝐺 𝑇 , 𝐯𝐺 𝑇 } and {𝐑̂, 𝐯̂} denote the groundtruth and estimated
rigid transformation, respectively. Here,

∠(𝑋) = ar ccos
(

trace(𝑋) − 1
2

)

, (9)

returns the angle of rotation matrix 𝑋 in degrees.
The registration recall is defined as the ratio of the number of

successfully registered point cloud pairs to the total number of point
cloud pairs. In our benchmark, a pair is considered successfully reg-
istered if it satisfies two criteria: the relative rotation error (RRE) is
less than 10 degrees, and the relative translation error (RTE) is less
than 0.2 m. The thresholds are common values for indoor point cloud
registration (Zeng et al., 2017). This metric provides a comprehensive
measure of the registration algorithm’s accuracy with varying degrees
of spatial displacement.

To measure the performance of methods in spatiotemporal registra-
tion, we employ overlap ratio and temporal change ratio as ablation
metrics. Please refer to Section 4.2.3 for their definitions.

6. Experiments

In the pairwise registration task of the Nothing Stands Still bench-
mark, we evaluate state-of-the-art approaches that include both hand-
crafted and learned features: FPFH (Rusu et al., 2009), D3Feat (Bai
et al., 2020), FCGF (Choy et al., 2019b), Predator (Huang et al., 2021),
and GeoTransformer (Qin et al., 2022).3 In the multi-way registration
task, we evaluate the state-of-the-art methods in Choi et al. (2015)
and Yew and Lee (2021b), which we initialize with the registration

3 We follow the original training protocol per method, and integrate all the
evaluated methods in our point cloud registration codebase. The codebase is
open-sourced together with the benchmark.
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results of the two best performing methods on the pairwise registration
task.

6.1. Pairwise spatiotemporal registration

We report the results in Table 5. Overall, Predator performs the
best in the majority of the metrics for all data splits and temporal
ablations. However, different-stage pairs pose significant challenges
for all registration methods. The average performance drops between
same-stage and different-stage pairs over all methods by 40.8 p.p.,
41.5 p.p., 37.4 p.p. for the cross-area, cross-stage, and original splits
respectively. We can also observe that learning methods achieve better
performance than the hand-engineered FPFH, especially for temporal
registration. FPFH only successfully registers about 1% of the different-
stage pairs, significantly lagging behind other learning-based methods.
Although FPFH’s RE for successfully registered pairs is very low, the
low registration success rate suggests that these results are unclear.
Indeed, when computing the RE over all pairs in the dataset, we see
that the orders are higher in magnitude. Hence, RE calculation on only
successfully registered pairs, does not fully showcase the robustness of
a method. We also observe that the modeling of interactions between
fragments of different stages may play a key role in temporal registra-
tion. For example, compared to D3Feat, Predator and GeoTransformer
show a large margin of 23.7 and 12.8 p.p. in different-stage pairs in
the Original split. We hypothesize that the attention mechanism they
utilize between the inputs enables them to capture more temporal-
related patterns, while other methods treat the fragment input pairs
independently.

When comparing the results of different data splits, we notice that
methods perform the best on the cross-stage split and worst on the
cross-area split. This behavior is expected for both cases. In the cross-
stage split, methods learn the general structure and characteristics of
the area during training and are able to make predictions on unseen
stages more accurately. This has practical applications in industries
such as construction or building management, where a small initial
annotation effort can lead to significant future gains. In the cross-area
split, methods struggle to generalize to unseen environments, which is
a common challenge in various computer vision tasks. As mentioned
above, the registration of fragment pairs from different stages poses
difficulties, which is further emphasized in the cross-area split.

Fig. 13 provides a histogram of registration recall for all data splits
based on the overlap ratio of fragment pairs. The three best-performing
methods in the pairwise registration task, namely D3Feat, GeoTrans-
former, and Predator, are included in the evaluation. The results show
a clear trend where higher overlap ratios correspond to higher recall
values across all splits. Fig. 14 presents the histogram analysis based on
the temporal change ratio. It demonstrates that as the temporal change
increases, the registration problem becomes more difficult. Among the
three dataset splits, the cross-area split exhibits the least robustness
against large temporal changes. It is noteworthy that these methods
perform exceptionally well in the prominent spatial registration bench-
marks of 3DMatch (Zeng et al., 2017) and 3DLoMatch (Huang et al.,
2021), achieving high accuracy rates in the range of 80% to 90%
(Table 6). However, their performance drops by around 50% in the NSS
benchmark. While the difference in performance between 3DLoMatch
and NSS is less pronounced for pairs with low overlap (10%–30%),
for different-stage pairs, regardless of the overlap percentage, it is
significantly lower.

Figs. 19 and 20 provide example results of spatiotemporal pairwise
registration for D3Feat, GeoTransformer, and Predator. Consistent with
the quantitative results, Predator demonstrates more accurate registra-
tion compared to the other methods. In cases where the overlap ratio is
very high and the temporal changes have minimal impact on the main
structure of the scene (row 𝑏) or do not exist (row 𝑐), all three methods
achieve similarly good results, which is an expected behavior. However,
there are scenarios where D3Feat struggles to register pairs correctly,
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Fig. 13. Registration recall [%] per overlap ratio (OR) bin for existing 3D point cloud registration methods. A clear performance gap is visible between same-stage pairs (top row)
and different-stage pairs (bottom row) for these methods.
Fig. 14. Registration recall [%] per temporal change ratio (TCR) bin for existing 3D point cloud registration methods on different-stage pairs. It is evident that larger temporal
changes pose greater challenges for these methods, and that the cross-area split is a setting with increased challenges.
Fig. 15. Spatiotemporal graphs for the multi-way registration task. Nodes represent fragment locations and edges denote that these pairs are overlapping in the 3D spatiotemporal
map of each area. The resulting graphs are dense both in nodes and edges.
even with a high overlap ratio. This is particularly evident in cases
where there are significant temporal changes and the scene geometry
contains repetitive elements, such as studs (rows 𝑎 and 𝑓 ). This limi-
tation is attributed to D3Feat’s reliance on local geometry constraints
and independent fragment processing. In a scenario with low overlap
and no temporal change (row 𝑑), both D3Feat and GeoTransformer fail
to find the correct alignment, while Predator performs better. Lastly,
in row 𝑒, all three methods encounter a failure case. Here, not only
is the overlap low, but the two rooms are closely similar, making it
a challenging scenario to solve. The main differences are the cut-out
corners in the blue-colored fragment and the mirrored location of the
doors.
810 
6.1.1. Effect of temporal data
To further investigate the impact of training on both same-stage

and different-stage pairs on the registration recall of D3Feat, GeoTrans-
former, and Predator, we conducted the following experiment: we only
trained on the same-stage pairs available in different data splits. The
evaluation was still performed on the entire test set, which includes
different-stage pairs. The results in Table 7 indicate that the presence
of different-stage pairs hinders the training process for some methods.
When trained exclusively with same-stage data, D3Feat demonstrates
significantly better performance during testing. We hypothesize that
this improvement is due to D3Feat relying on the local geometric
assumption that similar local geometric structures are expected to be
registered together. As expected, the recall for all methods and splits
in same-stage registration is higher when trained solely on same-stage
pairs. This suggests that the methods struggle to effectively distinguish
between the spatial and temporal characteristics of the data, thereby
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Table 5
Pairwise registration results of existing 3D point cloud registration methods on Nothing Stands Still. We report registration recall (Recall) and translation (TE) and rotation (RE)
rrors. For TE and RE, we report the average measurements among: [successfully registered pairs]/[all pairs]. The first value is the standard evaluation setting.
Method Cross-Area Cross-Stage Original

Recall RMSE TE RE Recall RMSE TE RE Recall RMSE TE RE
[% ↑] [m ↓] [m ↓] [◦ ↓] [% ↑] [m ↓] [m ↓] [◦ ↓] [% ↑] [m ↓] [m ↓] [◦ ↓]

All spatiotemporal pairs

FPFH (Rusu et al., 2009) 22.83 3.30 0.66/3.08 0.20/43.21 18.73 2.53 0.80/2.43 0.16/45.87 11.70 2.52 0.44/2.43 0.10/45.32
FCGF (Choy et al., 2019b) 28.22 2.07 1.83/2.01 0.62/29.25 37.70 1.81 1.29/1.78 0.52/41.04 24.43 2.24 1.09/2.04 0.76/39.89
D3Feat Bai et al. (2020) 31.77 1.98 0.08/1.95 1.44/24.22 51.37 1.62 0.07/1.57 1.19/32.09 22.73 2.37 0.09/2.26 1.45/33.09
Predator (Huang et al., 2021) 55.53 1.09 0.05/1.08 0.98/25.05 76.73 0.77 0.04/0.68 0.74/15.27 64.97 0.71 0.06/0.65 0.79/13.52
GeoTransformer (Qin et al., 2022) 38.13 1.24 0.14/1.28 0.64/27.90 47.78 0.98 0.14/0.98 0.39/22.27 39.07 0.96 0.14/0.99 0.41/22.93

Only same-stage pairs

FPFH (Rusu et al., 2009) 32.86 2.46 1.57/ 2.34 0.28/34.41 46.40 1.94 1.12/1.90 0.38/33.42 30.82 2.58 1.13/2.42 0.27/29.35
FCGF (Choy et al., 2019b) 39.32 1.88 1.78/1.84 0.55/28.01 44.65 1.77 0.98/1.76 0.41/30.47 42.86 2.24 0.56/2.23 0.44/32.12
D3Feat Bai et al. (2020) 43.62 1.91 0.08/1.93 1.31/24.05 58.47 1.48 0.07/1.48 1.10/28.39 36.51 2.09 0.08/2.05 1.36/27.22
Predator (Huang et al., 2021) 76.80 0.81 0.05/0.83 0.86/18.41 87.49 0.44 0.04/0.48 0.69/9.89 92.99 0.27 0.04/0.27 0.67/4.83
GeoTransformer (Qin et al., 2022) 50.88 1.07 0.13/1.13 0.54/23.73 54.07 0.79 0.14/0.83 0.37/17.26 55.59 0.69 0.14/0.73 0.35/17.02

Only different-stage pairs

FPFH (Rusu et al., 2009) 1.06 4.88 0.07/4.32 0.03/65.89 0.82 4.23 0.09/4.06 0.02/72.43 0.42 4.21 0.03/4.06 0.00/78.01
FCGF (Choy et al., 2019b) 5.21 3.22 2.13/3.21 2.17/45.61 14.06 4.15 2.40/4.02 0.93/62.15 10.52 3.28 2.75/3.23 1.74/53.24
D3Feat Bai et al. (2020) 6.12 2.01 0.16/2.01 3.48/24.57 12.85 2.40 0.13/2.03 3.56/52.18 4.76 2.75 0.12/2.53 2.43/40.76
Predator (Huang et al., 2021) 9.49 1.71 0.16/1.62 3.08/39.42 18.42 2.03 0.10/1.77 2.08/44.46 28.42 1.28 0.13/1.16 1.29/24.85
GeoTransformer (Qin et al., 2022) 10.55 1.62 0.15/1.59 1.63/36.91 13.39 2.25 0.16/1.81 0.96/49.66 17.51 1.31 0.13/1.34 0.66/30.62
s
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Fig. 16. The measured Global RMSE of the multiway spatiotemporal registration using
PoseGraphNet.

Table 6
Comparison of performance on NSS (original split) with that on 3DMatch and
3DLoMatch. We compare the registration recall of the three best-performing methods
on NSS and clearly observe that their results on the standard spatial registration
benchmarks are substantially higher on ours.

Benchmark D3Feat PREDATOR GeoTrans.

Standard overlap [30%+]

3DMatch (Zeng et al., 2017) 82.2 89.0 92.0
NSS (all) 34.1 58.8 40.3
NSS (same-stage only) 47.9 83.1 54.3
NSS (different-stage only) 6.6 10.6 12.5

Low overlap [10–30%]

3DLoMatch (Huang et al., 2021) 37.2 59.8 75.0
NSS (all) 25.2 47.6 32.6
NSS (same-stage only) 32.6 62.4 42.2
NSS (different-stage only) 4.4 5.9 5.9

affecting same-stage registration due to temporal noise. However, in
he case of different-stage registration, the methods benefit from the
resence of such pairs in training, indicating that some learning is
ccurring. Fig. 13 illustrates that these benefits primarily stem from the

highly overlapping fragment pairs. Despite the advantages of utilizing
ll spatiotemporal data during training, there is still significant room
or the methods to fully exploit the potential of different-stage pairs.
811 
6.1.2. Comparison to RIO10 spatiotemporal dataset
RIO10 (Wald et al., 2020) is a recent indoor point cloud dataset

pecifically designed for camera re-localization tasks in changing en-
ironments. We follow the NSS benchmark protocol to evaluate the
patiotemporal registration performance for D3Feat, Predator, and Geo-
ransformer on this dataset. We consider only the original and cross-
tage splits, since, due to the spatial scale of each area, the cross-area
nd original splits overlap. The results are presented in Table 8. In com-
arison to the performance on the NSS dataset (refer to Table 5), we

observe better registration performance across all metrics on average
when evaluating on RIO10. Particularly, the drop in performance for
different-stage pair registration is significantly smaller. This suggests
that the domain gap between same-stage and different-stage pairs in
this dataset is not as drastic, which is expected considering the smaller
changes depicted in the scenes.

6.2. Multi-way spatiotemporal registration

Both Choi et al. (2015) and PoseGraphNet (Yew and Lee, 2021b)
require the construction of a pose graph, where nodes represent frag-
ments and edges denote the predicted transformation between two
connected fragments. We define the pose graph including the fragments
from all stages within an area. In both cases, the edges are initialized
with the relative transformations from the pairwise registration results
for the two best-performing methods, Predator and GeoTransformer.
Suppose no edge exists between two fragments in the graph, it im-
plies that they either do not overlap or overlap by less than 10%,
which is considered insufficient for meaningful registration for current
methods. Fig. 15 displays the dataset pose graphs for all areas in the
original split, which comprise numerous nodes and edges, thereby mak-
ing the optimization process for finding a globally optimal alignment
challenging.

In Choi et al. (2015), the authors distinguish between odometry and
uncertainty edges. They acquire this distinction directly from the input
data, which is an RGBD video sequence. Since this is not applicable
to our case, we select odometry edges by constructing a minimum
spanning tree from a randomly chosen node. We experimented with
various edge selection methods but did not observe significant differ-
ences in the results. Next, we initialize the edge weights using the
predicted average matchability scores from the two best-performing
pairwise registration methods (GeoTransformer and Predator). We also
select all non-temporal pairs as constrained pairs, i.e., they will not



T. Sun et al.

o

ISPRS Journal of Photogrammetry and Remote Sensing 220 (2025) 799–823 
Fig. 17. Percentile distribution of the change in Pairwise RMSE (𝛥𝑅𝑀 𝑆 𝐸𝑃 ) across all graph edges using PoseGraphNet for multi-way registration, for all dataset splits. The area
under the dashed line demonstrates a decrease in RMSE and the area above demonstrates an increase. A curve’s slope points to the rate of change. Areas created between the
dashed line and a curve also demonstrate the amount of edges changed — larger area means more edges changed.
Table 7
Effect of training with temporal data on registration recall [%]. Methods are trained using either all training data or same-only stage pairs. Testing
is evaluated on all pairs. Values in red denote a drop in performance, whereas values in green an increase.

Method Cross-Area Cross-Stage Original

All Same-only Diff All Same-only Diff All Same-only Diff

All testing pairs

D3Feat (Bai et al., 2020) 31.77 49.53 −17.76 51.37 66.07 −14.70 22.73 46.60 −23.87
Predator (Huang et al., 2021) 55.90 58.50 −2.60 76.63 77.60 −0.97 64.67 62.77 +1.90
GeoTransformer (Qin et al., 2022) 38.30 38.87 −0.57 47.24 47.38 −0.14 40.37 36.08 +4.29

Same-stage testing pairs

D3Feat (Bai et al., 2020) 43.62 67.06 −23.44 58.47 74.62 −16.15 36.51 70.38 −33.87
Predator (Huang et al., 2021) 76.80 80.51 −3.71 87.49 88.59 −1.10 92.99 93.23 −0.24
GeoTransformer (Qin et al., 2022) 50.88 51.71 −0.83 54.07 54.07 0.00 55.59 56.24 −0.65

Different-stage testing pairs

D3Feat (Bai et al., 2020) 6.12 11.60 −5.48 12.85 19.70 −6.85 4.76 15.59 −10.83
Predator (Huang et al., 2021) 9.49 10.86 −1.37 18.42 17.99 +0.43 28.42 23.04 +5.38
GeoTransformer (Qin et al., 2022) 10.55 9.08 +1.47 13.39 10.80 +2.59 17.51 9.76 +7.75
Table 8
Registration performance on RIO10 dataset (Wald et al., 2020). We follow the same data generation and evaluation protocol as in NSS and
report registration recall (Recall) and translation (TE) and rotation (RE) errors. For TE and RE, we report the average measurements among:
[successfully registered pairs]/[all pairs]. The first value is the standard evaluation setting.

Method Cross-Stage Original

Recall [% ↑] TE [m ↓] RE [◦ ↓] Recall [% ↑] TE [m ↓] RE [◦ ↓]

All testing pairs

D3Feat (Bai et al., 2020) 41.76 0.04/0.68 2.46/48.94 45.26 0.04/0.63 2.39/44.35
Predator (Huang et al., 2021) 64.17 0.05/0.45 2.40/27.86 73.70 0.04/0.34 2.11/19.62
GeoTransformer (Qin et al., 2022) 46.04 0.09/0.70 4.10/44.83 47.21 0.09/0.61 4.16/38.95

Same-stage testing pairs

D3Feat (Bai et al., 2020) 66.33 0.03/0.51 1.57/35.21 67.40 0.02/0.50 1.24/32.56
Predator (Huang et al., 2021) 75.94 0.02/0.37 1.42/21.91 81.18 0.02/0.29 1.40/15.93
GeoTransformer (Qin et al., 2022) 60.97 0.08/0.69 3.90/42.68 61.71 0.08/0.66 4.02/40.69

Different-stage testing pairs

D3Feat (Bai et al., 2020) 21.68 0.08/0.81 4.70/60.17 27.39 0.09/0.75 4.67/53.87
Predator (Huang et al., 2021) 54.55 0.07/0.52 3.53/32.73 67.67 0.06/0.37 2.79/22.60
GeoTransformer (Qin et al., 2022) 33.84 0.10/0.71 4.32/46.58 35.51 0.10/0.58 4.28/37.55
Table 9
Multi-way registration results of existing 3D optimization methods on Nothing Stands Still. We report pairwise (RMSE𝑃 ) and global registration metrics (RMSE𝐺 , Recall, TE, RE)
n the testing pairs of this task and compare with the pairwise registration results per split since they correspond to the performance before the multi-way pose graph optimization.

Best values per metric and split are highlighted in bold.
Method Pairwise outputs Choi (Choi et al., 2015) PoseGraphNet (Yew and Lee, 2021b)

RMSEP RecallG TEG REG RMSEP RMSEG RecallG TEG REG RMSEP RMSEG RecallG TEG REG
[m ↓] [% ↑] [m ↓] [◦ ↓] [m ↓] [m ↓] [% ↑] [m ↓] [◦ ↓] [m ↓] [m ↓] [% ↑] [m ↓] [◦ ↓]

Cross-Area

Predator (Huang et al., 2021) 1.21 56.23 0.05/1.04 0.95/24.89 1.91 33.43 53.61 0.05/1.80 0.69/21.67 1.43 28.29 77.28 0.05/1.11 0.13/0.44
GeoTransformer (Qin et al., 2022) 1.33 38.52 0.14/1.26 1.18/26.64 2.26 39.90 42.51 0.11/2.13 0.83/24.73 1.64 27.63 53.31 0.06/1.28 0.16/0.57

Cross-Stage

Predator (Huang et al., 2021) 0.88 75.85 0.04/0.71 0.75/15.90 1.48 19.68 71.07 0.03/1.37 0.41/14.86 1.04 18.45 79.94 0.05/0.79 0.08/0.24
GeoTransformer (Qin et al., 2022) 1.05 46.62 0.14/0.99 0.97/22.55 1.74 28.19 56.90 0.10/1.64 0.63/19.84 1.13 20.93 62.93 0.04/0.88 0.07/0.23

Original

Predator (Huang et al., 2021) 0.83 66.65 0.06/0.65 0.81/13.57 1.84 20.72 62.35 0.06/1.73 0.69/18.24 0.53 16.14 82.34 0.05/0.43 0.08/0.37
GeoTransformer (Qin et al., 2022) 1.23 40.23 0.14/1.00 0.97/24.00 2.83 27.71 40.49 0.12/2.54 1.04/30.58 1.08 14.55 65.35 0.09/0.84 0.07/0.60
812 
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Fig. 18. Precision–recall curve on overlap classification with Predator. Results are
hown for same- (left) and different- (right) stage pairs. Temporal changes affect overlap
etection accuracy greatly.

be pruned during optimization. In each iteration, edges with weights
elow a threshold are considered non-valid and are pruned from the

graph. For further details on the pose graph optimization, we refer the
reader to Choi et al. (2015). The objective here is to achieve a set of
consistent registrations that minimize the weighted average root mean
square error (RMSE) of all nodes in the pose graph.

PoseGraphNet removes the reliance on odometry data. It employs
a GNN to learn to perform transformation synchronization. We train
their method on the training set of the multi-way registration task with
the objective of minimizing absolute rotation and translation errors.
Unlike the pose graph setup for Choi et al. (2015), which initializes
odes with odometry information, PoseGraphNet starts with identity
atrices for the nodes, and then refines their poses through incremental
pdates. All weights in this GNN are learned during training, ensuring
obustness against outliers and noisy data. During inference, the trained
odel applies this learned synchronization recurrently for multi-way

egistration.
Table 9 presents the results for both methods with respect to global

(RMSE𝐺, Recall𝐺, TE𝐺, and RE𝐺) and pairwise (RMSE𝑃 ) registration
metrics for all dataset splits. We also compare to the pairwise regis-
tration outputs since they correspond to the performance before the
multi-way pose graph optimization. Before analyzing them, it is impor-
tant to note the reasons that the pairwise outputs showcase differences
with respect to Table 5. Firstly, different ground truth poses are used in
he two tasks. As mentioned in Section 4, the discrepancy arises from
he distinction in global and local alignment for fragments and scans.

Secondly, the multi-way registration test set is a subset of the pairwise
one, as not all fragment pairs could be connected into a larger pose
raph.

For both methods, the errors of global RMSE (RMSE𝐺) are a mag-
nitude higher than in pairwise RMSE (RMSE𝑃 ), showcasing the com-
plexity of the multi-way problem without excluding that a pairwise-to-
lobal approach might not be the most effective one. Consistent to the
airwise evaluation trends: (i) the cross-area split is the hardest here
oo; (ii) evaluating TE𝐺 and RE𝐺 only on successfully registered pairs
s not a sufficient indication of performance; and (iii) overall Predator

leads to improved performance than GeoTransformer. In comparison to
Choi et al. PoseGraphNet performs the best overall in global metrics.
This can be attributed to (i) using learning and (ii) having an objective
that is closer to registration recall than weighted RMSE minimiza-
tion. Particularly in cases where the pairwise registration results are
low, such as in the cross-area split or in the case of GeoTransformer,
PoseGraphNet brings the most benefits. We note that even though the
gap between Predator and GeoTransfomer decreases after multi-way
registration, the difference is still substantial between the two meth-
ods, especially on registration recall. However, there is a connection
between PoseGraphNet performance and the size of the pose graphs.
As shown in Fig. 16, its performance is fine for graphs with fewer than
0 nodes but deteriorates with very large graphs. This is aligned with
813 
expectations since PoseGraphNet was primarily developed for datasets
ith smaller graphs (e.g., most scenes in ScanNet Dai et al., 2017 have

fewer than 30 nodes).
It is important to consider the challenge of selecting constrained

airs in Choi et al. for our specific setting. The current selection
process results in a high number of non-valid edges in our complex
spatiotemporal registration scenarios. Specifically, the number of valid
edges per split is: Cross-Area: 32.03%; Cross-Stage: 26.48%; Original:
28.30%. The cross-area split is less affected by temporal changes and
consequently yields a higher number of valid edges in this constrained
optimization task.

Fig. 17 ablates the percentile distribution of change in pairwise
RMSE (𝛥𝑅𝑀 𝑆 𝐸𝑃 ) across cross- and same-stage graph edges for all
dataset splits, when using PoseGraphNet for multi-way registration.
While Table 9 shows that RMSE𝐺 is high and RMSE𝑃 only improves
in the original split, we can still observe RMSE𝑃 improving over some
the graph edges in all splits. Areas below the zero dashed line point to
improvements after the multi-way registration.

• Decrease in RMSE𝑃 : In the cross-area and cross-stage splits,
improvements mainly come from the same-stage edges. Cross-
stage ones show a lower rate of improvement, i.e., these cases are
more challenging to solve. In the original split, where the recall is
already high after pairwise registration, the improvement of both
same- and cross-stage pairs is smaller, with the former having
minimal impact and the latter contributing the most.

• No change: In all splits, most cross-stage edges undergo almost
no improvement (the curve is close to parallel to the dashed
line), pointing to the particular challenge in temporal registration.
Same-stage edges showcase a similar behavior mainly in the
original split. In the cross-stage split, same-stage edges barely
remain the same; they either improve or deteriorate.

• Increase in RMSE𝑃 : Cross-stage and same-stage edges have a
similar rate of deterioration per split. In the cross-area split, cross-
stage edges show the most deterioration versus the same-stage
ones, in contrast to the cross-stage and original splits. However,
for the latter, the difference between cross- and same-stage edges
in terms of most deterioration is small.

Fig. 21 illustrates the spatiotemporal registration after the pairwise
and multi-way tasks for Area F, where different color hues represent
different stages. As depicted, multi-way registration achieves superior
alignment, particularly evident in the elevator shafts where pairwise
registration fails to recover the alignment. However, not all areas
exhibit such improvement. Figs. 22–26 present the spatiotemporal reg-
stration results for all areas per temporal stage. We observe that when
airwise registration provides a relatively good initialization of the pose

graph, the multi-way step can further improve the results. However,
hen the pairwise step fails, no further alignment improvement can
e achieved (e.g., Fig. 23). This limitation persists even when the

initialization is relatively good in a few stages. The failed alignment
of other stages pulls the fragments away from their initial positions
since the optimization goal is to attain a globally plausible solution
(Fig. 24(a)).

6.3. Overlap/non-overlap classification

In order to investigate a method’s behavior when dealing with non-
verlapping fragments or fragments with extremely low overlap ratios

(below 10%), we conduct a binary classification task. In this task, a pair
f fragments is considered overlapping if the overlap ratio exceeds a

certain threshold 𝜃 (set to 0.1 in our experiment). We employ Predator,
the best-performing model on the NSS dataset, for this analysis. Instead
of employing the average overlap score to perform the classification,
which is available in Huang et al. (2021), we opted to use the average
matching probability of all points in a fragment pair as the output
probability for classification.
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Fig. 19. Qualitative results on pairwise registration. Results on a fragment pair are showcased for D3Feat (Bai et al., 2020), Predator (Huang et al., 2021), and GeoTransformer (Qin
et al., 2022). The overlap (OR) and temporal change (TCR) ratios are reported per input pair, as well as the translation (TE) and rotation (RE) errors per method (in meters and
degrees respectively).
We evaluate the classification performance using the mean Average
Precision (mAP) and the Area under ROC Curve (AUROC) scores. The
mAP score offers an averaged measure of precision at different recall
levels, which provides a comprehensive assessment of the model’s abil-
ity to correctly predict overlapping pairs even when these are unevenly
distributed in the data. On the other hand, the AUROC provides a
measure of the model’s discriminative capacity, irrespective of the
decision threshold of the matching probability. Table 10 demonstrates
the potential of the method to classify overlapping/non-overlapping
pairs and highlights areas for improvement, particularly in scenarios
with significant temporal changes that occur in real-world in-the-wild
registration settings (Fig. 18).

We observe that the cross-stage split exhibits the best overall and
same-stage scores but encounters challenges with temporal cases. This
814 
indicates that temporal changes that were not encountered during
training can impact overlap classification. It is important to note that
the cross-stage split only includes the first half of temporal stages per
area, meaning that the method lacks knowledge of how the construc-
tion may progress in the future.4 In this classification task, pairs from
the test set are considered overlapping pairs, while pairs randomly
selected from different locations are regarded as non-overlapping pairs.
This task can be valuable when considering practical applications of a
registration algorithm, where prior knowledge of fragment overlap may
not be available from the outset.

4 Stages across areas, although not identical, exhibit a certain pattern as
construction tasks often follow a specific sequence.
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Fig. 20. Additional qualitative results on pairwise registration. Results on a fragment pair are showcased for D3Feat (Bai et al., 2020), Predator (Huang et al., 2021), and
GeoTransformer (Qin et al., 2022). The overlap (OR) and temporal change (TCR) ratios are reported per input pair, as well as the translation (TE) and rotation (RE) errors per
method (in meters and degrees respectively).
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Fig. 21. Spatiotemporal registration after the pairwise (Huang et al., 2021) and multi-way (Choi et al., 2015) tasks for Area F. Different color hues represent different stages.
Note the improved alignment in the elevator shafts after multi-way registration.

Fig. 22. Spatiotemporal registration results for Area A per temporal stage. Different blue hues denote independent fragment locations. When the pairwise registration from
Predator (Huang et al., 2021) fails to recover a rough initial alignment, the multi-way step (Choi et al., 2015) cannot recover it.
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Fig. 23. Spatiotemporal registration results for Area B per temporal stage. Different blue hues denote independent fragment locations. Pairwise registration results from
Predator (Huang et al., 2021) and multi-way from Choi et al. (2015).
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Fig. 24. Spatiotemporal registration results for Area C and D per temporal stage. Different blue hues denote independent fragment locations. Pairwise registration results from
Predator (Huang et al., 2021) and multi-way from Choi et al. (2015).
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Fig. 25. Spatiotemporal registration results for Area E per temporal stage. Different blue hues denote independent fragment locations. Pairwise registration results from
Predator (Huang et al., 2021) and multi-way from Choi et al. (2015).
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Fig. 26. Spatiotemporal registration results for Area F per temporal stage. Different blue hues denote independent fragment locations. When the pairwise registration results from
Predator (Huang et al., 2021) achieve better initialization, the multi-way registration from Choi et al. (2015) can recover an improved alignment.
Table 10
Overlap Classification on NSS with PREDATOR. Pairs from the test set are overlapping
samples, whereas pairs randomly selected from different locations are non-overlapping
ones.

Metrics Cross-Area Cross-Stage Original

All pairs

mAP [↑] 0.577 0.774 0.612
AUROC [↑] 0.582 0.759 0.642

Same-stage pairs

mAP [↑] 0.784 0.916 0.833
AUROC [↑] 0.595 0.786 0.657

Different-stage pairs

mAP [↑] 0.318 0.211 0.410
AUROC [↑] 0.541 0.575 0.616

7. Conclusion

In this study, we introduced a new benchmark called Nothing
Stands Still for evaluating the performance of 3D point cloud regis-
tration in spatiotemporal scenarios. This benchmark assesses methods’
capabilities across space, time, and generalization. To support this
benchmark, we also presented a novel spatiotemporal dataset contain-
ing indoor areas captured over time, exhibiting significant geometric
changes. Our findings, as discussed in Section 6, indicate that exist-
ing 3D registration methods have limited ability to handle temporal
changes effectively. Moreover, the conflicting objectives between pair-
wise and multi-way registration tasks currently pose challenges in
820 
developing end-to-end algorithms. This paper highlights the substan-
tial room for improvement in this field. In addition, both the bench-
mark and dataset hold great potential for various applications such
as in robotic navigation, virtual and augmented reality applications,
construction progress monitoring, and learning and detecting change.
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