
Under review as a conference paper at ICLR 2021

TWINDNN: A TALE OF TWO DEEP NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Compression technologies for deep neural networks (DNNs), such as weight
quantization, have been widely investigated to reduce the DNN model size so that
they can be implemented on hardware with strict resource restrictions. However,
one major downside of model compression is accuracy degradation. To deal with
this problem effectively, we propose a new compressed network inference scheme,
with a high accuracy but slower DNN coupled with its highly compressed DNN
version that typically delivers much faster inference speed but with a lower ac-
curacy. During inference, we determine the confidence of the prediction of the
compressed DNN, and infer the original DNN for the inputs that are considered
not confident by the compressed DNN. The proposed design can deliver over-
all accuracy close to the high accuracy model, but with the latency closer to the
compressed DNN. We demonstrate our design on two image classification tasks:
CIFAR-10 and ImageNet. Our experiments show that our design can recover up
to 94% of accuracy drop caused by extreme network compression, with more than
90% increase in throughput compared to just using the original DNN. This is the
first work that considers using a highly compressed DNN along with the original
DNN in parallel to improve latency significantly while effectively maintaining the
original model accuracy.

1 INTRODUCTION

Machine learning is one of the most popular fields in the current era. It is used in various ways,
such as speech recognition, face recognition, medical diagnosis, etc. However, the problem is that
the neural networks for machine learning applications Krizhevsky et al. (2012); He et al. (2016a;b)
are becoming too large and slow to be on a small chip for real-time systems. As a result, there
has been a significant amount of research to reduce the size of the neural networks so that their
inference latencies are low enough to handle real-time inputs Zhang et al. (2020); Zhou et al. (2016);
Zhang et al. (2018). There are quite a few approaches to compress existing neural networks, but for
field-programmable gate arrays (FPGAs), quantization of network is the most popular and effective
method to reduce the size and inference latency at the same time Han et al. (2016). In particular,
extremely low bit-width networks on FPGAs, such as binary or ternary neural networks have been
studied recently Wang et al. (2018); Courbariaux & Bengio (2016); Courbariaux et al. (2015); Zhao
et al. (2017); Yao Chen & Chen (2019); Li & Liu (2016); Blott et al. (2018). These networks
provide an extra benefit that normal quantized networks do not provide in terms of multiplier (DSP)
utilization. The idea is that extremely low bit-width weights allow multiplications to be done in
conditional logic, which can be implemented by logic gates, without using a special hardware for
multiplication (DSP). This fact can allow developers to utilize additional DSPs in other ways where
DSPs can be useful. However, this benefit is not free, of course. One major downside of these low
bit-width networks is that they tend to have even more accuracy drop than regular quantized neural
networks, as a result of further reduced precision. Therefore, it is more difficult to use binary or
ternary neural networks as they are, especially in the fields such as surveillance or medical diagnosis
systems, where the cost of that accuracy drop is much larger than the latency improvement.

The goal of this study is to accelerate neural network inferences by using an extremely low bit-
width network implementations on FPGAs, while maintaining the accuracy of the original network
by using relatively high precision network concurrently, without having to develop a single DNN
accelerator that meets both accuracy and latency requirements. The main contribution is to find a

1



Under review as a conference paper at ICLR 2021

mechanism to choose the right network to infer for specific inputs, and this is done by creating a
hierarchical structure of two different compressed networks and utilizing the output of the initial
inference to determine the need of extra verification.

In summary, we propose a system that consists of two distinct networks: one extremely low bit-width
network that is focused on latency, and the other moderately quantized network that is focused on
accuracy. In this paper, extremely low bit-width network will be called a compressed network, and
moderately quantized network will be called an original network. These two networks work in a way
that can exploit advantages in both latency and accuracy at the same time. The overall mechanism is
similar to the one presented in Mocerino & Calimera (2014). However, there has not been any study
of this concept in FPGA accelerators for deep neural networks. This represents a novel direction
in neural network research, to pair compressed network and original network in parallel in order to
improve latency while maintaining the original accuracy. Our main contributions are as follows:

• Accelerators that are designed and optimized to exploit low bit-width networks, with
pipelined and parallelized computation engines that use a minimum number of DSPs as
possible.

• A software solution that allows two accelerators to be run in hierarchical fashion, utilizing
confidence of a compressed network prediction.

• For ImageNet and ResNet-18, our TwinDNN solution can deliver up to 1.9× latency im-
provement with only 3% of extra DSPs used for compressed network, and up to 95% of
accuracy loss is recovered during hierarchical inference.

In Section 2, some background information related to this work will be introduced. In Section 3,
design flow of our implementation and experiment will be explained. In Section 4, the results of our
experiments will be described. Section 5 will conclude the paper with future explorations.

2 BACKGROUND

2.1 EXTREMELY LOW BIT-WIDTH NEURAL NETWORKS

Recent researches have succeeded in binarizing or ternarizing parts of layers in neural networks
Wang et al. (2018); Courbariaux & Bengio (2016); Courbariaux et al. (2015); Zhao et al. (2017);
Yao Chen & Chen (2019). Many experiments claim that these compression methods are very effec-
tive in terms of latency reduction with some accuracy drops. As one would expect, as the number of
bits used to represent either weights or feature maps decreases, accuracy drops more significantly.
Because the goal of our study is to compensate for the accuracy loss caused by compression, we can
forgive moderate accuracy loss, as long as the benefit of using those networks is significant. The
following equations:

wb =

{
−wscale if b = 0
+wscale if b = 1

wt =

{ −wscale if t = −1
+wscale if t = 1
0 if t = 0

(1)

show how these extremely low bit-width weights are used in computation. b is a 1-bit value that
can be either 0 or 1, and t is a 2-bit value that can take either -1, 0, or 1. The key idea here is that
wscale value is the same across the weights. The bits are only used in sign representations. In binary,
as an example, a single bit of 0 represents negative and 1 represents positive, and this logic can be
implemented in a simple condition, or a multiplexer in FPGAs. wscale value is stored separately, and
the same wscale value is multiplied over all binary weights to get the actual weight values. However,
we do not need to perform all of these multiplications separately. Consider b1 = 0 and b2 = 1 for
the binary case. a stands for activation, or feature map, then we can express a very simple neural
network computation as follows:

2



Under review as a conference paper at ICLR 2021

anext = wb1 × a1 + wb2 × a2
= −wscale × a1 + wscale × a2
= wscale × (−a1 + a2)

(2)

This shows how binary and ternary weight computations can be handled with a single multiplication.
Reducing the number of actual multiplications reduces the need of DSPs, and indeed makes the
overall computation faster. For ternary, the only difference is that two bits now represent positive,
negative, and zero. Therefore, the main benefit of using extremely low bit-width neural networks
is more effective and balanced resource utilization, specifically on FPGAs. For a typical DNN
implementation on FPGAs, DSP is the one that directly determines the performance, and so is the
limiting factor of the performance. Therefore, typical DNN implementations on FPGAs utilize
nearly all the DSPs available, and other resources are left under-utilized. Extremely low bit-width
networks, on the other hand, only uses a minimal number of DSPs, and mainly utilizes look-up
tables (LUTs), which are generally left unused for computation (e.g., only used for control logic).
In this study, we instantiate both typical DNN (original DNN) and extremely low bit-width DNN
(compressed DNN) at the same time, in a way that original DNN uses most of the DSPs available on
the board, and compressed DNN uses extra LUTs that were not used by original DNN. This method
allows us to utilize both DSP and LUT resources as much as possible to ultimately reduce the overall
latency.

2.2 FINAL LAYER OUTPUTS IN NEURAL NETWORK

In neural network image classifications, output of the final layer is a list of values for each class,
and the class with the highest final layer output is typically chosen as a prediction. Here, each value
represents how possible is that image in the class, and we will call these values probabilities for
convenience. Note that in order to compute the actual probabilities, we need to apply a softmax
function to these values. However, we do not apply a softmax function here, because we only
need to find the class with the highest value. Anyways, the point is that the output of a neural
network provides more information than just a prediction. Specifically, it provides information
about all probabilities of predictions that the input can be classified as. It is definitely possible
to utilize this additional information to enhance the prediction. In this study, we will make use
of the probability of the second most possible label. From compressed network inference output,
along with the prediction itself, we also need to find out whether to infer the original network or
not. The probability of the second most possible label is used here to determine if the prediction of
compressed network is confident enough to be used as an actual output without verification from the
original network.

Here is an example of how we can utilize this information during inference. For handwritten digit
recognition, let’s define Out(x) as final output value for label x. There is no problem if Out(0) =
0.9 and Out(1), . . . , Out(9) < 0.1, because the network is almost sure that the digit is 0. However,
in case where Out(1) = 0.5 and Out(2) = 0.4, although Out(1) is greater than Out(2), we cannot
guarantee that 1 is actually a correct label, because that 0.1 difference could have been resulted from
the noise of using a low precision network. This is what we use as a confidence of the prediction.
Instead of just finding a label with maximum probability, the system will now find two labels with
first and second maximum probabilities, and compute the difference between those two probabilities.
If the difference is large (i.e., beyond a threshold determined empirically), it means that the label
with highest probability dominates other labels, so compressed network prediction can be considered
confident. If the difference is small, it means that two labels with highest probabilities both have
potentials to become a true label, so the prediction is considered not confident. In this case, the input
needs additional verification from the original network that is designed to have maximum accuracy.

3 IMPLEMENTATION

Our implementation flow consists of three parts: creating original network and compressed network
models, implementing high-level-synthesis (HLS) accelerator intellectual properties (IPs) for those
networks, and creating a software system for hierarchical inference.

3



Under review as a conference paper at ICLR 2021

3.1 MODEL GENERATION

Creating original network starts with a typical floating-point training, which can also be completed
by using a pre-trained model available. For training, we used a Caffe framework Jia et al. (2014),
which was also customized to be used by other works (e.g., Yao Chen & Chen (2019)). In order
to enhance the accuracy, we use a variety of well-known techniques, such as learning rate decay
and batch normalization. Specifically, batch normalization of activations allows us to standardize
and stabilize the outputs, which can speed up the training process. After these networks are trained
to the point where accuracy does not improve anymore, we merge these batch-normalization layers
into convolutional layers using

wnew =
γ × wold√
V ariance

bnew =
γ × (bold −Mean)√

V ariance
+ β

(3)

where Mean, V ariance, γ, and β are the parameters trained in batch-normalization layers, wold

and bold are weight and bias values before merge, and wnew and bnew are those value after merge.
This is typically done in neural networks to reduce the extra latency of normalizing the activations
during inference, and it gives us exactly the same inference results.

The network weights are then quantized to designated bit-widths. Quantization scheme is deter-
mined by accuracy drop and distribution of weights. First, we try a uniform quantization scheme.
We always use uniform quantization whenever possible because non-uniform quantization requires
extra logic and computation required for bit shifting in hardware. If accuracy drop is significant, we
then try a non-uniform quantization scheme depending on the distribution of weights and activations.
There can still exist a slight accuracy drop after non-uniform quantization, and there are few ways
presented in Zhao et al. (2019); NVIDIA to recover this accuracy drop, which can be implemented
in the future.

Compressed network model, on the other hand, cannot be generated without a training scheme that is
specifically designed for binary and ternary neural networks. For binary neural network, which was
used in our CIFAR-10 experiment, we used the same model in Zhao et al. (2017), which was trained
using the method proposed by Courbariaux & Bengio (2016). This model showed approximately
5% accuracy drop compared to the original network model. As explained in Zhao et al. (2017), there
are some advanced training techniques available, but they are not used in our work. Although it is
still better to have a higher accuracy for the compressed network, it is not necessary especially for
the purpose of this work, as we will show how our design can recover the accuracy drop caused by
extreme network compression.

For ternary neural network, which was used in our ImageNet experiments, we trained the model by
using the framework explained in Yao Chen & Chen (2019). Our trained model, however, could not
reach the exact accuracy reported in Yao Chen & Chen (2019), and this is due to additional fine-
tuning and data augmentations that they performed. Our trained model also showed approximately
5%-8% accuracy drop compared to the original network model, which seems valid for the purpose
of this work.

3.2 ACCELERATOR DEVELOPMENT

Xilinx’s Vivado high-level-synthesis tool was used to generate IPs for both original and compress
networks. Their tools allow developers to apply various optimizations, such as loop pipelining and
array partitioning, more easily on their FPGAs. We targeted Ultra96 and ZCU102 FPGAs, which are
both Arm-based Xilinx Zynq UltraScale+ MPSoC development boards. ZCU102 has more overall
resources than Ultra96, and is used for MobileNetV2 experiment only.

Figure 1 shows the overall architecture of accelerators. For convolutional and fully connected layer
computations, the main technique we used was to have multiple pipelined computation engines that
compute partial multiply-accumulate (MAC) operations. It will perform element-wise multiplication
of weights and features, and then compute the sum of the products using an adder tree. These
computation engines are pipelined so that they can produce a MAC of 16 weights and 16 features

4



Under review as a conference paper at ICLR 2021

Figure 1: Basic accelerator architecture

every single cycle. For 16-bit network, 16 of these computation engines are instantiated to serve
256 elements in parallel, by using 256 DSPs, and these compute engines are shared between layers
for maximum resource utilization. As a further optimization for 8-bit network, we can double the
efficiency of using DSPs using the method proposed by Xilinx.

For binary and ternary networks, computation engines do not use any DSPs. Instead, multiplexers
(MUX) are used to determine the sign of the weights. For binary networks, wb is used as a 1-bit
selector to determine the output between −A and +A. For ternary networks, wt is used as a 2-bit
selector to determine the output between −A, 0, and +A. Then, the sum of those outputs will be
computed using the adder tree, same as before. At the end of all computations, we will multiply
wscale values from Equation 1.

3.3 SOFTWARE DEVELOPMENT

Figure 2: Graphical representation of hierarchical architecture

The accelerators are invoked from the software running inside the processing system of the FPGA.
Because two accelerators are both instantiated in a single design, they support concurrent execution.
Figure 2 shows a graphical representation of the software system, which is designed to fully utilize
both networks. First, an image from the source to be processed will wait for either network to be-
come idle. Whatever network that becomes idle first will perform the initial inference for that image.
Note that for the original network, idle means that its queue is empty as well. If the original network
was used for the initial inference, its prediction will always be used as the final prediction, because
it has a higher accuracy. However, if the compressed network was used for the initial inference,
the software will compute the confidence of the compressed network prediction to determine if the
image needs additional inference on the original network. Confidence is defined as the difference
between two largest output values. If confidence is above the threshold, the prediction of the com-
pressed network will be used as a final prediction. If confidence is below the threshold, however, the
input image will go into the queue for the original network inference. Meanwhile, when the image
from the source starts initial inference, the next image becomes ready immediately to wait for either
network to become idle. This is to ensure that both accelerators are running for the entire time until

5



Under review as a conference paper at ICLR 2021

Table 1: Resource utilization ratio of accelerators

Dataset Network Precision DSP LUT

CIFAR-10
ResNet-18 16-bit 256 20110
ConvNet Binary 4 25074

16-bit + Binary 260 63727

ImageNet

ResNet-18 16-bit 274 24114
ResNet-18 8-bit 274 30970
ResNet-18 Ternary 8 25416

16-bit + Ternary 282 56922
8-bit + Ternary 282 63710

MobileNetV2 32-bit 536 60424
MobileNetV2 Ternary 64 27507

32-bit + Ternary 600 119851

Table 2: Accuracy and latency comparison for all configurations

Dataset Network Precision T* Accuracy (%) R* (%) Latency (ms)

CIFAR-10
ResNet-18 16-bit 94.1 391
ConvNet Binary 89.6 (O4.5) 64 (6.1×)

16-bit + Binary 1.5 92.8 (O1.3) 71.1 77.5 (5.0×)

ImageNet

ResNet-18 16-bit 69.5 306
ResNet-18 8-bit 67.9 (O1.6) 255 (1.20×)
ResNet-18 Ternary 63.6 (O5.9) 244 (1.25×)

16-bit + Ternary 0.7 69.2 (O0.3) 94.9 160 (1.91×)
8-bit + Ternary 1.0 67.1 (O0.8) 81.4 153 (1.66×)

MobileNetV2 32-bit 69.8 231
MobileNetV2 Ternary 62.2 (O7.6) 288 (0.80×)

32-bit + Ternary 0.3 68.5 (O1.3) 82.9 140 (1.65×)

T*: Threshold, R*: Accuracy Recovery (1− AccuracyDropcombined

AccuracyDropcompressed
(%))

all the images are processed, and is the most important difference between this work and Mocerino
& Calimera (2014). In contrast to the CPU implementation of Mocerino & Calimera (2014), where
the worst case latency is combined latency of original and compressed networks, our FPGA parallel
implementation allows both networks to run in parallel for the entire time until the input source is
depleted, so the amortized worst case latency is just the latency of the original network.

Threshold value is determined from experiment. Threshold value of 0 means all the compressed
network predictions will be considered confident, and none of the inputs will go into the queue.
This results in both networks running in parallel independently, as original network will also get the
input from source. High threshold value means that more images go into the original network, thus
it results in high accuracy and high latency. Note that when the threshold value goes above a certain
point, the queue will contain some images even after all images from the source are depleted. From
that moment, only the original network will be running, and this reduced parallelism impacts the
latency significantly. Therefore, it is recommended to choose a threshold value that will keep the
queue small. Threshold value of infinity, in fact, is the same as just running the original network
alone, because all compressed network output will be considered not confident and require original
network inference. We test a variety of threshold values to see which one gives a most balanced
result between accuracy and latency, and will use it to obtain the final result.

6



Under review as a conference paper at ICLR 2021

Figure 3: Accuracy and latency plots for different experiment configurations

4 EXPERIMENT

4.1 CIFAR-10

We first tested our design on CIFAR-10 dataset. The experiment was performed with a 16-bit
ResNet-18-based network created by us, and a binary ConvNet-based network created by Zhao
et al. (2017), on Ultra96 development board, with a frequency of 100MHz. Table 1 shows the re-
source utilization ratio for individual accelerators. As expected, 16-bit network mainly uses DSPs.
256 DSPs were used for 16 × 16 computation engines. Binary network, on the other hand, only
uses 4 DSPs, which are used for wscale multiplication. It uses more LUTs than 16-bit network
since it mainly performs computation on LUTs. Table 1 also shows the resource utilization ratio
for the entire design. Note that the entire design uses more LUTs than the sum of two accelerators.
This is because extra LUTs are used for interconnects and memory interfaces. Although LUT usage
for individual models may seem small, we are actually utilizing more than 90% of LUT resources
available for the TwinDNN solution.

Figure 3 (a) shows the accuracy and latency plot for different threshold values. We chose 0.5, 1,
1.5, and 2 as our threshold values. Higher threshold value resulted in higher latency and accuracy.
A threshold value of 1.5 gives the most balanced result between latency and accuracy, thus we used
it for the final experimental result. Table 2 shows the comparison between configurations, with 16-
bit network as a baseline. A combination of 16-bit and binary network was able to recover more
than 71% of accuracy loss caused by binarizing the network. Average latency is 5× faster than the
baseline network, which proves we are using the binary network effectively.

Note that the binary network results in much higher latency than the result reported in Zhao et al.
(2017). This is because first, we used much lower frequency than Zhao et al. (2017), and second,
we converted their accelerator built with Vivado SDSoC platform into Vivado HLS accelerator with
our customized software part that supports parallel inference of two accelerators.

7



Under review as a conference paper at ICLR 2021

4.2 IMAGENET

Next, we tested our design on a much bigger dataset, ImageNet. This time the experiment was
performed with two different networks on different FPGA configurations: ResNet-18 on Ultra96
with 150MHz frequency and MobileNetV2 on ZCU102 with 200MHz frequency.

We use 16-bit, 8-bit, and ternary versions of ResNet-18, and 32-bit and ternary versions of Mo-
bileNetV2. Ternary networks were used as compressed networks, and other networks were used as
original networks. Table 1 shows that similar to our CIFAR-10 experiment, ternary network uses
much less number of DSPs compared to other fixed-point networks. Also, for ResNet-18, 8-bit net-
work uses more LUTs than 16-bit network, and this is because 8-bit network uses additional logic
for bit shifting and introduces additional parallelism from using 1 DSP for 2 multiplications. Note
that ternary networks are parallelized to the extent where they would fit on the FPGAs along with
original network accelerators, so they do not have much speedup compared to baseline original net-
works. The meaningful point is that we can combine these two accelerators in parallel to increase
throughput with only a small number of extra DSPs compared to original network accelerators.

Figure 3 (b)-(d) shows the accuracy and latency plots for different threshold values. This time, we
tested more variety of threshold values so that as much design space is explored as possible. In
these graphs, only the points, or threshold values, with the most balanced and efficient results are
labeled, for a clear view. For ResNet-18 16-bit and ternary network configuration, threshold value
of 0.7 gives the most balanced result between latency and accuracy. For ResNet-18 8-bit and ternary
network configuration, threshold value of 1.0 gives the most balanced result, and for MobileNetV2
32-bit and ternary configuration, threshold value of 0.3 gives the most balanced result. After a
threshold value of about 1.0, accuracy of combined network becomes almost identical to that of
original network. This result suggests that our software can identify the majority of inputs that are
likely to be incorrect with compressed network by using confidence.

Note that for some high threshold values, final accuracy is higher than the accuracy of original
network. We believe that this is just a result of noise, where there are few cases ternary network
predicts correctly while 16-bit network does not. However, there is a chance that these two networks
actually complement each other in terms of accuracy. This means that each network is more accurate
on certain types of inputs, and our hierarchical design can exploit this hypothesis by finding the
confidence of a prediction instead of just a prediction. This can be one of the areas where we can
study further.

Table 2 shows the final result and comparison with original networks as baselines. Note that our
8-bit network does not show the ideal speedup of 2×, expected from DSP usage, and this is because
there are other factors, such as memory bandwidth, that also limit the speed of the inference. For
ResNet-18 16-bit and ternary configuration, with a threshold value of 0.7, our design was able to
recover almost 95% of accuracy loss caused by network compression, with more than 1.91× reduced
latency compared to 16-bit network alone. For 8-bit and ternary configuration, with a threshold value
of 1.0, our design was able to recover more than 81% of accuracy loss, with 1.66× reduced latency
compared to 8-bit network alone. Note that 16-bit and ternary configuration gives better results than
8-bit and ternary configuration overall. This is because our 8-bit model is just a low-precision version
of 16-bit model. If we perform additional retraining for 8-bit model, 8-bit and ternary configuration
is expected to have a better result than what is currently reported. Finally, for MobileNetV2 32-bit
and ternary configuration, with a threshold value of 0.3, our design was able to recover 82.9% of
accuracy loss, with 1.65× reduced latency.

Overall result indicates that our design works well for accuracy recovery given two optimized neural
network accelerators, with only a small amount of extra inferences. Our definition of confidence is
also proved to be a useful metric of verifying neural network output.

5 CONCLUSION

In this paper, we proposed a TwinDNN system with a high-accuracy network and a low-latency net-
work using a hierarchical inference logic that will infer high-accuracy network when the prediction
of low-latency network is not considered confident. This design becomes especially more effective
on the FPGAs where DSP resources are limited compared to LUT resources, as compressed network

8



Under review as a conference paper at ICLR 2021

latency will solely depend on the number of LUTs. There are several aspects that make this study
stand out. The first aspect is its high flexibility. Although in this project we mostly used ResNet-18,
we can basically put any two networks on the same dataset. There are already many neural network
accelerators that are built for different focuses: accuracy and latency. We only need to find two
accelerators that would fit on the target FPGA, and simply apply the same logic for experiment. Use
of Zhao et al. (2017) shows this idea, although we did not reach their exact performance. Second is
better concentration. Accelerator development becomes much more difficult when developers need
to care about multiple aspects at the same time. However, this work can potentially allow one group
of developers to solely focus on increasing accuracy, and the other group of developers to solely fo-
cus on reducing latency. It will ultimately reduce the time and effort it takes to build a high-quality
accelerator that achieves both accuracy and latency goals.

There are also several aspects where this work can be enhanced further. The first aspect is specialized
training. If we can train a specialized network that is trained only to classify between top few
predictions of the compressed network, we may be able to save resources and improve the confidence
of the compressed network. Another specialized training scenario can be to train the compressed
network to classify or detect easy objects and train the original networks to target difficult objects.
This way, the two networks can complement each other better. Second is heterogeneous computing
with graphics processing unit (GPU). GPUs are usually much more efficient than FPGAs on floating-
point operations, and floating-point precision indeed gives higher accuracy compared to low bit-
width fixed-point precision. If we can make GPU run the original network as floating-point, and
make FPGA run the compressed network, we may be able to achieve an even more efficient solution
for this study.

REFERENCES

Michaela Blott, Thomas B Preußer, Nicholas J Fraser, Giulio Gambardella, Kenneth O’brien, Yaman
Umuroglu, Miriam Leeser, and Kees Vissers. Finn-r: An end-to-end deep-learning framework for
fast exploration of quantized neural networks. ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 2018.

Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks with weights
and activations constrained to +1 or -1. Computing Research Repository (CoRR), 2016.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neu-
ral networks with binary weights during propagations. Neural Information Processing Systems
(NIPS), 2015.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning. International Conference on Learning Representations, ICLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. Conference on Computer Vision and Pattern Recognition (CVPR), 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. Computer Vision – ECCV, 2016b.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. arXiv preprint arXiv:1408.5093, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. International Conference on Neural Information Processing Systems
(NIPS), 2012.

Fengfu Li and Bin Liu. Ternary weight networks. Computing Research Repository (CoRR), 2016.

Luca Mocerino and Andrea Calimera. Coopnet: Cooperative convolutional neural network for low-
power mcus. Computing Research Repository (CoRR), 2014.

NVIDIA. Tensorrt. URL https://developer.nvidia.com/tensorrt.

9

https://developer.nvidia.com/tensorrt


Under review as a conference paper at ICLR 2021

Junsong Wang, Qiuwen Lou, Xiaofan Zhang, Chao Zhu, Yonghua Lin, and Deming Chen. Design
flow of accelerating hybrid extremely low bit-width neural network in embedded FPGA. Interna-
tional Conference on Field Programmable Logic and Applications (FPL), 2018.

Xilinx. Deep learning with int8 optimization on xilinx devices. URL https://www.xilinx.
com/support/documentation/white_papers/wp486-deep-learning-int8.
pdf.

Cheng Gong Cong Hao Xiaofan Zhang Tao Li Yao Chen, Kai Zhang and Deming Chen. T-dla:
An open-source deep learning accelerator for ternarized dnn models on embedded fpga. IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), 2019.

Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen mei Hwu, and Deming
Chen. Dnnbuilder: an automated tool for building high-performance dnn hardware accelerators
for fpgas. International Conference on Computer-Aided Design (ICCAD), 2018.

Xiaofan Zhang, Haoming Lu, Cong Hao, Jiachen Li, Bowen Cheng, Yuhong Li, Kyle Rupnow, Jin-
jun Xiong, Thomas Huang, Honghui Shi, Wen-mei Hwu, and Deming Chen. SkyNet: a hardware-
efficient method for object detection and tracking on embedded systems. Conference on Machine
Learning and Systems (MLSys), 2020.

Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani Srivastava, Rajesh
Gupta, and Zhiru Zhang. Accelerating Binarized Convolutional Neural Networks with Software-
Programmable FPGAs. International Symposium on Field-Programmable Gate Arrays (FPGA),
2017.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Improving neu-
ral network quantization without retraining using outlier channel splitting. Computing Research
Repository (CoRR), 2019.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. Computing Research
Repository (CoRR), 2016.

10

https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf

	Introduction
	Background
	Extremely Low Bit-Width Neural Networks
	Final Layer Outputs in Neural Network

	Implementation
	Model Generation
	Accelerator Development
	Software Development

	Experiment
	CIFAR-10
	ImageNet

	Conclusion

