SDPGO: Efficient Self-Distillation Training Meets Proximal Gradient Optimization

Tongtong Su1, Liao Yun2*, Fengbo Zheng1*

¹School of Computer and Information Engineering, Tianjin Normal University ²College of Artificial Intelligence, Tianjin University of Science and Technology

Abstract

Self-knowledge distillation (SKD) enables single-model training by distilling knowledge from the model's own output, eliminating the need for a separate teacher network required in conventional distillation methods. However, current SKD methods focus mainly on replicating common features in the student model, neglecting the extraction of key features that significantly enhance student learning. Inspired by this, we devise a self-knowledge distillation framework entitled Self-Distillation training via Proximal Gradient Optimization or SDPGO, which utilizes gradient information to identify and assign greater weight to features that significantly impact classification performance, enabling the network to learn the most relevant features during training. Specifically, the proposed framework refines the gradient information into a dynamically changing weighting factor to evaluate the distillation knowledge via the dynamic weight adjustment scheme. Meanwhile, we devise the sequential iterative learning module to dynamically optimize knowledge transfer by leveraging historical predictions and real-time gradients, stabilizing training through mini-batch-based KL divergence refinement while adaptively prioritizing task-critical features for efficient self-distillation. Comprehensive experiments on image classification, object detection, and semantic segmentation demonstrate that our method consistently surpasses recent state-of-the-art knowledge distillation techniques. Code is available at: https://github.com/nanxiaotong/SDGPO.

1 Introduction

In the past few years, deep neural networks (DNNs) have achieved great success in computer vision tasks, including image classification [15, 45], object detection [22, 41], semantic segmentation [11, 38] and others. Due to the over-parameterization and high computational complexity of DNNs, deployment costs are increasingly significant. Knowledge distillation (KD) [14] addresses this by transferring knowledge from a large teacher model to a lightweight student via soft target alignment, uniquely enabling efficient compression and fast inference without structural modifications.

Despite its benefits, pre-training a high-capacity teacher network requires considerable computational sources and run-in memory. Furthermore, the capacity gap issue [49, 65, 26]has persistently hindered the development of knowledge distillation. In conventional offline KD, a one-way knowledge transfer is applied through a two-stage training process to steer the learning of the student network [21, 43, 12]. In contrast, online KD operates without dependence on a pre-trained teacher, instead enabling an ensemble of students to learn collaboratively in an end-to-end fashion [59, 28, 46, 52]. Consequently, existing KD methods, whether online or offline, tend to be computationally expensive and time-consuming, thereby hindering their deployment on resource-constrained end devices such as mobile phones and digital cameras.

^{*}Corresponding author: Liao Yun (yliao@tust.edu.cn), Fengbo Zheng (fzh229@tjnu.edu.cn)

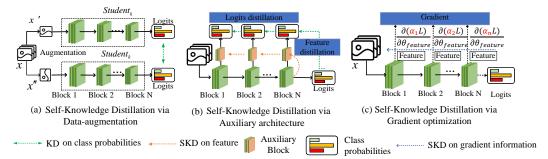


Figure 1: Brief comparison of our SDPGO with data-augmentation and auxiliary-architecture methods. SDPGO utilizes the gradients to identify and distill the most valuable and relevant knowledge.

To address these limitations, SKD [57] addresses these limitations by enabling self-distillation through a single network that acts as both a teacher and a student. As depicted in Figure 1(a), a prevalent framework in SKD employs auxiliary techniques to enhance the training signal. Augmentation strategies [48, 18] enhance model consistency by enforcing prediction invariance across different augmented views of the same input. Parallelly, historical predictions [36, 20] generated during earlier training iterations act as dynamic soft labels to regularize current updates. Another line of work introduces auxiliary network components [61, 54], where knowledge from deeper layers is distilled into shallower ones via dedicated pathways in Figure 1(b). However, existing SKD approaches often rely on fixed or heuristically defined weights to prioritize features during knowledge transfer. These weights remain static throughout the training process, thus failing to adapt to the evolving importance of features as the model learns.

In this work, we are committed to continuously evaluate feature importance through gradient magnitudes within each mini-batch, enabling instantaneous prioritization of task-critical features. Unlike static distillation methods, our method performs real-time refinement of the knowledge, as illustrated in Figure 1(c), enabling dynamic adaptation to evolving data distributions and training dynamics. Specifically, our method leverages real-time gradient analysis to dynamically shift its attention. During high-gradient phases, it amplifies the distillation loss for features that drive immediate performance gains. Conversely, in low-gradient phases, it recalibrates attention toward under-optimized features to prevent premature convergence.

Motivated by our findings, we propose Self-Distillation training via Proximal Gradient Optimization (SDPGO), a novel self-knowledge distillation framework that integrates sequential iterative learning with gradient-driven feature analysis. Our method uses a proximal weight assignment module to assess the importance of intermediate features via their gradient magnitudes from mini-batches. This mechanism, rooted in proximal gradient theory, enables real-time prioritization of high-impact features while adaptively suppressing less critical ones through sparsity-aware optimization. Meanwhile, the framework leverages sequential iterative updates to refine knowledge across training steps. Each iteration's KL divergence between current and previous predictions (from the latter half of minibatches) creates a feedback loop, allowing the model to incrementally correct errors and consolidate accurate knowledge without additional computational overhead.

Contributions. This work overcomes existing SKD limitations in the utilization of dynamic critical features during training. In doing so, we make the following contributions:

- Enables Real-Time Knowledge Refinement. We propose a simple but efficient self-knowledge distillation based on proximal gradient optimization scheme, named as SDPGO, which leverages the gradients of each mini-batch to dynamically weigh the importance of features (see Figure 2). Unlike static SKD methods, SDPGO refines knowledge transfer in real time, eliminating reliance on external teachers and enabling the model to learn critical features directly from its own training trajectory.
- Dynamic Gradient-Driven Weight Assignment: We introduce a dynamic weight assignment scheme for self-distillation that dynamically evaluates the importance of extracted features by leveraging gradient magnitudes within each mini-batch. This scheme prioritizes features with larger gradients, thereby guiding the student model to focus on the most impactful knowledge and adapt to ongoing training dynamics.

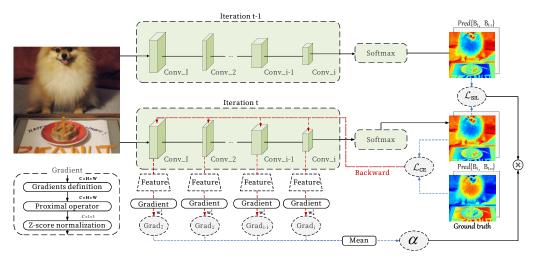


Figure 2: An overview of our SDPGO framework, which uses sequential iterative learning and gradient-based feature weighting to generate soft labels. This process calculates the KL divergence between iterations and assigns weights to features according to their gradient contributions.

• Implementation and Evaluation: We conduct extensive experiments on image classification, object detection, and semantic segmentation datasets based on different popular network architectures, where the proposed SDPGO framework outperforms recent state-of-the-art KD methods with a clear margin. In addition, ablation experiments further demonstrate the effectiveness of our method.

2 Related Works

KD compresses neural networks by transferring knowledge from a high-capacity teacher to a lightweight student, enabling efficient deployment of the compact model. KD leverages the teacher model's knowledge by utilizing 1) class predictions as soft labels [60, 7], 2) correlations between multiple samples [33, 42, 3], or 3) feature maps containing spatial information from intermediate layers [4, 2, 10]. Under the guidance of a teacher model, the student model trained in an offline learning way is typically effective. However, the entire training process is time-consuming and complex, as it requires retaining a large amount of persistent data to train a strong teacher model. In contrast, online KD [27, 52, 34, 39] eliminates the need for larger teacher models, instead training a group of student networks by learning from each other's predictions. However, there are two key limitations: (1) online KD depends on using an ensemble teacher to improve the student model's performance, and (2) selecting the optimal student model requires considerable computational resources for training.

Compared with the conventional KD, SKD [55, 58, 19] uses the student network itself as a teacher to guide its learning process, which utilizes the information within the student model. In recent years, a series of SKD methods have been continuously proposed. BYOT [58] attaches auxiliary classifiers to each stage, using the final classifier's output as teacher knowledge to train them. FRSKD [18] employs an auxiliary self-teacher network with bidirectional paths to transfer refined features and soft labels to the classifier. However, these methods rely on auxiliary models, which complicates training by increasing memory and time costs. Meanwhile, data augmentation was used for SKD. For example, MiSKD [51] combines SKD with image mixture to distill features and distributions between original/mixed images via a self-teacher network, enhancing self-boosting. Meanwhile, SKD uses historical information as a virtual teacher, treating predictions from previous model versions as regularization targets. These methods takes the predictions output for knowledge transfer from its last generation [9], last mini-generation [50, 36] or last epoch [20].

Recently, some researchers [25, 63] begin to employ gradients to assess the importance of feature maps. These methods assigns static or predefined weights to features impacting task loss, primarily emphasizing knowledge transfer from teacher to student. Unlike previous approaches, we design a proximal gradient optimization mechanism that dynamically refines gradient-derived weights during training. This adaptively prioritizes features most relevant to task loss, optimizing representation learning in an end-to-end manner.

3 Proposed Approach: SDPGO

Notations. We denote a set of labeled dataset as $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$, where N is the dataset's size. x_i^k denotes the i-th sample and it belongs to category k. We sample a batch samples to feed into target neural network $f(\cdot)$ to optimize the cross-entropy loss function. Then, we obtain the logit vector z_i , and then yields the prediction probabilities $\mathbf{p}_i(k) = f(x_i^k/\tau)$ by a softmax function. Hence, the temperature parameter τ is introduced to control the importance of the i-th soft target as follows:

$$\mathbf{p}_i(k) = \frac{\exp(z_i/\tau)}{\sum_{j=1}^K \exp(z_j/\tau)},\tag{1}$$

where the z_i is the predicted value of class i from fully connected layer, and τ denotes a temperature parameter. A softmax function with τ transforms an original vector into a probability vector.

3.1 Sequential Iterative Learning Module

We employ the sequential iterative learning module to measure the consistency of two adjacent batches. This module uses backup information from the last mini-batch to generate soft targets. We partition each mini-batch into two sequential segments: half aligned with the prior iteration and half with the next iteration. This strategy enables real-time distillation of dynamically updated soft targets generated from preceding training steps.

The student model acts as its own teacher by reorganizing sequential sampling. Each mini-batch is divided into halves aligned with the previous and upcoming iteration respectively. The model applies KL divergence between classifier outputs from different iterations to align predictions, while utilizing historical outputs for enhanced regularization. We denote the current batch of n samples in the t^{th} iteration as $\mathcal{B}_t = \{(\mathbf{x}_i^t, y_i^t)\}_{i=1}^n$. Afterwards, they are fed into convolutional layers to obtain their representation vectors as prediction distributions $\mathbf{p}_i^{\tau,t}$. Our work uses historical information from the last batch to efficiently generate soft targets as more instant smoothed labels for regularization. we substitute the $\mathbf{p}_i^{\tau,t-1}$ by the soften labels $\mathbf{p}_i^{\tau,t-1}$ generated by the identical network at t-1-th iteration. The main difference from conventional KD is that the teacher model dynamically evolves during training, with the t-th iteration predictions used as the teacher's knowledge without incurring any loss. Consequently, the student is trained with the consistency regularization loss as follows:

$$\mathcal{L}_{SIL} = -\tau^2 \frac{1}{n} \sum_{i=1}^n \cdot \underbrace{\sum_{i=1}^n \mathbf{p}_i^{\tau,t-1} \log \frac{\mathbf{p}_i^{\tau,t-1}}{\mathbf{p}_i^{\tau,t}}}_{D_{KL}}.$$
 (2)

where \mathbf{p}_i^{τ} is the soften prediction, parameterized by temperature τ from the student itself. Then, the total loss combines KL divergence with hard-label cross-entropy, enabling end-to-end optimization of the single network:

$$\mathcal{L}_{CE} = \frac{1}{N} \sum_{i=1}^{N} H(\mathbf{y}_i, \mathbf{p}_i), \qquad (3)$$

where H is the cross-entropy loss between the ground-truth label y_i and the prediction p_i .

3.2 Proximally Weight Assignment Module

We propose a gradient-driven dynamic weighting scheme to enhance knowledge distillation, where feature importance is evaluated via gradient magnitudes. High-gradient features receive amplified attention to prioritize impactful knowledge, while low-gradient features trigger adaptive recalibration toward under-optimized parameters. To obtain the importance of the feature, we define the gradients of the k-th feature map in layer l as:

$$w_k^l = \frac{1}{W} \sum_{i=1}^W \sum_{j=1}^H \left| \frac{\partial L_{Task}}{\partial F_{i,j,k}^l} \right| \tag{4}$$

where $F_{i,j,k}^l$ is the k-th feature representations of the l-th layer, and i,j are two location vectors. Next, we calculate the gradient of the loss L_{ask} with respect to the feature F. The raw gradient-derived weights w_k^l (Eq. 4) is refined via a proximal operator to enforce sparsity and stability:

$$\hat{w}_k^l = \operatorname{Prox}_{\lambda} \left(w_k^l \right) = \begin{cases} w_k^l - \lambda & \text{if } w_k^l > \lambda \\ 0 & \text{otherwise} \end{cases}$$
 (5)

where λ is an adaptive threshold controlling feature sparsity using only moving averages, thus the corresponding loss can be: $\lambda_t = \beta \lambda_{t-1} + (1-\beta) \cdot \frac{|w|_1}{K}$. λ_t is dynamic threshold at step t, β is the momentum factor. $|w|_1$ is L1-norm of gradient wights in current batch. K is the numbers of features in batch. This step suppresses less impactful features while retaining those with significant gradients, aligning with the proximal gradient principle of separating critical and non-critical components. Next, we compute the mean absolute value of the gradient for each weight parameter. Then, we apply Z-score normalization to these values, given by:

$$M^{l} = \text{Z-score}\left(\left|\sum_{k=1}^{M} \hat{w}_{k}^{l}\right|\right) \tag{6}$$

where M^l is a spatial feature map $(\mathbf{R}^{H \times W})$ derived from channel-summed activations with position-wise Z-score normalization, where H and W represent height and width, respectively. l indicates an intermediate layer. L is the total number of intermediate layers considered for distillation. Dimensionality reduction occurs through spatial averaging after normalization. We assign weights to features according to their impact on overall loss. This process effectively highlights the most influential features, ensuring that the model focuses on the aspects of the data that contribute the most to its performance. The method incorporates a dynamic weight, α , that balances the task and distillation losses. This scalar parameter is integrated into the final loss function to modulate the influence of each component. Therefore, α in all network layers is computed as follows:

$$\alpha = \frac{1}{L} \sum_{l=1}^{L} \left(\frac{1}{HW} \sum_{i=1}^{H} \sum_{j=1}^{W} M^{l}[i, j] \right)$$
 (7)

In previous SKD methods, the student remains unchanged because the overall task loss is usually set to a fixed value during training. However, SDPGO go a step further by leveraging the gradients of feature maps at immediate layers and transforming them into a dynamic hyperparameter. Similar to learning rate scheduling, this hyperparameter controls the degree to which the model captures valuable information about each feature's contribution. This approach allows the model to dynamically adjust its focus on features as their importance changes during training. The goal of our SDPGO method is to utilize gradient information via assigning greater weights to critical features.

3.3 Overall for SKD

With the sequential iterative learning module and the gradient information extraction module, we calculate the corresponding loss and propose SDPGO as shown in Fig. 2. We train all models with the total loss for SKD as follows:

$$\mathcal{L}_{Total} = \mathcal{L}_{Task} + \alpha \mathcal{L}_{SIL}. \tag{8}$$

where \mathcal{L}_{Task} is the domain-specific final objective loss. For image classification setting, this is defined as the cross-entropy loss between the hot ground-truth label y and the predicted distribution p.

4 Experiments

In this paper, we conduct experiments on five visual recognition datasets, namely CIFAR-10/100 [24], ImageNet [6], CUB200-2011 [44], and Cars196 [23]. We employ eight representative architectures [40] for evaluation, namely VGG-16/19 [37], ResNet-32/110 (abbreviated as R-32/110) [13], WRN20-8 [56], DNet-40-12 [17], ShuffleNet-V2 (abbreviated as SN-V2) [32] and MobileNet-V2 (abbreviated as MN-V2) [16]. All results are reported in means (standard deviations) over 3 trials.

Table 1: Top-1 accuracy (%) of various SKD methods across widely used networks on CIFAR-10 (C10) and CIFAR-100 (C100). The best results are highlighted in bold, while the second-best results are underlined. We use Δ to show its performance gain.

Dataset	Methods	Vgg-16	R-32	R-110	WRN-20-8	DNet-40-12	SN-V2	MN-V2
	Baseline	93.97	93.46	94.79	94.53	92.91	92.70	93.31
	BYOT [58]	94.03	93.57	94.86	94.14	93.01	92.99	93.73
	EFWSNet [62]	93.85	93.97	94.92	94.68	93.39	93.23	93.88
	PS-KD [20]	94.10	94.04	94.91	95.01	93.23	93.45	94.02
C10	FRSKD [18]	94.38	94.78	95.23	95.27	94.21	94.17	94.76
CIU	DLB [36]	94.62	94.15	95.15	<u>95.54</u>	93.43	95.10	94.46
	MiSKD [51]	93.82	<u>95.59</u>	<u>95.93</u>	93.93	94.25	95.29	<u>94.91</u>
	FASD [48]	94.21	95.45	95.66	94.52	94.39	95.34	94.86
	SDPGO	95.90	96.44	95.98	95.70	95.60	95.73	95.43
	Δ	1.93	2.98	1.19	1.17	2.69	3.03	2.12
	Baseline	73.63	71.74	76.36	77.58	71.69	71.82	68.08
	BYOT [58]	73.79	72.39	77.75	77.68	77.04	72.97	68.72
	EFWSNet [62]	73.92	73.54	75.81	78.02	76.95	72.87	69.45
	PS-KD [20]	74.05	72.51	77.15	78.74	72.52	74.55	69.74
C100	FRSKD [18]	76.72	75.34	79.15	78.95	77.12	75.23	70.25
C100	DLB [36]	76.12	74.07	78.18	<u>79.21</u>	72.52	75.51	69.47
	MiSKD [51]	76.57	75.12	78.86	78.07	76.85	76.52	71.66
	FASD [48]	75.52	<u>75.42</u>	78.52	78.62	<u>77.24</u>	<u>76.76</u>	<u>71.75</u>
	SDPGO	76.85	<i>75.57</i>	79.31	79.36	78.04	77.29	72.25
	Δ	3.22	3.83	2.95	1.78	6.35	5.47	4.17

Dataset. CIFAR-10/100 [24] contain a total number of 60,000 RGB natural images of 32×32 small RGB images drawn from 10 and 100 categories, respectively. For **ImageNet** [6], we use 1.2 million images for training and 50,000 images for validation. The size of input images after pre-processing is 224 × 224. **CUB200** [44] and **Cars196** [23] are used for fine-grained visual recognition (FGVR) tasks. Different from CIFAR and ImageNet, FGVR datasets typically have fewer data instances per class, making the task more challenging. More details are available in Appendix A.

Baselines. We compare our SDPGO with different SOTA SKD methods, be your own teacher (BYOT) [58], feature-sharing and weight-sharing based ensemble network (EFWSNet) [62], progressive self-KD (PS-KD) [20], feature refinement via SKD (FRSKD) [18], distillation from last mini-batch (DLB) [36], SKD from image mixture (MiSKD) [51], normalized knowledge distillation (NKD) [54], and feature augmentation based self-distillation method (FASD) [48].

Implementation details. We used the Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9, a weight decay of 5e-4, and a temperature τ of 3. On CIFAR-100, we used a batch size of 64, an initial learning rate of 0.05, and trained the model for 240 epochs. For ImageNet, training was conducted over 100 epochs, with learning rate adjustments at epochs 30, 60, and 90 by multiplying the learning rate by 0.1. For CUB200, the learning rate was set to 0.05 with a warmup period of 2 epochs, a batch size of 64, and a total of 240 training epochs. The learning rate was adjusted at epochs 70, 140, and 210 by multiplying it by 0.1, while all other hyperparameters remained constant. For Cars196, training was conducted for 200 epochs, with learning rate adjustments at epochs 60, 120, and 180 by multiplying it by 0.1. Experimental details about Pascal VOC, ADE20K and Cityscapes are in Appendix B.

4.1 CIFAR Classification Result

We compare the KD results of different methods under various backbone networks settings in Table 1. Across different architectures, all networks show improvements on these two datasets when using SDPGO. We first compare our method with the latest SKD techniques, BYOT [58] and EFWSNet [62], both of which are combined with auxiliary architectures. Our method consistently delivers significant improvements to the student. Specifically, ResNet-32 achieves 94.44% and 75.57% top-1 accuracy on CIFAR-10 and CIFAR-100, respectively, reflecting accuracy gains of 5.87% and 3.83% than BYOT [58] through the knowledge transferred from gradient information. Furthermore, compared to input-space data augmentation methods, our SDPGO approach provides a significant boost in top-1 accuracy for classification tasks. Specifically, with a DNet-40-12 backbone, SDPGO achieves gains of 1.35% on CIFAR-10 and 1.19% on CIFAR-100 than MixSKD. This result shows that student models distilled by SDPGO benefits from our gradient optimization as well.

green lizard:0.002

stone wall:0.049 castle:0.009

Brittany spaniel:0.046 Figure 3: Visualization of the target and top-2 non-target class values of our customized soft labels.

Table 2: Top-1 and Top-5 accuracy (%) of our SDPGO method. ResNet-18 is used as classifier network on the ImageNet dataset.

Streetcar:0.010

ResNet-18 Methods Gain(↑) Top-5 Top-1 69.75 ResNet-18 89.07 FitNet [1] 71.61 90.51 1.86 89.98 Review [4] 70.81 1.06 CAT-KD [12] 71.22 90.26 1.47 CRD [42] 71.17 90.13 1.42 SSKD [47] 71.62 90.67 1.87 DCCD [30] 71.95 90.88 2.2 BYOT [58] 69.84 89.62 0.09 EFWSNet [62] 72.36 91.74 2.61 PS-KD [20] 71.59 90.85 1.84 FRSKD [18] 70.17 90.52 0.42 DLB [36] 70.12 90.27 0.37 MiSKD [51] 71.67 91.20 1.92 71.70 FASD [48] 90.91 1.95 SDPGO (Ours) 72.47 92.56 2.72

Table 3: Top-1 accuracy (%) of various selfknowledge distillation methods across widely used networks on CUB200 and Cars196 dataset.

Method	CUE	3200	Cars196		
Method	Top-1	Top-5	Top-1	Top-5	
ResNet-18	69.66	91.66	71.82	91.04	
+ BYOT [58]	73.38	91.18	79.35	94.70	
+ DLB [36]	<u>76.10</u>	<u>93.37</u>	78.28	93.13	
+ MiSKD [51]	71.11	91.37	<u>82.94</u>	<u>95.83</u>	
+ SDPGO	78.06	94.77	84.17	96.44	
ResNet-50	74.36	92.52	76.44	92.26	
+ BYOT [58]	77.76	94.22	80.17	94.78	
+ DLB [36]	80.69	<u>95.62</u>	82.94	<u>95.83</u>	
+ MiSKD [51]	75.96	93.03	77.90	93.55	
+ SDPGO	81.69	95.88	89.20	98.16	
MobNet-V2	73.09	91.82	72.15	93.01	
+ BYOT [58]	74.25	91.92	82.51	95.03	
+ DLB [36]	<u>78.08</u>	94.32	81.72	92.93	
+ MiSKD [51]	73.65	91.23	<u>82.69</u>	94.41	
+ SDPGO	78.67	94.75	85.28	96.69	

4.2 ImageNet Classification Result

As shown in Table 2, SDPGO outperforms advanced KD methods in terms of top-1 and top-5 accuracies, achieving the highest scores of 72.47% and 92.56%, respectively. We select current feature-based KD methods with the utilization of intermediate representation or feature embedding. For feature-based methods, the second-best method DCCD [30] exhibits inferior performance to our SDPGO, highlighting its limitations in distilling knowledge due to relying on expert knowledge from the teacher model. For self-KD methods, SDPGO surpasses the best-competing FASD [48] by 0.77% top-1 accuracy gains, which enables successful SKD. SDPGO surpasses other SOTA methods with clear gains, demonstrating its superiority in large-scale datasets. These findings confirm the effectiveness of SDPGO in distillation optimization, highlighting its versatility and strength.

4.3 Fine-grained Classification Result

For fine-grained image classification, Table 3 presents the top-1 and top-5 accuracy of SDPGO compared to other SKD methods across different backbones. We observe the top-1 acc of 82.94\% and 82.69\% on Cars 196 when Mixup is combined with SKD, which is 4.66\% and 0.97\% improvement of DLB. When comparing with MixSKD, SDPGO demonstrates superior performance on fine-grained classification tasks, achieving the highest accuracy across all datasets. Specifically, SDPGO surpasses the second-best results by 1.60%, 3.63%, and 1.59% on three networks, respectively. This significant improvement highlights the effectiveness of our approach in combining sequential iterative learning and gradient information extraction.

4.4 Visualization

Figure 3 illustrates how our self-distillation method, SDPGO, generates customized soft labels for each image during training, including the target class and the top two non-target classes. By using the gradient-based dynamic weight assignment method from Eq. 6, higher weights are assigned to classes similar to the target, enhancing the overall learning process. These results demonstrate that SDPGO's soft labels prioritize classes with high semantic affinity, thereby facilitating improved discrimination and robustness by emphasizing inter-class relationships during training.

Table 4: The downstream tasks results with SDPGO on the COCO-2017 dataset.

Table 5: Results of training more models, including ViT-liked models with SDPGO on ImageNet.

Methods	ResN	fet-18	ResNet-50		
Methods	bbox	segm	bbox	segm	
baseline	33.4	30.2	36.9	33.4	
MixSKD	33.9	31.05	37.0	33.8	
FASD	34.1	30.9	37.3	34.4	
SDPGO	35.08	32.10	38.08	36.69	

Model	Baseline	SDPGO (Ours)
ResNet-50	73.56	74.03 (+0.47)
DeiT-Tiny	74.42	75.01 (+0.59)
DeiT-small	80.55	80.89 (+0.34)
Swin-Tiny	81.18	81.95 (+0.77)
Swin-small	84.36	86.24 (+1.88)

Table 6: Overall performance comparison on semantic segmentation tasks.

Model	Method	ADE20K	Cityscapes
	Baseline	39.72	74.85
DogNot 50	MixSKD	42.37	74.96
ResNet-50	FASD	40.78	72.89
	SDPGO	42.75	75.01

Table 7: Performance comparison on Pascal VOC segmentation task.

Model	Method	mIOU	Model	Method	mIOU
EfficientDet-d0	Baseline	79.07		Baseline	81.95
	MixSKD	79.52	Eff ::4D-4 41	MixSKD	82.51
	FASD	80.54	EfficientDet-d1	FASD	83.43
	SDPGO	80.67		SDPGO	83.97

4.5 Extension to ViT-liked models

Recent models like ViT [8], which use embedded image patches, have adopted a different architecture, but current SKD methods do not address their unique characteristics. SDPGO leverages gradient information to prioritize features, eliminating the need for additional linear layers connected to ViT's middle layer, and allowing the model to focus on the most relevant aspects during training. As can be seen in Table 5, SDPGO outperforms these baselines by margins ranging from $0.34\% \sim 1.88\%$. It should be noted that our method even improves student model performance with gains of up to 1.88% for the latest state-of-the-art model Swin-Transformer (Swin-small) [31]. These results show that SDPGO achieves significant improvements with general settings.

4.6 Knowledge transfer to downstream tasks

To assess its generalization capability, we transfer our model to object detection task on the COCO-2017 dataset [29]. As shown in Table 4, ResNet trained with SDPGO brings the feature extractors with average 1.43% and 2.60% points for downstream detection task compared to the baseline method. The results demonstrate the efficacy of SDPGO for learning better representations for downstream semantic recognition tasks. In addition, we employ the Pascal VOC, ADE20K, and Cityscapes benchmarks for semantic segmentation. As shown in Table 6, SDPGO achieves the best segmentation performance and outperforms the best-second results with 2.65% and 3.04% mIoU margins on Pascal ADE20K and Cityscapes segmentation, respectively. For Pascal VOC 2012 semantic segmentation, we use EfficientDet with stacked BiFPN structure [41] as a baseline. Table 7 demonstrates that SDPGO substantially outperforms baseline segmentation models by dynamically intensifying task-critical features via gradient-weighted distillation. Empirical results reveal that the proposed method generalizes remarkably well to other domains like object detection and segmentation without requiring architectural changes.

5 Analysis

In this section, we provide an in-depth analysis of SDPGO. We begin with a theoretical justification behind the efficacy of SDPGO. Then we perform a qualitative analysis to visualize the representations of the models. Finally, we explore the impact of different design choices through ablation studies, focusing on the effects of utilizing the gradient optimization.

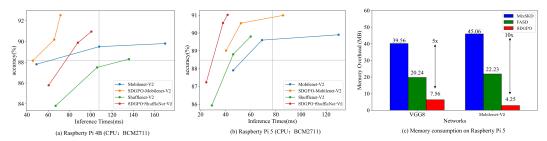


Figure 4: Inference time and memory consumption on ImageNet. (a) and (b) represent the model tested on Raspberry Pi 4B and Raspberry Pi 5, respectively. In (c), "Memory" indicates whether additional information needs to be stored during knowledge distillation.

Table 8: Top-1 Acc (%) and training time for each batch of data of competitive KD methods.

Method	Baseline	ReviewKD	CATKD	BYoT	PS-KD	DLB	FASD	Ours
Training Time	12	25	17	19	15	17	40	12
Top-1 Acc (%)	69.66	76.58	72.6	73.38	75.43	76.10	75.43	78.06

5.1 Theoretical Justification

First, we provide a theoretical foundation for the proposed Self-Distillation training via Proximal Gradient Optimization (SDPGO). The gradient of the total loss with respect to model parameters θ is:

$$\frac{\partial \mathcal{L}_{Total}}{\partial \theta} = \frac{\partial \mathcal{L}_{Task}}{\partial \theta} + \alpha \frac{\partial \mathcal{L}_{SIL}}{\partial \theta}.$$
 (9)

By dynamically adjusting α , SDPGO modulates the influence of self-distillation on parameter updates, ensuring stable training.

Stability. The sequential iterative learning module incorporates proximal gradient optimization to refine feature weights and stabilize training. Raw gradient-derived weights \hat{w}_k^l are processed via a proximal operator: $\hat{w}_k^l = \operatorname{Prox}_{\lambda}\left(w_k^l\right)$. λ enforces sparsity by suppressing non-critical features. This mitigates noise amplification during self-distillation. We add the proximal term $\|\theta_t - \theta_{t-1}\|_2^2$ to the loss to penalize abrupt parameter changes:

$$\mathcal{L}_{\text{Total}} = \mathcal{L}_{\text{Task}} + \alpha \mathcal{L}_{SIL} + \beta \|\theta_t - \theta_{t-1}\|_2^2.$$
 (10)

This ensures smooth convergence by aligning parameter updates with historical states.

Convergence Guarantee. To establish the convergence of SDPGO, we leverage the properties of proximal gradient descent under standard convexity and smoothness assumptions. Let the total loss $\mathcal{L}_{\text{Total}} = \mathcal{L}_{\text{Task}} + \alpha \mathcal{L}_{SIL}$ be L-smooth (i.e., $\|\nabla \mathcal{L}_{\text{Total}}\left(\theta_1\right) - \nabla \mathcal{L}_{\text{Total}}\left(\theta_2\right)\| \leq L \|\theta_1 - \theta_2\|$ for all θ_1, θ_2) and convex. The optimization proceeds via the following iterative steps: 1. Gradient Step: $\theta_{t+1/2} = \theta_t - \eta \nabla_{\theta} \mathcal{L}_{\text{Total}}\left(\theta_t\right)$. 2. Proximal Step: $\theta_{t+1} = \text{Prox}_{\eta\lambda}\left(\theta_{t+1/2}\right) = \arg\min_{\theta} \left(\frac{1}{2\eta} \|\theta - \theta_{t+1/2}\|^2 + \lambda \|\theta - \theta_{t-1}\|^2\right)$. If the learning rate satisfies $\eta \leq \frac{1}{L}$, the sequence $\{\theta_t\}$ generated by SDPGO converges to a global minimum.

5.2 Efficiency and Memory Consumption Analysis.

We measure the actual speedup of lightweight neural networks on two mobile devices, Raspberry Pi 4B and Raspberry Pi 5 in Figure 4. In Figure 4 (a) and (b), SDPGO achieves an average inference acceleration optimization of 23.46% on Shuffle-V2 and Mobile-V2 backbone. For Shuffle-V2 ($\times 0.5$) on the Raspberry Pi 4B, the proposed method reduces hardware inference time by 17.08% while improving the baseline by 2.38%. Meanwhile, the average inference latency of SDPGO on the Mobile-V2 model is 60.95 ms, and the improvements is up to 34.69% on ImageNet. In Figure 4 (c), SDPGO delivers significant memory compression, achieving approximately $3\times$ reduction compared to the state-of-the-art FASD method and $5\times$ reduction compared to MixSKD on VGG-8. Moreover, we compare the training time of various KD methods in Table 8. In particular, our method shows competitive performance by assessing the training time of each batch of data on CUB200.

Table 9: Performance comparison when a fraction of training data is noisy.

η	BYOT	PS-KD	DLB	FASD	Ours
0	72.39	72.51	74.07	75.42	75.57
10	65.41	62.75	67.56	64.25	71.56
20	58.05	57.56	65.17	60.51	68.53
30	53.25	51.71	54.45	57.27	61.58
40	42.22	41.26	51.25	55.39	59.81

Table 10: Performance comparison between SOTA SKD and SDPGO when a fraction of data present for training purpose.

\overline{F}	BYOT	PS-KD	DLB	FASD	Ours
25	49.57	48.75	51.28	60.34	65.29
50	58.25	56.23	59.56	68.62	70.07
75	63.43	60.58	68.12	70.47	71.58
100	72.39	72.51	74.07	75.42	<i>75.57</i>

5.3 Robustness Analysis under Noisy and Scarce Data

We experiment with our method for few-shot and noisy-label learning on CIFAR-100. We evaluate SDPGO against standard KD baselines under symmetric label noise (uniform corruption probability η). Experiments use ResNet-32 with $\eta \in 0\%$, 10%, 20%, 30%, and 40%. As summarized in Table 9, the proposed SDPGO proves to be the most resilient to symmetric label noise. At a noise level of η =40%, it attains a top accuracy of 59.81%, outperforming the strongest competitor, FASD (55.39%), by a clear margin. For few-shot learning, we train ResNet-32 on random subsets of CIFAR-100, using 25%, 50%, 75%, and 100% of the training data per class. The results in Table 10 validate the sample efficiency of SDPGO, which achieves the highest top-1 accuracy across all data fractions (e.g., 65.29% at 25%), markedly outperforming conventional SKD methods.

5.4 Integration Analysis

SDPGO's modular architecture enables seamless compatibility with diverse self-distillation (SKD) paradigms. We evaluate our pre-process on existing KD methods. These findings indicate that using SDPGO as a plugged-in regularization can enhance the generation of other approaches. As shown in Table 11, student models distilled by SDPGO benefits from our pre-process as well.

Table 11: The results of SDPGO combined with other advanced SKD techniques on CIFAR-100.

Model	VGG-13	ResNet-32	ResNet-110	ShuffleNet-V2	MobileNet-V2
KD	72.98	73.08	74.36	71.82	66.95
KD+Ours	73.53	74.32	75.11	72.72	67.24
DLB	75.45	74.07	78.18	75.51	69.47
DLB+Ours	75.67	75.19	79.28	77.56	69.82

More ablation studies can be found in Appendix C.

6 Conclusion

In this work, we introduce a framework called Self-Distillation training via Gradient Optimization (SDPGO). This framework leverages gradient information to prioritize features that significantly influence classification performance, allowing the model to concentrate on the most relevant aspects during training. Furthermore, it reduces computational costs while improving the model's ability to represent features. The dynamic weight adjustment scheme refines the gradient information into a variable weighting factor to evaluate the distillation knowledge. Our SDPGO method effectively enhances the student model's generalization capability by emphasizing key features linked to classification loss. Extensive experiments on five image classification benchmark datasets at different scales show that our framework outperforms recent state-of-the-art knowledge distillation techniques.

Acknowledgment

This work is partially supported by NSFC (Natural Science Foundation of China): 61602345,62002263; National Key Research and Development Plan: 2019YFB2101900; Key Project of Tianjin Natural Science Foundation: 25JCZDJC00250. TianKai Higher Education Innovation Park Enterprise R&D Special Project: 23YFZXYC00046. The Tianjin Science and Technology Program under Grant: 24YDTPJC00630, Tianjin Municipal Education Commission Research Program Project under No. 2022KJ012; Foundation of Key Laboratory of Big Data & Artificial Intelligence in Transportation (Beijing Jiaotong University), Ministry of Education (No.BATLAB202401).

References

- [1] Romero Adriana, Ballas Nicolas, K Samira Ebrahimi, Chassang Antoine, Gatta Carlo, and B Yoshua. Fitnets: Hints for thin deep nets. *Proc. ICLR*, 2, 2015.
- [2] Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D Lawrence, and Zhenwen Dai. Variational information distillation for knowledge transfer. In *CVPR*, pages 9163–9171, 2019.
- [3] Hanting Chen, Yunhe Wang, Chang Xu, Chao Xu, and Dacheng Tao. Learning student networks via feature embedding. *IEEE Transactions on Neural Networks and Learning Systems*, 32(1):25–35, 2020.
- [4] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge review. In *CVPR*, pages 5008–5017, 2021.
- [5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3213–3223, 2016.
- [6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *CVPR*, pages 248–255. Ieee, 2009.
- [7] Qianggang Ding, Sifan Wu, Tao Dai, Hao Sun, Jiadong Guo, Zhang-Hua Fu, and Shutao Xia. Knowledge refinery: Learning from decoupled label. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 7228–7235, 2021.
- [8] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
- [9] Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar. Born again neural networks. In *ICML*, pages 1607–1616. PMLR, 2018.
- [10] Jianping Gou, Xiangshuo Xiong, Baosheng Yu, Lan Du, Yibing Zhan, and Dacheng Tao. Multi-target knowledge distillation via student self-reflection. *International Journal of Computer Vision*, 131(7):1857–1874, 2023.
- [11] Yanming Guo, Yu Liu, Theodoros Georgiou, and Michael S Lew. A review of semantic segmentation using deep neural networks. *International journal of multimedia information retrieval*, 7:87–93, 2018.
- [12] Ziyao Guo, Haonan Yan, Hui Li, and Xiaodong Lin. Class attention transfer based knowledge distillation. In CVPR, pages 11868–11877, 2023.
- [13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *CVPR*, pages 770–778, 2016.
- [14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *In NeurIPS Workshop*, 2015.
- [15] Trung-Hieu Hoang, Hai-Dang Nguyen, Viet-Anh Nguyen, Thanh-An Nguyen, Vinh-Tiep Nguyen, and Minh-Triet Tran. Enhancing endoscopic image classification with symptom localization and data augmentation. In *Proceedings of the 27th ACM International Conference on Multimedia*, pages 2578–2582, 2019.
- [16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. *arXiv preprint arXiv:1704.04861*, 2017.
- [17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4700–4708, 2017.

- [18] Mingi Ji, Seungjae Shin, Seunghyun Hwang, Gibeom Park, and Il-Chul Moon. Refine myself by teaching myself: Feature refinement via self-knowledge distillation. In CVPR, pages 10664– 10673, 2021.
- [19] Hai Jin, Dongshan Bai, Dezhong Yao, Yutong Dai, Lin Gu, Chen Yu, and Lichao Sun. Personalized edge intelligence via federated self-knowledge distillation. *IEEE Transactions on Parallel and Distributed Systems*, 34(2):567–580, 2022.
- [20] Kyungyul Kim, ByeongMoon Ji, Doyoung Yoon, and Sangheum Hwang. Self-knowledge distillation with progressive refinement of targets. In *ICCV*, pages 6567–6576, 2021.
- [21] Nikos Komodakis and Sergey Zagoruyko. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In *ICLR*, 2017.
- [22] Tao Kong, Fuchun Sun, Huaping Liu, Yuning Jiang, Lei Li, and Jianbo Shi. Foveabox: Beyound anchor-based object detection. *IEEE Transactions on Image Processing*, 29:7389–7398, 2020.
- [23] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained categorization. In *ICCV workshops*, pages 554–561, 2013.
- [24] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. *Handbook of Systemic Autoimmune Diseases*, 1(4), 2009.
- [25] Qizhen Lan and Qing Tian. Gradient-guided knowledge distillation for object detectors. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 424–433, 2024.
- [26] Lujun Li, Peijie Dong, Anggeng Li, Zimian Wei, and Ya Yang. Kd-zero: Evolving knowledge distiller for any teacher-student pairs. Advances in Neural Information Processing Systems, 36:69490–69504, 2023.
- [27] Lujun Li and Zhe Jin. Shadow knowledge distillation: Bridging offline and online knowledge transfer. *Advances in Neural Information Processing Systems*, 35:635–649, 2022.
- [28] Shaojie Li, Mingbao Lin, Yan Wang, Yongjian Wu, Yonghong Tian, Ling Shao, and Rongrong Ji. Distilling a powerful student model via online knowledge distillation. *IEEE transactions on neural networks and learning systems*, 34(11):8743–8752, 2022.
- [29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13*, pages 740–755. Springer, 2014.
- [30] Yuang Liu, Jun Chen, and Yong Liu. Dccd: Reducing neural network redundancy via distillation. *IEEE Transactions on Neural Networks and Learning Systems*, 2023.
- [31] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 10012–10022, 2021.
- [32] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In *Proceedings of the European conference on computer vision (ECCV)*, pages 116–131, 2018.
- [33] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In *CVPR*, pages 3967–3976, 2019.
- [34] Biao Qian, Yang Wang, Hongzhi Yin, Richang Hong, and Meng Wang. Switchable online knowledge distillation. In *European Conference on Computer Vision*, pages 449–466. Springer, 2022.
- [35] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. *Advances in neural information processing systems*, 28, 2015.

- [36] Yiqing Shen, Liwu Xu, Yuzhe Yang, Yaqian Li, and Yandong Guo. Self-distillation from the last mini-batch for consistency regularization. In *CVPR*, pages 11943–11952, 2022.
- [37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.
- [38] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for semantic segmentation. In *ICCV*, pages 7262–7272, 2021.
- [39] Tongtong Su, Qiyu Liang, Jinsong Zhang, Zhaoyang Yu, Gang Wang, and Xiaoguang Liu. Attention-based feature interaction for efficient online knowledge distillation. In 2021 IEEE International Conference on Data Mining (ICDM), pages 579–588. IEEE, 2021.
- [40] Tongtong Su, Qiyu Liang, Jinsong Zhang, Zhaoyang Yu, Ziyue Xu, Gang Wang, and Xiaoguang Liu. Deep cross-layer collaborative learning network for online knowledge distillation. *IEEE Transactions on Circuits and Systems for Video Technology*, 2022.
- [41] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection. In CVPR, pages 10781–10790, 2020.
- [42] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. *arXiv* preprint arXiv:1910.10699, 2019.
- [43] Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In *ICCV*, pages 1365–1374, 2019.
- [44] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-200-2011 dataset. 2011.
- [45] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang. Residual attention network for image classification. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3156–3164, 2017.
- [46] Guile Wu and Shaogang Gong. Peer collaborative learning for online knowledge distillation. In Proceedings of the AAAI Conference on artificial intelligence, volume 35, pages 10302–10310, 2021.
- [47] Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change Loy. Knowledge distillation meets self-supervision. In *ECCV*, pages 588–604. Springer, 2020.
- [48] Kai Xu, Lichun Wang, Shuang Li, Jianjia Xin, and Baocai Yin. Self-distillation with augmentation in feature space. IEEE Transactions on Circuits and Systems for Video Technology, 2024.
- [49] Quanzheng Xu, Liyu Liu, and Bing Ji. Knowledge distillation guided by multiple homogeneous teachers. *Information Sciences*, 607:230–243, 2022.
- [50] Chenglin Yang, Lingxi Xie, Chi Su, and Alan L Yuille. Snapshot distillation: Teacher-student optimization in one generation. In *CVPR*, pages 2859–2868, 2019.
- [51] Chuanguang Yang, Zhulin An, Helong Zhou, Linhang Cai, Xiang Zhi, Jiwen Wu, Yongjun Xu, and Qian Zhang. Mixskd: Self-knowledge distillation from mixup for image recognition. In *European Conference on Computer Vision*, pages 534–551. Springer, 2022.
- [52] Chuanguang Yang, Zhulin An, Helong Zhou, Fuzhen Zhuang, Yongjun Xu, and Qian Zhang. Online knowledge distillation via mutual contrastive learning for visual recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(8):10212–10227, 2023.
- [53] Yang Yang, Chao Wang, Lei Gong, Min Wu, Zhenghua Chen, Yingxue Gao, Teng Wang, and Xuehai Zhou. Uncertainty-aware self-knowledge distillation. *IEEE Transactions on Circuits and Systems for Video Technology*, 2024.
- [54] Zhendong Yang, Ailing Zeng, Zhe Li, Tianke Zhang, Chun Yuan, and Yu Li. From knowledge distillation to self-knowledge distillation: A unified approach with normalized loss and customized soft labels. In *ICCV*, pages 17185–17194, 2023.

- [55] Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo Shin. Regularizing class-wise predictions via self-knowledge distillation. In *CVPR*, pages 13876–13885, 2020.
- [56] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. BMVC, 2016.
- [57] Linfeng Zhang, Chenglong Bao, and Kaisheng Ma. Self-distillation: Towards efficient and compact neural networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(8):4388–4403, 2021.
- [58] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your own teacher: Improve the performance of convolutional neural networks via self distillation. In *ICCV*, pages 3713–3722, 2019.
- [59] Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4320–4328, 2018.
- [60] Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation. In CVPR, pages 11953–11962, 2022.
- [61] Lei Zhao, Wing WY Ng, Jianjun Zhang, and Xiguang Wu. An innovative multisource teacher collaborative framework for self-knowledge distillation. *IEEE Transactions on Neural Networks and Learning Systems*, 2025.
- [62] Qi Zhao, Shuchang Lyu, Lijiang Chen, Binghao Liu, Ting-Bing Xu, Guangliang Cheng, and Wenquan Feng. Learn by oneself: Exploiting weight-sharing potential in knowledge distillation guided ensemble network. *IEEE Transactions on Circuits and Systems for Video Technology*, 33(11):6661–6678, 2023.
- [63] Yujie Zheng, Chong Wang, Chenchen Tao, Sunqi Lin, Jiangbo Qian, and Jiafei Wu. Restructuring the teacher and student in self-distillation. *IEEE Transactions on Image Processing*, 2024.
- [64] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic understanding of scenes through the ade20k dataset. *International Journal of Computer Vision*, 127(3):302–321, 2019.
- [65] Yichen Zhu and Yi Wang. Student customized knowledge distillation: Bridging the gap between student and teacher. In *ICCV*, pages 5057–5066, 2021.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- · Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Yes, we have ensured that the main claims in the abstract and introduction accurately reflect the paper's contributions and scope.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, we have discussed the limitations and future work in Section 6. Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: There is no theoretical result in this paper that requires a full set of assumptions and correct proof.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we have fully disclosed the information needed to reproduce the main experimental results of the paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We will provide the source code as part of the supplementary materials.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We specify the training and test details in Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: Since our experiments don't have randomized components (estimators have a closed-form solution), we do not report error bars.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Our experiments are smaller scale and all experiments run on four GPU 3090. Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We uphold the code of ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: Or work does not have such a societal impact that requires discussion in the paper.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: To the best of our knowledge, our paper poses no such risks. We use publicly available code and data for our work.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have cited all fou datasets; CIFAR-100 [24], ImageNet [6], Stanford Cars (Cars196) [23], and CUB-200-2011 (CUB200) [44]. Their licenses are not mentioned on paperswithcode.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We will provide the source code as part of the supplementary materials.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve any crowdsourcing experiments nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our paper does not describe the usage of LLMs.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Supplement to Method

A.1 Datasets

The MS-COCO dataset [29] has been established as a large-scale benchmark and a de facto standard for advancing the state of the art in object detection and instance segmentation. Its curated collection consists of 118,000 images for model training and 5,000 images for validation. Each image is meticulously annotated with precise bounding boxes and per-instance segmentation masks, encompassing a diverse set of 80 commonly encountered object categories.

The ADE20K dataset [64] serves as a benchmark for semantic segmentation and scene parsing, comprising 20,210 training, 2,000 validation, and 3,352 testing images. It is characterized by its fine-grained annotation of 150 object and "stuff" categories, presenting a challenging testbed for holistic scene understanding models due to its complex scenes and dense, pixel-level labels.

The Cityscapes dataset [5] is a benchmark for urban scene understanding, particularly in autonomous driving. It comprises 5,000 high-resolution images with fine, pixel-level annotations and 20,000 images with coarse annotations. The finely annotated set is divided into 2,975 training, 500 validation, and 1,525 testing images. While annotations span 30 classes, 19 are used for standard evaluation. This two-tiered annotation structure supports both precise model training and large-scale pre-training, establishing Cityscapes as a vital resource for semantic segmentation in complex urban environments.

A.2 Evaluation Metrics

For multi-class classification, we use top-1 and top-5 acc as standard performance measures. Meanwhile, the complexity is evaluated by the sum of floating point operations (FLOPs) in one forward on a fixed input size. To evaluate the segmentation accuracy, we adopt the mean Intersection-over-Union (mIoU) as the primary performance metric. This provides an aggregate measure of segmentation accuracy across all classes.

B Experimental Setups

We evaluate SDPGO on the PASCAL VOC dataset using Faster-RCNN [35] object detection framework. The backbone architecture utilized in this framework is EfficientDet-d0/d1 [41]. For these tasks, we employ the ADE20K [64] and Cityscapes [5] datasets and use ResNet-50 as the segmentation model. we adhere to the training protocol and hyperparameter settings established in [53] to ensure a fair and reproducible comparison. All experiments are conducted on 8 × NVIDIA Tesla-A100 GPUs.

C More Experiments

C.1 Efficiency and Memory Consumption

In this section, we conduct experiments on the efficiency and memory consumption on CUB200, as shown in Table 12. The flops and memory are selected as an evaluation metric to validate the proposed method. T represents introducing additional overhead, while F represents not introduce additional overhead. Resnet-18 is selected as the backbone network. Compared with other state-of-the-art approaches, our proposed SDPGO method achieves the highest top-1 accuracy of 78.06% while maintaining minimal computational overhead during both inference and training stages. Specifically, during inference, all methods utilize the same number of parameters (11.3M) and Flops (1.82G), but SDPGO outperforms others in accuracy by a significant margin. For instance, methods like BYOT, EFWSNet, PS-KD, FRSKD, and MiSKD yield lower accuracies ranging from 71.11% to 73.38%, despite similar inference costs.

In the training phase, SDPGO requires only 1.82G Flops and does not incur additional memory consumption (denoted by "F"), demonstrating high efficiency. In contrast, several methods introduce substantial computational burdens. For example, MiSKD increases Flops to 7.30G and uses extra memory ("T"), while BYOT and PS-KD also require higher Flops (5.75G and 3.65G, respectively) and memory overhead. Although FASD and DLB maintain low Flops (1.84G and 1.82G) and avoid memory issues, their accuracies (75.43% and 76.10%) are lower than SDPGO. This highlights

that SDPGO effectively balances accuracy and efficiency, avoiding the need for extensive data augmentations or auxiliary components that escalate training costs, as seen in methods like MiSKD or BYOT. Thus, SDPGO provides a superior solution for resource-constrained scenarios without compromising performance.

Table 12: Comparison Of Efficiency and Memory Consumption on CUB-200.

Method	In	ference S	Stage	Training Stage		
Method	Params	Flops	Top-1 acc	Params	Flops	Memory
BYOT [58]	11.3M	1.82G	73.38	11.3M	5.75G	T
EEWSNet [62]	11.3M	1.82G	72.97	11.3M	3.64G	F
PS-KD [20]	11.3M	1.82G	72.65	11.3M	3.65G	T
FRSKD [18]	11.3M	1.82G	73.14	11.3M	3.05G	F
DLB [36]	11.3M	1.82G	76.10	11.3M	1.82G	F
MiSKD [51]	11.3M	1.82G	71.11	11.3M	7.30G	T
FASD [48]	11.3M	1.82G	75.43	11.3M	1.84G	F
SDPGO	11.3M	1.82G	78.06	11.3M	1.82G	F

C.2 More Ablation Studies

Ablation study on Hyper-parameter λ . In this section, we compare hard and soft thresholds on CUB200. Our method still shows competitive performance when using adaptive threshold strategy. As shown in the Table 13, the conventional knowledge distillation (KD) baseline ("N/A") achieves 71.74% and 71.82% on ResNet-32 and ShuffleNet-V2, respectively. In contrast, both our fixed threshold and adaptive threshold strategies bring substantial improvements. Specifically, the fixed threshold version attains 75.57% with ResNet-32 and 77.29% with ShuffleNet-V2, while the adaptive threshold further boosts performance to 75.78% and 77.63%, respectively. Moreover, the adaptive threshold strategy, despite its simplicity, consistently outperforms the fixed variant across both architectures. This validates the effectiveness and architectural flexibility of our proposed thresholding approach in knowledge distillation.

Ablation study on loss function changes of SDPGO. The impact of different loss functions on our method is quantitatively evaluated on CIFAR-100, with results detailed in Table 14. The core mechanism of SDPGO, dynamic feature weighting via proximal gradients, depends solely on gradient amplitudes and not on the semantics of the loss function. We tested SDPGO with three distinct losses on CIFAR-100. Whether \mathcal{L}_{Task} is cross entropy or focal loss, $|\nabla_{\theta}\mathcal{L}|$ indicates features critically impacting task performance. As shown in Table 14, the top-1 acc of SDPGO obtain the performance gain compared with the baseline when the the loss function changes. Specifically, When the standard cross-entropy loss is employed, SDPGO achieves a top-1 accuracy of 77.29%, significantly outperforming the corresponding baseline of 71.82%. This demonstrates a substantial performance gain of 5.47% attributable to our proposed framework under the conventional loss setting. In contrast, when utilizing Focal Loss, the performance of both the baseline and SDPGO decreases. The baseline drops to 69.23%, and SDPGO attains 72.36%, resulting in a narrower margin of improvement (3.13%).

Table 13: Performance of the SDPGO method using hard/soft thresholds. 'N/A' denotes the result of the conventional KD.

Method	ResNet-32	ShuffleNet-V2
N/A	71.74	71.82
Fixed	75.57	77.29
Adaptive	75.78	77.63

Table 14: Different loss function with accuracy on CIFAR-100.

Loss type	method	Top-1 acc
Cross entropy	Baseline	71.82
	SDPGO	77.29
Focal loss	Baseline	69.23
	SDPGO	72.36