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Abstract

Self-knowledge distillation (SKD) enables single-model training by distilling
knowledge from the model’s own output, eliminating the need for a separate teacher
network required in conventional distillation methods. However, current SKD meth-
ods focus mainly on replicating common features in the student model, neglecting
the extraction of key features that significantly enhance student learning. Inspired
by this, we devise a self-knowledge distillation framework entitled Self-Distillation
training via Proximal Gradient Optimization or SDPGO, which utilizes gradient in-
formation to identify and assign greater weight to features that significantly impact
classification performance, enabling the network to learn the most relevant features
during training. Specifically, the proposed framework refines the gradient infor-
mation into a dynamically changing weighting factor to evaluate the distillation
knowledge via the dynamic weight adjustment scheme. Meanwhile, we devise the
sequential iterative learning module to dynamically optimize knowledge transfer
by leveraging historical predictions and real-time gradients, stabilizing training
through mini-batch-based KL divergence refinement while adaptively prioritizing
task-critical features for efficient self-distillation. Comprehensive experiments on
image classification, object detection, and semantic segmentation demonstrate that
our method consistently surpasses recent state-of-the-art knowledge distillation
techniques. Code is available at: https://github.com/nanxiaotong/SDGPO.

1 Introduction

In the past few years, deep neural networks (DNNs) have achieved great success in computer vision
tasks, including image classification [15, 45], object detection [22, 41], semantic segmentation
[11, 38] and others. Due to the over-parameterization and high computational complexity of DNNs,
deployment costs are increasingly significant. Knowledge distillation (KD) [14] addresses this by
transferring knowledge from a large teacher model to a lightweight student via soft target alignment,
uniquely enabling efficient compression and fast inference without structural modifications.

Despite its benefits, pre-training a high-capacity teacher network requires considerable computational
sources and run-in memory. Furthermore, the capacity gap issue [49, 65, 26]has persistently hindered
the development of knowledge distillation. In conventional offline KD, a one-way knowledge transfer
is applied through a two-stage training process to steer the learning of the student network [21, 43, 12].
In contrast, online KD operates without dependence on a pre-trained teacher, instead enabling an
ensemble of students to learn collaboratively in an end-to-end fashion [59, 28, 46, 52]. Consequently,
existing KD methods, whether online or offline, tend to be computationally expensive and time-
consuming, thereby hindering their deployment on resource-constrained end devices such as mobile
phones and digital cameras.
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Figure 1: Brief comparison of our SDPGO with data-augmentation and auxiliary-architecture methods.
SDPGO utilizes the gradients to identify and distill the most valuable and relevant knowledge.

To address these limitations, SKD [57] addresses these limitations by enabling self-distillation through
a single network that acts as both a teacher and a student. As depicted in Figure 1(a), a prevalent
framework in SKD employs auxiliary techniques to enhance the training signal. Augmentation
strategies [48, 18] enhance model consistency by enforcing prediction invariance across different
augmented views of the same input. Parallelly, historical predictions [36, 20] generated during earlier
training iterations act as dynamic soft labels to regularize current updates. Another line of work
introduces auxiliary network components [61, 54], where knowledge from deeper layers is distilled
into shallower ones via dedicated pathways in Figure 1(b). However, existing SKD approaches often
rely on fixed or heuristically defined weights to prioritize features during knowledge transfer. These
weights remain static throughout the training process, thus failing to adapt to the evolving importance
of features as the model learns.

In this work, we are committed to continuously evaluate feature importance through gradient magni-
tudes within each mini-batch, enabling instantaneous prioritization of task-critical features. Unlike
static distillation methods, our method performs real-time refinement of the knowledge, as illustrated
in Figure 1(c), enabling dynamic adaptation to evolving data distributions and training dynamics.
Specifically, our method leverages real-time gradient analysis to dynamically shift its attention.
During high-gradient phases, it amplifies the distillation loss for features that drive immediate perfor-
mance gains. Conversely, in low-gradient phases, it recalibrates attention toward under-optimized
features to prevent premature convergence.

Motivated by our findings, we propose Self-Distillation training via Proximal Gradient Optimization
(SDPGO), a novel self-knowledge distillation framework that integrates sequential iterative learning
with gradient-driven feature analysis. Our method uses a proximal weight assignment module to
assess the importance of intermediate features via their gradient magnitudes from mini-batches. This
mechanism, rooted in proximal gradient theory, enables real-time prioritization of high-impact fea-
tures while adaptively suppressing less critical ones through sparsity-aware optimization. Meanwhile,
the framework leverages sequential iterative updates to refine knowledge across training steps. Each
iteration’s KL divergence between current and previous predictions (from the latter half of mini-
batches) creates a feedback loop, allowing the model to incrementally correct errors and consolidate
accurate knowledge without additional computational overhead.

Contributions. This work overcomes existing SKD limitations in the utilization of dynamic critical
features during training. In doing so, we make the following contributions:

• Enables Real-Time Knowledge Refinement. We propose a simple but efficient self-
knowledge distillation based on proximal gradient optimization scheme, named as SDPGO,
which leverages the gradients of each mini-batch to dynamically weigh the importance of
features (see Figure 2). Unlike static SKD methods, SDPGO refines knowledge transfer in
real time, eliminating reliance on external teachers and enabling the model to learn critical
features directly from its own training trajectory.

• Dynamic Gradient-Driven Weight Assignment: We introduce a dynamic weight assign-
ment scheme for self-distillation that dynamically evaluates the importance of extracted
features by leveraging gradient magnitudes within each mini-batch. This scheme prioritizes
features with larger gradients, thereby guiding the student model to focus on the most
impactful knowledge and adapt to ongoing training dynamics.
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Figure 2: An overview of our SDPGO framework, which uses sequential iterative learning and
gradient-based feature weighting to generate soft labels. This process calculates the KL divergence
between iterations and assigns weights to features according to their gradient contributions.

• Implementation and Evaluation: We conduct extensive experiments on image classifica-
tion, object detection, and semantic segmentation datasets based on different popular network
architectures, where the proposed SDPGO framework outperforms recent state-of-the-art
KD methods with a clear margin. In addition, ablation experiments further demonstrate the
effectiveness of our method.

2 Related Works

KD compresses neural networks by transferring knowledge from a high-capacity teacher to a
lightweight student, enabling efficient deployment of the compact model. KD leverages the teacher
model’s knowledge by utilizing 1) class predictions as soft labels [60, 7], 2) correlations between
multiple samples [33, 42, 3], or 3) feature maps containing spatial information from intermediate lay-
ers [4, 2, 10]. Under the guidance of a teacher model, the student model trained in an offline learning
way is typically effective. However, the entire training process is time-consuming and complex, as it
requires retaining a large amount of persistent data to train a strong teacher model. In contrast, online
KD [27, 52, 34, 39] eliminates the need for larger teacher models, instead training a group of student
networks by learning from each other’s predictions. However, there are two key limitations: (1)
online KD depends on using an ensemble teacher to improve the student model’s performance, and
(2) selecting the optimal student model requires considerable computational resources for training.

Compared with the conventional KD, SKD [55, 58, 19] uses the student network itself as a teacher to
guide its learning process, which utilizes the information within the student model. In recent years, a
series of SKD methods have been continuously proposed. BYOT [58] attaches auxiliary classifiers
to each stage, using the final classifier’s output as teacher knowledge to train them. FRSKD [18]
employs an auxiliary self-teacher network with bidirectional paths to transfer refined features and
soft labels to the classifier. However, these methods rely on auxiliary models, which complicates
training by increasing memory and time costs. Meanwhile, data augmentation was used for SKD.
For example, MiSKD [51] combines SKD with image mixture to distill features and distributions
between original/mixed images via a self-teacher network, enhancing self-boosting. Meanwhile, SKD
uses historical information as a virtual teacher, treating predictions from previous model versions as
regularization targets. These methods takes the predictions output for knowledge transfer from its
last generation [9], last mini-generation [50, 36] or last epoch [20].

Recently, some researchers [25, 63] begin to employ gradients to assess the importance of feature
maps. These methods assigns static or predefined weights to features impacting task loss, primarily
emphasizing knowledge transfer from teacher to student. Unlike previous approaches, we design a
proximal gradient optimization mechanism that dynamically refines gradient-derived weights during
training. This adaptively prioritizes features most relevant to task loss, optimizing representation
learning in an end-to-end manner.
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3 Proposed Approach: SDPGO

Notations. We denote a set of labeled dataset as D = {(xi, yi)}Ni=1, where N is the dataset’s size.
xk
i denotes the i-th sample and it belongs to category k. We sample a batch samples to feed into target

neural network f(·) to optimize the cross-entropy loss function. Then, we obtain the logit vector
zi, and then yields the prediction probabilities pi(k) = f(xk

i /τ) by a softmax function. Hence, the
temperature parameter τ is introduced to control the importance of the i-th soft target as follows:

pi(k) =
exp(zi/τ)∑K
j=1 exp(zj/τ)

, (1)

where the zi is the predicted value of class i from fully connected layer, and τ denotes a temperature
parameter. A softmax function with τ transforms an original vector into a probability vector.

3.1 Sequential Iterative Learning Module

We employ the sequential iterative learning module to measure the consistency of two adjacent
batches. This module uses backup information from the last mini-batch to generate soft targets. We
partition each mini-batch into two sequential segments: half aligned with the prior iteration and half
with the next iteration. This strategy enables real-time distillation of dynamically updated soft targets
generated from preceding training steps.

The student model acts as its own teacher by reorganizing sequential sampling. Each mini-batch is
divided into halves aligned with the previous and upcoming iteration respectively. The model applies
KL divergence between classifier outputs from different iterations to align predictions, while utilizing
historical outputs for enhanced regularization. We denote the current batch of n samples in the tth

iteration as Bt = {(xt
i, y

t
i)}

n
i=1. Afterwards, they are fed into convolutional layers to obtain their

representation vectors as prediction distributions pτ,t
i . Our work uses historical information from

the last batch to efficiently generate soft targets as more instant smoothed labels for regularization.
we substitute the pτ,t−1

i by the soften labels pτ,t−1
i generated by the identical network at t− 1-th

iteration. The main difference from conventional KD is that the teacher model dynamically evolves
during training, with the t-th iteration predictions used as the teacher’s knowledge without incurring
any loss. Consequently, the student is trained with the consistency regularization loss as follows:

LSIL = −τ2
1

n

n∑
i=1

·
n∑

i=1

pτ,t−1
i log

pτ,t−1
i

pτ,t
i︸ ︷︷ ︸

DKL

. (2)

where pτ
i is the soften prediction, parameterized by temperature τ from the student itself. Then, the

total loss combines KL divergence with hard-label cross-entropy, enabling end-to-end optimization
of the single network:

LCE =
1

N

N∑
i=1

H (yi,pi) , (3)

where H is the cross-entropy loss between the ground-truth label yi and the prediction pi.

3.2 Proximally Weight Assignment Module

We propose a gradient-driven dynamic weighting scheme to enhance knowledge distillation, where
feature importance is evaluated via gradient magnitudes. High-gradient features receive amplified
attention to prioritize impactful knowledge, while low-gradient features trigger adaptive recalibration
toward under-optimized parameters. To obtain the importance of the feature, we define the gradients
of the k-th feature map in layer l as:

wl
k =

1

W

W∑
i=1

H∑
j=1

∣∣∣∣∣∂LTask

∂F l
i,j,k

∣∣∣∣∣ (4)
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where F l
i,j,k is the k-th feature representations of the l-th layer, and i, j are two location vectors. Next,

we calculate the gradient of the loss Lask with respect to the feature F . The raw gradient-derived
weights wl

k (Eq. 4) is refined via a proximal operator to enforce sparsity and stability:

ŵl
k = Proxλ

(
wl

k

)
=

{
wl

k − λ if wl
k > λ

0 otherwise
(5)

where λ is an adaptive threshold controlling feature sparsity using only moving averages, thus the
corresponding loss can be: λt = βλt−1 + (1− β) · |w|1

K . λt is dynamic threshold at step t, β is the
momentum factor. |w|1 is L1-norm of gradient wights in current batch. K is the numbers of features
in batch. This step suppresses less impactful features while retaining those with significant gradients,
aligning with the proximal gradient principle of separating critical and non-critical components. Next,
we compute the mean absolute value of the gradient for each weight parameter. Then, we apply
Z-score normalization to these values, given by:

M l = Z-score

(∣∣∣∣∣
M∑
k=1

ŵl
k

∣∣∣∣∣
)

(6)

where M l is a spatial feature map (RH×W ) derived from channel-summed activations with position-
wise Z-score normalization, where H and W represent height and width, respectively. l indicates
an intermediate layer. L is the total number of intermediate layers considered for distillation.
Dimensionality reduction occurs through spatial averaging after normalization. We assign weights
to features according to their impact on overall loss. This process effectively highlights the most
influential features, ensuring that the model focuses on the aspects of the data that contribute the
most to its performance. The method incorporates a dynamic weight, α, that balances the task and
distillation losses. This scalar parameter is integrated into the final loss function to modulate the
influence of each component. Therefore, α in all network layers is computed as follows:

α =
1

L

L∑
l=1

 1

HW

H∑
i=1

W∑
j=1

M l[i, j]

 (7)

In previous SKD methods, the student remains unchanged because the overall task loss is usually set
to a fixed value during training. However, SDPGO go a step further by leveraging the gradients of
feature maps at immediate layers and transforming them into a dynamic hyperparameter. Similar to
learning rate scheduling, this hyperparameter controls the degree to which the model captures valuable
information about each feature’s contribution. This approach allows the model to dynamically adjust
its focus on features as their importance changes during training. The goal of our SDPGO method is
to utilize gradient information via assigning greater weights to critical features.

3.3 Overall for SKD

With the sequential iterative learning module and the gradient information extraction module, we
calculate the corresponding loss and propose SDPGO as shown in Fig. 2. We train all models with
the total loss for SKD as follows:

LTotal = LTask + αLSIL. (8)
where LTask is the domain-specific final objective loss. For image classification setting, this is defined
as the cross-entropy loss between the hot ground-truth label y and the predicted distribution p.

4 Experiments

In this paper, we conduct experiments on five visual recognition datasets, namely CIFAR-10/100 [24],
ImageNet [6], CUB200-2011 [44], and Cars196 [23]. We employ eight representative architectures
[40] for evaluation, namely VGG-16/19 [37], ResNet-32/110 (abbreviated as R-32/110) [13], WRN20-
8 [56], DNet-40-12 [17], ShuffleNet-V2 (abbreviated as SN-V2) [32] and MobileNet-V2 (abbreviated
as MN-V2) [16]. All results are reported in means (standard deviations) over 3 trials.
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Table 1: Top-1 accuracy (%) of various SKD methods across widely used networks on CIFAR-10
(C10) and CIFAR-100 (C100). The best results are highlighted in bold, while the second-best results
are underlined. We use ∆ to show its performance gain.

Dataset Methods Vgg-16 R-32 R-110 WRN-20-8 DNet-40-12 SN-V2 MN-V2

C10

Baseline 93.97 93.46 94.79 94.53 92.91 92.70 93.31
BYOT [58] 94.03 93.57 94.86 94.14 93.01 92.99 93.73

EFWSNet [62] 93.85 93.97 94.92 94.68 93.39 93.23 93.88
PS-KD [20] 94.10 94.04 94.91 95.01 93.23 93.45 94.02
FRSKD [18] 94.38 94.78 95.23 95.27 94.21 94.17 94.76

DLB [36] 94.62 94.15 95.15 95.54 93.43 95.10 94.46
MiSKD [51] 93.82 95.59 95.93 93.93 94.25 95.29 94.91
FASD [48] 94.21 95.45 95.66 94.52 94.39 95.34 94.86

SDPGO 95.90 96.44 95.98 95.70 95.60 95.73 95.43
∆ 1.93 2.98 1.19 1.17 2.69 3.03 2.12

C100

Baseline 73.63 71.74 76.36 77.58 71.69 71.82 68.08
BYOT [58] 73.79 72.39 77.75 77.68 77.04 72.97 68.72

EFWSNet [62] 73.92 73.54 75.81 78.02 76.95 72.87 69.45
PS-KD [20] 74.05 72.51 77.15 78.74 72.52 74.55 69.74
FRSKD [18] 76.72 75.34 79.15 78.95 77.12 75.23 70.25

DLB [36] 76.12 74.07 78.18 79.21 72.52 75.51 69.47
MiSKD [51] 76.57 75.12 78.86 78.07 76.85 76.52 71.66
FASD [48] 75.52 75.42 78.52 78.62 77.24 76.76 71.75

SDPGO 76.85 75.57 79.31 79.36 78.04 77.29 72.25
∆ 3.22 3.83 2.95 1.78 6.35 5.47 4.17

Dataset. CIFAR-10/100 [24] contain a total number of 60,000 RGB natural images of 32×32 small
RGB images drawn from 10 and 100 categories, respectively. For ImageNet [6], we use 1.2 million
images for training and 50,000 images for validation. The size of input images after pre-processing is
224 × 224. CUB200 [44] and Cars196 [23] are used for fine-grained visual recognition (FGVR)
tasks. Different from CIFAR and ImageNet, FGVR datasets typically have fewer data instances per
class, making the task more challenging. More details are available in Appendix A.

Baselines. We compare our SDPGO with different SOTA SKD methods, be your own teacher
(BYOT) [58], feature-sharing and weight-sharing based ensemble network (EFWSNet) [62], pro-
gressive self-KD (PS-KD) [20], feature refinement via SKD (FRSKD) [18], distillation from last
mini-batch (DLB) [36], SKD from image mixture (MiSKD) [51], normalized knowledge distillation
(NKD) [54], and feature augmentation based self-distillation method (FASD) [48].

Implementation details. We used the Stochastic Gradient Descent (SGD) optimizer with a
momentum of 0.9, a weight decay of 5e-4, and a temperature τ of 3. On CIFAR-100, we used a
batch size of 64, an initial learning rate of 0.05, and trained the model for 240 epochs. For ImageNet,
training was conducted over 100 epochs, with learning rate adjustments at epochs 30, 60, and 90 by
multiplying the learning rate by 0.1. For CUB200, the learning rate was set to 0.05 with a warmup
period of 2 epochs, a batch size of 64, and a total of 240 training epochs. The learning rate was
adjusted at epochs 70, 140, and 210 by multiplying it by 0.1, while all other hyperparameters remained
constant. For Cars196, training was conducted for 200 epochs, with learning rate adjustments at
epochs 60, 120, and 180 by multiplying it by 0.1. Experimental details about Pascal VOC, ADE20K
and Cityscapes are in Appendix B.

4.1 CIFAR Classification Result

We compare the KD results of different methods under various backbone networks settings in Table
1. Across different architectures, all networks show improvements on these two datasets when using
SDPGO. We first compare our method with the latest SKD techniques, BYOT [58] and EFWSNet
[62], both of which are combined with auxiliary architectures. Our method consistently delivers
significant improvements to the student. Specifically, ResNet-32 achieves 94.44% and 75.57%
top-1 accuracy on CIFAR-10 and CIFAR-100, respectively, reflecting accuracy gains of 5.87% and
3.83% than BYOT [58] through the knowledge transferred from gradient information. Furthermore,
compared to input-space data augmentation methods, our SDPGO approach provides a significant
boost in top-1 accuracy for classification tasks. Specifically, with a DNet-40-12 backbone, SDPGO
achieves gains of 1.35% on CIFAR-10 and 1.19% on CIFAR-100 than MixSKD. This result shows
that student models distilled by SDPGO benefits from our gradient optimization as well.

6



Im
ageN

et
C
U
B
200-2011

C
ars196

Pomeranian:0.839 
Shetland sheepdog:0.049 

Persian cat:0.040

bullet train:0.717 
Jean:0.019 

Streetcar:0.010

common iguana:0.994 
African chameleon:0.002 

green lizard:0.002

Clumber:0.851 
English setter:0.067 

Brittany spaniel:0.046

Palm_Warbler:0.961
Least_Flycatcher:0.008

Rock_Wren:0.002

Ford F-450 Super Duty 
Crew Cab 2012:0.974

Ford E-Series Wagon Van 
2012:0.005

Ford F-150 Regular Cab 
2012:0.002

Ringed_Kingfisher:0.992
Belted_Kingfisher:0.001

Blue_Grosbeak:0.001

BMW X6 SUV 2012:0.980
BMW X5 SUV 2007:0.006

BMW 1 Series Coupe 
2012:0.003

Daewoo Nubira Wagon 
2002:0.998

Dodge Caravan Minivan 
1997:0.0002

Buick Rainier SUV 
2007:0.0002

Dodge Challenger SRT8
2011:0.953 Aston 

Martin Virage
Convertible 2012:0.017

Chevrolet Camaro
Convertible 2012:0.003

White_necked_Raven:0.90
American_Crow:0.015

Frigatebird:0.011

Pine_Warbler:0.979
Yellow_throated_Vireo:0.006

Orchard_Oriole:0.001

megalith:0.926
stone wall:0.049

castle:0.009

garden spider:0.847 
barn spider:0.139 
spider web:0.006

bagel:0.969
pretzel:0.007
bakery:0.004

Cardinal:0.985
Summer_Tanager:0.012
Painted_Bunting:0.001

Hooded_Oriole:0.984
Scott_Oriole:0.005

Yellow_headed_Blackbird:0.002

Florida_Jay:0.998
Lazuli_Bunting:0.001

Blue_Jay:0.001

Hyundai Elantra 
Sedan 2007:0.928

Chevrolet Malibu Sedan 
2007: 0.029

Hyundai Santa Fe SUV 
2012:0.009

Ford Edge SUV 
2012:0.992

Honda Odyssey Minivan 
2012:0.001

Scion xD Hatchback 
2012:0.001

Chevrolet Camaro 
Convertible 2012:0.996

Dodge Journey SUV 
2012:0.001

Dodge Challenger SRT8 
2011 2012:0.001

Figure 3: Visualization of the target and top-2 non-target class values of our customized soft labels.

Table 2: Top-1 and Top-5 accuracy (%) of our
SDPGO method. ResNet-18 is used as classifier
network on the ImageNet dataset.

Methods ResNet-18 Gain(↑)Top-1 Top-5
ResNet-18 69.75 89.07 -
FitNet [1] 71.61 90.51 1.86
Review [4] 70.81 89.98 1.06

CAT-KD [12] 71.22 90.26 1.47
CRD [42] 71.17 90.13 1.42
SSKD [47] 71.62 90.67 1.87
DCCD [30] 71.95 90.88 2.2
BYOT [58] 69.84 89.62 0.09

EFWSNet [62] 72.36 91.74 2.61
PS-KD [20] 71.59 90.85 1.84
FRSKD [18] 70.17 90.52 0.42

DLB [36] 70.12 90.27 0.37
MiSKD [51] 71.67 91.20 1.92
FASD [48] 71.70 90.91 1.95

SDPGO (Ours) 72.47 92.56 2.72

Table 3: Top-1 accuracy (%) of various self-
knowledge distillation methods across widely
used networks on CUB200 and Cars196 dataset.

Method CUB200 Cars196
Top-1 Top-5 Top-1 Top-5

ResNet-18 69.66 91.66 71.82 91.04
+ BYOT [58] 73.38 91.18 79.35 94.70
+ DLB [36] 76.10 93.37 78.28 93.13
+ MiSKD [51] 71.11 91.37 82.94 95.83
+ SDPGO 78.06 94.77 84.17 96.44
ResNet-50 74.36 92.52 76.44 92.26
+ BYOT [58] 77.76 94.22 80.17 94.78
+ DLB [36] 80.69 95.62 82.94 95.83
+ MiSKD [51] 75.96 93.03 77.90 93.55
+ SDPGO 81.69 95.88 89.20 98.16
MobNet-V2 73.09 91.82 72.15 93.01
+ BYOT [58] 74.25 91.92 82.51 95.03
+ DLB [36] 78.08 94.32 81.72 92.93
+ MiSKD [51] 73.65 91.23 82.69 94.41
+ SDPGO 78.67 94.75 85.28 96.69

4.2 ImageNet Classification Result

As shown in Table 2, SDPGO outperforms advanced KD methods in terms of top-1 and top-5
accuracies, achieving the highest scores of 72.47% and 92.56%, respectively. We select current
feature-based KD methods with the utilization of intermediate representation or feature embedding.
For feature-based methods, the second-best method DCCD [30] exhibits inferior performance to
our SDPGO, highlighting its limitations in distilling knowledge due to relying on expert knowledge
from the teacher model. For self-KD methods, SDPGO surpasses the best-competing FASD [48] by
0.77% top-1 accuracy gains, which enables successful SKD. SDPGO surpasses other SOTA methods
with clear gains, demonstrating its superiority in large-scale datasets. These findings confirm the
effectiveness of SDPGO in distillation optimization, highlighting its versatility and strength.

4.3 Fine-grained Classification Result

For fine-grained image classification, Table 3 presents the top-1 and top-5 accuracy of SDPGO
compared to other SKD methods across different backbones. We observe the top-1 acc of 82.94% and
82.69% on Cars196 when Mixup is combined with SKD, which is 4.66% and 0.97% improvement of
DLB. When comparing with MixSKD, SDPGO demonstrates superior performance on fine-grained
classification tasks, achieving the highest accuracy across all datasets. Specifically, SDPGO surpasses
the second-best results by 1.60%, 3.63%, and 1.59% on three networks, respectively. This significant
improvement highlights the effectiveness of our approach in combining sequential iterative learning
and gradient information extraction.

4.4 Visualization

Figure 3 illustrates how our self-distillation method, SDPGO, generates customized soft labels for
each image during training, including the target class and the top two non-target classes. By using
the gradient-based dynamic weight assignment method from Eq. 6, higher weights are assigned
to classes similar to the target, enhancing the overall learning process. These results demonstrate
that SDPGO’s soft labels prioritize classes with high semantic affinity, thereby facilitating improved
discrimination and robustness by emphasizing inter-class relationships during training.
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Table 4: The downstream tasks results with
SDPGO on the COCO-2017 dataset.

Methods ResNet-18 ResNet-50
bbox segm bbox segm

baseline 33.4 30.2 36.9 33.4
MixSKD 33.9 31.05 37.0 33.8
FASD 34.1 30.9 37.3 34.4
SDPGO 35.08 32.10 38.08 36.69

Table 5: Results of training more models, includ-
ing ViT-liked models with SDPGO on ImageNet.

Model Baseline SDPGO (Ours)
ResNet-50 73.56 74.03 (+0.47)
DeiT-Tiny 74.42 75.01 (+0.59)
DeiT-small 80.55 80.89 (+0.34)
Swin-Tiny 81.18 81.95 (+0.77)
Swin-small 84.36 86.24 (+1.88)

Table 6: Overall performance comparison on semantic segmentation tasks.

Model Method ADE20K Cityscapes

ResNet-50

Baseline 39.72 74.85
MixSKD 42.37 74.96

FASD 40.78 72.89
SDPGO 42.75 75.01

Table 7: Performance comparison on Pascal VOC segmentation task.

Model Method mIOU Model Method mIOU

EfficientDet-d0

Baseline 79.07

EfficientDet-d1

Baseline 81.95
MixSKD 79.52 MixSKD 82.51

FASD 80.54 FASD 83.43
SDPGO 80.67 SDPGO 83.97

4.5 Extension to ViT-liked models

Recent models like ViT [8], which use embedded image patches, have adopted a different architecture,
but current SKD methods do not address their unique characteristics. SDPGO leverages gradient
information to prioritize features, eliminating the need for additional linear layers connected to ViT’s
middle layer, and allowing the model to focus on the most relevant aspects during training. As can
be seen in Table 5, SDPGO outperforms these baselines by margins ranging from 0.34% ∼ 1.88%.
It should be noted that our method even improves student model performance with gains of up to
1.88% for the latest state-of-the-art model Swin-Transformer (Swin-small) [31]. These results show
that SDPGO achieves significant improvements with general settings.

4.6 Knowledge transfer to downstream tasks

To assess its generalization capability, we transfer our model to object detection task on the COCO-
2017 dataset [29]. As shown in Table 4, ResNet trained with SDPGO brings the feature extractors
with average 1.43% and 2.60% points for downstream detection task compared to the baseline
method. The results demonstrate the efficacy of SDPGO for learning better representations for
downstream semantic recognition tasks. In addition, we employ the Pascal VOC, ADE20K, and
Cityscapes benchmarks for semantic segmentation. As shown in Table 6, SDPGO achieves the best
segmentation performance and outperforms the best-second results with 2.65% and 3.04% mIoU
margins on Pascal ADE20K and Cityscapes segmentation, respectively. For Pascal VOC 2012
semantic segmentation, we use EfficientDet with stacked BiFPN structure [41] as a baseline. Table 7
demonstrates that SDPGO substantially outperforms baseline segmentation models by dynamically
intensifying task-critical features via gradient-weighted distillation. Empirical results reveal that the
proposed method generalizes remarkably well to other domains like object detection and segmentation
without requiring architectural changes.

5 Analysis

In this section, we provide an in-depth analysis of SDPGO. We begin with a theoretical justification
behind the efficacy of SDPGO. Then we perform a qualitative analysis to visualize the representations
of the models. Finally, we explore the impact of different design choices through ablation studies,
focusing on the effects of utilizing the gradient optimization.
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Figure 4: Inference time and memory consumption on ImageNet. (a) and (b) represent the model
tested on Raspberry Pi 4B and Raspberry Pi 5, respectively. In (c), "Memory" indicates whether
additional information needs to be stored during knowledge distillation.

Table 8: Top-1 Acc (%) and training time for each batch of data of competitive KD methods.

Method Baseline ReviewKD CATKD BYoT PS-KD DLB FASD Ours
Training Time 12 25 17 19 15 17 40 12
Top-1 Acc (%) 69.66 76.58 72.6 73.38 75.43 76.10 75.43 78.06

5.1 Theoretical Justification

First, we provide a theoretical foundation for the proposed Self-Distillation training via Proximal
Gradient Optimization (SDPGO). The gradient of the total loss with respect to model parameters θ is:

∂LTotal

∂θ
=

∂LTask

∂θ
+ α

∂LSIL

∂θ
. (9)

By dynamically adjusting α, SDPGO modulates the influence of self-distillation on parameter updates,
ensuring stable training.

Stability. The sequential iterative learning module incorporates proximal gradient optimization to
refine feature weights and stabilize training. Raw gradient-derived weights ŵl

k are processed via a
proximal operator: ŵl

k = Proxλ
(
wl

k

)
. λ enforces sparsity by suppressing non-critical features. This

mitigates noise amplification during self-distillation. We add the proximal term ∥θt − θt−1∥22 to the
loss to penalize abrupt parameter changes:

LTotal = LTask + αLSIL + β ∥θt − θt−1∥22 . (10)

This ensures smooth convergence by aligning parameter updates with historical states.

Convergence Guarantee. To establish the convergence of SDPGO, we leverage the properties
of proximal gradient descent under standard convexity and smoothness assumptions. Let the to-
tal loss LTotal = LTask + αLSIL be L-smooth (i.e., ∥∇LTotal (θ1)−∇LTotal (θ2)∥ ≤ L ∥θ1 − θ2∥
for all θ1, θ2 ) and convex. The optimization proceeds via the following iterative steps: 1. Gra-
dient Step: θt+1/2 = θt − η∇θLTotal (θt). 2. Proximal Step: θt+1 = Proxηλ

(
θt+1/2

)
=

argminθ

(
1
2η

∥∥θ − θt+1/2

∥∥2 + λ ∥θ − θt−1∥2
)

. If the learning rate satisfies η ≤ 1
L , the sequence

{θt} generated by SDPGO converges to a global minimum.

5.2 Efficiency and Memory Consumption Analysis.

We measure the actual speedup of lightweight neural networks on two mobile devices, Raspberry Pi
4B and Raspberry Pi 5 in Figure 4. In Figure 4 (a) and (b), SDPGO achieves an average inference
acceleration optimization of 23.46% on Shuffle-V2 and Mobile-V2 backbone. For Shuffle-V2 (×0.5)
on the Raspberry Pi 4B, the proposed method reduces hardware inference time by 17.08% while
improving the baseline by 2.38%. Meanwhile, the average inference latency of SDPGO on the
Mobile-V2 model is 60.95 ms, and the improvements is up to 34.69% on ImageNet. In Figure 4 (c),
SDPGO delivers significant memory compression, achieving approximately 3× reduction compared
to the state-of-the-art FASD method and 5× reduction compared to MixSKD on VGG-8. Moreover,
we compare the training time of various KD methods in Table 8. In particular, our method shows
competitive performance by assessing the training time of each batch of data on CUB200.

9



Table 9: Performance comparison when a frac-
tion of training data is noisy.

η BYOT PS-KD DLB FASD Ours
0 72.39 72.51 74.07 75.42 75.57
10 65.41 62.75 67.56 64.25 71.56
20 58.05 57.56 65.17 60.51 68.53
30 53.25 51.71 54.45 57.27 61.58
40 42.22 41.26 51.25 55.39 59.81

Table 10: Performance comparison between
SOTA SKD and SDPGO when a fraction of data
present for training purpose.

F BYOT PS-KD DLB FASD Ours
25 49.57 48.75 51.28 60.34 65.29
50 58.25 56.23 59.56 68.62 70.07
75 63.43 60.58 68.12 70.47 71.58
100 72.39 72.51 74.07 75.42 75.57

5.3 Robustness Analysis under Noisy and Scarce Data

We experiment with our method for few-shot and noisy-label learning on CIFAR-100. We evaluate
SDPGO against standard KD baselines under symmetric label noise (uniform corruption probability
η). Experiments use ResNet-32 with η ∈ 0%, 10%, 20%, 30%, and 40%. As summarized in Table 9,
the proposed SDPGO proves to be the most resilient to symmetric label noise. At a noise level of
η=40%, it attains a top accuracy of 59.81%, outperforming the strongest competitor, FASD (55.39%),
by a clear margin. For few-shot learning, we train ResNet-32 on random subsets of CIFAR-100,
using 25%, 50%, 75%, and 100% of the training data per class. The results in Table 10 validate the
sample efficiency of SDPGO, which achieves the highest top-1 accuracy across all data fractions
(e.g., 65.29% at 25%), markedly outperforming conventional SKD methods.

5.4 Integration Analysis

SDPGO’s modular architecture enables seamless compatibility with diverse self-distillation (SKD)
paradigms. We evaluate our pre-process on existing KD methods. These findings indicate that using
SDPGO as a plugged-in regularization can enhance the generation of other approaches. As shown in
Table 11, student models distilled by SDPGO benefits from our pre-process as well.

Table 11: The results of SDPGO combined with other advanced SKD techniques on CIFAR-100.

Model VGG-13 ResNet-32 ResNet-110 ShuffleNet-V2 MobileNet-V2
KD 72.98 73.08 74.36 71.82 66.95

KD+Ours 73.53 74.32 75.11 72.72 67.24
DLB 75.45 74.07 78.18 75.51 69.47

DLB+Ours 75.67 75.19 79.28 77.56 69.82

More ablation studies can be found in Appendix C.

6 Conclusion

In this work, we introduce a framework called Self-Distillation training via Gradient Optimization
(SDPGO). This framework leverages gradient information to prioritize features that significantly
influence classification performance, allowing the model to concentrate on the most relevant aspects
during training. Furthermore, it reduces computational costs while improving the model’s ability
to represent features. The dynamic weight adjustment scheme refines the gradient information into
a variable weighting factor to evaluate the distillation knowledge. Our SDPGO method effectively
enhances the student model’s generalization capability by emphasizing key features linked to classifi-
cation loss. Extensive experiments on five image classification benchmark datasets at different scales
show that our framework outperforms recent state-of-the-art knowledge distillation techniques.

Acknowledgment

This work is partially supported by NSFC (Natural Science Foundation of China):
61602345,62002263; National Key Research and Development Plan: 2019YFB2101900; Key Project
of Tianjin Natural Science Foundation: 25JCZDJC00250. TianKai Higher Education Innovation Park
Enterprise R&D Special Project: 23YFZXYC00046. The Tianjin Science and Technology Program
under Grant: 24YDTPJC00630, Tianjin Municipal Education Commission Research Program Project
under No. 2022KJ012; Foundation of Key Laboratory of Big Data & Artificial Intelligence in
Transportation (Beijing Jiaotong University), Ministry of Education (No.BATLAB202401).

10



References
[1] Romero Adriana, Ballas Nicolas, K Samira Ebrahimi, Chassang Antoine, Gatta Carlo, and

B Yoshua. Fitnets: Hints for thin deep nets. Proc. ICLR, 2, 2015.

[2] Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D Lawrence, and Zhenwen Dai. Varia-
tional information distillation for knowledge transfer. In CVPR, pages 9163–9171, 2019.

[3] Hanting Chen, Yunhe Wang, Chang Xu, Chao Xu, and Dacheng Tao. Learning student networks
via feature embedding. IEEE Transactions on Neural Networks and Learning Systems, 32(1):25–
35, 2020.

[4] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge
review. In CVPR, pages 5008–5017, 2021.

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3213–3223, 2016.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pages 248–255. Ieee, 2009.

[7] Qianggang Ding, Sifan Wu, Tao Dai, Hao Sun, Jiadong Guo, Zhang-Hua Fu, and Shutao Xia.
Knowledge refinery: Learning from decoupled label. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 7228–7235, 2021.

[8] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

[9] Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In ICML, pages 1607–1616. PMLR, 2018.

[10] Jianping Gou, Xiangshuo Xiong, Baosheng Yu, Lan Du, Yibing Zhan, and Dacheng Tao. Multi-
target knowledge distillation via student self-reflection. International Journal of Computer
Vision, 131(7):1857–1874, 2023.

[11] Yanming Guo, Yu Liu, Theodoros Georgiou, and Michael S Lew. A review of semantic
segmentation using deep neural networks. International journal of multimedia information
retrieval, 7:87–93, 2018.

[12] Ziyao Guo, Haonan Yan, Hui Li, and Xiaodong Lin. Class attention transfer based knowledge
distillation. In CVPR, pages 11868–11877, 2023.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778, 2016.

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NeurIPS Workshop, 2015.

[15] Trung-Hieu Hoang, Hai-Dang Nguyen, Viet-Anh Nguyen, Thanh-An Nguyen, Vinh-Tiep
Nguyen, and Minh-Triet Tran. Enhancing endoscopic image classification with symptom
localization and data augmentation. In Proceedings of the 27th ACM International Conference
on Multimedia, pages 2578–2582, 2019.

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

11



[18] Mingi Ji, Seungjae Shin, Seunghyun Hwang, Gibeom Park, and Il-Chul Moon. Refine myself
by teaching myself: Feature refinement via self-knowledge distillation. In CVPR, pages 10664–
10673, 2021.

[19] Hai Jin, Dongshan Bai, Dezhong Yao, Yutong Dai, Lin Gu, Chen Yu, and Lichao Sun. Personal-
ized edge intelligence via federated self-knowledge distillation. IEEE Transactions on Parallel
and Distributed Systems, 34(2):567–580, 2022.

[20] Kyungyul Kim, ByeongMoon Ji, Doyoung Yoon, and Sangheum Hwang. Self-knowledge
distillation with progressive refinement of targets. In ICCV, pages 6567–6576, 2021.

[21] Nikos Komodakis and Sergey Zagoruyko. Paying more attention to attention: improving the
performance of convolutional neural networks via attention transfer. In ICLR, 2017.

[22] Tao Kong, Fuchun Sun, Huaping Liu, Yuning Jiang, Lei Li, and Jianbo Shi. Foveabox: Beyound
anchor-based object detection. IEEE Transactions on Image Processing, 29:7389–7398, 2020.

[23] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In ICCV workshops, pages 554–561, 2013.

[24] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Handbook
of Systemic Autoimmune Diseases, 1(4), 2009.

[25] Qizhen Lan and Qing Tian. Gradient-guided knowledge distillation for object detectors. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
424–433, 2024.

[26] Lujun Li, Peijie Dong, Anggeng Li, Zimian Wei, and Ya Yang. Kd-zero: Evolving knowledge
distiller for any teacher-student pairs. Advances in Neural Information Processing Systems,
36:69490–69504, 2023.

[27] Lujun Li and Zhe Jin. Shadow knowledge distillation: Bridging offline and online knowledge
transfer. Advances in Neural Information Processing Systems, 35:635–649, 2022.

[28] Shaojie Li, Mingbao Lin, Yan Wang, Yongjian Wu, Yonghong Tian, Ling Shao, and Rongrong
Ji. Distilling a powerful student model via online knowledge distillation. IEEE transactions on
neural networks and learning systems, 34(11):8743–8752, 2022.

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[30] Yuang Liu, Jun Chen, and Yong Liu. Dccd: Reducing neural network redundancy via distillation.
IEEE Transactions on Neural Networks and Learning Systems, 2023.

[31] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[32] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European conference on computer
vision (ECCV), pages 116–131, 2018.

[33] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In
CVPR, pages 3967–3976, 2019.

[34] Biao Qian, Yang Wang, Hongzhi Yin, Richang Hong, and Meng Wang. Switchable online
knowledge distillation. In European Conference on Computer Vision, pages 449–466. Springer,
2022.

[35] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. Advances in neural information processing
systems, 28, 2015.

12



[36] Yiqing Shen, Liwu Xu, Yuzhe Yang, Yaqian Li, and Yandong Guo. Self-distillation from the
last mini-batch for consistency regularization. In CVPR, pages 11943–11952, 2022.

[37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[38] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for
semantic segmentation. In ICCV, pages 7262–7272, 2021.

[39] Tongtong Su, Qiyu Liang, Jinsong Zhang, Zhaoyang Yu, Gang Wang, and Xiaoguang Liu.
Attention-based feature interaction for efficient online knowledge distillation. In 2021 IEEE
International Conference on Data Mining (ICDM), pages 579–588. IEEE, 2021.

[40] Tongtong Su, Qiyu Liang, Jinsong Zhang, Zhaoyang Yu, Ziyue Xu, Gang Wang, and Xiaoguang
Liu. Deep cross-layer collaborative learning network for online knowledge distillation. IEEE
Transactions on Circuits and Systems for Video Technology, 2022.

[41] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object
detection. In CVPR, pages 10781–10790, 2020.

[42] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. arXiv
preprint arXiv:1910.10699, 2019.

[43] Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In ICCV, pages
1365–1374, 2019.

[44] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011.

[45] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang
Wang, and Xiaoou Tang. Residual attention network for image classification. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 3156–3164, 2017.

[46] Guile Wu and Shaogang Gong. Peer collaborative learning for online knowledge distillation. In
Proceedings of the AAAI Conference on artificial intelligence, volume 35, pages 10302–10310,
2021.

[47] Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change Loy. Knowledge distillation meets
self-supervision. In ECCV, pages 588–604. Springer, 2020.

[48] Kai Xu, Lichun Wang, Shuang Li, Jianjia Xin, and Baocai Yin. Self-distillation with aug-
mentation in feature space. IEEE Transactions on Circuits and Systems for Video Technology,
2024.

[49] Quanzheng Xu, Liyu Liu, and Bing Ji. Knowledge distillation guided by multiple homogeneous
teachers. Information Sciences, 607:230–243, 2022.

[50] Chenglin Yang, Lingxi Xie, Chi Su, and Alan L Yuille. Snapshot distillation: Teacher-student
optimization in one generation. In CVPR, pages 2859–2868, 2019.

[51] Chuanguang Yang, Zhulin An, Helong Zhou, Linhang Cai, Xiang Zhi, Jiwen Wu, Yongjun Xu,
and Qian Zhang. Mixskd: Self-knowledge distillation from mixup for image recognition. In
European Conference on Computer Vision, pages 534–551. Springer, 2022.

[52] Chuanguang Yang, Zhulin An, Helong Zhou, Fuzhen Zhuang, Yongjun Xu, and Qian Zhang.
Online knowledge distillation via mutual contrastive learning for visual recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(8):10212–10227, 2023.

[53] Yang Yang, Chao Wang, Lei Gong, Min Wu, Zhenghua Chen, Yingxue Gao, Teng Wang, and
Xuehai Zhou. Uncertainty-aware self-knowledge distillation. IEEE Transactions on Circuits
and Systems for Video Technology, 2024.

[54] Zhendong Yang, Ailing Zeng, Zhe Li, Tianke Zhang, Chun Yuan, and Yu Li. From knowl-
edge distillation to self-knowledge distillation: A unified approach with normalized loss and
customized soft labels. In ICCV, pages 17185–17194, 2023.

13



[55] Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo Shin. Regularizing class-wise predictions
via self-knowledge distillation. In CVPR, pages 13876–13885, 2020.

[56] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. BMVC, 2016.

[57] Linfeng Zhang, Chenglong Bao, and Kaisheng Ma. Self-distillation: Towards efficient and
compact neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(8):4388–4403, 2021.

[58] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be
your own teacher: Improve the performance of convolutional neural networks via self distillation.
In ICCV, pages 3713–3722, 2019.

[59] Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4320–4328, 2018.

[60] Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge
distillation. In CVPR, pages 11953–11962, 2022.

[61] Lei Zhao, Wing WY Ng, Jianjun Zhang, and Xiguang Wu. An innovative multisource teacher
collaborative framework for self-knowledge distillation. IEEE Transactions on Neural Networks
and Learning Systems, 2025.

[62] Qi Zhao, Shuchang Lyu, Lijiang Chen, Binghao Liu, Ting-Bing Xu, Guangliang Cheng, and
Wenquan Feng. Learn by oneself: Exploiting weight-sharing potential in knowledge distillation
guided ensemble network. IEEE Transactions on Circuits and Systems for Video Technology,
33(11):6661–6678, 2023.

[63] Yujie Zheng, Chong Wang, Chenchen Tao, Sunqi Lin, Jiangbo Qian, and Jiafei Wu. Restruc-
turing the teacher and student in self-distillation. IEEE Transactions on Image Processing,
2024.

[64] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. Semantic understanding of scenes through the ade20k dataset. International Journal
of Computer Vision, 127(3):302–321, 2019.

[65] Yichen Zhu and Yi Wang. Student customized knowledge distillation: Bridging the gap between
student and teacher. In ICCV, pages 5057–5066, 2021.

14



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we have ensured that the main claims in the abstract and introduction
accurately reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Yes, we have discussed the limitations and future work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: There is no theoretical result in this paper that requires a full set of assumptions
and correct proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we have fully disclosed the information needed to reproduce the main
experimental results of the paper.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will provide the source code as part of the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify the training and test details in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Since our experiments don’t have randomized components (estimators have a
closed-form solution), we do not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our experiments are smaller scale and all experiments run on four GPU 3090.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We uphold the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Or work does not have such a societal impact that requires discussion in the
paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our knowledge, our paper poses no such risks. We use publicly
available code and data for our work.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all fou datasets; CIFAR-100 [24], ImageNet [6], Stanford Cars
(Cars196) [23], and CUB-200-2011 (CUB200) [44]. Their licenses are not mentioned on
paperswithcode.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will provide the source code as part of the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: Our paper does not involve any crowdsourcing experiments nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our paper does not describe the usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplement to Method

A.1 Datasets

The MS-COCO dataset [29] has been established as a large-scale benchmark and a de facto
standard for advancing the state of the art in object detection and instance segmentation. Its curated
collection consists of 118,000 images for model training and 5,000 images for validation. Each
image is meticulously annotated with precise bounding boxes and per-instance segmentation masks,
encompassing a diverse set of 80 commonly encountered object categories.

The ADE20K dataset [64] serves as a benchmark for semantic segmentation and scene parsing,
comprising 20,210 training, 2,000 validation, and 3,352 testing images. It is characterized by its
fine-grained annotation of 150 object and "stuff" categories, presenting a challenging testbed for
holistic scene understanding models due to its complex scenes and dense, pixel-level labels.

The Cityscapes dataset [5] is a benchmark for urban scene understanding, particularly in autonomous
driving. It comprises 5,000 high-resolution images with fine, pixel-level annotations and 20,000
images with coarse annotations. The finely annotated set is divided into 2,975 training, 500 validation,
and 1,525 testing images. While annotations span 30 classes, 19 are used for standard evaluation.
This two-tiered annotation structure supports both precise model training and large-scale pre-training,
establishing Cityscapes as a vital resource for semantic segmentation in complex urban environments.

A.2 Evaluation Metrics

For multi-class classification, we use top-1 and top-5 acc as standard performance measures. Mean-
while, the complexity is evaluated by the sum of floating point operations (FLOPs) in one forward on
a fixed input size. To evaluate the segmentation accuracy, we adopt the mean Intersection-over-Union
(mIoU) as the primary performance metric. This provides an aggregate measure of segmentation
accuracy across all classes.

B Experimental Setups

We evaluate SDPGO on the PASCAL VOC dataset using Faster-RCNN [35] object detection frame-
work. The backbone architecture utilized in this framework is EfficientDet-d0/d1 [41]. For these tasks,
we employ the ADE20K [64] and Cityscapes [5] datasets and use ResNet-50 as the segmentation
model. we adhere to the training protocol and hyperparameter settings established in [53] to ensure a
fair and reproducible comparison. All experiments are conducted on 8 × NVIDIA Tesla-A100 GPUs.

C More Experiments

C.1 Efficiency and Memory Consumption

In this section, we conduct experiments on the efficiency and memory consumption on CUB200, as
shown in Table 12. The flops and memory are selected as an evaluation metric to validate the proposed
method. T represents introducing additional overhead, while F represents not introduce additional
overhead. Resnet-18 is selected as the backbone network. Compared with other state-of-the-art
approaches, our proposed SDPGO method achieves the highest top-1 accuracy of 78.06% while
maintaining minimal computational overhead during both inference and training stages. Specifically,
during inference, all methods utilize the same number of parameters (11.3M) and Flops (1.82G), but
SDPGO outperforms others in accuracy by a significant margin. For instance, methods like BYOT,
EFWSNet, PS-KD, FRSKD, and MiSKD yield lower accuracies ranging from 71.11% to 73.38%,
despite similar inference costs.

In the training phase, SDPGO requires only 1.82G Flops and does not incur additional memory
consumption (denoted by "F"), demonstrating high efficiency. In contrast, several methods introduce
substantial computational burdens. For example, MiSKD increases Flops to 7.30G and uses extra
memory ("T"), while BYOT and PS-KD also require higher Flops (5.75G and 3.65G, respectively)
and memory overhead. Although FASD and DLB maintain low Flops (1.84G and 1.82G) and avoid
memory issues, their accuracies (75.43% and 76.10%) are lower than SDPGO. This highlights
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that SDPGO effectively balances accuracy and efficiency, avoiding the need for extensive data
augmentations or auxiliary components that escalate training costs, as seen in methods like MiSKD
or BYOT. Thus, SDPGO provides a superior solution for resource-constrained scenarios without
compromising performance.

Table 12: Comparison Of Efficiency and Memory Consumption on CUB-200.

Method Inference Stage Training Stage
Params Flops Top-1 acc Params Flops Memory

BYOT [58] 11.3M 1.82G 73.38 11.3M 5.75G T
EEWSNet [62] 11.3M 1.82G 72.97 11.3M 3.64G F

PS-KD [20] 11.3M 1.82G 72.65 11.3M 3.65G T
FRSKD [18] 11.3M 1.82G 73.14 11.3M 3.05G F

DLB [36] 11.3M 1.82G 76.10 11.3M 1.82G F
MiSKD [51] 11.3M 1.82G 71.11 11.3M 7.30G T
FASD [48] 11.3M 1.82G 75.43 11.3M 1.84G F

SDPGO 11.3M 1.82G 78.06 11.3M 1.82G F

C.2 More Ablation Studies

Ablation study on Hyper-parameter λ. In this section, we compare hard and soft thresholds
on CUB200. Our method still shows competitive performance when using adaptive threshold
strategy. As shown in the Table 13, the conventional knowledge distillation (KD) baseline ("N/A")
achieves 71.74% and 71.82% on ResNet-32 and ShuffleNet-V2, respectively. In contrast, both our
fixed threshold and adaptive threshold strategies bring substantial improvements. Specifically, the
fixed threshold version attains 75.57% with ResNet-32 and 77.29% with ShuffleNet-V2, while the
adaptive threshold further boosts performance to 75.78% and 77.63%, respectively. Moreover, the
adaptive threshold strategy, despite its simplicity, consistently outperforms the fixed variant across
both architectures. This validates the effectiveness and architectural flexibility of our proposed
thresholding approach in knowledge distillation.

Ablation study on loss function changes of SDPGO. The impact of different loss functions on
our method is quantitatively evaluated on CIFAR-100, with results detailed in Table 14. The
core mechanism of SDPGO, dynamic feature weighting via proximal gradients, depends solely on
gradient amplitudes and not on the semantics of the loss function. We tested SDPGO with three
distinct losses on CIFAR-100. Whether LTask is cross entropy or focal loss, |∇θL| indicates features
critically impacting task performance. As shown in Table 14, the top-1 acc of SDPGO obtain the
performance gain compared with the baseline when the the loss function changes. Specifically,
When the standard cross-entropy loss is employed, SDPGO achieves a top-1 accuracy of 77.29%,
significantly outperforming the corresponding baseline of 71.82%. This demonstrates a substantial
performance gain of 5.47% attributable to our proposed framework under the conventional loss
setting. In contrast, when utilizing Focal Loss, the performance of both the baseline and SDPGO
decreases. The baseline drops to 69.23%, and SDPGO attains 72.36%, resulting in a narrower margin
of improvement (3.13%).

Table 13: Performance of the SDPGO method
using hard/soft thresholds. ’N/A’ denotes the
result of the conventional KD.

Method ResNet-32 ShuffleNet-V2
N/A 71.74 71.82

Fixed 75.57 77.29
Adaptive 75.78 77.63

Table 14: Different loss function with accuracy
on CIFAR-100.

Loss type method Top-1 acc

Cross entropy Baseline 71.82
SDPGO 77.29

Focal loss Baseline 69.23
SDPGO 72.36
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