Multi-Modal Large Language Model Enables Protein Function Prediction
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Abstract

Predicting the functions of proteins can greatly
accelerate biological discovery and applications,
where deep learning methods have recently shown
great potential. However, these methods predom-
inantly predict protein functions as discrete cat-
egories, which fails to capture the nuanced and
complex nature of protein functions. Furthermore,
existing methods require the development of sepa-
rate models for each prediction task, a process that
can be both resource-heavy and time-consuming.
Here, we present ProteinChat, a versatile, multi-
modal large language model that takes a protein’s
amino acid sequence as input and generates com-
prehensive narratives describing its function. Pro-
teinChat is trained using over 1,500,000 (protein,
prompt, answer) triplets curated from the Swiss-
Prot dataset, covering diverse functions. This
novel model can universally predict a wide range
of protein functions, all within a single, unified
framework. Furthermore, ProteinChat supports
interactive dialogues with human users, allowing
for iterative refinement of predictions and deeper
exploration of protein functions. Our experimen-
tal results, evaluated through both human expert
assessment and automated metrics, demonstrate
that ProteinChat markedly outperforms various
state-of-the-art baselines.
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1. Introduction

Understanding protein functions and properties is crucial
for advancing biological knowledge and driving innovations
in drug discovery, disease treatment, and synthetic biol-
ogy (Marcotte et al., 1999; Bepler & Berger, 2021; Watson
et al., 2023; Listov et al., 2024; Kortemme, 2024). Predict-
ing protein functions is a complex and challenging task due
to the inherent diversity and intricate nature of proteins (Lee
et al., 2007; Radivojac et al., 2013; Peled et al., 2016; Rives
et al., 2021; Bileschi et al., 2022). Recent advancements
in deep learning have demonstrated significant potential in
improving the accuracy and efficiency of protein function
prediction (Ryu et al., 2019; Wan & Jones, 2020; Gligori-
jevi¢etal., 2021; Unsal et al., 2022; Wang et al., 2022; Zhou
et al., 2022; Yu et al., 2023; Kulmanov et al., 2024). By
leveraging extensive datasets of protein sequences, struc-
tures, and annotated functions, deep learning models can
discern intricate patterns and relationships that often elude
traditional computational methods.

However, existing deep learning-based methods for protein
function prediction face significant limitations that prevent
them from fully capturing the diverse range of protein func-
tions. These methods typically predict protein functions as
discrete categories (Radivojac et al., 2013; Wan & Jones,
2020; Gligorijevi¢ et al., 2021; Zhou et al., 2022; Yu et al.,
2023; Kulmanov et al., 2024). This categorical formulation
oversimplifies the complex and nuanced nature of proteins,
which often perform multiple roles, engage in diverse inter-
actions, and participate in intricate biological pathways.

Additionally, existing methods necessitate the development
of specialized models for each prediction task, resulting
in a fragmented approach that lacks efficiency and scala-
bility (Peled et al., 2016; Gligorijevi¢ et al., 2021; Zhou
et al., 2022; Wang et al., 2022; Yu et al., 2023; Kulmanov
et al., 2024). The absence of a unified model capable of con-
currently handling various prediction tasks limits a holistic
understanding of protein functions. This fragmentation also
increases the complexity and resource requirements for re-
search and development, as developing, training, and main-
taining multiple specialized models is significantly more
challenging than managing a single, versatile model.

Large language models (LLMs) (Brown et al., 2020; Tou-
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vron et al., 2023; Zhu et al., 2024) hold significant potential
for addressing the limitations of current deep learning-based
protein function prediction methods. These LLM models
excel in generating high-quality text, making them well-
suited for describing complex protein functions through
comprehensive narratives. Furthermore, a single, pretrained
LLM can perform a wide array of prediction tasks using
task-specific user instructions or questions described in nat-
ural language (referred to as prompts) (Bubeck et al., 2023;
Achiam et al., 2023; Wang et al., 2024), eliminating the
necessity of training separate models for each task. Fur-
thermore, LLMs facilitate interactive dialogues with human
users (Chiang et al., 2023; Lee et al., 2023), enabling itera-
tive refinement of generated textual predictions.

We developed ProteinChat, a multi-modal LLM that inte-
grates two modalities - protein sequences and text. It takes
an amino acid sequence and a prompt as inputs, and gener-
ates a detailed textual prediction of the protein’s function.
Unlike traditional methods that predict protein functions
as discrete categories, ProteinChat generates coherent and
comprehensive texts to predict the multifaceted functions
of proteins, capturing the detailed roles, interactions, and
biological context of proteins in a manner akin to human
expert descriptions. Moreover, ProteinChat enables the use
of diverse prompts for various prediction tasks that cover a
wide range of protein functions and properties within this
single tool, thereby streamlining the whole protein func-
tion exploration process without requiring new model train-
ing or extensive maintenance. Significantly outperforming
current methods including GPT-4 (Achiam et al., 2023),
BLASTp (Camacho et al., 2009), ProtNLM (Gane et al.,
2024), and InstructProtein (Wang et al., 2024), ProteinChat
can make accurate predictions across a broad spectrum of
protein functions, which were evaluated using multiple met-
rics including assessments by human experts.

2. Method

ProteinChat accepts two types of inputs simultaneously: the
amino acid sequence of a protein and a prompt tailored for
easy, human-like dialogues with ProteinChat. For exam-
ple, when given the prompt “describe the functions of this
protein”, ProteinChat generates a detailed free-form text
describing the protein’s various functions (Fig. 2a). Be-
sides free-form prediction, ProteinChat can also predict
specific function categories. For example when prompted
with “What type of enzyme is this? Choose from [a list of
categories)”, ProteinChat chooses a specific answer from
the list (Fig. 2a).

ProteinChat consists of three key modules: a protein en-
coder, an LLM, and an adaptor that bridges the two (Fig. 1).
The protein encoder processes the amino acid sequence of
the input protein, generating a representation vector for each

amino acid, which captures the molecular characteristics
of that amino acid. The adaptor aligns these representa-
tions with the LLM by transforming them into a format that
is compatible with the LLM’s input. Once this alignment
is achieved, the LLM integrates the amino acid sequence
with the prompt, and then utilizes this combined input to
generate a textual prediction of the protein’s function. We
utilized xTrimoPGLM (Chen et al., 2025), a state-of-the-
art protein language model, as the protein encoder, and
Vicuna-13B (Chiang et al., 2023), fine-tuned from Llama-
2 (Touvron et al., 2023), as the LLM of ProteinChat.

To train the ProteinChat model, we assembled a comprehen-
sive dataset comprising (protein, prompt, answer) tripletts
sourced from the Swiss-Prot database (UniProtKB, 2024),
the expertly curated section of UniProt Knowledgebase
(UniProtKB) (Consortium, 2022). The dataset contains
approximately 1.5 million triplets from 567,467 proteins. In
each triplet, the protein and prompt serve as inputs to the
ProteinChat model, while the answer represents the desired
output of ProteinChat. The answer can be either a detailed
free-form text describing protein functions or a UniProtKB
keyword representing a specific function category. This
dataset comprehensively encompasses a diverse taxonomy
of proteins and their various functions (Fig. 2b).

For the pretrained LLM (Vicuna-13B), we applied Low-
Rank Adaptation (LoRA) (Hu et al., 2022) for fine-tuning.
Specifically, a low-rank update matrix was added to each pre-
trained weight matrix. During fine-tuning, only the low-rank
matrix was updated, while the original pretrained weight
matrices remain fixed. For the pretrained protein encoder
(xTrimoPGLM), full fine-tuning was utilized: all the pre-
trained weights were updated. The adaptor was trained from
scratch. The trainable weights were optimized by mini-
mizing the negative log-likelihood loss between the input
data (proteins and prompts) and the corresponding output
answers. Further details on the training of ProteinChat are
provided in Section A.

3. Results

We evaluate our model’s performance on two types of tasks
— free-form protein function prediction (Section 3.1) and dis-
crete function-category prediction (Section 3.2). Additional
experimental results are provided in Appendix C.

3.1. ProteinChat achieved strong performance in
free-form protein function prediction

Using the prompt “please describe the function of this pro-
tein”, ProteinChat generated free-form text predictions for
the functions of 700 test proteins from Swiss-Prot. These
proteins were selected to ensure low sequence similarity
with the training data, thereby mitigating the risk of in-
formation leakage and enabling evaluation of the model’s
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Figure 1: Model architecture of ProteinChat. It takes the amino acid sequence of a protein and a prompt as inputs, then
generates a prediction in natural language. ProteinChat consists of a protein encoder that learns representation vectors for
amino acids (AAs), an adaptor that transforms these representations into a format compatible with LLMs, and an LLM that
generates the prediction based on the AAs’ representations and the prompt.

ability to generalize to a diverse set of proteins deposited
in Swiss-Prot across different time periods (Appendix A.1).
The generated textual predictions offer more specific details
about protein functions compared to discrete categories like
Enzyme Commission (EC) numbers (Yu et al., 2023) and
Gene Ontology terms (Ashburner et al., 2000; Consortium,
2019). As mentioned before, Swiss-Prot includes a textual
description of each protein’s function, which was used as
ground truth in our evaluation.

We compared ProteinChat with two LLM-based models:
GPT-4 and InstructProtein (Wang et al., 2024). GPT-4
is a flagship general-purpose large language model. In-
structProtein was pretrained on protein sequences from
UniRef100 (Suzek et al., 2015) and PubMed abstracts us-
ing the OPT-1.3B model (Zhang et al., 2022), and subse-
quently instruction-tuned on 5.2 million protein knowledge
graph triples. We also evaluated ProteinChat against two
similarity-based methods: BLASTp (Camacho et al., 2009)
and ProtNLM (Gane et al., 2024).

We conducted a human evaluation of the predictions gen-
erated by ProteinChat and baseline models. Three domain
experts specializing in proteins compared each prediction to
its corresponding ground truth from Swiss-Prot. The evalu-
ation considered two dimensions: correctness and complete-
ness. Correctness measures the accuracy of the predicted
function, analogous to precision — assessing whether the
information is biologically valid and specific to the target
protein. Completeness evaluates how comprehensively the
prediction captures the ground truth function, analogous to
recall — assessing whether the key functional elements are
included. A detailed description of the assessment rubric
can be found in Table 2.

ProteinChat achieved substantially higher scores in both cor-
rectness and completeness compared to all baseline meth-

ods (Figure 5a). For correctness, ProteinChat obtained an
average score of 1.41, substantially outperforming GPT-4
(0.19), BLASTp (0.86), ProtNLM (0.72), and InstructPro-
tein (0.45). For completeness, ProteinChat achieved an
average score of 1.33, again substantially outperforming
GPT-4 (0.16), BLASTp (0.71), ProtNLM (0.58), and In-
structProtein (0.39). The superior performance of Protein-
Chat is evident not only in average scores but also in the
distribution of evaluation scores. Compared to the baselines,
ProteinChat received a substantially higher proportion of
top scores (2). For correctness, 55.4% of ProteinChat’s pre-
dictions received a score of 2, markedly higher than GPT-4
(3.6%), BLASTp (27.3%), ProtNLM (19.7%), and Instruct-
Protein (12.0%). For completeness, 55.0% of ProteinChat’s
predictions received a score of 2, compared to 2.6% for
GPT-4, 23.1% for BLASTp, 15.6% for ProtNLM, and 9.8%
for InstructProtein.

In addition to human assessment, we employed widely used
automated metrics to evaluate the similarity between pre-
dicted and ground truth functions. These include ROUGE-
1, ROUGE-L (Lin, 2004), BLEU-1, BLEU-2 (Papineni
et al., 2002), METEOR (Banerjee & Lavie, 2005), and Sim-
CSE (Gao et al., 2021). ROUGE-1 measures unigram (word-
level) overlap between predicted and reference texts, while
ROUGE-L evaluates the longest common subsequence to
capture sentence-level structural similarity. BLEU-n mea-
sures lexical similarity by comparing n-grams between the
prediction and reference. METEOR computes a weighted
harmonic mean of unigram precision and recall, incorpo-
rating synonymy and word order, and applies a penalty for
fragmented alignments. SimCSE assesses semantic similar-
ity by comparing the contextual embeddings of texts. All
metrics produce scores where higher values indicate better
alignment between prediction and ground truth. ROUGE,
BLEU, and METEOR scores range from O to 1, while Sim-
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CSE scores range from —1 to 1.

ProteinChat outperformed all five baseline methods across
ROUGE, BLEU, METEOR, and SimCSE metrics (Fig. 5b).
For example, it achieved a ROUGE-1 score of 0.25, com-
pared to 0.14, 0.21, 0.18, and 0.11 for GPT-4, BLASTp,
ProtNLM, and InstructProtein, respectively. Similarly, Pro-
teinChat achieved a SimCSE score of 0.64, outperforming
the baselines with scores of 0.42, 0.60, 0.50, and 0.56, re-
spectively. For METEOR, ProteinChat attained a score of
0.16, compared to 0.10, 0.14, 0.13, and 0.11, respectively.
These results further demonstrate the superior ability of Pro-
teinChat to generate free-form protein function predictions.

Moreover, we leveraged a large language model to evaluate
the free-form predictions. Specifically, given a free-form
prediction and its corresponding ground truth annotation,
we prompted the Claude 3.5 Sonnet (Anthropic, 2024) LLM
to assign scores assessing how well the prediction matched
the ground truth. The scoring rubric was identical to that
used in the human evaluation. ProteinChat substantially out-
performed all baseline methods, achieving an average cor-
rectness score of 0.75 and an average completeness score of
0.81 (Fig. 5¢). These scores significantly exceeded those of
the baselines: GPT-4 (0.04 correctness, 0.03 completeness),
BLASTp (0.63 correctness, 0.73 completeness), ProtNLM
(0.58 correctness, 0.65 completeness), and InstructProtein
(0.12 correctness, 0.15 completeness). The Spearman cor-
relation between Claude’s evaluation scores and human
evaluation scores was 0.88, indicating strong rank-level
agreement. The results from human expert assessments and
automated evaluations clearly demonstrates that Protein-
Chat significantly outperforms all baselines. This superior
performance is primarily due to ProteinChat’s enhanced
ability in interpreting a fundamental language of biology,
i.e., protein sequences (translated from DNA sequences),
and the specialized training enables ProteinChat to offer pre-
cise annotations, identify functional domains, and predict
potential interactions with high accuracy.

3.2. ProteinChat excels in predicting discrete function
categories with high accuracy

While ProteinChat is designed as a general-purpose tool for
generating detailed and nuanced descriptions of a protein’s
functions, it can also be customized for specific protein
function prediction tasks where functions are categorized
discretely. We applied ProteinChat to five specific protein
function/property prediction tasks curated from UniPro-
tKB, including catalytic function prediction, ligand bind-
ing function prediction, coenzyme-enzyme interaction pre-
diction, biological process prediction, and cellular com-
ponent compartmentalization prediction. These tasks en-
compass a broad spectrum of protein functions/properties
(Appendix A.1).

To accomplish these tasks, we designed task-specific
prompts (Appendix A.6) for ProteinChat, following a sim-
ilar style. We employed accuracy, macro F1 score, and
weighted F1 score as evaluation metrics, with F1 scores
specifically accounting for both false positives and false
negatives. We compared ProteinChat with InstructProtein
and GPT-4. We also developed specialized classifier mod-
els, each designed to perform a specific prediction task, to
evaluate how well ProteinChat, as a more general-purpose
model, compares to these task-specific models.

Across all five prediction tasks, ProteinChat demonstrated
near-optimal performance (Fig. 7a), achieving accuracy,
macro F1, and weighted F1 scores between 0.94 and 0.99,
and significantly outperforming InstructProtein and GPT-4.
ProteinChat either outperformed or achieved comparable
results of specialized classifiers, which is particularly re-
markable given that ProteinChat employs a single model to
handle all these prediction tasks, whereas the specialized
classifiers are individually trained for each different task.

Next, we utilized ProteinChat to predict protein func-
tions/properties represented by discrete Gene Ontology
(GO) (Ashburner et al., 2000) categories and compared
its performance against leading GO classifiers, including
DeepGOPlus (Kulmanov & Hoehndorf, 2020) and NetGO
3.0 (Wang et al., 2023). Gene Ontology (GO) is a database
that provides a hierarchical structure of categories widely
used for annotating protein functions/properties. Protein-
Chat outperformed DeepGOPIlus and NetGO 3.0 in predict-
ing catalytic functions, biological processes, and cellular
components (Fig. 7b). For instance, in predicting catalytic
function, ProteinChat achieved a macro F1 score of 0.97,
surpassing DeepGOPlus and NetGO, which obtained scores
of 0.79 and 0.92, respectively. ProteinChat outperforms
both DeepGOPlus and NetGO due to its ability in retaining
and processing the entire sequence of amino acid represen-
tations using a protein language model. This ability allows
ProteinChat to capture intricate relationships, positional
context, and long-range dependencies within the sequence,
which are essential for accurate protein function/properties
prediction.

4. Conclusion

In conclusion, we present ProteinChat, a versatile tool for
predicting protein functions represented in text using a multi-
modal large language model. ProteinChat provides nuanced
and in-depth predictions, surpassing both general-purpose
LLMs and task-specific classifiers. Its ability in handling
various prediction tasks within a single framework and fa-
cilitating interactive predictions allows for flexible, compre-
hensive, and in-depth analysis of protein functions. More
in-indepth discussion can be found in Section D.
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Software and Data

All data used in this study are available at
https://drive.google.com/file/d/
10u2222905sAV1 jblclVUH78Q4AQLYRI1 /view?
usp=sharing. The source code of this work is
available at https://github.com/mignonjia/
ProteinChat.

Impact Statement

This paper presents work whose goal is to advance the field
of protein understanding using large language model and
protein language model. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Method and experiment details
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Figure 2: ProteinChat is a multi-modal LLM capable of predicting protein functions represented either in free-form
text or as specific categories. a, ProteinChat enables versatile prediction of protein functions, allowing users to submit
various requests in flexible natural language (known as prompts). By using task-specific prompts, ProteinChat can perform a
variety of prediction tasks within a single framework without changing model parameters. ProteinChat facilitates interactive
dialogues with users by retaining the conversation history, including prompts and corresponding predictions, allowing for
in-depth analysis of a specific protein over multiple interactions. b, An extensive dataset, comprising proteins from various
taxonomic groups, was constructed to train ProteinChat. In the left pie chart, the inner ring represents superkingdoms, while
the outer ring represents kingdoms. ProteinChat was trained to make two types of predictions: one generates free-form
textual descriptions, and the other predicts specific function categories. The pie chart on the right displays the relative
proportions of the training data devoted to these two types.

A.1. Data preprocessing

We collected the amino acid sequences of proteins and their functions from Swiss-Prot (UniProtKB, 2024), the reviewed
subset of proteins in UniProtKB (Consortium, 2022). The “Function” section in UniProtKB provides a textual description
of a protein’s functions. Additionally, the “Keywords” section offers a controlled vocabulary with a hierarchical structure
that describes various aspects of protein functions, including activities, locations, interactions, and more. The Swiss-Prot
database within UniProtKB, which was manually curated by experts, serves as a high-quality reference for protein functions.
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Figure 3: An illustration of the process used to curate (protein sequence, prompt, answer) triplets from the Swiss-Prot
database. The percentages represent the proportion of protein entries in Swiss-Prot that include keywords corresponding to
the listed categories.
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The data used in this study was based on the UniProt 2023_02 version, released on May 2nd, 2023!. We downloaded the
metadata in JSON format and extracted the protein functions by filtering entries where comment Type is set to “Function”.
We excluded all functions that contain the molecule field, indicating that the function pertains to a subsequence of amino
acids after clipping rather than the entire protein sequence. This exclusion is necessary because the protein can serve as a
precursor to various chains or peptides. UniProtKB specifies the role of each peptide separately under distinct molecule?
entries. As a result, functions for 2,049 proteins were excluded, reducing the total to 567,467 proteins.

For the free-form prediction task, we selected 700 proteins to form the test set. For each discrete classification task, 1,000
proteins were randomly selected as the test set. The remaining proteins were used for model training. Among the 700
proteins used for evaluating free-form prediction, 350 were deposited in UniProtKB-SwissProt prior to February 2023, and
350 were deposited after February 2023. No sequences added after this date were included in the training set. To ensure
sufficient sequence diversity and minimize potential overlap with the training data, we applied the following criteria for test
set selection:

* BLASTYp query coverage < 0.4. To limit sequence similarity between the test and training sets, we applied a strict
threshold on BLASTp query coverage. For a given test protein, we computed the BLASTp alignment against the
training set and defined query coverage as the proportion of the test sequence that aligns to any training sequence in the
highest-scoring alignment segment. A query coverage of 0.4 means that no more than 40% of the test sequence can
be aligned to a sequence seen during training. This constraint ensures that the majority of the test sequence remains
unseen during training, thereby reducing the potential for the model to make predictions based on memorized sequence
fragments. By enforcing this low-coverage threshold, we encourage the evaluation to reflect true generalization to
novel or weakly homologous proteins, rather than pattern recall from closely related sequences.

 For sequences deposited prior to February 2023, we explicitly excluded from the test set any entries that also appear in
the training set.

These criteria mitigate the risk of data leakage and help ensure that the test set includes a representative mix of both
previously known and more recently annotated proteins. In the pre-February 2023 subset, the average query coverage is
0.1245 and the average percentage of identical matches is 0.1865. In the post-February 2023 subset, these values are 0.0083
and 0.3468, respectively. Overall, the combined test set has an average query coverage of 0.0649 and an average sequence
identity of 0.2667. According to the sequence similarity guidelines outlined in (Rost, 1999), these values reflect a low degree
of similarity between the training and test sequences, thereby substantially reducing the risk of information leakage. The
original training set was further split into a new training set and a validation set in a 9:1 ratio.

From the training proteins and their associated textual descriptions of functions, we curated the training dataset for
ProteinChat (Figure 3). For each training protein p, we created a training example represented as a triplet (protein’s amino
acid sequence, prompt, answer). The amino acid sequence and the prompt serve as the inputs to ProteinChat, while the
answer is the expected output. Specifically, the amino acid sequence of p serves as the first element in the triplet, the prompt
“Describe the function of this protein” forms the second element, and the textual description of p’s function acts as the
third element. To enhance ProteinChat’s robustness against linguistic variations, we also employed other semantically
equivalent prompts during the training process (Zhu et al., 2024). Additionally, we generated training triplets based on
UniProtKB keywords, which are organized into a hierarchy. There are 10 first-level keywords, and we selected 4 that
are relevant to protein functions, including molecular functions, binding properties, biological processes, and cellular
localization. Furthermore, we chose 29 second-level keywords associated with over 10,000 proteins. These keywords
cover 84% of all proteins in Swiss-Prot. Table 1 was used to curate training triplets from keywords. For a given protein p
associated with a keyword k, the corresponding prompt ¢ for k was identified from this table. For example, if the keyword
is KW-0808 (“Transferase”), the corresponding prompt is “What type of enzyme is this? Choose one from the following
options: hydrolase, oxidoreductase, lyase, transferase, ligase, isomerase, and translocase.” This forms the triplet (p, ¢, k). On
average, 2.7 triplets were curated per protein. The final training dataset for ProteinChat was formed by combining triplets
curated from textual descriptions of functions and keywords. Similarly, a validation set of triplets was curated from the
validation proteins.

"https://www.uniprot.org/release-notes/2023-05-03-release
Zhttps://www.uniprot.org/help/function
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A.2. ProteinChat model

ProteinChat employs xTrimoPGLM-1B (Chen et al., 2025) as the protein sequence encoder and Vicuna-13B (Chiang et al.,
2023) as the large language model. The xTrimoPGLM-1B model comprises 24 Transformer (Vaswani et al., 2017) layers,
32 attention heads, and an embedding dimension of 2048. It was pretrained on the Uniref90 (Suzek et al., 2015) and
ColabFoldDB (Mirdita et al., 2022) datasets using two strategies: masked language modeling (MLM) (Devlin et al., 2019)
and general language modeling (GLM) (Du et al., 2022). The MLM strategy enhances xXTrimoPGLM-1B’s understanding
of protein sequences, while the GLM strategy improves its generative capabilities. Vicuna-13B, fine-tuned from Llama2-
13B (Touvron et al., 2023), retains the same architecture as Llama2-13B including 40 Transformer layers, 40 attention heads,
and an embedding dimension of 5120. Vicuna-13B was trained by fine-tuning Llama2-13B on a dataset of 70K user-shared
dialogues collected from ShareGPT.com.

For an input protein x,,, we utilize the pretrained xTrimoPGLM-1B encoder g to generate a protein embedding g(x,,) of size
l x 2048, with [ to be the length of the amino acid sequence. A linear layer (i.e., adaptor) W is applied to map these protein
embeddings to the LLM input embedding space, resulting in a new embedding h,, = g(x,) x W of size | x 5120. This
embedding can be directly input into the LLM to represent the protein. To combine the protein embedding with the textual
prompt, we design the LLM Input and Response fields following the conversational format of Vicuna (Chiang et al., 2023):

¢ (LLM Input) Human: <Protein> ProteinHere </Protein>Prompt Assistant:

* (LLM Response) Answer

As previously mentioned, each training example consists of a (protein, prompt, answer) triplet. We replace the place-
holders Prompt and Answer with the corresponding elements from the triplet. All text in the LLM input, except for
ProteinHere, is referred to as the auxiliary prompt, including the special characters <, >, and /. We denote the tokenized
auxiliary prompt as X,,x. Next, we use the LLM to embed x,,, resulting in the auxiliary prompt embedding h,,,. After
obtaining this embedding, we replace ProteinHere with the protein embedding h,, generated by the adaptor and feed the
entire prompt into the LLM.

The model is trained using a language modeling task, where it learns to generate successive tokens by considering the
preceding context. During the training process, the main objective is to optimize the log-likelihood of these tokens. In
ProteinChat, only the Answer part is used to compute the loss. By explicitly adding an ending symbol to the answer, the
model is also trained to predict where to stop. Specifically, for a target answer x,, of length [, we compute the probability of
generating x, by:

l
p(xa ‘ X;mxaux) = HPG (X((;,Z) | Xanauxaxj(z)> 5 €))
i=0
where x,, is the protein sequence and X, is the auxiliary prompt in tokens. X, is the answer to be trained on. We use x,(li)

(

and x; ¥ to denote the i-th token and all tokens before the i-th one. 6 denotes the trainable model parameters.

A.3. Training details of ProteinChat

We used the Adam (Kingma & Ba, 2015) optimizer with 81 = 0.9, B2 = 0.999, and a weight decay of 0.05. We applied a
cosine learning rate decay with a peak learning rate of 1e-5 and a linear warm-up of 2000 steps. The minimum learning rate
was le-6. Due to the high memory consumption required for fine-tuning the encoder and LLM, we utilized a mini-batch size
of one per GPU and limited the protein length to a maximum of 600 residues. Notably, 87.1% of the proteins had sequence
lengths within this limit. For protein sequences longer than this limit, we truncated the excess length. We used 8 NVIDIA
A100 GPUs, with 4 accumulation steps, resulting in an effective batch size of 32. We trained the model for 210K steps. In
LoRA, we set the rank to 8, LoRA alpha to 16, and dropout rate to 0.05.

A.4. Evaluation metrics

We employed SimCSE (Gao et al., 2021) to assess the semantic similarity between the ground truth protein function
and the predicted function. SimCSE leverages a contrastive learning framework (Hadsell et al., 2006) and utilizes the
RoBERTa-base (Liu et al., 2019) model (denoted by fy) to generate sentence embeddings. The semantic similarity is
quantified by calculating the cosine similarity of these embeddings, with scores ranging from -1 to 1, where higher values
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signify greater semantic alignment. Specifically, let s and s’ represent the ground truth protein function and the predicted
function, respectively. The SimCSE score is computed as:

coSsim(fo(s), fo(s")),

where fy(s) and fy(s’) are the embeddings of s and s’ extracted by the RoOBERTa-base model fy. cosgn(+, ) denotes the
cosine similarity operation.

BLEU (Papineni et al., 2002) is computed using a set of modified n-gram precisions. Specifically,

N
BLEU = BP - exp <Z wy log pn) , 2

n=1

where p,, is the modified precision for n-gram, w,, > 0 and Zﬁ;l w, = 1. The brevity penalty (BP) is applied to penalize
short generated text. Let c be the length of the generated text and r be the length of the ground truth. BP is computed as

follows:
1 ifc>r

BP{exp(l—Z) ifcgr} )

The weighted F1 score is calculated by averaging the F1 score of all categories, weighted by the true instances (support) in
each category. The macro F1 score is computed as a simple arithmetic mean of the F1 scores across all categories, without
considering their support.

ROUGE-1 (Lin, 2004) evaluates the unigram (i.e., word-level) overlap between a candidate text C' and a set of reference
texts R. It is defined as the recall of overlapping unigrams:

ZTER ZwEr min (CountC (w), Count, (w))
Z’I‘ER Zwer Count, (’LU)

Here, Countc (w) denotes the number of times word w appears in the candidate text C, and Count,.(w) denotes the number
of times w appears in a reference » € R. The numerator sums the minimum unigram counts across candidate and reference
texts, while the denominator sums the total unigram counts in the references, yielding a recall-oriented measure.

ROUGE-1 = 4

ROUGE-L (Lin, 2004) captures sentence-level structure similarity by computing the length of the longest common
subsequence (LCS) between the candidate and reference sequences. Given a candidate sequence C' and a reference sequence
r, let LCS(C, r) be the length of their longest common subsequence. The precision P, recall R, and F-measure F' are

defined as:

_ LCS(C,n)

p_ R LCS(Cr) F:(1+ﬁ2)-P-R

cr R+p%-P
Here, |C| and |r| denote the lengths of the candidate and reference sequences, respectively. The parameter /3 (typically set to

1.2) balances the relative importance of recall and precision. The final ROUGE-L score is computed by taking the maximum
F-measure over all reference sequences for each candidate.

&)

METEOR (Metric for Evaluation of Translation with Explicit ORdering) (Banerjee & Lavie, 2005) evaluates the quality of
a candidate sentence by aligning it to reference sentences based on exact matches, stemmed matches, synonym matches,
and paraphrase matches. Once an alignment is established between the candidate and reference, METEOR computes
unigram-level precision and recall, followed by a harmonic mean that favors recall. Let m denote the number of mapped
unigrams between the candidate C' and reference R, |C| the number of unigrams in the candidate, and | R| the number of
unigrams in the reference. The precision P and recall R are computed as:

m m

P:@, RZ@ (6)

The harmonic mean F,, of precision and recall, weighted by a parameter « (typically set to 0.9), is given by:

PR
fo s Pra-a) R @
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To penalize alignments with many chunks (i.e., non-contiguous matched segments), a fragmentation penalty is applied. Let
ch be the number of such chunks. The penalty is defined as:

ch\’
Penalty =~ () ®)
m
where v and 6 are parameters (commonly v = 0.5, § = 3.0). The final METEOR score is:

METEOR = (1 — Penalty) - F, 9)

This formulation encourages alignments that are both accurate (high precision and recall) and fluent (low fragmentation),
making METEOR more sensitive to word order and synonymy compared to n-gram based metrics.

When using Claude 3.5 Sonnet to assess free-form predictions, we used the following prompt: “You are a biologist
specializing in protein functions. Evaluate the predicted function ‘[predicted function]” against the ground truth function
‘[ground truth function]’ in terms of correctness and completeness, using the following scoring scales...” The detailed scoring
scales are provided in Table 2.
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Figure 4: ProteinChat’s prediction accuracy for biological terms across varying frequencies.

A.5. Experimental details of baselines

To solicit function predictions from GPT-4 using the amino acid sequence of a protein, we used the following prompt: “Given
the sequence of a protein: [a string of amino acid letters such as MARYFRRRKFCRFTAEGVQEIDYKDIATLKNYITES-
GKIVPSRITGTRAKYQRQLARAIKRARYLSLLPYTDRHQ)], please describe the function of this protein.”

To obtain function predictions using BLASTp, we compared each query protein sequence against a database of protein
sequences from the training set, using an E-value threshold of 0.05 and the BLOSUMSG62 scoring matrix (Henikoff &
Henikoff, 1992). We ranked the BLASTp results in descending order of bit-score and selected the top hit as the predicted
match. The function annotation of this top match was then retrieved from the training set and used as the BLASTp-predicted
function.

To obtain function predictions using ProtNLM, we first used ProtNLM to predict the protein name from the input amino
acid sequence. Given the ProtNLM-generated name, we queried UniProt and retrieved the function annotation of the top
matching entry, which we used as the ProtNLM-predicted function.
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The InstructProtein model was pretrained on textual amino acid sequences and natural language data, followed by
instruction tuning. We fine-tuned InstructProtein on our free-form function dataset for two epochs using the recom-
mended hyperparameters, then performed inference on our test set to generate predictions for both free-form pre-
diction and discrete category classification tasks. We used the following prompt: ‘“Please describe the function
of the protein [<protein>MLPSKRVPFLFTIILFLAGLGQHTTESVL-PDCVLYPRCLITKDPCCM</protein>]", where
“<protein></protein>" is a specialized token representing the amino acid sequence.

A.6. Experimental details for specific prediction Tasks

Predicting enzyme catalytic functions involves determining which of the seven categories of chemical reactions a given
enzyme can catalyze. These categories include hydrolase, oxidoreductase, lyase, transferase, ligase, isomerase, and
translocase. The prompt for this prediction task was “What type of enzyme is this? Choose from [the list of categories
above]”. Similarly, predicting ligand binding entails identifying the specific ligand a protein can bind to, while predicting
coenzyme-enzyme interactions focuses on determining which coenzyme interacts with a given enzyme. The prompts for
these tasks are outlined in Table 1. In the biological process prediction task, the goal is to predict the biological processes in
which a protein is involved, including molecule transport, DNA to mRNA transcription, amino acid biosynthesis, protein
biosynthesis from mRNA molecules, lipid metabolism, tRNA processing, DNA damage response, and cell cycle regulation.
Cellular component prediction involves determining the cellular localization of proteins (Consortium, 2019). While cellular
localization does not directly define protein functions, it is often intrinsically linked to the roles proteins play within the cell.
For example, proteins involved in energy production, such as those in the electron transport chain, are typically located
within the mitochondria. We evaluated ProteinChat’s ability in identifying proteins’ cellular localization from six categories:
cytoplasm, membrane, nucleus, secreted, mitochondrion, and plastid, using the following prompt: “What is the cellular
localization of this protein? Choose from [a list of the six categories]”.

For each of these specific prediction tasks, we developed a specialized classifier. Each classifier includes a protein encoder
based on the pretrained xTrimoPGLM-1B and a classification head based on a multi-layer perceptron. Given the amino
acid sequence of a protein, the protein encoder extracts representations for each amino acid. These representations are
then averaged into a single vector, which is subsequently fed into the classification head to predict the class label. The
classification head is a Multilayer Perceptron (MLP) with two layers. For all classification tasks, the first layer of the MLP
contains 128 hidden units. The second layer’s number of hidden units corresponds to the number of categories specific to
the task. For each classifier, we trained two variants: 1) keeping the pretrained protein encoder fixed and only training the
classification head (referred to as Classifier 1), and 2) training both the protein encoder and the classification head (referred
to as Classifier 2). The weights of the MLP were initialized using the Kaiming initialization method. We used the same
learning rate and optimizer as in the ProteinChat training configurations. The batch size was set to 32, and a checkpoint was
saved every 2500 iterations. The checkpoint with the best performance on 300 randomly selected validation examples was
then chosen. For each task, there were 1000 test proteins. The training data for the specialized classifiers was curated from
the UniProtKB database. The number of training examples for the classifiers in the tasks of predicting catalytic functions,
ligand binding, coenzyme-enzyme interactions, biological processes, and cellular components were 277548, 198215, 31672,
198661, and 340276 respectively.

The two Gene Ontology (GO) classifiers - DeepGOPIlus (Kulmanov & Hoehndorf, 2020) and NetGO 3.0 (Wang et al., 2023)
- utilize online web services to predict GO terms with rankings. A prediction is considered correct if the ground truth GO
term holds the highest rank among all possible answers for the given question.

B. Related works

To better analyze, annotate, and predict protein functions, significant research has been conducted in recent years. The
Critical Assessment of Function Annotation (CAFA) competition (Radivojac et al., 2013) is designed to develop machine
learning models for predicting the Gene Ontology (GO) categories associated with protein functions. As of 2023, this
competition has been held five times, yielding diverse solutions such as comparing unsolved sequences with known proteins,
integrating multiple data sources, and applying machine learning algorithms with insights into biological processes to
decipher protein functions. Notable work has focused on predicting GO functions, including DeepGOPIlus (Kulmanov &
Hoehndorf, 2020; Kulmanov et al., 2024) and NetGO 3.0 (Wang et al., 2023). These methods typically train separate models
for each sub-ontology in GO, which encompasses molecular function ontology (MFO), biological process ontology (BPO),
and cellular component ontology (CCO). Recent deep learning methods have demonstrated great efficacy in predicting
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specific protein functions. These include Graph Neural Networks (Gligorijevi€ et al., 2021), diffusion models (Watson et al.,
2023), transfer learning (Lin et al., 2023a), and contrastive learning (Yu et al., 2023). These methods focus on predicting
protein functions represented as discrete categories, but they are unable to predict functions described in free-form text,
which typically contains more detailed information than category labels.

Multi-modal learning, particularly in image-text applications, has seen significant advancements recently. The CLIP
model (Radford et al., 2021) employs contrastive learning to align image and text embeddings effectively. The BLIP-2
framework (Li et al., 2023) integrates images and text prompts to generate relevant responses using large language models.
Building on BLIP-2, MiniGPT-4 (Zhu et al., 2024) enhances performance by incorporating the more powerful Llama-2
model. Additionally, LLaVA (Liu et al., 2024) combines a vision encoder with a large language model for various visual-
textual tasks, including scientific question answering. In the scientific domain, multi-modal learning has gained increasing
attention. MoleculeSTM (Liu et al., 2023) utilizes contrastive learning to simultaneously learn representations for chemical
structures and textual descriptions of molecules. ProtST (Xu et al., 2023) employs contrastive learning and multi-modal
mask prediction to align protein sequences with their textual descriptions, enabling zero-shot classification and text-protein
retrieval. In contrast to ProtST, ProteinChat offers free-form protein function prediction, a feature not available in ProtST.
Additionally, MultiVI (Ashuach et al., 2023) is a deep generative model that integrates multi-modal single-cell datasets,
facilitating the joint analysis of chromatin accessibility and gene expression measurements.

C. Additional experiments
C.1. ProteinChat predicts novel protein functions beyond existing annotations

To assess whether ProteinChat’s predictions contain novel functional insights beyond what is present in the ground
truth annotations, we randomly selected a few test proteins for qualitative analysis. Fig. 6a presents the predictions of
ProteinChat and BLASTp, along with the corresponding ground truth annotations, for two illustrative examples. For protein
AOA1JOHSRI, ProteinChat predicts that it mediates fusaric acid biosynthesis. Notably, this functional role is not mentioned
in the ground truth annotation, suggesting a novel prediction. To evaluate its plausibility, our domain experts conducted
a literature review and bioinformatic analysis. The results support the biological validity of ProteinChat’s prediction.
Specifically, AOA1JOHSR1 contains a conserved fungal transcription factor middle homology region (MHR) domain,
indicating that it likely belongs to the Zn(II),Cys4 family of transcriptional regulators (uto). Furthermore, AOA1JOHSR1
— also known as gene iacl in Pestalotiopsis fici — is located within a 12-gene biosynthetic gene cluster (BGC) that
includes two putative regulatory proteins (iacl and iacK) alongside multiple enzymatic genes (sec). This gene cluster
architecture closely resembles that of the fusaric acid (FUB) cluster in Fusarium, which also contains two pathway-specific
Zn(II),Cys, regulators (Brown et al., 2015). Taken together, these findings suggest that AOA1JOHSRI likely functions as a
pathway-specific transcription factor regulating fusaric acid biosynthesis, paralleling the role of FUB cluster regulators in
Fusarium. This novel role was neither captured in the ground truth annotation nor inferred by BLASTp.

For another protein, Q5AUX9, ProteinChat predicts a role in meroterpenol biosynthesis, which is not mentioned in the
ground truth annotation. The ground truth describes this protein as a transcription factor regulating genes responsible for
the production of DHMBA, a specific polyketide intermediate. However, literature indicates that DHMBA biosynthesis
occurs as part of a larger, coordinated meroterpenoid biosynthetic system. In Aspergillus nidulans, the production of
meroterpenoids requires the interplay of two gene clusters: one synthesizes the polyketide precursor (e.g., DHMBA),
and the other performs essential tailoring modifications to produce the final meroterpenoid compound (Schroeckh et al.,
2009; Nielsen et al., 2011). Crucially, these gene clusters are not regulated in isolation. Regulatory proteins such as
DbaA and DbaG have been shown to coordinate gene expression across the entire dba biosynthetic cluster — the same
cluster responsible for DHMBA production — indicating that regulators involved in early-stage precursor synthesis often
also govern downstream steps in meroterpenoid biosynthesis (Gerke et al., 2012; Wang et al., 2021). This integrated
regulatory architecture supports the idea that a transcription factor initially associated with DHMBA may also influence
the broader meroterpenol biosynthetic pathway. ProteinChat’s broader prediction is further supported by studies showing
that such pathway-wide regulation is common in fungal secondary metabolism. Lo et al. (Lo et al., 2012) demonstrated
that transcription factors in Aspergillus nidulans can activate entire meroterpenoid biosynthetic pathways, coordinating
expression across both core and tailoring genes. Sanchez et al. (Sanchez et al., 2010) similarly showed that biosynthetic
gene clusters are often controlled by regulators that function at the pathway level, rather than being restricted to individual
metabolite-specific roles. These findings reinforce the plausibility of ProteinChat’s functional assignment: by predicting
that Q5AUX9 regulates the full meroterpenol pathway — not just DHMBA — it mirrors known biological patterns of
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Figure 5: ProteinChat accurately predicts protein functions expressed in textual descriptions and outperforms GPT-4,
BLASTD, ProtNLM, and InstructProtein. a, In the human evaluation of correctness and completeness, ProteinChat
significantly outperformed all baselines in both average scores and score distributions. b, In automated evaluation metrics
including ROUGE-1, ROUGE-L, BLEU-1, BLEU-2, METEOR, and SimCSE, ProteinChat demonstrated significantly
superior performance compared to baselines. ¢, In the Claude 3.5 Sonnet evaluation, ProteinChat outperformed all baseline
methods. 17
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Figure 6: ProteinChat predicts novel protein functions beyond existing annotations. a, On two exemplar test proteins,
ProteinChat predicted biologically plausible functions that are not present in the ground truth annotations, whereas BLASTp
failed to identify such functions. b, The METEOR scores between ProteinChat’s predictions on test proteins and ground
truth annotations in the training data mostly fall between 0.5 and 0.9, indicating that ProteinChat generates novel information
rather than memorizing training data.

pathway-level transcriptional control in fungal secondary metabolism. In contrast, BLASTp does not associate this protein
with meroterpenol biosynthesis. These examples demonstrate that ProteinChat goes beyond reproducing known annotations
by generating novel, biologically plausible predictions. This qualitative analysis highlights ProteinChat’s potential utility in
uncovering previously unannotated functions and in generating testable hypotheses to guide future experimental validation.

In addition, to further evaluate whether ProteinChat generates novel free-form function descriptions rather than memorizing
its training data, we analyzed the similarity between its predictions on the test set and the function annotations seen during
training. We computed the METEOR score for each test prediction against all function descriptions in the training set
and recorded the highest score per prediction. As shown in Fig. 6b, the resulting scores are concentrated between 0.5
and 0.9, with very few predictions achieving scores near 1.0. This range reflects moderate similarity, suggesting that the
predictions contain novel information not present in the training data. These findings demonstrate that ProteinChat is not
simply memorizing its training data, but rather generalizing from it to produce novel function descriptions.

C.2. ProteinChat enables interactive and iterative predictions of protein functions

ProteinChat facilitates interactive dialogues between users and the system. After obtaining the initial predictions from
ProteinChat, users can input more detailed and specific prompts to further refine and expand these predictions. Fig. 8 presents
three example dialogues between ProteinChat and human users, corresponding to proteins Q9U281, Q9XZG9, and Q9L.U44
in UniProtKB. The dialogue on the left pertains to Q9U281, where the user inquires about the general function of this protein.
ProteinChat identifies it as a histone protein involved in modulating DNA accessibility. Subsequently, the user inquires
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Figure 7: ProteinChat demonstrates strong accuracy in specific-category prediction tasks. a, In five curated tasks from
UniProt — catalytic function prediction, ligand binding prediction, coenzyme—enzyme interaction prediction, biological
process prediction, and cellular component prediction — where protein functions are represented as discrete categories, Pro-
teinChat achieved significantly higher accuracy, macro F1, and weighted F1 scores compared to GPT-4 and InstructProtein,
and performed on par with specialized classifiers. b, In predicting protein functions represented using Gene Ontology (GO)
categories, ProteinChat outperformed or matched the performance of two state-of-the-art GO classifiers, DeepGOPlus and
NetGO 3.0.

about the specific functions of this histone protein, and ProteinChat provides detailed predictions, highlighting the protein’s
roles in transcription regulation and post-translational modifications. The top right dialogue pertains to Q9XZG9, where
ProteinChat initially predicts that the protein has antibacterial function. Based on the user’s further prompt, ProteinChat
then accurately predicts the protein can inhibit the growth of both Gram-positive and Gram-negative bacteria. The bottom
right example focuses on Q9LU44. When inquired about general functions, ProteinChat predicts that the protein is involved
in pre-mRNA splicing. Upon further inquiry into specific molecular functions, such as metal binding, ProteinChat predicts
that the protein binds zinc ions. This dynamic interaction between ProteinChat and users facilitates continuous, in-depth
analysis of the same protein, in contrast to previous methods that offer only single-shot predictions. Users can delve deeper
into the specifics of protein functions, exploring intricate details and nuances that single-shot predictions might miss. This
ensures that the predictions are not only more accurate but also more comprehensive, uncovering complex protein behaviors
and mechanisms.
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Figure 8: Interactive dialogues between ProteinChat and human users about proteins Q9U281, Q9XZG9, and Q9LU44.

C.3. Proteins with identical functions are located close to each other in the representation space of ProteinChat

To better understand how ProteinChat predicts protein functions, we visualized its learned protein representations in a 2D
space using t-SNE (Van der Maaten & Hinton, 2008). For each input protein’s amino acid sequence, we utilized the trained
xTrimoPGLM (Chen et al., 2025) protein encoder and the trained adaptor in ProteinChat to extract a representation vector
for each amino acid. We then computed the overall representation of the entire protein by averaging the representations of
all the amino acids. We projected the protein representation vectors into a 2D space using t-SNE (Van der Maaten & Hinton,
2008) for visualization. Fig. 9 presents a visualization of all n = 20, 426 human proteins from the Swiss-Prot dataset. Each
dot in the figure represents a protein. In Fig. 9a, we have highlighted proteins with ground truth labels for three cellular
localizations: nucleus (n = 5,617), secreted (n = 2, 113), and mitochondrion (n = 1, 309). As observed, proteins with the
same cellular localization are clustered together in the representation space. Similar patterns can be observed in Fig. 9b-d.

In addition, we quantitatively assessed the quality of clustering in the learned protein embedding space. Specifically, we
computed intra-cluster and inter-cluster distances among protein embeddings based on functional or subcellular annotations,
such as cellular compartments (e.g., nucleus, secreted, mitochondrial) and ligand-binding categories (e.g., nucleotide-binding,
zinc-binding). For each annotation category, we calculated the average pairwise distance between embeddings within the
same group (intra-cluster) and between different groups (inter-cluster).

The results in Table 3 show a consistent pattern: proteins sharing the same annotation exhibit substantially lower intra-cluster
distances than inter-cluster distances. For example, proteins localized to the nucleus have an average intra-cluster distance
of 227.79, compared to an inter-cluster distance of 246.68 when paired with secreted proteins. Similarly, nucleotide- and
zinc-binding proteins show intra-cluster distances ranging from 212.68 to 226.62, which are markedly smaller than the
inter-cluster distances of 232.58-235.57. These results provide quantitative evidence that ProteinChat’s learned embeddings
effectively capture biologically meaningful patterns, supporting our observation from the t-SNE visualizations. The
consistent separation of proteins by function or localization in the embedding space underscores the model’s capacity to
encode relevant biological semantics.
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Figure 9: t-SNE visualization of protein representations extracted by the protein encoder and adaptor of ProteinChat.
a, Proteins located in three cellular locations, including nucleus, secreted, and mitochondrion, are highlighted. b, Proteins
located in three mitochondrial components - inner membrane, outer membrane, and nucleoid - are highlighted. ¢, Proteins
that bind with four ligands - nucleotide, zinc, S-adenosyl-L-methionine, and manganese - are highlighted. d, Proteins
binding with ATP, cAMP, cGMP, and GTP are highlighted.

21



Multi-Modal Large Language Model Enables Protein Function Prediction

I ProteinChat-ESM

Il ProteinChat-xTrimoPGLM

<
© <
N =1 2 0.65 - e
0.27 ] e © S 9
° 0.16 S
0.20 0.64
0.24 7 0.08 - 0.16 - o
0.14 - 06379 o
<
0.21 - s 3
0.15 o 0.62 —
0.06 - 3 0.14 —
= 0124 4o S
- o 5
0-18 © 0.61
0.15 - 0.10 - 0.10 - 0.04 0.12 - 0.60 -
ROUGE-1 ROUGE-L BLEU-1 BLEU-2 METEOR SimCSE

Figure 10: Ablation study on the protein encoder. Using xTrimoPGLM as the protein encoder yielded better performance
in free-form function prediction compared to ESM-2.

C.4. Ablation study on protein encoder

To assess the impact of the protein sequence encoder on ProteinChat’s performance, we conducted an ablation study
comparing X TrimoPGLM (Chen et al., 2025) and ESM-2 (650M) (Lin et al., 2023b) within our framework. Specifically, we
replaced xTrimoPGLM with ESM-2 and evaluated both variants on free-form protein function prediction. As shown in
Figure 10, the model using xTrimoPGLM consistently outperforms the ESM-2 variant across multiple evaluation metrics,
including ROUGE-1 and SimCSE similarity.

We attribute the superior performance of xXTrimoPGLM to its dual-objective pretraining strategy, which combines masked
language modeling (MLM) and generative language modeling (GLM). This approach enables xTrimoPGLM to learn
both bidirectional representations and autoregressive generation capabilities — properties that are essential for modeling
long-range dependencies and nuanced contextual patterns in protein sequences. In contrast, ESM-2 adopts an encoder-only
architecture trained solely with an MLM objective, which is less suited for capturing sequential dependencies and global
semantic coherence. This limitation reduces its ability to model the full functional landscape of protein sequences, especially
in tasks like free-form function prediction.

C.5. Robustness to incomplete category lists

In practical applications of protein function prediction, the list of candidate function categories provided to a model may
be incomplete. For example, certain relevant categories may be missing due to annotation gaps or upstream errors in
data processing. Therefore, it is important for a model like ProteinChat not only to choose the correct category when it
is available but also to recognize when the appropriate category is absent from the provided options. Such robustness is
critical for real-world usability, especially in exploratory or low-confidence settings. To assess this capability, we conducted
a controlled experiment to evaluate ProteinChat’s behavior when the ground truth category is deliberately excluded from
the prompt. We modified the prompt to include the instruction: “If you believe the provided list does not contain the
correct category, output ‘Other’.” This setup allows us to test whether ProteinChat can accurately detect the absence of
the correct category and appropriately respond. We first randomly selected 1,000 proteins and removed the ground truth
category from the list provided in the prompt. ProteinChat responded with “Other” in 874 cases (87.4%), demonstrating
a strong ability to recognize when the correct category is missing. To evaluate whether ProteinChat would erroneously
respond with “Other” when the correct category is present, we conducted a complementary experiment using another
1,000 randomly selected proteins, this time ensuring that the ground truth category was included in the list. In 878 cases
(87.8%), ProteinChat correctly selected the ground truth category instead of “Other”, confirming that it does not mistakenly
reject valid options. These results indicate that ProteinChat is robust to prompt-level noise and can reliably identify when
the correct category is missing or present. This behavior is important for maintaining prediction reliability in real-world
scenarios where user-provided function lists may be incomplete.
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D. Additional discussion

ProteinChat illustrates two important concepts. Firstly, the fundamental language of biology - amino acid sequences -
encodes highly rich information about underlying biological processes. This information is both computable and predictive,
suggesting that this language can be harnessed to develop powerful predictive models in other areas of biology, as
demonstrated by ProteinChat. Secondly, achieving a balance is crucial when designing deep learning models for biological
applications. While highly specialized models like DeepGo or NetGo are effective in specific tasks, they may overlook
the complex, multi-tasking nature of proteins that are involved in multiple biological pathways. On the other hand, overly
generalized models, such as GPT-4, might lack the precision needed for accurate, domain-specific predictions. ProteinChat
strikes a balance between these extremes, offering broad generalization across proteomics while maintaining high accuracy
and specificity, as demonstrated in Fig. 5 and 7.

ProteinChat is designed to minimize the need for continuous user training while allowing for periodic updates and enhance-
ments by us, the developers. For example, we plan to integrate more advanced versions of Llama (e.g., Llama-3 (Meta, 2024))
as the textual LLM component of ProteinChat, improving the quality of human-like interactions. Additionally, incorporating
newer versions of xTrimoPGLM will further enhance ProteinChat’s accuracy and specificity. These planned improvements
will ensure that ProteinChat remains both competitive and up-to-date. Furthermore, ProteinChat’s versatility enables
seamless integration with other deep-learning models, such as those based on structure prediction like AlphaFold (Jumper
et al., 2021), allowing it to predict the functions of proteins in the context of their 3D structures.

Some predictions made by ProteinChat, currently labeled as incorrect by human experts, may actually uncover previously
unidentified properties and functions of these proteins. As a result, the scores we assigned to ProteinChat could potentially
be even higher. More importantly, predictions deemed incorrect might actually offer new insights or hypotheses that warrant
further experimental validation. For many proteins, only a portion of their amino acid sequences have been fully understood,
with the remainder still elusive and sometimes labeled as “junk” - sequences that seemingly do not contribute significantly
to the protein’s main function (Lovell, 2003). ProteinChat has the potential to shed light on these currently uninterpretable
sequences. Additionally, large portions of proteins can consist of disordered segments - sequences that do not fold into
a stable structure (Van Der Lee et al., 2014). Historically, these segments have often been truncated in structural and
biophysical studies, leading to incomplete characterizations. However, recent research indicates that these disordered
segments are crucial for the phase separation of proteins into specific cellular compartments, where they carry out their
functions (Hyman et al., 2014). ProteinChat, which can analyze the entire protein sequence, could be particularly effective
in interpreting these disordered segments and predicting their phase-separating characteristics. This capability may already
be reflected in ProteinChat’s predictions related to cellular compartmentalization.
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Table 1: Prompts linked to keywords and the number of curated triplets for each keyword.

Catalytic function
Prompt: What type of enzyme is this? Choose one from the following options:
hydrolase, oxidoreductase, lyase, transferase, ligase, isomerase, and translocase.

Function category Number of triplets | UniProtKB keyword | GO term
Transferase 98540 KW-0808 GO0:0016740
Hydrolase 65580 KW-0378 G0:0016787
Oxidoreductase 36864 KW-0560 GO0:0016491
Ligase 29379 KW-0436 GO0:0016874
Lyase 26546 KW-0456 G0:0016829
Isomerase 16283 KW-0413 GO0:0016853
Translocase 14708 KW-1278 -
Ligand binding

Prompt: What ligand can this protein bind to? Choose one from the following options:
magnesium, nucleotide-binding, zinc, iron, S-adenosyl-L-methionine, and manganese.

Function category Number of triplets UniProtKB keyword GO term
Nucleotide-binding 101082 KW-0547 GO0:0000166
Magnesium 46675 KW-0460 -

Zinc 41464 KW-0862 -

Iron 29555 KW-0408 -
S-adenosyl-L-methionine 17332 KW-0949 -

Manganese 12067 KW-0464 -

Coenzyme-enzyme interaction
Prompt: What coenzyme does this enzyme interact with? Choose one from the following options:
nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP).

Function category Number of triplets UniProtKB keyword GO term
Nicotinamide adenine dinucleotide (NAD) 21502 KW-0520 -
Nicotinamide adenine dinucleotide phosphate (NADP) 15102 KW-0521 -

Biological process
Prompt: What biological process is this protein involved in? Choose one from the following options: molecule transport, DNA to mRNA transcription,
amino acid biosynthesis, protein biosynthesis from mRNA molecules, lipid metabolism, tRNA processing, DNA damage response, and cell cycle regulation.

Function category Number of triplets | UniProtKB keyword | GO term
Molecule transport 58648 KW-0813 -

DNA to mRNA transcription 32127 KW-0804 -

Amino acid biosynthesis 26272 KW-0028 GO0:0008652
Protein biosynthesis from mRNA molecules 26063 KW-0648 GO:0006412
Lipid metabolism 16282 KW-0443 GO:0006629
tRNA processing 15380 KW-0819 G0:0008033
DNA damage response 14565 KW-0227 G0:0006974
Cell cycle regulation 14474 KW-0131 GO0:0007049

Cellular component
Prompt: What is the cellular localization of this protein? Choose one from the following options:
cytoplasm, membrane, nucleus, secreted, mitochondrion, and plastid.

Function category Number of triplets UniProtKB keyword GO term

Cytoplasm 165882 KW-0963 GO0:0005737
Membrane 116756 KW-0472 GO:0016020
Nucleus 41431 KW-0539 GO:0005634
Secreted 32360 KW-0964 GO:0005576
Mitochondrion 17206 KW-0496 G0:0005739
Plastid 15990 KW-0934 GO:0009536

Table 2: Rubric used for both human expert evaluation and Claude 3.5 Sonnet assessment of predicted protein functions.

Score | Correctness score description Completeness score description
2 Prediction is mostly or fully accurate. Prediction captures all key aspects of the ground truth
function.
1 Prediction captures the correct functional category but Prediction includes some relevant functional

includes substantial inaccuracies (e.g., correct substrate | information but is partially incomplete.
but incorrect function).
0 Prediction is entirely incorrect or lacks relevant Prediction does not include any relevant functional
biological content. information.
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Table 3: Intra- and inter-cluster distances and permutation test results.

Intra-cluster

Inter-cluster Comparison

Distance Comparison Distance p-value

Nucleus (5617) 227.79 Nucleus vs Secreted 246.68 0.0099

Cellular Localization Secreted (2113) 236.60 Nucleus vs Mitochondrion 252.16 0.0099
Mitochondrion (1309) 245.97 Secreted vs Mitochondrion 258.61 0.0099

Inner membrane (332) 243.64 Inner vs Outer membrane 255.39 0.0099

Mitochondrion Locations Outer membrane (154) 232.29 Inner vs Nucleoid 248.93 0.0099
Nucleoid (19) 216.10 Outer vs Nucleoid 234.39 0.3366

Nucleotide (1985) 226.62 Nucleotide vs Zinc 233.65 0.0099

Zinc (2449) 219.12 Nucleotide vs S-adenosyl-L-methionine 234.60 0.0099

Bindine Licands S-adenosyl-L-methionine (188) 212.68 Nucleotide vs Manganese 232.58 0.0099
e Lig Manganese (222) 223.19 Zinc vs S-adenosyl-L-methionine 23311 0.0099

Zinc vs Manganese 235.57 0.0099

S-adenosyl-L-methionine vs Manganese ~ 233.09 0.0099

ATP-binding (1393) 224.44 ATP vs cAMP-binding 223.16 0.5842

cAMP-binding (17) 180.55 ATP vs cGMP-binding 219.80 0.7723

. c¢GMP-binding (9) 162.75 ATP vs GTP-binding 231.93 0.0099

ATP/CAMP/cGMP/GTP Binding  pp i1 gino (357 209.94  cAMP vs cGMP-binding 18246  0.1287
cAMP vs GTP-binding 229.95 0.0099

c¢GMP vs GTP-binding 227.95 0.0297
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