
Random Policy Evaluation Uncovers Policies of Generative Flow Networks

Haoran He 1 Emmanuel Bengio 2 Qingpeng Cai 3 Ling Pan 1

Abstract

The Generative Flow Network (GFlowNet) is a
probabilistic framework in which an agent learns
a stochastic policy and flow functions to sam-
ple objects proportionally to an unnormalized
reward function. A number of recent works
explored connections between GFlowNets and
maximum entropy (MaxEnt) RL, which modi-
fies the standard objective of RL agents by learn-
ing an entropy-regularized objective. However,
the relationship between GFlowNets and standard
RL remains largely unexplored, despite the in-
herent similarities in their sequential decision-
making nature. While GFlowNets can discover di-
verse solutions through specialized flow-matching
objectives, connecting them can simplify their
implementation through established RL princi-
ples and improve RL’s diverse solution discov-
ery capabilities. In this paper, we bridge this
gap by revealing a fundamental connection be-
tween GFlowNets and one RL’s most basic com-
ponents – policy evaluation. Surprisingly, we
find that the value function obtained from eval-
uating a uniform policy is closely associated
with the flow functions in GFlowNets through
the lens of flow iteration under certain struc-
tural conditions. Building upon these insights,
we introduce a rectified random policy evalua-
tion (RPE) algorithm, which achieves the same
reward-matching effect as GFlowNets based on
simply evaluating a fixed random policy in these
cases, offering a new perspective. Empirical re-
sults across extensive benchmarks demonstrate
that RPE achieves competitive results compared
to previous approaches, shedding light on the
previously overlooked connection between (non-
MaxEnt) RL and GFlowNets.

1Hong Kong University of Science and Technology 2Valence
Labs 3Kuaishou Technology. Correspondence to: Ling Pan <ling-
pan@ust.hk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Generative Flow Networks (GFlowNets) (Bengio et al.,
2021; 2023) have emerged as a powerful probabilistic frame-
work for object generation and sampling from complex
distributions, which can be seen as a variant of amortized
variational inference methods (Ganguly et al., 2022). In
GFlowNets, an agent learns a stochastic policy π(x) and
flow functions to sample objects x ∈ X proportionally to an
unnormalized reward function R(x). GFlowNets are related
to Markov chain Monte Carlo (MCMC) methods (Metropo-
lis et al., 1953; Hastings, 1970; Andrieu et al., 2003), but
do not rely on Markov chains that make small and local
steps, which often leads to inefficient sampling in high-
dimensional discrete spaces due to their local exploration
nature. Therefore, they can generalize and amortize the
cost of sampling without suffering from the mixing prob-
lem (Salakhutdinov, 2009; Bengio et al., 2013; 2021).

GFlowNets reformulate the sampling problem as a sequen-
tial decision-making process: objects x ∈ X are constructed
incrementally through a sequence of steps, where at each
step the GFlowNets agent adds an element to the current
construction. The sequential nature of GFlowNets is closely
related to the decision-making processes in reinforcement
learning (RL) (Sutton & Barto, 1998), whose training ob-
jectives (Bengio et al., 2021) were also motivated by the
temporal difference methods. However, GFlowNets pur-
sue a different goal: instead of maximizing rewards as in
standard RL, they aim to match the underlying reward dis-
tribution (π(x) ∝ R(x)) (Bengio et al., 2021). This enables
GFlowNets to discover diverse, high-reward candidates
by sampling them proportionally to their rewards (reward-
matching), proving particularly valuable in scenarios with
uncertain or imperfect rewards, such as drug discovery (Jain
et al., 2023a). This capability has led to significant ad-
vances in various challenging domains, including molecule
generation (Bengio et al., 2021), biological sequence de-
sign (Jain et al., 2022; Chen & Mauch, 2023), Bayesian
structure learning (Deleu et al., 2022), and combinatorial
optimization (Zhang et al., 2024; 2023b).

Recent works have explored the connections between
GFlowNets and maximum entropy (MaxEnt) RL (Tiap-
kin et al., 2024; Deleu et al., 2024; Mohammadpour et al.,
2024), a variant of RL that modifies the standard objective

1

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

by incorporating an entropy regularization term (Haarnoja
et al., 2017b). These works reveal that GFlowNets’ reward-
matching behavior can emerge from entropy-regularized
objectives, providing valuable insights into the relationship
between the two frameworks. However, the connection
between GFlowNets and standard (non-MaxEnt) RL re-
mains largely unexplored and poorly understood, despite
the fact that both are rooted in sequential decision-making.
Understanding this relationship can unlock new possibil-
ities and further advance both fields by combining their
strengths: enabling GFlowNets to leverage well-established
RL techniques for improved sampling efficiency and sta-
bility (Lau et al., 2024), while providing new perspectives
on exploration and diversity in RL through GFlowNets’
reward-matching behavior (Hu et al., 2024).

In this paper, we uncover a new connection that bridges
this gap through one of the most basic components of RL:
policy evaluation. To establish this connection, we first refor-
mulate GFlowNets training from a dynamic programming
perspective through flow iteration, which paves the way
for understanding their relationship. While previous works
have primarily focused on modifications to RL objectives
and introducing additional entropy regularization terms, we
show that policy evaluation, which is often viewed as a fun-
damental building block for estimating the expected value
of a given policy, can be naturally connected to GFlowNets.
Specifically, we discover that the resulting value function
obtained from evaluating a uniform random policy under
reward transformation is closely associated with the flow
functions in GFlowNets under specific structural conditions.
Our findings reveal an unexpected connection and bridge
the gap between these two frameworks, offering a more
comprehensive understanding of their underlying connec-
tions than previously recognized. Building upon this insight,
we introduce a rectified random policy evaluation (RPE)
algorithm based on simply evaluating a fixed random pol-
icy, providing a straightforward implementation path for
GFlowNets in these applicable settings while maintaining
the same reward-matching capability.

To validate our findings, we conduct extensive experiments
and compare RPE with GFlowNets (Bengio et al., 2021;
Malkin et al., 2022; Bengio et al., 2023; Madan et al., 2023)
and MaxEnt RL (Haarnoja et al., 2017a; Vieillard et al.,
2020). Our results demonstrate that RPE achieves competi-
tive performance compared to previous approaches in such
domains, highlighting the effectiveness of our proposed
method, and also shed light on the previously overlooked
yet fundamental connection between RL and GFlowNets.

2. Background
2.1. Generative Flow Networks (GFlowNets)
Consider a directed acyclic graph (DAG) G = {S,A},
where S and A represent the state and action spaces. The

objective of GFlowNets is to learn a stochastic policy π that
constructs discrete objects x ∈ X with probability propor-
tional to the reward function: R, i.e., π(x) ∝ R(x). The
agent generates objects through a sequential process, and
adds a new element to the current state at each timestep
t. The sequence of states transitions from the initial state
to a terminal state is referred to as a trajectory, denoted by
τ = (s0 → ... → sn), where τ ∈ T belongs to the set
of all possible trajectories T . Bengio et al. (2021) intro-
duce the definition of the trajectory flow, represented by the
function F : T → R≥0, which assigns a non-negative real
value to each trajectory. The state flow, denoted by F (s),
is defined as the sum of flows of all trajectories passing
through state s, i.e., F (s) =

∑
τ∋s F (τ). The edge flow

F (s → s′) is the sum of flows of all trajectories contain-
ing the transition from state s to state s′, which is defined
as F (s → s′) =

∑
τ∋s→s′ F (τ). We can then define the

forward policy PF (s
′|s) = F (s→ s′)/F (s), which de-

termines the transition probabilities from a state s to its
possible children states s′. In addition, we define the back-
ward policy PB(s|s′) = F (s→ s′)/F (s′), which specifies
the likelihood of reaching the parent state s from the current
state s′. A flow is considered consistent if the total incom-
ing flow for a state matches the total outgoing flow for all
internal states s, i.e.,∑

s′′→s

F (s′′ → s) = F (s) =
∑
s→s′

F (s→ s′). (1)

It is proven in (Bengio et al., 2021; 2023) that for consis-
tent flows, the policy can sample objects x with probability
proportional to R(x) and therefore match the underlying
reward distribution.

Flow Matching. Flow matching (FM) (Bengio et al.,
2021) parameterizes the edge flow function by Fθ(s, s

′),
with θ denoting the learnable parameters, and aims to
optimize Fθ(s, s

′) for satisfying the flow consistency
constraint. The FM loss is defined as LFM(s) =

(log
∑

s′′→s Fθ(s
′′, s)− log

∑
s→s′ Fθ(s, s

′))
2 for non-

terminal states, which is the squared difference between
the sum of incoming flows and the sum of outgoing flows
(optimized in the log-scale due to stability issues). The term∑

s→s′ Fθ(s, s
′) is replaced by R(s) if s is a terminal state.

Detailed Balance. Detailed balance (DB) parameter-
izes a state flow model Fθ, a forward policy model PFθ

,
and a backward policy model PBθ

(Bengio et al., 2023),
which aims to minimize the loss defined as LDB(s, s

′) =

(log(Fθ(s)PFθ
(s′|s))− log(Fθ(s

′)PBθ
(s|s′)))2, consider-

ing the flow consistency constraint at the edge level, and also
guarantees correct sampling from the target distribution.

(Sub) Trajectory Balance. Malkin et al. (2022) pro-
pose a trajectory-level optimization which is analogous
to the Monte Carlo approach (Hastings, 1970) in RL,
defined as LTB(τ) = (logZθ

∏n−1
t=0 PFθ

(st+1|st)) −

2

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

logR(x)
∏n−1

t=0 PBθ
(st|st+1))

2, that involves training the
total flow Z, the forward and backward policies. To miti-
gate the large variance, SubTB (Madan et al., 2023) opti-
mizes the flow consistency constraint in sub-trajectory levels.
Specifically, it considers all possible O(n2) sub-trajectories
τi:j = {si, · · · , sj}, and obtain the objective defined as

LSubTB(τ) =
∑

τi:j∈τ wij

(
log

F (si)
∏j−1

t=i PF (st+1|st)
F (sj)

∏j−1
t=i PB(st|st+1)

)2

,

where wij represents the weight for τi:j .

2.2. Reinforcement Learning (RL)

A Markov decision process (MDP) is defined as a 5-tuple
(S,A, P, r, γ), where S represents the set of states, A rep-
resents the set of actions, P : S × A → S denotes the
transition dynamics, r is the reward function, and γ is
the discount factor. In an MDP, the RL agent interacts
with the environment by following a policy π, which maps
states to actions. The value function in a state s for a pol-
icy π is defined as the expected discounted cumulative
reward the agent receives starting from the state s , i.e.,
V π(s) = Eπ[

∑∞
t=0 γ

tr(st, at)|s0 = s]. The goal of RL is
to find an optimal policy that maximizes the value function
at all states. We consider the RL setting consistent with
GFlowNets (as in Tiapkin et al. (2024)), with deterministic
transitions and the discount factor to be 1, and without in-
termediate rewards as in Bengio et al. (2013). It is worth
noting that GFlowNets can also be extended to stochastic
tasks (Pan et al., 2023b; Zhang et al., 2023a), albeit we fo-
cus on the more standard deterministic setting in this work.
In GFlowNets, the reward is obtained at the terminal state,
while the reward typically occurs at transitions in RL. To
bridge this gap, we define the value of terminal states V (x)
as R(x).

Policy evaluation (Sutton & Barto, 1998) in the dynamic
programming literature considers how to compute the value
function for an arbitrary policy π, which is also referred to
as the prediction problem. The iterative policy evaluation
algorithm is summarized in Algorithm 1.

Algorithm 1 Policy Evaluation

input The policy π to be evaluated; a small threshold θ for
the accuracy of estimation

1: Initialize value functions V (s) arbitrarily for s ∈ S,
and V (x) = R(x) for x ∈ X

2: repeat
3: ∆← 0
4: for s ∈ S \ X do
5: v ← V (s)
6: V (s)←

∑
a π(a|s)(r + γV (s′))

7: ∆← max(∆, |v − V (s)|)
8: end for
9: until ∆ < θ

Maximum entropy RL. Maximum entropy RL (Neu et al.,

2017; Haarnoja et al., 2017a; Geist et al., 2019) considers
an entropy-regularized objective augmented by the Shannon
entropy, i.e.,

V π
Soft(s) = Eπ

[∞∑
t=0

γtr(st, at) + λH(π(st))|st = s

]
,

(2)
where λ is the coefficient for entropy regularization. Schul-
man et al. (2017a) show that it corresponds to Q∗

Soft(s, a) =
r(s, a) + γEs′∼P (s,a)[λ log(

∑
a′ exp(QSoft∗(s

′, a′)/λ))],
with the Boltzmann softmax policy π∗

Soft(a|s) =
exp(1λQ

∗
Soft(s, a) − V ∗

Soft(s)). Littman (1996) introduces
the generalized Q-function, which considers using a
generalized operator ⊗ for updating the Q-values, i.e.,
Q(s, a) ← r(s, a) + γ

∑
s′∈S P (s′|s, a) ⊗a′ Q(s′, a′).

Song et al. (2019); Pan et al. (2020b;a; 2021) study the
Boltzmann softmax operator, defined as ⊗aQ(s, a) =∑

a exp(βQ(s,a))Q(s,a)∑
a exp βQ(s,a) , where β denotes the temperature

(usually set with a non-zero value). When β approaches
∞, it corresponds to the max operator as typically used in
standard Q-learning (Mnih et al., 2013). On the other hand,
when β approaches 0, it corresponds to the mean or average
operator.

3. Related Work
Generative Flow Networks (GFlowNets). Bengio et al.
(2021) introduce GFlowNets as a framework for learning
stochastic policies that generate objects x through a se-
quence of decision-making steps, aiming to sample x with
probability proportional to the reward function. GFlowNets
have demonstrated remarkable success in various domains,
including molecule generation (Bengio et al., 2021), bio-
logical sequence design (Jain et al., 2022), Bayesian struc-
ture learning (Deleu et al., 2022), combinatorial optimiza-
tion (Zhang et al., 2023b; 2024), and fine-tuning language
models (Li et al., 2023; Hu et al., 2024; Lee et al., 2024; Yun
et al., 2025), showcasing their potential for discovering high-
quality and diverse solutions. Recent research has focused
on providing theoretical understandings of GFlowNets by
exploring their connections to variational inference (Zim-
mermann et al., 2022; Malkin et al., 2023; Niu et al., 2024),
generative models (Zhang et al., 2022), and Markov chain
Monte Carlo methods (Deleu & Bengio, 2023). Addition-
ally, since the introduction of the flow matching learning
objective (Bengio et al., 2021), efforts have been made to
enhance the learning efficiency of GFlowNets, tackle large
variance (Malkin et al., 2022; Bengio et al., 2023; Madan
et al., 2023), improve exploration (Pan et al., 2022; Lau
et al., 2024), enable more efficient credit assignment (Pan
et al., 2023a; Jang et al., 2024), and extend to stochastic
practical environments (Pan et al., 2023b; Zhang et al.,
2023a), largely motivated by the development in the RL
literature. Temporal-difference methods in reinforcement

3

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

learning (RL) (Sutton, 1988) serve as a significant inspira-
tion for GFlowNets (Bengio et al., 2023). There have been
a number of recent works drawing connections between
GFlowNets and maximum entropy (MaxEnt) RL (Tiapkin
et al., 2024; Mohammadpour et al., 2024; Deleu et al., 2024),
but they are limited to considering an entropy-regularized
objective that differs from the goal of standard RL. This
work establishes a link between GFlowNets and standard
(non-MaxEnt) RL through one of its most basic building
blocks of policy evaluation for a random policy.

Reinforcement Learning (RL). In RL, the problem is typi-
cally formulated as a Markov decision process (MDP) with
states and actions defined similarly to the directed acyclic
graph representation in GFlowNets. The agent learns a
deterministic optimal policy to maximize the cumulative
return (Sutton & Barto, 1998). Maximum-entropy (Max-
Ent) RL (Haarnoja et al., 2017a), also known as soft RL or
entropy-regularized RL, optimizes an entropy-regularized
objective (Fox et al., 2015; Haarnoja et al., 2017b), where
the agent seeks to maximize both the reward and action
entropy, which falls under the broader domain of regular-
ized MDPs (Neu et al., 2017; Geist et al., 2019). Soft Q-
learning (Haarnoja et al., 2017b) is a popular instance of
MaxEnt RL, which employs a log-sum-exp operator instead
of the max operator commonly used in Q-learning (Mnih
et al., 2013), along with a Boltzmann softmax policy (Schul-
man et al., 2017a; Pan et al., 2020a). Related studies have
investigated alternative operators for learning the value
function, demonstrating that the Boltzmann softmax op-
erator (Song et al., 2019; Pan et al., 2020a) can mitigate
the estimation bias (Pan et al., 2020a; 2021) in popular RL
algorithms, when using a non-zero temperature parame-
ter. Recently, Laidlaw et al. (2023) have shown that acting
greedily with respect to the value function for a uniform pol-
icy can be as competitive as proximal policy optimization
(PPO) (Schulman et al., 2017b) in several standard game
environments, which highlights the potential of simple, un-
informed learning strategies to achieve strong performance.

4. Rectified Random Policy Evaluation
There have been a number of recent works (Tiapkin et al.,
2024; Deleu et al., 2024) exploring the connections of
GFlowNets (Bengio et al., 2023) and maximum entropy
(MaxEnt) or soft RL (Haarnoja et al., 2017b; 2018; Geist
et al., 2019)), a variant of RL that modifies the standard
objective with entropy regularization. Specifically, Tiap-
kin et al. (2024) show that GFlowNets can be viewed as
MaxEnt RL with a particular intermediate reward correc-
tion r(s → s′) = logPB(s|s′), where the soft value func-
tion Vsoft(s) corresponds to the logarithm of the state flows
F (s) in GFlowNets, i.e., Vsoft(s) = logF (s). Despite these
findings, the connection between GFlowNets and standard
(non-MaxEnt) RL remains largely unexplored, despite both

frameworks being rooted in temporal difference learning
and sequential decision-making.

In this section, we establish a surprisingly simple yet fun-
damental connection between GFlowNets and standard RL
by returning to one of its most basic building blocks: pol-
icy evaluation. We present a novel connection between
GFlowNets and policy evaluation under random policies,
by analyzing the theoretical equivalence under certain struc-
tural conditions between flow functions through flow itera-
tion and (scaled) value functions obtained from evaluating a
fixed random policy in Section 4.1, which holds uncondition-
ally for tree structures and extends to non-tree DAGs con-
sidering uniform backward policies under path-invariance
conditions. Building upon these insights, we introduce a
rectified random policy evaluation method that provides a
simple equivalent alternative to existing GFlowNets train-
ing methods in cases where the equivalence holds while
achieving the same reward-matching effect as GFlowNets
in Section 4.2.

4.1. Connections

To bridge the gap between GFlowNets and RL, we first
establish GFlowNets training from a dynamic programming
(DP) (Barto, 1995) perspective, which paves the way for
understanding their relationship as DP principles form the
foundation of most RL algorithms (Sutton & Barto, 1998).

Algorithm 2 Flow Iteration

input The backward policy PB; a small threshold θ for
estimation accuracy

1: Initialize flow functions F (s) arbitrarily for s ∈ S , and
F (x) = R(x) for x ∈ X

2: repeat
3: ∆← 0
4: for s ∈ S \ X do
5: f ← F (s)
6: F (s)←

∑
s′ PB(s|s′)F (s′)

7: ∆← max(∆, |f − F (s)|)
8: end for
9: until ∆ < θ

To formalize the DP perspective of GFlowNets, we in-
troduce the Flow Iteration algorithm as outlined in Algo-
rithm 2. Specifically, Flow Iteration estimates the state
flow F (s) for non-terminal states s based on its possible
children states s′ and the backward policy, which is de-
fined as F (s) =

∑
s′ PB(s

′|s)F (s′) (following the flow
consistency principle in the state-edge level). This formula-
tion shares certain computational characteristics with policy
evaluation in RL: Flow iteration propagates flow values
from child to parent states using the backward policy PB ,
while policy evaluation propagates values from successor
to current states using the (forward) policy π. Note that
we consider uniform backward policies for flow iteration in

4

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

non-tree DAGs in this work.

Based on this, we now investigate the relationship between
flow functions and value functions considering the structural
similarities between flow iteration and policy evaluation. We
systematically investigate this relationship, beginning with
the simpler case of tree-structured graphs (Bengio et al.,
2021) and then exploring the more challenging non-tree-
structured directed acyclic graph (DAG) cases.

4.1.1. TREE DAG

We begin our analysis with tree-structured DAGs (Hu et al.,
2024) that serve as a foundation for analyzing more general
DAGs. Our key insight is that GFlowNets’ flow function
F (s) and value functions V (s) in RL share an interesting
connection when considering the simplest possible policy -
a uniform random policy, and a principled reward transfor-
mation considering a scaling factor of the number of avail-
able actions in different states. This connection emerges
naturally from the structural similarities between our flow
iteration and policy evaluation. Specifically, if we scale the
original reward function R(x) for terminal states x in flow
iteration by the product of available actions along the path
to x, which accounts for the branching structure of the deci-
sion process, we observe an equivalence between F (s) and
V (s). This relationship not only provides a new interpreta-
tion of GFlowNets but also reveals how standard RL can be
repurposed to achieve the same reward-matching behavior
of GFlowNets. In Theorem 4.1, we restate and generalize
the relation between V (s) (obtained by policy evaluation for
a uniform policy) and F (s) (obtained by our proposed flow
iteration), extending initial observations made by Bengio
et al. (2021), where the proof can be found in Appendix A.

Theorem 4.1 (Generalization of Bengio et al. (2021)). Let
A(s) denote the number of available actions at state s,
and R(x) be the reward function for terminal states. Let
F (st) be the state flow function obtained from GFlowNet’s
flow iteration that samples proportionally from R(x), and
V (st) be the value function under a uniform policy with
transformed rewards R′(x) = R(x)

∏t−1
i=0 A(si). Then, for

all st, V (st) = F (st)
∏t−1

i=0 A(si).

Remark. This reveals an interesting connection:
GFlowNets’ sophisticated reward-matching capability can
be achieved through a basic operation in RL – policy evalu-
ation of a fixed uniform policy with an appropriately trans-
formed reward structure. Flow iteration, when viewed
through the lens of policy evaluation, establishes a bridge
between GFlowNets and standard RL. This provides a differ-
ent perspective from a number of previous works connecting
GFlowNets to MaxEnt RL (Tiapkin et al., 2024; Deleu et al.,
2024), which incorporates entropy regularization into the
standard RL objective. Our finding suggests that the flow-
matching objective in GFlowNets can be reinterpreted as a

specific form of value estimation in RL with a specific trans-
formation. It also broadens the understanding of what can be
achieved with policy evaluation only, unlike typical RL that
requires iterative policy evaluation and policy improvement
(policy iteration) for reward maximization (Sutton, 1988).

(a) Tree MDP.

s0 s1 s2 s3 s4 s5 s6 s7
State

0

5

10

15

20

25

30

V
al

ue

V(s)
Scaled V(s)
F(s)

(b) Results of F (s) and V (s).

Figure 1: Comparison of random policy evaluation and flow
iteration in a tree-structured DAG example.
Empirical Validation. Consider a tree-structured DAG as
shown in Figure 1(a), where terminal states x (blue squares)
are associated with rewards R(x). To validate our theoreti-
cal findings, we compare the flow function F (s) obtained
through flow iteration using the original reward R(x) with
the value function V (s) computed through policy evalua-
tion of a uniform policy using transformed rewards R′(x).
The resulting flows F (s) and values V (s) for each state are
illustrated in Figure 2(a) and Figure 2(c), respectively. As
summarized in Figure 1(b), both F (s0) and V (s0) yield
identical values, correctly estimating the total flow. For all
other states, F (s) exactly matches V (s) after accounting for
the scaling factor

∏t−1
i=0 A(si). This empirically confirms

that standard policy evaluation for a simple random pol-
icy, when configured with our transformed reward structure,
learns the same flow functions for achieving the reward-
matching capability as GFlowNets. Our approach differs
from (Tiapkin et al., 2024) in that we do not consider logPB

as intermediate rewards and operate in the log-scale, where
we instead directly use a transformed terminal reward and
a scaling factor computed when we collect the trajectory.
This can be illustrated in Figure 2(b), which shows the re-
sult of the MaxEnt RL formulation (Tiapkin et al., 2024)
that requires intermediate reward corrections (r = 0 here
due to the tree structure, which can be non-zero in non-tree
structured DAG cases) at each transition and operates in
log-scale.

(a) (b) (c)

Figure 2: Illustration of flow and value for tree cases. (a)
Flow iteration. (b) MaxEnt RL with intermediate reward
correction in log-scale. (c) Random policy evaluation with
transformed rewards.

5

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

4.1.2. NON-TREE DAG

Building upon the insights gained from the simpler tree-
structured case, we now extend our analysis to the more gen-
eral and challenging setting of non-tree-structured DAGs,
which is a natural setting for GFlowNets applications where
states can have multiple parent states.

In Theorem 4.2, we present a connection between
GFlowNets’ flow iteration procedure with uniform back-
ward policy and random policy evaluation in the context
of general non-tree DAGs, and establish conditions under
which the equivalence holds. The proof can be found in
Appendix A.

Theorem 4.2. Let A(s) and B(s) denote the number of
outgoing and incoming actions at state s respectively. For
any trajectory τ visiting state st, its branching ratio up
to st is defined as g(τ, st) =

∏t−1
i=0

A(si)
B(si+1)

. Let F (st)

be the state flow function obtained from GFlowNet’s flow
iteration with uniform backward policy that samples pro-
portionally from the reward function R(x), and V (st) be
the value function under a uniform policy with transformed
rewards R′(x) = R(x)g(τ, x). If any trajectories τ1 and
τ2 that visits st satisfy g(τ1, st) = g(τ2, st), then for all st,
V (st) = F (st)g(τ, st)

1.

Remark. Theorem 4.2 establishes the relationship between
GFlowNets’ flow iteration with uniform backward policy
and random policy evaluation to non-tree DAG cases under a
path-invariance condition, which reveals a consistent pattern:
the state flow function F (s) can be expressed as a scaled
version of the state value function V (s) under a uniform
policy with a transformed reward function. The scaling
factor g(τ, st) accounts for both outgoing and incoming
actions at each state along the trajectory. Different from the
tree case which imposes no constraints (due to its unique
path property), the non-tree case requires the path-invariance
condition, i.e., g(τ1, st) = g(τ2, st), which means that any
trajectories τ1 and τ2 passing through state st should yield
identical g(τ, s) values. This ensures that the scaling factor
remains consistent across different paths to the same state,
which is essential for establishing the equivalence.

This assumption naturally holds in several practical
GFlowNets benchmark environments, e.g., the set genera-
tion task studied by Pan et al. (2023a) (where the number
of parent or children states remains independent of the state
and trajectory itself). While this equivalence applies to this
meaningful class of DAG structures, it does not extend uni-
versally to all possible DAGs, such as the HyperGrid (Ben-
gio et al., 2021) environment, where its boundary effects
create path-dependent g-values for the same state. In such

1Under the path-invariance condition, g(τ, st) is identical for
all trajectories τ reaching st, and the right-hand side is therefore
state-dependent only.

cases, it prevents the establishment of a direct relationship
of GFlowNets with policy evaluation and limits universal
applicability, and our analysis characterizes the conditions
under which these two frameworks align. We view this
limitation as a natural consequence of the simplicity of the
method, which is based on simple policy evaluation for
a fixed uniform policy. By identifying the structural con-
ditions necessary for equivalence, our work deepens the
understanding of both frameworks and reveals a meaning-
ful class of problems where simplified training strategies
become feasible and offers new insights.

Empirical Validation. To validate this equivalence, we
consider the set generation task studied by Pan et al. (2023a).
In this task, the agent sequentially generates a set with size
|S| from |U | elements. At each timestep, the agent selects
an element from U and adds it to the current set (without
replacement). The agent receives the reward for constructing
the set with exactly |S| elements.

Figure 3 presents the results in the tabular case, where values
computed by random policy evaluation or flows computed
by flow iteration with uniform backward policies are repre-
sented in tables as the state and action spaces are enumer-
able. This tabular representation eliminates the influence
of neural network approximation and sampling errors, pro-
viding a clear comparison between the state flow function
and the scaled state value function. In Figure 3, the x-axis
corresponds to different states, topologically sorted, and the
y-axis corresponds to flows F or values V . We compare the
resulting state flow function F (s), the value function V (s)
under the original rewards R(x) from random policy eval-
uation, and the value function under transformed rewards
R′(x) also from random policy evaluation. We observe that
the scaled value function, denoted as scaled V (s), aligns
perfectly with the state flow function F (s), validating the
equivalence.

𝐹(𝑠) and scaled 𝑉(𝑠)

Figure 3: Comparison of random policy evaluation and
flow iteration with uniform backward policies in the set
generation task.

4.2. Rectified Random Policy Evaluation

Based on the above theoretical analysis, we leverage this
interesting insight from the connections between flows
and values to develop Rectified Random Policy Evalua-

6

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

tion (RPE). By rectifying policy evaluation for a uniform
policy, RPE achieves the same reward-matching capabili-
ties as GFlowNets that sample proportionally to the rewards
(π(x) ∝ R(x)) and discover diverse candidates, while main-
taining the simplicity of standard policy evaluation.

The key insight of RPE stems from our theoretical equiv-
alence: by reparameterizing the value function as V (s) =
F (s)g(s) and scaling terminal rewards by the g-function,
we can transform GFlowNet’s sophisticated flow-matching
objective into a simpler policy evaluation task with trans-
formed rewards R′(x) for a fixed random policy. This trans-
formation is practical as the g-function is readily available
in standard benchmarks. It is simply the number of avail-
able actions at each state along the path in tree-structured
problems, while in non-tree DAGs, it is the ratio of out-
going to incoming actions along the path, both of which
are predefined by the problem’s action space specification.
To enable sampling from the learned distribution, we can
obtain the forward policy PF (s

′|s) = F (s′)PB(s′|s)
F (s) (Bengio

et al., 2023) that inherits GFlowNet’s reward-matching prop-
erties with a uniform backward policy PB . The complete
procedure is detailed in Algorithm 3.

Algorithm 3 Rectified Policy Evaluation

input Flows Fθ(s) parameterized by θ, uniform policy π

output Sampling policy PF (s
′|s) = Fθ(s

′)PB(s|s′)
Fθ(s)

(with a
uniform PB)

1: for t = {1, · · · , T} do
2: Sample a trajectory τ = {s0, · · · , sn} using π
3: Calculate g(s) for states s ∈ τ
4: for s ∈ τ do
5: if s is not a terminal state then
6: V (s)←

∑
a π(a|s)Fθ(s

′)g(s′)
7: else
8: V (s)← g(s)R(s)
9: end if

10: end for
11: θ ← argminLMSE(g(s)Fθ(s), V (s)) by an Adam

optimizer
12: end for

Discussion. RPE reformulates the GFlowNets training
into a random policy evaluation process with rectification,
while maintaining equivalent reward-matching capabilities
through our established flow-value connections. In RPE, the
policy to be evaluated is a fixed uniform policy π, in con-
trast to standard GFlowNets and MaxEnt RL that requires
estimating flows/values for continuously evolving policies
during training, leading to more significant non-stationarity
challenge in the learning process (Van Hasselt et al., 2018;
Laidlaw et al., 2023). In addition, RPE adopts a simpli-
fied parameterization that learns only the flow function Fθ,
from which the sampling policy can be directly derived,

which can reduce the potential approximation error from
function approximators (Shen et al., 2023). As discussed
in Section 4.1.2, the equivalence holds unconditionally in
tree-structured problems, making RPE universally applica-
ble to the tree cases. For non-tree DAGs, this equivalence
is guaranteed only when the path-invariance property is
satisfied, which holds in tasks where state transitions have
similar structural properties (e.g., set generation). While this
assumption encompasses a broad range of practical applica-
tions, investigating scenarios where it may not hold presents
a promising direction for future research building upon our
analysis. This reformulation reveals previously overlooked
connections between GFlowNets and policy evaluation, of-
fering novel perspectives that bridge this gap and advance
our understanding of both frameworks.

5. Experiments
5.1. Experimental Setup

Baselines. We extensively compare RPE with GFlowNets
with different learning objectives including Flow Matching
(FM) (Bengio et al., 2021), Detailed Balance (DB) (Bengio
et al., 2023), Trajectory Balance (TB) (Malkin et al., 2022),
and Sub-Trajectory Balance (SubTB) (Madan et al., 2023) as
introduced in Section 2.1. We use the learned backward poli-
cies for GFlowNets baselines (DB, TB, and SubTB) as the
default setting, with results using fixed uniform backward
policies provided in Appendix C. Additionally, we compare
RPE with the maximum entropy (MaxEnt) RL algorithms,
i.e., soft DQN (Haarnoja et al., 2017b) and Munchausen
DQN (M-DQN;(Vieillard et al., 2020; Tiapkin et al., 2024)),
as described in Section 2.2.

Metrics. We follow standard evaluation metrics and eval-
uate each method in terms of the accuracy metric (Shen
et al., 2023; Kim et al., 2023), which quantifies how well
the learned policy distribution aligns with target reward
distribution. Accuracy is calculated by computing the rel-
ative error between the sample mean of the reward func-
tion R(x) under the learned policy distribution PF (x) and
the expected value of R(x) under the target distribution.
The calculation of accuracy is given as Acc(PF (x)) =

100×min
(

EPF (x)[R(x)]

Ep∗(x)[R(x)] , 1
)

, where p∗(x) = R(x)/Z rep-
resents the target distribution. We also analyze the number
of modes discovered during the course of training (Bengio
et al., 2021; Jain et al., 2022), which measures the ability to
identify multiple high-reward regions in the solution space.

Tasks. We compare RPE against GFlowNets and MaxEnt
RL baselines across several GFlowNets tasks, including TF-
Bind generation (Shen et al., 2023), RNA design (Kim et al.,
2023), and molecule generation (Shen et al., 2023). We con-
sider minimally modified transition dynamics that ensure
the path-invariance assumption required in non-tree DAGs

7

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e4

5

10

15

20

25

30

35

40

Nu
m

be
r o

f M
od

es

0.0 0.2 0.4 0.6 0.8 1.0
1e4

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

(a) TFbind 1 (Tree)

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e4

5

10

15

20

25

30

35

Nu
m

be
r o

f M
od

es

0.0 0.2 0.4 0.6 0.8 1.0
1e4

75

80

85

90

95

100

Ac
cu

ra
cy

(b) TFBind 2 (Tree)
Figure 4: Number of modes discovered and accuracy over training across 3 random seeds.

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e4

5

10

15

20

25

30

35

40

Nu
m

be
r o

f M
od

es

0.0 0.2 0.4 0.6 0.8 1.0
1e4

86
88
90
92
94
96
98

100

Ac
cu

ra
cy

(a) TFBind 1 (DAG)

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e4

5

10

15

20

25

30

35

Nu
m

be
r o

f M
od

es

0.0 0.2 0.4 0.6 0.8 1.0
1e4

75

80

85

90

95

100

Ac
cu

ra
cy

(b) TFBind 2 (DAG)

Figure 5: Number of modes discovered and accuracy of each method.

can be satisfied for comprehensive evaluation, while main-
taining the essential characteristics of these tasks. Specifi-
cally, when the sequences contain the same amino acids for
adding, we restrict the construction process to only append
amino acids. Note that this modification only affects a few
border cases, and it maintains the essential characteristics
of the original tasks.

Implementations. We implement all baselines based on
open-source codes from Kim et al. (2023)2 and Tiapkin
et al. (2024)3. We run each algorithm with three random
seeds and report both the mean and standard deviation of
their performance metrics. To ensure a fair comparison, our
method and all baselines use the same network architecture,
batch size, and other relevant hyperparameters, with a more
detailed description in Appendix B due to space limitation.

5.2. TF Bind Generation

We first explore the task of generating DNA sequences that
exhibit high binding activity with human transcription fac-
tors (Jain et al., 2022). The objective of the agent is to
discover a diverse set of promising candidates that demon-
strate strong binding affinity to the target transcription factor.
At each timestep, the agent selects an amino acid a and in-
corporates it into the currently generated partial sequence.
We consider four reward functions from Lorenz et al. (2011).
We first study the task of a left-to-right generation of the TF
Bind sequence as studied in Malkin et al. (2022), where
the agent chooses to append an amino acid a to the end of
the current state. This choice of constructive actions leads
to a tree-structured problem, as each state only has one

2https://github.com/dbsxodud-11/ls_gfn
3https://github.com/d-tiapkin/gflownet-rl

parent state. We then investigate a variant of the prepend-
append MDP (PA-MDP) (Shen et al., 2023) for the TF Bind
generation task, where we consider a structured version
where minimally modified transition dynamics ensure the
path-invariance condition as introduced in Section 5.1 (more
detailed description can be found in Appendix B). This for-
mulation results in a more complex directed acyclic graph,
as opposed to a simple tree, due to the existence of multi-
ple trajectories for each object x, which poses significant
challenges in the learning process.

Figures 4-5 summarize the results in terms of accuracy
and the number of modes discovered during training for
each method, considering tree-structured generation and
DAG-structured TF Bind generation, respectively. These
figures present the results for two reward functions, while
the complete results for all four reward functions can be
found in Appendix C due to space constraints. As shown,
GFlowNets (including FM, DB, TB, SubTB learning objec-
tives), MaxEnt RL (including Soft DQN and Munchausen
DQN (Tiapkin et al., 2024)), and our RPE algorithm achieve
comparable performance in terms of the number of modes
discovered, indicating their ability to effectively capture
the multi-modal nature of the reward function, due to their
equivalence. In terms of accuracy, we observe that RPE,
a simplified learning process of evaluating fixed random
policies under appropriate transformation, generally outper-
forms other baselines by a small margin.

5.3. RNA Sequence Generation

In this section, we study a larger practical task of generating
RNA sequences. We consider four distinct target transcrip-
tions employing the ViennaRNA package (Lorenz et al.,
2011) as studied in Pan et al. (2024), where each task eval-

8

https://github.com/dbsxodud-11/ls_gfn
https://github.com/d-tiapkin/gflownet-rl

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e4

0

10

20

30

40

Nu
m

be
r o

f M
od

es

RNA1

0.0 0.2 0.4 0.6 0.8 1.0
1e4

0

10

20

30

40

50
RNA2

0.0 0.2 0.4 0.6 0.8 1.0
1e4

0

10

20

30

40

50

RNA3

0.0 0.2 0.4 0.6 0.8 1.0
1e4

0

20

40

60

80

RNA4

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e4

40

50

60

70

80

90

100

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
1e4

40

50

60

70

80

90

100

0.0 0.2 0.4 0.6 0.8 1.0
1e4

40

50

60

70

80

90

100

0.0 0.2 0.4 0.6 0.8 1.0
1e4

50

60

70

80

90

100

RPE (ours) SubTB-GFN TB-GFN DB-GFN FM-GFN MaxEnt RL (Soft DQN) MaxEnt RL (M-DQN)

Figure 6: Top row: number of modes discovered over training across 3 random seeds. Bottom row: Accuracy over training
across 3 random seeds.

uates the binding energy with a unique target serving as
the reward signal for the agent (Lorenz et al., 2011). We
follow the experimental setup as in Section 5.1, and study
the variant of prepend-append MDP introduced by Shen
et al. (2023). More detailed descriptions of the setup can be
found in Appendix B.

The performance of each method in terms of accuracy and
the number of modes discovered for each task is shown
in Figure 6. The results show that RPE captures the multi-
modal reward landscape well, maintaining the key capability
of GFlowNets in discovering diverse, high-reward solutions.
In addition, in this more challenging task with larger state
spaces, we observe that RPE demonstrates stronger perfor-
mance across both metrics, achieving nearly 100% accuracy
while discovering more modes than the baselines, as RPE
provides a simpler parameterization for evaluating a fixed
random policy different from baseline methods.

5.4. Molecule Generation

In this section, we study the task of generating molecule
graphs. We study the variant of the QM9 molecule task as
studied in prior GFlowNets work (Jain et al., 2023b; Shen
et al., 2023; Kim et al., 2023) following the experimental
setup as in Section 5.1, where the reward function is defined
as the energy gap between the highest occupied molecular
orbital and lowest unoccupied orbital (HOMO-LUMO). We
employ a pre-trained molecular property prediction model,
MXMNet (Zhang et al., 2020), as the reward proxy.

The results are summarized in Figure 7, where RPE consis-
tently maintains the ability to capture multi-modal rewards,
demonstrating comparable accuracy to GFlowNet and Max-
Ent RL baselines. RPE also discovers modes faster from its
fixed policy evaluation framework.

0.0 0.5 1.0 1.5 2.0
Training Iterations 1e3

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

be
r o

f M
od

es

QM9

0.0 0.5 1.0 1.5 2.0
Training Iterations 1e3

60

70

80

90

100

Ac
cu

ra
cy

QM9

Figure 7: Results in the QM9 molecule generation tasks.

6. Conclusion
In this paper, we establish a new connection between
GFlowNets and core reinforcement learning concepts
through the lens of flow iteration and policy evaluation. Our
results reveal that the value function under a uniform policy
is intrinsically linked to the flow functions in GFlowNets
under certain structural conditions. Based on this insight,
we develop Rectified Policy Evaluation (RPE), which refor-
mulates GFlowNets’ objectives through a simplified policy
evaluation framework. Extensive empirical evaluations on
GFlowNets benchmarks demonstrate that RPE is able to
capture multi-modal rewards and achieve GFlowNets’ so-
phisticated reward-matching capability through evaluating
a fixed uniform policy, providing new insights into under-
standing both fields.

While there are no structural constraints required for tree-
structured environments, the extension to non-tree DAGs
requires the path-invariance condition, which may not
hold universally across all problem domains. Investigat-
ing whether the relationship can be extended to broader
classes of environments without restrictive assumptions,
exploring connections with non-uniform policies, and de-
veloping adaptive methods that can automatically satisfy
structural requirements in general settings are interesting
future directions.

9

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

Acknowledgment
This work is supported by the National Natural Science
Foundation of China 62406266.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I.

An introduction to mcmc for machine learning. Machine
learning, 50:5–43, 2003.

Barto, A. G. Reinforcement learning and dynamic pro-
gramming. In Analysis, Design and Evaluation of Man–
Machine Systems 1995, pp. 407–412. Elsevier, 1995.

Bengio, E., Jain, M., Korablyov, M., Precup, D., and Ben-
gio, Y. Flow network based generative models for non-
iterative diverse candidate generation. Advances in Neu-
ral Information Processing Systems, 34:27381–27394,
2021.

Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. Better
mixing via deep representations. In International confer-
ence on machine learning, pp. 552–560. PMLR, 2013.

Bengio, Y., Lahlou, S., Deleu, T., Hu, E. J., Tiwari, M., and
Bengio, E. Gflownet foundations. Journal of Machine
Learning Research, 24(210):1–55, 2023.

Chen, Y. and Mauch, L. Order-preserving gflownets. arXiv
preprint arXiv:2310.00386, 2023.

Deleu, T. and Bengio, Y. Generative flow net-
works: a markov chain perspective. arXiv preprint
arXiv:2307.01422, 2023.

Deleu, T., Góis, A., Emezue, C., Rankawat, M., Lacoste-
Julien, S., Bauer, S., and Bengio, Y. Bayesian structure
learning with generative flow networks. In Uncertainty
in Artificial Intelligence, pp. 518–528. PMLR, 2022.

Deleu, T., Nouri, P., Malkin, N., Precup, D., and Bengio, Y.
Discrete probabilistic inference as control in multi-path
environments. arXiv preprint arXiv:2402.10309, 2024.

Fox, R., Pakman, A., and Tishby, N. Taming the noise in
reinforcement learning via soft updates. arXiv preprint
arXiv:1512.08562, 2015.

Ganguly, A., Jain, S., and Watchareeruetai, U. Amortized
variational inference: Towards the mathematical founda-
tion and review. arXiv preprint arXiv:2209.10888, 2022.

Geist, M., Scherrer, B., and Pietquin, O. A theory of regu-
larized markov decision processes. In International Con-
ference on Machine Learning, pp. 2160–2169. PMLR,
2019.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies. In
International conference on machine learning, pp. 1352–
1361. PMLR, 2017a.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies. In
International conference on machine learning, pp. 1352–
1361. PMLR, 2017b.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hastings, W. K. Monte carlo sampling methods using
markov chains and their applications. 1970.

Hu, E. J., Jain, M., Elmoznino, E., Kaddar, Y., Lajoie, G.,
Bengio, Y., and Malkin, N. Amortizing intractable infer-
ence in large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Jain, M., Bengio, E., Hernandez-Garcia, A., Rector-Brooks,
J., Dossou, B. F., Ekbote, C. A., Fu, J., Zhang, T., Kil-
gour, M., Zhang, D., et al. Biological sequence design
with gflownets. In International Conference on Machine
Learning, pp. 9786–9801. PMLR, 2022.

Jain, M., Deleu, T., Hartford, J., Liu, C.-H., Hernandez-
Garcia, A., and Bengio, Y. Gflownets for ai-driven scien-
tific discovery. Digital Discovery, 2(3):557–577, 2023a.

Jain, M., Raparthy, S. C., Hernández-Garcıa, A., Rector-
Brooks, J., Bengio, Y., Miret, S., and Bengio, E. Multi-
objective gflownets. In International conference on ma-
chine learning, pp. 14631–14653. PMLR, 2023b.

Jang, H., Kim, M., and Ahn, S. Learning energy decompo-
sitions for partial inference of gflownets. In The Twelfth
International Conference on Learning Representations,
2024.

Kim, M., Yun, T., Bengio, E., Zhang, D., Bengio, Y., Ahn,
S., and Park, J. Local search gflownets. In The Twelfth
International Conference on Learning Representations,
2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

10

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

Laidlaw, C., Russell, S. J., and Dragan, A. Bridging rl
theory and practice with the effective horizon. Advances
in Neural Information Processing Systems, 36:58953–
59007, 2023.

Lau, E., Lu, S. Z., Pan, L., Precup, D., and Bengio, E. Qgfn:
Controllable greediness with action values. arXiv preprint
arXiv:2402.05234, 2024.

Lee, S., Kim, M., Cherif, L., Dobre, D., Lee, J., Hwang,
S. J., Kawaguchi, K., Gidel, G., Bengio, Y., Malkin, N.,
et al. Learning diverse attacks on large language models
for robust red-teaming and safety tuning. arXiv preprint
arXiv:2405.18540, 2024.

Li, Y., Luo, S., Shao, Y., and Hao, J. Gflownets with human
feedback. arXiv preprint arXiv:2305.07036, 2023.

Littman, M. L. Algorithms for sequential decision-making.
Brown University, 1996.

Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C.,
Tafer, H., Flamm, C., Stadler, P. F., and Hofacker, I. L.
Viennarna package 2.0. Algorithms for molecular biology,
6:1–14, 2011.

Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E.,
Jain, M., Nica, A. C., Bosc, T., Bengio, Y., and Malkin, N.
Learning gflownets from partial episodes for improved
convergence and stability. In International Conference
on Machine Learning, pp. 23467–23483. PMLR, 2023.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio,
Y. Trajectory balance: Improved credit assignment in
gflownets. Advances in Neural Information Processing
Systems, 35:5955–5967, 2022.

Malkin, N., Lahlou, S., Deleu, T., Ji, X., Hu, E. J., Ev-
erett, K. E., Zhang, D., and Bengio, Y. Gflownets and
variational inference. In The Eleventh International Con-
ference on Learning Representations, 2023.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H., and Teller, E. Equation of state calculations
by fast computing machines. The journal of chemical
physics, 21(6):1087–1092, 1953.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mohammadpour, S., Bengio, E., Frejinger, E., and Bacon,
P.-L. Maximum entropy gflownets with soft q-learning.
In International Conference on Artificial Intelligence and
Statistics, pp. 2593–2601. PMLR, 2024.

Neu, G., Jonsson, A., and Gómez, V. A unified view of
entropy-regularized markov decision processes. arXiv
preprint arXiv:1705.07798, 2017.

Niu, P., Wu, S., Fan, M., and Qian, X. Gflownet training by
policy gradients. In Forty-first International Conference
on Machine Learning, 2024.

Pan, L., Cai, Q., and Huang, L. Softmax deep double deter-
ministic policy gradients. Advances in neural information
processing systems, 33:11767–11777, 2020a.

Pan, L., Cai, Q., Meng, Q., Chen, W., and Huang, L. Re-
inforcement learning with dynamic boltzmann softmax
updates. In Bessiere, C. (ed.), Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intel-
ligence, IJCAI-20, pp. 1992–1998. International Joint
Conferences on Artificial Intelligence Organization, 7
2020b. doi: 10.24963/ijcai.2020/276. URL https:
//doi.org/10.24963/ijcai.2020/276. Main
track.

Pan, L., Rashid, T., Peng, B., Huang, L., and Whiteson, S.
Regularized softmax deep multi-agent q-learning. Ad-
vances in Neural Information Processing Systems, 34:
1365–1377, 2021.

Pan, L., Zhang, D., Courville, A., Huang, L., and Bengio,
Y. Generative augmented flow networks. In The Eleventh
International Conference on Learning Representations,
2022.

Pan, L., Malkin, N., Zhang, D., and Bengio, Y. Better
training of gflownets with local credit and incomplete
trajectories. In International Conference on Machine
Learning, pp. 26878–26890. PMLR, 2023a.

Pan, L., Zhang, D., Jain, M., Huang, L., and Bengio, Y.
Stochastic generative flow networks. In Uncertainty in
Artificial Intelligence, pp. 1628–1638. PMLR, 2023b.

Pan, L., Jain, M., Madan, K., and Bengio, Y. Pre-training
and fine-tuning generative flow networks. In The Twelfth
International Conference on Learning Representations,
2024.

Salakhutdinov, R. R. Learning in markov random fields us-
ing tempered transitions. Advances in neural information
processing systems, 22, 2009.

Schulman, J., Chen, X., and Abbeel, P. Equivalence be-
tween policy gradients and soft q-learning. arXiv preprint
arXiv:1704.06440, 2017a.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017b.

11

https://doi.org/10.24963/ijcai.2020/276
https://doi.org/10.24963/ijcai.2020/276

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

Shen, M. W., Bengio, E., Hajiramezanali, E., Loukas, A.,
Cho, K., and Biancalani, T. Towards understanding and
improving gflownet training. In International Conference
on Machine Learning, pp. 30956–30975. PMLR, 2023.

Song, Z., Parr, R., and Carin, L. Revisiting the softmax
bellman operator: New benefits and new perspective. In
International conference on machine learning, pp. 5916–
5925. PMLR, 2019.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine learning, 3:9–44, 1988.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. 1998.

Tiapkin, D., Morozov, N., Naumov, A., and Vetrov, D. P.
Generative flow networks as entropy-regularized rl. In
International Conference on Artificial Intelligence and
Statistics, pp. 4213–4221. PMLR, 2024.

Van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat,
N., and Modayil, J. Deep reinforcement learning and the
deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Vieillard, N., Pietquin, O., and Geist, M. Munchausen
reinforcement learning. Advances in Neural Information
Processing Systems, 33:4235–4246, 2020.

Xu, B., Wang, N., Chen, T., and Li, M. Empirical evaluation
of rectified activations in convolutional network. arXiv
preprint arXiv:1505.00853, 2015.

Yun, T., Zhang, D., Park, J., and Pan, L. Learning to sample
effective and diverse prompts for text-to-image genera-
tion. arXiv preprint arXiv:2502.11477, 2025.

Zhang, D., Chen, R. T., Malkin, N., and Bengio, Y. Unifying
generative models with gflownets and beyond. arXiv
preprint arXiv:2209.02606, 2022.

Zhang, D., Pan, L., Chen, R. T., Courville, A., and Bengio,
Y. Distributional gflownets with quantile flows. arXiv
preprint arXiv:2302.05793, 2023a.

Zhang, D., Dai, H., Malkin, N., Courville, A. C., Bengio,
Y., and Pan, L. Let the flows tell: Solving graph combi-
natorial problems with gflownets. Advances in Neural
Information Processing Systems, 36, 2024.

Zhang, D. W., Rainone, C., Peschl, M., and Bondesan,
R. Robust scheduling with gflownets. arXiv preprint
arXiv:2302.05446, 2023b.

Zhang, S., Liu, Y., and Xie, L. Molecular mechanics-driven
graph neural network with multiplex graph for molecular
structures. arXiv preprint arXiv:2011.07457, 2020.

Zimmermann, H., Lindsten, F., van de Meent, J.-W., and
Naesseth, C. A. A variational perspective on generative
flow networks. arXiv preprint arXiv:2210.07992, 2022.

12

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

A. Proofs of Theorems 4.1-4.2
It can be simply verified that the tree-structured DAG (Theorem 4.1) is a special case of the non-tree-structured DAG
(Theorem 4.2), with B(si+1) = 1 and there is only one path from s0 to any states, and PB is trivial in this case. Therefore,
we prove the general non-tree case here with mathematical induction (and the proof for Theorem 4.1 can also be obtained
via the following proof since it is a special case).

Theorem 4.2 Let A(s) and B(s) denote the number of outgoing and incoming actions at state s respectively. For any
trajectory τ visiting state st, its branching ratio up to st is defined as g(τ, st) =

∏t−1
i=0

|A(si)|
|B(si+1)| . Let F (st) be the state

flow function from GFlowNet’s flow iteration with uniform backward policy that samples proportionally from the reward
function R(x), and V (st) be the value function under a uniform policy with transformed rewards R′(x) = R(x)g(τ, x). If
any trajectories τ1 and τ2 that visits st satisfy g(τ1, st) = g(τ2, st), then for all st, V (st) = F (st)g(τ, st).

Proof. For all terminal states sn, by definition, we have that

V (sn) = R′(sn) = R(sn)g(τ, sn). (3)

F (sn) = R(sn). (4)

Thus, V (sn) = F (sn)g(τ, sn) holds for all terminal states.

Then, for any other state st, assume all of its children sk satisfy

V (sk) = F (sk)g(τ, sk). (5)

By the definition of the policy evaluation procedure, we have that

V (st) =
∑

st→sk

V (sk)

|A(st)|
(6)

Combining Eq.(5) and Eq.(6), we get

V (st) =
∑

st→sk

F (sk)g(τ, sk)

|A(st)|
. (7)

By definition, we have that

g(τ, sk) =

k−1∏
i=0

|A(si)|
|B(si+1)|

. (8)

Thus, we obtain that
g(τ, sk)

|A(st)|
=

g(τ, sk)

|A(sk−1)|
=

∏k−2
i=0 |A(si)|∏k−1

i=0 |B(si+1)|
=

1

|B(sk)|

k−2∏
i=0

|A(si)|
|B(si+1)|

. (9)

As

g(τ, st) = g(τ, sk−1) =

k−2∏
i=0

|A(si)|
|B(si+1)|

, (10)

and combing Eq.(7),(9), and (10), we have that

V (st) =
∑

st→sk

F (sk)

|B(sk)|
g(τ, st). (11)

By the definition of the flow iteration procedure considering uniform backward policies (PB(st|sk) = 1
|B(sk)|), we have that

F (st) =
∑

st→sk

F (sk)

|B(sk)|
. (12)

13

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

Combing Eq.(11) and (12), we obtain that
V (st) = F (st)g(τ, st). (13)

Therefore, the condition holds for st. Finally, by induction, V (st) = F (st)g(τ, st) holds for all states. Note that under
the path-invariance condition, g(τ, st) is identical for all trajectories τ reaching st, and the right-hand side is therefore
state-dependent only.

B. Experimental Setup
B.1. Implementation Details

• We use an MLP network that consists of 2 hidden layers with 2048 hidden units and ReLU activation (Xu et al., 2015) to
estimate flow function Fθ.

• We encode each state into a one-hot encoding vector and feed them into the MLP network.

• We clip gradient norms to a maximum of 10.0 to prevent unstable gradient updates.

• We run all the experiments in this paper with RTX 3090 GPU.

Below we introduce separate details for different benchmarks used in this paper. For thorough comparison across methods
considering the path-invariance property, we consider minimally modified transition dynamics that ensure the assumption
required for GFlowNets and RL can be satisfied for comprehensive evaluation. Specifically, when the sequences contain
the same amino acids for adding, we restrict the construction process to only append amino acids. This modification only
affects a few border cases, and it maintains the essential characteristics of the original tasks.

TF Bind generation. For the tree-structured TF Bind task, we follow the experimental setup described in Jain et al. (2022);
For the graph-structured TF Bind task, we follow the experimental setup described in Shen et al. (2023). We select four
tasks defined by different reward functions in Lorenz et al. (2011), i.e., SIX6 T165A R1 8mers, ARX P353L R2 8mers,
PAX3 Y90H R1 8mers and WT1 REF R1 8mers. In this task, we train our model for 1e4 steps, using the Adam optimizer
(Kingma & Ba, 2014) with a 3e−3 learning rate. We set the reward threshold as 0.8 and the distance threshold as 3 to
compute the number of modes discovered during training.

RNA Sequence generation. We consider the PA-MDP to generate strings of 14 nucleobases. Following Pan et al. (2024),
we present four different tasks characterized by different reward functions, i.e., RNA1, RNA2, RNA3 and RNA4. In this task,
we train our model for 1e4 steps, using the Adam optimizer (Kingma & Ba, 2014) with a 3e−3 learning rate. We set the
reward exponent as 3. We set the reward threshold as 0.8 and the distance threshold as 3 to compute the number of modes
discovered during training. We normalize the reward into [0.001, 10] during training.

Molecule generation. The goal of QM9 is to generate a molecule with 5 blocks from 12 building blocks with 2 stems.
Following the experimental setup described in Kim et al. (2023), we set the reward exponent as 5. We train our model for
2e3 steps, using the Adam optimizer (Kingma & Ba, 2014) with a 1e−3 learning rate. To compute the number of modes
discovered during training, we set the reward threshold as 1.4 and the distance threshold as 3. We normalize the reward into
[0.001, 1000]. This normalization is beneficial for flow regression.

Baselines. We implement the MaxEnt RL baselines, including soft DQN and Munchausen DQN, by borrowing the code
from https://github.com/d-tiapkin/gflownet-rl (Tiapkin et al., 2024). We implement the baselines of
GFlowNets based on the codes from https://github.com/dbsxodud-11/ls_gfn (Kim et al., 2023).

C. Additional Experimental Results
TF Bind We provide the other two tasks of TF Bind generation benchmark in Fig 8. We find that RPE performs
competitively in both tree and graph TFBind tasks.

14

https://github.com/d-tiapkin/gflownet-rl
https://github.com/dbsxodud-11/ls_gfn

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

RNA generation. Table 1 and Table 2 summarize the results of the final model in the RNA generation tasks, which clearly
show the superior performance of our method RPE in terms of both accuracy and number of modes discovered.

Baselines with uniform PB . Furthermore, we conduct a comparison between RPE and GFlowNets methods using a
uniform PB . As depicted in Fig. 9, the PB values in TB-GFN, SubTB-GFN, and DB-GFN are consistently fixed to be
uniform. Our observations indicate that while these GFlowNets methods with uniform PB exhibit rapid convergence, they
generally yield inferior performance compared to instances where PB is learned.

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e4

5

10

15

20

25

30

35

40

Nu
m

be
r o

f M
od

es

0.0 0.2 0.4 0.6 0.8 1.0
1e4

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

(a) Tree TFbind 3

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e4

0

10

20

30

40

Nu
m

be
r o

f M
od

es

0.0 0.2 0.4 0.6 0.8 1.0
1e4

84
86
88
90
92
94
96
98

100

Ac
cu

ra
cy

(b) Tree TFBind 4

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e4

5

10

15

20

25

30

35

Nu
m

be
r o

f M
od

es

0.0 0.2 0.4 0.6 0.8 1.0
1e4

60

70

80

90

100

Ac
cu

ra
cy

(c) Graph TFBind 3

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e4

5

10

15

20

25

30

35

40

Nu
m

be
r o

f M
od

es

0.0 0.2 0.4 0.6 0.8 1.0
1e4

84
86
88
90
92
94
96
98

100

Ac
cu

ra
cy

(d) Graph TFBind 4

Figure 8: Number of modes discovered and accuracy over training across 3 random seeds.

Table 1: Accuracy in different RNA generation tasks.

L14 RNA1 L14 RNA2 L14 RNA3 L14 RNA4
FM-GFN 83.54± 1.46 81.16± 1.03 71.82± 0.57 66.69± 1.13
DB-GFN 88.48± 0.41 88.49± 0.33 76.35± 0.44 70.53± 0.12
TB-GFN 86.81± 0.24 87.52± 0.18 81.80± 0.59 79.14± 0.78

SubTB-GFN 85.25± 0.46 86.67± 0.57 78.34± 0.67 74.10± 0.10

MaxEnt RL (Soft DQN) 80.27± 0.52 79.01± 0.03 73.52± 0.72 70.11± 1.13
MaxEnt RL (M-DQN) 89.55± 0.51 89.99± 0.43 78.28± 0.98 72.40± 0.73

RPE (Ours) 99.81± 0.19 100.0± 3.97 100.0± 2.45 97.68± 3.03

D. Discussion
In this section, we discuss the limitations of RPE and the broader impact of our work. Although RPE obtains stronger
performance compared with a thorough set of baselines in various benchmarks, there are several directions for future
improvements. The current implementation computes PF (s

′|s) through separate forward passes for each child state s′,
which presents opportunities for computational optimization. Additionally, like many local credit assignment methods,
RPE’s effectiveness in environments with very long trajectories could be further improved, building upon recent advances

15

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e4

0

10

20

30

40
Nu

m
be

r o
f M

od
es

RNA1

0.0 0.2 0.4 0.6 0.8 1.0
1e4

0

10

20

30

40

50
RNA2

0.0 0.2 0.4 0.6 0.8 1.0
1e4

0

10

20

30

40

50

RNA3

0.0 0.2 0.4 0.6 0.8 1.0
1e4

0

20

40

60

80

RNA4

0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations 1e4

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
1e4

40

50

60

70

80

90

100

0.0 0.2 0.4 0.6 0.8 1.0
1e4

20
30
40
50
60
70
80
90

100

0.0 0.2 0.4 0.6 0.8 1.0
1e4

20

40

60

80

100

RPE (ours) SubTB-GFN TB-GFN DB-GFN FM-GFN MaxEnt RL (Soft DQN) MaxEnt RL (M-DQN)

Figure 9: PB is fixed to be uniform for GFlowNets methods. Top row: number of modes discovered over training across 3
random seeds. Bottom row: Accuracy over training across 3 random seeds.

Table 2: The number of modes discovered in different RNA generation tasks.

L14 RNA1 L14 RNA2 L14 RNA3 L14 RNA4
FM-GFN 31± 2 28± 2 21± 5 53± 5
DB-GFN 32± 4 30± 2 25± 4 61± 2
TB-GFN 34± 2 31± 2 31± 5 79± 7

SubTB-GFN 32± 3 29± 1 27± 4 68± 3

MaxEnt RL (Soft DQN) 30± 2 26± 2 22± 3 61± 5
MaxEnt RL (M-DQN) 34± 1 32± 1 22± 3 60± 5

RPE (ours) 42± 2 46± 6 52± 9 90± 6

in temporal credit assignment (Malkin et al., 2022; Madan et al., 2023; Pan et al., 2023a). While specific scenarios
(e.g., the HyperGrid task) may require additional consideration due to trajectory-dependent g-values, our work uncovers
previously overlooked connections between GFlowNets and policy evaluation. This theoretical bridge not only deepens our
understanding of both frameworks, but also opens up new research directions for future work to build upon, as demonstrated
by our simplified yet effective training strategies.

Differences between RPE and Soft Policy Iteration. Our proposed RPE shares conceptual connections with Soft Policy
Iteration (SPI), while establishing key distinctions that highlight the novelty of our work: (1) SPI necessitates iterative
cycles of policy evaluation and policy improvement to derive the desired policy, while RPE evaluates only the uniform
policy, transforming its value function to flow functions to achieve reward matching. (2) SPI and ‘control as inference’
framework both explicitly incorporate entropy regularization terms to ensure policy stochasticity, while RPE achieves
superior reward-matching performance through standard policy evaluation utilizing a summarization operator, eliminating
the need for explicit regularization. Our experimental results demonstrate RPE’s superior performance compared to both
SoftDQN and MunchausenDQN (which are advanced soft RL algorithms for discrete environments) in terms of the standard
GFlowNets evaluation protocol.

Assumptions in Theorem 4.2. Theorems 4.1&4.2 are formulated within the context of GFlowNets, which address
constructive tasks by sampling compositional objects through a sequence of constructive actions. These tasks are modeled
as Directed Acyclic Graphs (DAGs), where agents do not revisit the same state within a single episode, ensuring the graph
remains acyclic.

16

Random Policy Evaluation Uncovers Policies of Generative Flow Networks

The path-invariance condition in Theorem 4.2 requires that the branching ratio g(τ, st) is identical for all trajectories
reaching the same state st. This assumption is satisfied in a broad range of domains within the GFNs literature, beyond just
tree-structured problems (e.g., sequence/language generation (Hu et al., 2024)), where the local branching structure exhibits
symmetry properties inherent to several compositional generation tasks.

However, as we discuss in Section 4.1.2, there are certain cases, e.g., the HyperGrid task with boundary conditions
(where task symmetry fails for states at edges), where this assumption does not hold. We view this limitation as a natural
consequence of the simplicity of our method. Yet, it is precisely this simplicity that makes our findings both surprising and
impactful, as they provide the first rigorous characterization of when GFNs and policy evaluation align.

17

